

SPARC64-III User’s Guide

HAL Computer Systems, Inc.
Campbell, California

May 1998

Copyright © 1998 HAL Computer Systems, Inc. All rights reserved.

This product and related documentation are protected by copyright and distributed under licenses restricting
their use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of HAL Computer Systems, Inc.,
and its licensors, if any.

Portions of this product may be derived from the UNIX and Berkeley 4.3 BSD Systems, licensed from UNIX
System Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California,
respectively.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is
subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii), FAR 52.227-19, and NASA FAR
Supplement.

The product described in this book may be protected by one or more U.S. patents, foreign patents, or pending
applications.

TRADEMARKS
HAL, the HAL logo, HyperScalar, and OLIAS are registered trademarks and HAL Computer Systems, Inc.
HALstation 300, and Ishmail are trademarks of HAL Computer Systems, Inc. SPARC64 and SPARC64/OS
are trademarks of SPARC International, Inc., licensed by SPARC International, Inc., to HAL Computer
Systems, Inc.

Fujitsu and the Fujitsu logo are trademarks of Fujitsu Limited.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of
SPARC International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware,
SPARCcenter, SPARCclassic, SPARCcluster, SPARCdesign, SPARC811 SPARCprinter, UltraSPARC,
microSPARC, SPARCworks, and SPARCompiler are licensed exclusively to Sun Microsystems, Inc.
Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark of Novell, Inc., in the United States and other countries, licensed exclusively
through the X/OPEN Company, Ltd.

All other product names mentioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. HAL COMPUTER SYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES
IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

SPARC64-III User’s Guide
Internal part number 620-00205-A
Reorder document number 620-00205-A
May 1998

HAL Computer Systems, Inc.
A Fujitsu Company
1315 Dell Avenue
Campbell, CA 95008
http://www.hal.com

Contents
1 Overview .. 11

1.1 Notes About This Book ... 11
1.2 SPARC64-III Architecture .. 17

2 Definitions .. 21
SPARC-V9 Terms ... 21
SPARC64-III Implementation-Specific Terms ... 26

3 Architectural Overview .. 31
3.1 SPARC-V9 Processor Architecture .. 31
3.2 Instructions .. 33
3.3 Traps .. 37
3.4 SPARC64-III Processor Architecture ... 38

4 Data Formats ... 51
4.1 Signed Integer Byte ... 52
4.2 Signed Integer Halfword ... 52
4.3 Signed Integer Word ... 52
4.4 Signed Integer Double ... 52
4.5 Signed Extended Integer ... 53
4.6 Unsigned Integer Byte ... 53
4.7 Unsigned Integer Halfword ... 53
4.8 Unsigned Integer Word ... 53
4.9 Unsigned Integer Double .. 54
4.10 Unsigned Extended Integer ... 54
4.11 Tagged Word ... 54
4.12 Floating-point Single Precision ... 54
4.13 Floating-point Double Precision ... 55
4.14 Floating-point Quad-precision .. 55

5 Registers ... 59
5.1 Nonprivileged Registers .. 60
5.2 Privileged Registers ... 82

4 Contents

6 Instructions .. 107
6.1 Instruction Execution .. 107
6.2 Instruction Formats .. 111
6.3 Instruction Categories .. 116
6.4 Register Window Management ... 133

7 Traps ... 137
7.1 Overview ... 137
7.2 Processor States, Normal and Special Traps ... 137
7.3 Trap Categories ... 142
7.4 Trap Control .. 146
7.5 Trap-table Entry Addresses ... 147
7.6 Trap Processing ... 153
7.7 Exception and Interrupt Descriptions .. 161

8 Memory Models ... 169
8.1 Introduction ... 169
8.2 Memory, Real Memory, and I/O Locations .. 173
8.3 Addressing and Alternate Address Spaces .. 174
8.4 SPARC-V9 Memory Model .. 176

9 Guidelines for Instruction Scheduling .. 185
9.1 Introduction ... 185
9.2 Instruction Fetch .. 187
9.3 Branches and Branch Prediction ... 190
9.4 Instruction Issue .. 194
9.5 Instruction Dispatch, and the DFM Queue .. 195
9.6 Data Flow Unit .. 198
9.7 Some Implementation Specifics .. 205
9.8 Grouping Rules .. 207

A Instruction Definitions .. 213
A.1 Overview ... 213
A.2 Add .. 218
A.3 Branch on Integer Register with Prediction (BPr) ... 219
A.4 Branch on Floating-point Condition Codes (FBfcc) ... 221
A.5 Branch on Floating-point Condition Codes with Prediction (FBPfcc) 224
A.6 Branch on Integer Condition Codes (Bicc) ... 227
A.7 Branch on Integer Condition Codes with Prediction (BPcc) 229
A.8 Call and Link ... 232
A.9 Compare and Swap .. 233
A.10 Divide (64-bit / 32-bit) .. 235
A.11 DONE and RETRY ... 238
A.12 Floating-point Add and Subtract ... 239
A.13 Floating-point Compare .. 240
A.14 Convert Floating-point to Integer .. 242

Contents 5

A.15 Convert between Floating-point Formats .. 243
A.16 Convert Integer to Floating-point .. 245
A.17 Floating-point Move .. 246
A.18 Floating-point Multiply and Divide .. 248
A.19 Floating-point Square Root ... 250
A.20 Flush Instruction Memory .. 251
A.21 Flush Register Windows .. 253
A.22 Illegal Instruction Trap .. 254
A.23 Implementation-dependent Instructions .. 255
A.24 Jump and Link ... 258
A.25 Load Floating-point ... 259
A.26 Load Floating-point from Alternate Space .. 261
A.27 Load Integer .. 263
A.28 Load Integer from Alternate Space ... 265
A.29 Load-store Unsigned Byte ... 268
A.30 Load-store Unsigned Byte to Alternate Space .. 269
A.31 Logical Operations .. 270
A.32 Memory Barrier ... 272
A.33 Move Floating-point Register on Condition (FMOVcc) ... 275
A.34 Move F-P Register on Integer Register Condition (FMOVr) 279
A.35 Move Integer Register on Condition (MOVcc) .. 281
A.36 Move Integer Register on Register Condition (MOVR) ... 285
A.37 Multiply and Divide (64-bit) ... 287
A.38 Multiply (32-bit) .. 288
A.39 Multiply Step ... 290
A.40 No Operation ... 292
A.41 Population Count ... 293
A.42 Prefetch Data ... 295
A.43 Read Privileged Register ... 301
A.44 Read State Register ... 303
A.45 RETURN ... 306
A.46 SAVE and RESTORE ... 307
A.47 SAVED and RESTORED ... 309
A.48 SETHI .. 310
A.49 Shift ... 311
A.50 Software-initiated Reset .. 313
A.51 Store Barrier .. 314
A.52 Store Floating-point ... 315
A.53 Store Floating-point into Alternate Space ... 317
A.54 Store Integer .. 319
A.55 Store Integer into Alternate Space .. 321
A.56 Subtract .. 323
A.57 Swap Register with Memory ... 324
A.58 Swap Register with Alternate Space Memory .. 325

6 Contents

A.59 Tagged Add .. 327
A.60 Tagged Subtract ... 329
A.61 Trap on Integer Condition Codes (Tcc) .. 331
A.62 Write Privileged Register .. 334
A.63 Write State Register ... 337

B IEEE Std 754-1985 Requirements for SPARC-V9 .. 341
B.1 Traps Inhibit Results ... 341
B.2 NaN Operand and Result Definitions .. 342
B.3 Trapped Underflow Definition (UFM = 1) ... 343
B.4 Untrapped Underflow Definition (UFM = 0) .. 343
B.5 Integer Overflow Definition .. 344
B.6 Floating-Point Nonstandard Mode .. 344

C SPARC-V9 Implementation Dependencies ... 345
C.1 Definition of an Implementation Dependency .. 345
C.2 Hardware Characteristics .. 346
C.3 Implementation Dependency Categories ... 346
C.4 List of Implementation Dependencies ... 347

D Formal Specification of the Memory Models .. 357
See The SPARC Architecture Manual-Version 9 for the text of this appendix.

E Opcode Maps ... 359
E.1 Overview ... 359
E.2 Tables .. 359

F MMU Architecture .. 367
F.1 Introduction ... 367
F.2 MMU and TLB Overview ... 368
F.3 MTLB Organization .. 369
F.4 MMU Registers ... 374
F.5 MMU Instructions ... 374
F.6 MMU Exceptions .. 376
F.7 Disable Main and Micro TLB Function .. 376
F.8 Locking Entries ... 377
F.9 Data MTLB Miss ... 379

If (split == 0) ... 380
If (split == 1) ... 380

F.10 Instruction MTLB Miss ... 381
F.11 Programming Notes ... 381
F.12 MMU Reference .. 383

G Assembly Language Syntax .. 393
G.1 Notation Used .. 393
G.2 Syntax Design .. 398
G.3 Synthetic Instructions ... 399

Contents 7

H Software Considerations .. 401
See The SPARC Architecture Manual-Version 9 for the text of this appendix.

I Extending the SPARC-V9 Architecture .. 403
See The SPARC Architecture Manual-Version 9 for the text of this appendix.

J Programming With the Memory Models ... 405
See The SPARC Architecture Manual-Version 9 for the text of this appendix.

K Changes From SPARC-V8 to SPARC-V9 ... 407
See The SPARC Architecture Manual-Version 9 for the text of this appendix.

L ASI Assignments ... 409
L.1 Introduction ... 409
L.2 ASI Assignments ... 409
L.3 Special Memory Access ASI’s .. 412

M Cache Organization .. 415
M.1 Introduction ... 415
M.2 Level-0 Instruction Cache (I0 Cache) ... 415
M.3 Level-1 Instruction Cache (I1 Cache) ... 415
M.4 Level-1 Data Cache (D1 Cache) ... 415
M.5 Level-2 External Unified Cache (U2 Cache) .. 416
M.6 Cache Coherency Protocols .. 416
M.7 ASI Cache Instructions .. 417

N Interrupt Handling ... 427
N.1 Interrupt Dispatch .. 427
N.2 Interrupt Receive ... 427
N.3 Interrupt ASI Registers .. 428
N.4 ASI Instructions for Interrupt Processing .. 429
N.5 Interrupt-Related ASR registers .. 431

O Reset, RED_state, and Error_state ... 433
O.1 Reset .. 433
O.2 RED_state and Error_state .. 434
O.3 Processor State after Reset and in RED_state ... 435
O.4 Hardware Power On Reset Sequence .. 437
O.5 Firmware Initialization Sequence .. 438

P Error Handling .. 441
P.1 Overview ... 441
P.2 MMU Errors .. 443
P.3 Memory Errors .. 443
P.4 System Errors .. 444
P.5 Basic Mechanism and Flow of Error Handling ... 445
P.6 Hardware Error Trap Processing ... 447
P.7 ASI Instructions for Error Handling .. 448

8 Contents

Q Performance Monitoring .. 455
Q.1 Introduction ... 455
Q.2 Performance Monitor Description ... 455

Counter 0: Memory Total Latency Counter ... 457
Counter 1: L1 Data Cache Hit Counter .. 458
Counter 2: Memory Access Event Counter .. 458
Counter 3: L1 Data Cache Reload for Load Event Counter 458
Counter 4: L1 Data Cache Reload for Store Event Counter 458
Counter 5: L1 Data Cache Victim Copyback Counter 458
Counter 6: L1 Instruction Cache Reload Event Counter 458
Counter 7: U2 Cache Miss From Instruction Fetch Counter 458
Counter 8: U2 Cache Miss From Data Load Counter 458
Counter 9: U2 Cache Miss From Data Store Counter 458
Counter 10: U2 Cache Miss With Writebacks Counter 459
Counter 11: U2 Cache Invalidate from UPA Transaction Counter 459
Counter 12: U2 Cache Unsolicited Copyback Counter 459
Counter 13: U2 Cache Hit with “Read to Own” UPA Transaction Counter 459
Counter 14: I0 Instruction Cache Miss Counter ... 459
Counter 15: Non-cacheable Load Counter ... 459
Counter 16: Non-cacheable Store Counter ... 459
Counter 17: UPA Access Counter .. 459
Counter 18: L1 Data Cache Invalidate Event Counter 459
Counter 19: L1 Data Cache Retag Event Counter 459
Counter 20: L1 Instruction Cache Invalidate Event Counter 460
Counter 21: L1 Data Cache Unsolicited Copyback Counter 460
Counter 22: Instruction mTLB Miss Counter .. 460
Counter 23: Data mTLB Miss Counter .. 460
Counter 24: Instruction Main TLB Miss Counter 460
Counter 25: Data Main TLB Miss Counter .. 460
Counter 26: Performance Monitoring Cycle Counter 460
Counter 27: Instruction Issue Counter ... 460
Counter 28: Instruction Commit Counter ... 461
Counter 29: Fetch Stall Counter ... 462
Counter 30: PSU_KILL Stall Counter ... 462
Counter 31: Reservation Station Queue Stall Counter 462
Counter 32: Free Register Resource Stall Counter 462
Counter 33: Checkpoint, Serial Number, or Trap Stack Resource Stall 462
Counter 34: Other Stall Counter ... 463
Counter 35: Branch Issue Counter ... 464
Counter 36: Branch Mispredict Counter .. 464
Counter 37: Instruction Lookup Table (ILT) Miss Counter 464
Counter 38: Sync Event Counter .. 464
Counter 39: Sync Cycle Counter .. 464

Q.3 Software Interface ... 464

Contents 9

Q.4 Performance Monitor Accuracy .. 468
Q.5 Other Notes: .. 469

R UPA Programmer’s Model .. 471
R.1 Introduction ... 471
R.2 UPA PortID Register ... 471
R.3 UPA Config Register .. 472
R.4 ASI Instructions for UPA Related Registers ... 474

Bibliography ... 477
General References ... 477
HAL Publications .. 478

Index .. 481

10 Contents

1 Overview
The SPARC64-III User’s Guide describes Revision 3 of HAL Computer Systems’ 64-bit
SPARC-V9 compliant processor module. It documents the instruction set, register model,
data types, instruction opcodes, trap model, and virtual address translation algorithms.

HAL Computer Systems currently supports three CPU architectures:

1. The first-generation CPU-1 (also called SPARC64) is used in the HALstation models
330 and 350.

2. The second generation CPU-2 is used in the HALstation models 375 and 385.

3. The third generation CPU-3, intended for use by Fujitsu and HAL. This Guide docu-
ments the architecture of CPU-3, or SPARC64-III.

In this book, any references to “the CPU” refers to the third generation CPU-3, or
SPARC64-III.

For the purposes of this document the word “architecture” refers to the machine details
that are visible to an assembly language programmer or to the compiler code generator. It
does not include details of the implementation that are not visible or easily observable by
software.

1.1 Notes About This Book

1.1.1 Audience
The audience for this guide includes developers of SPARC64-III system software (simula-
tors, compilers, debuggers, and operating systems, for example) and SPARC64-III assem-
bly language programmers.

1.1.2 Where to Start

1.1.2.1 Background
The SPARC64-III User’s Guide was derived directly from the source text of The SPARC
Architecture Manual-Version 9, which is abbreviated throughout this guide as V9. We have
deleted some of the more theoretical material contained in V9, but our goal has been to
create a book that can stand alone. For some implementors, however, this theoretical infor-

12 1 Overview

mation is very important. In particular, operating system programmers who write memory
management software, compiler writers who write machine-specific optimizers, and any-
one who writes code to run on all SPARC-V9-compatible machines should obtain and use
V9. Any reader of this guide could profit from using V9 as a companion text.
Whenever a chapter, subsection, or appendix in this guide matches the parallel number or
letter in V9, the information contained herein is directly related. In some instances, these
parallel sections contain HAL-specific information; in other instances, the original infor-
mation from V9 has been duplicated so that this guide can stand alone. Because we have
added and deleted a significant number of tables and figures, the table and figure numbers
in this guide are not parallel with the numbers in V9. Where this guide’s tables and figures
are identical to or based on those in V9, we have included the V9 number within the table
and/or figure title. We also have included a list of tables and a list of figures in this guide;
these lists also contain the V9 cross references, which helps to relate the material in this
guide back to the original.
One new chapter has been added: Chapter 9, “Guidelines for Instruction Scheduling”.
Finally, some entire appendixes found in V9 have been eliminated from the SPARC64-III
User’s Guide. In these cases, and whenever we refer to information contained only in V9,
we place an icon in the margin, as at left.

1.1.2.2 Navigating the SPARC64-III User’s Guide
If you are new to SPARC, read Chapter 3 for an overview of the architecture, study the
definitions in Chapter 2, then look into the subsequent chapters and appendixes for more
details in areas of interest to you.

If you are familiar with SPARC-V8 but not SPARC-V9, you should review the list of
changes in Appendix K, “Changes From SPARC-V8 to SPARC-V9,” in V9. For additional
details of architectural changes, review the following chapters:

� Chapter 4, “Data Formats,” for a description of the supported data formats

� Chapter 5, “Registers,” for a description of the register set

� Chapter 6, “Instructions,” for a description of the new instructions

� Chapter 7, “Traps,” for a description of the trap model

� Chapter 8, “Memory Models,” both here and in V9, for a description of the memory
models

� Appendix A, “Instruction Definitions,” for descriptions of the instructions

Finally, if you are familiar with the SPARC-V9 architecture and wish to familiarize your-
self with the SPARC64-III-specific implementation, study the following:

� Chapter 2, “Definitions,” the unnumbered subsection entitled “SPARC64-III Imple-
mentation-Specific Terms” beginning on page 26

� Chapter 9, “Guidelines for Instruction Scheduling,” for detailed information about
low-level instruction scheduling for compiler optimizer writers

V9

V9

V9

1.1.3 Contents Compared with V9 13

� Appendix A, “Instruction Definitions,” for descriptions of the SPARC64-III-specific
instruction extensions

� Appendix C, “SPARC-V9 Implementation Dependencies,” for descriptions of
SPARC64_III’s resolution of all SPARC-V9 implementation dependencies

� Appendix E, “Opcode Maps,” to see how the SPARC64-III-specific opcode extensions
fit into the SPARC-V9 opcode maps

� Appendix F, “MMU Architecture,” to see the requirements that SPARC-V9 systems
impose upon an MMU, and how SPARC64-III fulfills those requirements

� Appendix G, “Assembly Language Syntax,” to see how SPARC64-III has extended the
SPARC-V9 assembly language syntax; in particular, SPARC64-III-specific synthetic
instructions are documented in this appendix

1.1.3 Contents Compared with V9
Table 1 on page 15 describes the contents of every chapter and appendix, comparing The
SPARC Architecture Manual-Version 9 with SPARC64-III User’s Guide.

1.1.4 Editorial Conventions

1.1.4.1 Fonts and Notational Conventions

Fonts are used as follows:

� Italic font is used for register names, instruction fields, and read-only register fields.
For example: “The rs1 field contains....”

� Typewriter font is used for literals and for software examples.

� Bold font is used for emphasis and the first time a word is defined. For example: “A
precise trap is induced....”

� UPPER-CASE items are acronyms, instruction names, or writable register fields.
Some common acronyms appear in the glossary in Chapter 2. Note: Names of some
instructions contain both upper- and lower-case letters.

� Italic sans serif font is used for exception and trap names. For example, “The privileged_
action exception....”

� Underbar characters join words in register, register field, exception, and trap names.
Note: Such words can be split across lines at the underbar without an intervening
hyphen. For example: “This is true whenever the integer_condition_code field....”

� Reduced-size font is used in informational notes. See 1.1.4.4, “Informational Notes.”

� The marginal icon at left indicates that more information is available in The SPARC
Architecture Manual-Version 9 (V9), which is available from SPARC International and
at many technical bookstores.

V9

14 1 Overview

The following notational conventions are used:

� Square brackets ‘[]’ indicate a numbered register in a register file. For example: “r[0]
contains....”

� Angle brackets ‘< >’ indicate a bit number or colon-separated range of bit numbers
within a field. For example: “Bits FSR<29:28> and FSR<12> are....”

� Curly braces ‘{ }’ are used to indicate textual substitution. For example, the string
“ASI_PRIMARY{_LITTLE}” expands to “ASI_PRIMARY” and “ASI_PRIMARY_
LITTLE”.

� The symbol designates concatenation of bit vectors. A comma ‘,’ on the left side of
an assignment separates quantities that are concatenated for the purpose of assign-
ment. For example, if X, Y, and Z are 1-bit vectors, and the 2-bit vector T equals 112,
then

(X, Y, Z) @ 0 T

results in X = 0, Y = 1, and Z = 1.

15 1 Overview

Ta
bl

e
1:

C
on

te
nt

s o
fV

9
vs

.S
PA

RC
64

-I
II

 U
se

r’s
 G

ui
de

R
ef

Ti
tle

Th
e

SP
A

R
C

 A
rc

hi
te

ct
ur

e
M

an
ua

l-V
er

si
on

 9
SP

A
R

C
64

-II
I U

se
r’s

 G
ui

de
1

O
ve

rv
ie

w
D

es
cr

ib
es

 th
e

ba
ck

gr
ou

nd
, d

es
ig

n
ph

ilo
so

ph
y,

 a
nd

hi
gh

-le
ve

l f
ea

tu
re

s o
f t

he
 a

rc
hi

te
ct

ur
e.

 A
lso

 d
efi

ne
s

SP
A

RC
-V

9
co

m
pl

ia
nc

e
le

ve
ls

an
d

im
pl

em
en

ta
tio

n
de

pe
nd

en
ci

es
.

D
es

cr
ib

es
di

ffe
re

nc
es

be
tw

ee
n

Th
e

SP
AR

C
Ar

ch
ite

c-
tu

re
 M

an
ua

l-V
er

si
on

 9
 a

nd
SP

AR
C6

4-
III

 U
se

r’
s

G
ui

de
. D

el
et

es
 in

fo
rm

at
io

n
ab

ou
t S

PA
RC

-V
9

co
m

-
pl

ia
nc

e.
2

D
efi

ni
tio

ns
D

efi
ne

s s
om

e
of

 th
e

te
rm

s u
se

d
in

 th
e

sp
ec

ifi
ca

tio
n.

A
dd

s S
PA

RC
64

-II
I-s

pe
ci
fic

 d
efi

ni
tio

ns
.

3
A

rc
hi

te
ct

ur
al

 O
ve

rv
ie

w
Co

nt
ai

ns
an

ov
er

vi
ew

of
th

e
ar

ch
ite

ct
ur

e:
its

or
ga

ni
-

za
tio

n,
 in

str
uc

tio
n

se
t,

an
d

tra
p

m
od

el
.

Pa
rti

cu
la

riz
es

 th
e

en
tir

e
ar

ch
ite

ct
ur

al
 d

isc
us

sio
n

to
th

e
SP

A
RC

64
-II

I.
Th

is
ch

ap
te

rc
on

ta
in

st
he

pr
im

ar
y

de
sc

rip
tio

n
of

 th
e

SP
A

RC
64

-II
I C

PU
 a

rc
hi

te
ct

ur
e.

4
D

at
a

Fo
rm

at
s

D
es

cr
ib

es
 th

e
su

pp
or

te
d

da
ta

 ty
pe

s.
N

ot
es

 fo
rm

at
s n

ot
 su

pp
or

te
d

by
 th

e
SP

A
RC

64
-II

I
ha

rd
w

ar
e.

5
Re

gi
ste

rs
D

es
cr

ib
es

 th
e

re
gi

ste
r s

et
.

Pa
rti

cu
la

riz
es

 th
e

re
gi

ste
r s

et
 fo

r t
he

 S
PA

RC
64

-II
I.

6
In

str
uc

tio
ns

D
es

cr
ib

es
 th

e
in

str
uc

tio
n

se
t.

A
dd

s d
es

cr
ip

tio
ns

 o
f t

he
 S

PA
RC

64
-II

I-s
pe

ci
fic

in
str

uc
tio

ns
.

7
Tr

ap
s

D
es

cr
ib

es
 th

e
tra

p
m

od
el

.
A

dd
s S

PA
RC

64
-II

I-s
pe

ci
fic

 in
fo

rm
at

io
n.

8
M

em
or

y
M

od
el

s
D

es
cr

ib
es

 th
e

m
em

or
y

m
od

el
s.

Co
nt

ai
ns

 o
nl

y
in

fo
rm

at
io

n
ab

ou
t S

PA
RC

64
-II

I-s
pe

-
ci
fic

 m
em

or
y

m
od

el
s.

9
G

ui
de

lin
es

 fo
r I

ns
tru

ct
io

n
Sc

he
du

lin
g

- N
ot

 p
re

se
nt

 -
Co

nt
ai

ns
 d

et
ai

le
d,

 lo
w

-le
ve

l i
nf

or
m

at
io

n
ab

ou
t

in
str

uc
tio

n
sc

he
du

lin
g,

fo
rc

om
pi

le
rw

rit
er

sa
nd

an
y-

on
e

ne
ed

in
g

to
 w

rit
e

hi
gh

ly
 o

pt
im

iz
ed

 c
od

e.
A

In
str

uc
tio

n
D

efi
ni

tio
ns

Co
nt

ai
ns

de
fin

iti
on

s
of

al
lS

PA
RC

-V
9

in
str

uc
tio

ns
,

in
cl

ud
in

g
ta

bl
es

sh
ow

in
g

th
e

re
co

m
m

en
de

d
as

se
m

-
bl

y
la

ng
ua

ge
 sy

nt
ax

 fo
r e

ac
h

in
str

uc
tio

n.

In
cl

ud
es

 in
fo

rm
at

io
n

ab
ou

t S
PA

RC
64

-II
I-s

pe
ci
fic

in
str

uc
tio

ns
.

B
IE

EE
St

d
75

4-
19

85
Re

qu
ire

m
en

ts
fo

r
SP

A
RC

-V
9

Co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

t
th

e
SP

A
RC

-V
9

im
pl

e-
m

en
ta

tio
n

of
 th

e
IE

EE
 7

54
 fl

oa
tin

g-
po

in
t s

ta
nd

ar
d.

D
up

lic
at

es
 A

pp
en

di
x

B
fo

r c
om

pl
et

en
es

s.

C
SP

A
RC

-V
9

Im
pl

em
en

ta
tio

n
D

ep
en

de
nc

ie
s

Co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

tf
ea

tu
re

s
th

at
m

ay
di

ffe
r

am
on

g
co

nf
or

m
in

g
im

pl
em

en
ta

tio
ns

.
N

ot
e:

Im
pl

e-
m

en
ta

tio
n

de
pe

nd
en

cy
de
fin

iti
on

sa
nd

re
fe

re
nc

es
ar

e
sc

at
te

re
d

th
ro

ug
ho

ut
 th

is
do

cu
m

en
t.

D
es

cr
ib

es
 h

ow
 th

e
SP

A
RC

64
-II

I r
es

ol
ve

s e
ac

h
im

pl
em

en
ta

tio
n-

de
pe

nd
en

cy
.N

ot
e:

 Im
pl

em
en

ta
tio

n
de

pe
nd

en
cy

 d
efi

ni
tio

ns
 a

nd
 re

fe
re

nc
es

 h
av

e
be

en
de

le
te

d
fro

m
 th

e
ot

he
r s

ec
tio

ns
 o

f t
hi

s d
oc

um
en

t.

16 1 Overview

D
Fo

rm
al

 S
pe

ci
fic

at
io

n
of

 th
e

M
em

or
y

M
od

el
s

Co
nt

ai
ns

fo
rm

al
de

sc
rip

tio
ns

of
th

e
m

em
or

y
m

od
el

s.
- N

ot
 p

re
se

nt
 -

E
O

pc
od

e
M

ap
s

Co
nt

ai
ns

ta
bl

es
sh

ow
in

g
th

e
en

co
di

ng
of

al
l

op
co

de
s.

In
cl

ud
es

 S
PA

RC
64

-II
I-s

pe
ci
fic

 o
pc

od
es

.

F
M

M
U

 A
rc

hi
te

ct
ur

e
D

es
cr

ib
es

th
e

re
qu

ire
m

en
ts

th
at

SP
A

RC
-V

9
im

po
se

s
on

 m
em

or
y

m
an

ag
em

en
t u

ni
ts.

In
cl

ud
es

 S
PA

RC
64

-II
I-s

pe
ci
fic

 in
fo

rm
at

io
n.

G
A

ss
em

bl
y

La
ng

ua
ge

 S
yn

ta
x

D
efi

ne
st

he
sy

nt
ac

tic
co

nv
en

tio
ns

us
ed

in
th

e
ap

pe
n-

di
xe

s
fo

r
th

e
su

gg
es

te
d

SP
A

RC
-V

9
as

se
m

bl
y

la
n-

gu
ag

e.
It

al
so

lis
ts

sy
nt

he
tic

in
str

uc
tio

ns
th

at
m

ay
be

su
pp

or
te

d
by

SP
A

RC
-V

9
as

se
m

bl
er

s
fo

rt
he

co
nv

e-
ni

en
ce

 o
f a

ss
em

bl
y

la
ng

ua
ge

 p
ro

gr
am

m
er

s.

Li
sts

 S
PA

RC
64

-II
I-s

pe
ci
fic

 sy
nt

he
tic

 in
str

uc
tio

ns
.

H
So

ftw
ar

e
Co

ns
id

er
at

io
ns

Co
nt

ai
ns

ge
ne

ra
l

SP
A

RC
-V

9
so

ftw
ar

e
co

ns
id

er
-

at
io

ns
.

- N
ot

 p
re

se
nt

 -

I
Ex

te
nd

in
g

th
e

SP
A

RC
-V

9
A

rc
hi

te
ct

ur
e

Co
nt

ai
ns

in
fo

rm
at

io
n

on
ho

w
an

im
pl

em
en

ta
tio

n
ca

n
ex

te
nd

 th
e

in
str

uc
tio

n
se

t o
r r

eg
ist

er
 se

t.
- N

ot
 p

re
se

nt
 -

J
Pr

og
ra

m
m

in
g

W
ith

 th
e

M
em

or
y

M
od

el
s

Co
nt

ai
ns

in
fo

rm
at

io
n

on
pr

og
ra

m
m

in
g

w
ith

th
e

SP
A

RC
-V

9
m

em
or

y
m

od
el

s.
- N

ot
 p

re
se

nt
 -

K
Ch

an
ge

s F
ro

m
 S

PA
RC

-V
8

to
 S

PA
RC

-V
9

D
es

cr
ib

es
th

e
di

ffe
re

nc
es

be
tw

ee
n

th
e

SP
A

RC
-V

8
an

d
SP

A
RC

-V
9

ar
ch

ite
ct

ur
es

.
- N

ot
 p

re
se

nt
 -

L
A

SI
 A

ss
ig

nm
en

ts
- N

ot
 p

re
se

nt
 -

D
efi

ne
s t

he
 S

PA
RC

64
-II

I A
SI

 a
ss

ig
nm

en
ts.

M
Ca

ch
e

O
rg

an
iz

at
io

n
- N

ot
 p

re
se

nt
 -

D
es

cr
ib

es
 th

e
SP

A
RC

64
-II

I c
ac

he
 o

rg
an

iz
at

io
n.

N
In

te
rru

pt
 H

an
dl

in
g

- N
ot

 p
re

se
nt

 -
D

es
cr

ib
es

 S
PA

RC
64

-II
I i

nt
er

ru
pt

 h
an

dl
in

g.
O

Re
se

t,
RE

D
_s

ta
te

, a
nd

 E
rro

r_
sta

te
- N

ot
 p

re
se

nt
 -

D
es

cr
ib

es
th

e
SP

A
RC

64
-II

I
im

pl
em

en
ta

tio
n

of
Re

se
t,

RE
D

-s
ta

te
, a

nd
 E

rro
r_

sta
te

.
P

Er
ro

r H
an

dl
in

g
- N

ot
 p

re
se

nt
 -

D
es

cr
ib

es
 S

PA
RC

64
-II

I e
rro

r h
an

dl
in

g.
Q

Pe
rfo

rm
an

ce
 M

on
ito

rin
g

- N
ot

 p
re

se
nt

 -
D

efi
ne

s
th

e
SP

A
RC

64
-II

I
pe

rfo
rm

an
ce

m
on

ito
rin

g
ex

te
ns

io
ns

.
R

U
PA

 P
ro

gr
am

m
er

’s
M

on
ito

r
- N

ot
 p

re
se

nt
 -

D
efi

ne
st

he
SP

A
RC

64
-II

IU
PA

Pr
og

ra
m

m
er

’s
M

on
i-

to
r e

xt
en

sio
ns

.

Ta
bl

e
1:

C
on

te
nt

s o
fV

9
vs

.S
PA

RC
64

-I
II

 U
se

r’s
 G

ui
de

 (
Co

nt
in

ue
d)

R
ef

Ti
tle

Th
e

SP
A

R
C

 A
rc

hi
te

ct
ur

e
M

an
ua

l-V
er

si
on

 9
SP

A
R

C
64

-II
I U

se
r’s

 G
ui

de

1.2 SPARC64-III Architecture 17

1.1.4.2 Implementation Dependencies

The implementors of SPARC-V9-compliant processors are allowed to resolve some
aspects of the architecture in machine-dependent ways. Each possible implementation
dependency is indicated in V9 by the notation “IMPL. DEP. #nn: Some descriptive text.” The
number nn is used to enumerate the dependencies in Appendix C, “SPARC-V9 Implemen-
tation Dependencies.” References to SPARC-V9 implementation dependencies are indi-
cated in V9 by the notation “(impl. dep. #nn).” In SPARC64-III User’s Guide, we have
replaced all definitions of and references to SPARC-V9 implementation dependencies
with descriptions of the SPARC64-III implementation. Appendix C in this document
describes the HAL-specific implementation decisions in detail. Refer to V9 for more infor-
mation about implementation dependencies.

1.1.4.3 Notation for Numbers

Numbers throughout this guide are decimal (base-10) unless otherwise indicated. Num-
bers in other bases are followed by a numeric subscript indicating their base (for example,
10012, FFFF 000016). Long binary and hex numbers within the text have spaces inserted
every four characters to improve readability. Within C or assembly language examples,
numbers may be preceded by “0x” to indicate base-16 (hexadecimal) notation (for exam-
ple, 0xffff0000).

1.1.4.4 Informational Notes

This guide provides several different types of information in notes; the information
appears in a reduced-size font. The following examples illustrate the various note types:

Programming Note:
Programming notes contain incidental information about programming HAL’s SPARC64-III imple-
mentation.

Implementation Note:
Implementation notes contain information that is specific to HAL’s SPARC64-III implementation.
Such information may not pertain to other SPARC-V9 implementations.

1.2 SPARC64-III Architecture

1.2.1 Features

HAL’s SPARC64-III includes the following principal features:

� A linear 64-bit address space with 64-bit addressing.

� 32-bit wide instructions, which are aligned on 32-bit boundaries in memory. Only load
and store instructions access memory and perform I/O.

� Few addressing modes: A memory address is given as either “register + register” or
“register + immediate.”

V9

18 1 Overview

� Triadic register addresses: Most computational instructions operate on two register
operands or one register and a constant, and place the result in a third register.

� A large windowed register file: At any one instant, a program sees 8 global integer reg-
isters plus a 24-register window of a larger register file. The windowed registers can be
used as a cache of procedure arguments, local values, and return addresses.

� Floating-point: The architecture provides an IEEE 754-compatible floating-point
instruction set, operating on a separate register file that provides 32 single-precision
(32-bit), 32 double-precision (64-bit), 16 quad-precision (128-bit) registers, or a mix-
ture thereof.

� Fast trap handlers: Traps are vectored through a table.

� Multiprocessor synchronization instructions: One instruction performs an atomic read-
then-set-memory operation; another performs an atomic exchange-register-with-mem-
ory operation; another compares the contents of a register with a value in memory and
exchanges memory with the contents of another register if the comparison was equal
(compare and swap); two others are used to synchronize the order of shared memory
operations as observed by processors.

� Predicted branches: The branch with prediction instructions allow the compiler or
assembly language programmer to give the hardware a hint about whether a branch
will be taken.

� Branch elimination instructions: Several instructions can be used to eliminate branches
altogether (for example, Move on Condition). Eliminating branches increases perfor-
mance in superscalar and superpipelined implementations.

� Hardware trap stack: A hardware trap stack is provided to allow nested traps. It con-
tains all of the machine state necessary to return to the previous trap level. The trap
stack makes the handling of faults and error conditions simpler, faster, and safer.

� Relaxed memory order (RMO) model: This weak memory model allows the hardware
to schedule memory accesses in almost any order, as long as the program computes the
correct result.

1.2.2 Attributes

SPARC-V9 is a CPU instruction set architecture (ISA) derived from SPARC-V8; both
architectures come from a reduced instruction set computer (RISC) lineage. As architec-
tures, SPARC-V9 and SPARC-V8 allow for a spectrum of chip and system implementa-
tions at a variety of price/performance points for a range of applications, including
scientific/engineering, programming, real-time, and commercial.

1.2.2.1 Design Goals

The CPU is designed to be a target for optimizing compilers and high-performance hard-
ware implementations. The CPU provides exceptionally high execution rates and short
time-to-market development schedules.

1.2.3 System Components 19

1.2.2.2 Register Windows

The CPU is derived from SPARC, which was formulated at Sun Microsystems in 1985.
SPARC is based on the RISC I and II designs engineered at the University of California at
Berkeley from 1980 through 1982. SPARC’s “register window” architecture, pioneered in
the UC Berkeley designs, allows for straightforward, high-performance compilers and a
reduction in memory load/store instructions.

Note that supervisor software, not user programs, manages the register windows. The
supervisor can save a minimum number of registers (approximately 24) during a context
switch, thereby optimizing context-switch latency.

One major difference between SPARC64-III and the Berkeley RISC I and II is that
SPARC64-III provides greater flexibility to a compiler in its assignment of registers to
program variables. SPARC64-III is more flexible because register window management is
not tied to procedure call and return instructions, as it is on the Berkeley machines.
Instead, separate instructions (SAVE and RESTORE) provide register window manage-
ment. The management of register windows by privileged software is very different too, as
discussed in Appendix H, “Software Considerations” in V9.

1.2.3 System Components

The SPARC-V9 architecture allows for a spectrum of I/O, memory-management unit
(MMU), and cache system subarchitectures.

1.2.3.1 SPARC64-III MMU

The SPARC-V9 ISA does not mandate a single MMU design for all system implementa-
tions. Rather, designers are free to use the MMU that is most appropriate for their applica-
tion, or no MMU at all, if they wish. The SPARC64-III MMU implementation and virtual
address translation are described in Appendix F, “MMU Architecture”.

1.2.3.2 Privileged Software

SPARC-V9 does not assume that all implementations must execute identical privileged
software. Thus, certain traits of the SPARC64-III that are visible to privileged software
have been tailored to the requirements of the system.

1.2.4 Binary Compatibility

The most important SPARC-V9 architectural mandate is binary compatibility of nonprivi-
leged programs across implementations. Binaries executed in nonprivileged mode should
behave identically on all SPARC-V9 systems when those systems are running an operat-
ing system known to provide a standard execution environment. One example of such a
standard environment is the SPARC-V9 Application Binary Interface (ABI).

Although different SPARC-V9 systems may execute nonprivileged programs at different
rates, they will generate the same results, as long as they are run under the same memory
model. See Chapter 8, “Memory Models,” for more information.

V9

20 1 Overview

Additionally, SPARC-V9 is designed to be binary upward-compatible from SPARC-V8
for applications running in nonprivileged mode that conform to the SPARC-V8 ABI.

1.2.5 Architectural Definition
The SPARC-V9 architecture is defined by the chapters and normative appendixes of The
SPARC Architecture Manual-Version 9. A correct implementation of the architecture inter-
prets a program strictly according to the rules and algorithms specified in the chapters and
normative appendixes.
This guide defines a conforming implementation of the SPARC-V9 architecture named the
SPARC64-III.

1.2.6 SPARC-V9 Compliance

SPARC International is responsible for certifying that implementations comply with the
SPARC-V9 Architecture. Two levels of compliance are distinguished: Level 1 and Level
2. The SPARC64-III is Level-2-compliant. See V9 for a definition of the SPARC-V9 com-
pliance levels.

Appendix C, “SPARC-V9 Implementation Dependencies,” describes the manner in which
the SPARC64-III has resolved all implementation dependencies.

V9

V9

2 Definitions
The following subsections define some of the most important words and acronyms used in
this guide.

SPARC-V9 Terms

2.1 address space identifier (ASI): An 8-bit value that identifies an address space.
For each instruction or data access, the integer unit appends an ASI to the address.
See also: implicit ASI.

2.2 application program: A program executed with the processor in nonprivileged
mode. Note: Statements made in this guide regarding application programs may
not be applicable to programs (for example, debuggers) that have access to privi-
leged processor state (for example, as stored in a memory-image dump).

2.3 ASI: Abbreviation for address space identifier.

2.4 big-endian: An addressing convention. Within a multiple-byte integer, the byte
with the smallest address is the most significant; a byte’s significance decreases as
its address increases.

2.5 byte: Eight consecutive bits of data.

2.6 clean window: A register window in which all of the registers contain either zero,
a valid address from the current address space, or valid data from the current
address space.

2.7 completed: A memory transaction is said to be completed when an idealized
memory has executed the transaction with respect to all processors. A load is con-
sidered completed when no subsequent memory transaction can affect the value
returned by the load. A store is considered completed when no subsequent load
can return the value that was overwritten by the store.

2.8 current window: The block of 24 r registers that is currently in use. The Current
Window Pointer (CWP) register points to the current window.

2.9 dispatch: Issue a fetched instruction to one or more functional units for execu-
tion.

22 2 Definitions

2.10 doublet: Two bytes (16 bits) of data.

2.11 doubleword: An aligned octlet. Note: The definition of this term is architecture-
dependent and may differ from that used in other processor architectures.

2.12 exception: A condition that makes it impossible for the processor to continue
executing the current instruction stream without software intervention.

2.13 extended word: An aligned octlet, nominally containing integer data. Note: The
definition of this term is architecture-dependent and may differ from that used in
other processor architectures.

2.14 f register: A floating-point register. SPARC-V9 includes single-, double-, and
quad-precision f registers.

2.15 fccn: One of the floating-point condition code fields: fcc0, fcc1, fcc2, or fcc3.

2.16 floating-point exception: An exception that occurs during the execution of a
floating-point operate (FPop) instruction. The exceptions are: unfinished_FPop,
unimplemented_FPop, sequence_error, hardware_error, invalid_fp_register, and IEEE_
754_exception.

2.17 floating-point IEEE-754 exception: A floating-point exception, as specified by
IEEE Std 754-1985. Listed within this guide as IEEE_754_exception.

2.18 floating-point operate (FPop) instructions: Instructions that perform floating-
point calculations, as defined by the FPop1 and FPop2 opcodes. FPop instructions
do not include FBfcc instructions or loads and stores between memory and the
floating-point unit.

2.19 floating-point trap type: The specific type of floating-point exception, encoded
in the FSR.ftt field.

2.20 floating-point unit: A processing unit that contains the floating-point registers
and performs floating-point operations, as defined by this guide.

2.21 FPU: Abbreviation for floating-point unit.

2.22 halfword: An aligned doublet. Note: The definition of this term is architecture-
dependent and may differ from that used in other processor architectures.

2.23 hexlet: Sixteen bytes (128 bits) of data.

2.24 implementation: Hardware and/or software that conforms to all of the specifica-
tions of an instruction set architecture (ISA).

2.25 implementation-dependent: An aspect of the architecture that may legitimately
vary among implementations. In many cases, the permitted range of variation is
specified in the standard. When a range is specified, compliant implementations
shall not deviate from that range.

2 Definitions 23

2.26 implicit ASI: The address space identifier that is supplied by the hardware on all
instruction accesses and on data accesses that do not contain an explicit ASI or a
reference to the contents of the ASI register.

2.27 informative appendix: An appendix containing information that is useful but not
required to create an implementation that conforms to the SPARC-V9 specifica-
tion. See also: normative appendix.

2.28 initiated: Synonym: issued.

2.29 instruction field: A bit field within an instruction word.

2.30 instruction set architecture (ISA): An ISA defines instructions, registers,
instruction and data memory, the effect of executed instructions on the registers
and memory, and an algorithm for controlling instruction execution. An ISA does
not define clock cycle times, cycles per instruction, data paths, and other imple-
mentation-dependent characteristics. This guide defines the SPARC-V9 ISA and
also contains details about HAL’s implementation of the ISA.

2.31 integer unit: A processing unit that performs integer and control-flow operations
and contains general-purpose integer registers and processor state registers, as
defined by this guide.

2.32 interrupt request: A request for service presented to the processor by an external
device.

2.33 ISA: Abbreviation for instruction set architecture.

2.34 issued: In reference to memory transaction, a load, store, or atomic load-store is
said to be issued when a processor has sent the transaction to the memory sub-
system and the completion of the request is out of the processor’s control. Syn-
onym: initiated.

2.35 IU: Abbreviation for integer unit.

2.36 leaf procedure: A procedure that is a leaf in the program’s call graph; that is, one
that does not call (using CALL or JMPL) any other procedures.

2.37 little-endian: An addressing convention. Within a multiple-byte integer, the byte
with the smallest address is the least significant; a byte’s significance increases as
its address increases.

2.38 may: A keyword indicating flexibility of choice with no implied preference. Note:
“May” indicates that an action or operation is allowed; “can” indicates that it is
possible.

2.39 must: Synonym: shall.

2.40 next program counter (nPC): A register that contains the address of the instruc-
tion to be executed next, if a trap does not occur.

24 2 Definitions

2.41 nonfaulting load: A load operation that either completes correctly (in the
absence of any faults) or returns a value (nominally zero) if a fault occurs. See
speculative load.

2.42 nonprivileged: An adjective that describes (1) the state of the processor when
PSTATE.PRIV = 0, that is, nonprivileged mode; (2) processor state information
that is accessible to software while the processor is in either privileged mode or
nonprivileged mode, for example, nonprivileged registers, nonprivileged ASRs,
or, in general, nonprivileged state; (3) an instruction that can be executed when the
processor is in either privileged mode or nonprivileged mode.

2.43 nonprivileged mode: The processor mode when PSTATE.PRIV = 0. See also:
nonprivileged.

2.44 normative appendix: An appendix containing specifications that must be met by
an implementation conforming to the SPARC-V9 specification. See also: informa-
tive appendix.

2.45 NWINDOWS: The number of register windows present in an implementation.

2.46 octlet: Eight bytes (64 bits) of data. Not to be confused with “octet,” which has
been commonly used to describe eight bits of data. In this document, the term
byte, rather than octet, is used to describe eight bits of data.

2.47 opcode: A bit pattern that identifies a particular instruction.

2.48 prefetchable: An attribute of a memory location that indicates to an MMU that
PREFETCH operations to that location may be applied. Normal memory is
prefetchable. Nonprefetchable locations include those that, when read, change
state or cause external events to occur. See also: side effect.

2.49 privileged: An adjective that describes (1) the state of the processor when
PSTATE.PRIV = 1, that is, privileged mode; (2) processor state information that
is accessible to software only while the processor is in privileged mode, for exam-
ple, privileged registers, privileged ASRs, or, in general, privileged state; (3) an
instruction that can be executed only when the processor is in privileged mode.

2.50 privileged mode: The processor mode when PSTATE.PRIV = 1. See also: non-
privileged.

2.51 processor: The combination of the integer unit and the floating-point unit.

2.52 program counter (PC): A register that contains the address of the instruction cur-
rently being executed by the IU.

2.53 quadlet: Four bytes (32 bits) of data.

2.54 quadword: Aligned hexlet. Note: The definition of this term is architecture-
dependent and may be different from that used in other processor architectures.

2 Definitions 25

2.55 r register: An integer register. Also called a general purpose register or working
register.

2.56 RED_state: Reset, Error, and Debug state. The processor state when
PSTATE.RED = 1. A restricted execution environment used to process resets and
traps that occur when TL = MAXTL – 1.

2.57 reserved: Used to describe an instruction field, certain bit combinations within an
instruction field, or a register field that is reserved for definition by future versions
of the architecture. Reserved instruction fields shall read as zero, unless the
implementation supports extended instructions within the field. The behavior of
SPARC-V9-compliant processors when they encounter nonzero values in reserved
instruction fields is undefined. Reserved bit combinations within instruction
fields are defined in Appendix A, “Instruction Definitions”; in all cases,
SPARC-V9-compliant processors shall decode and trap on these reserved combi-
nations. Reserved register fields should be written only to zero by software; they
should read as zero in hardware. Software intended to run on future versions of
SPARC-V9 should not assume that these field will read as zero or any other partic-
ular value. Throughout this guide, figures and tables illustrating registers and
instruction encodings indicate reserved fields and combinations with an em dash
‘—’.

2.58 reset trap: A vectored transfer of control to privileged software through a fixed-
address reset trap table. Reset traps cause entry into RED_state.

2.59 restricted: An adjective used to describe an address space identifier (ASI) that
can be accessed only while the processor is operating in privileged mode.

2.60 rs1, rs2, rd: The integer register operands of an instruction, where rs1 and rs2 are
the source registers and rd is the destination register.

2.61 shall: A key word indicating a mandatory requirement. Designers shall imple-
ment all such mandatory requirements to ensure interoperability with other
SPARC-V9-compliant products. Synonym: must.

2.62 should: A key word indicating flexibility of choice with a strongly preferred
implementation. Synonym: it is recommended.

2.63 side effect: A secondary effect induced by an operation in addition to its primary
effect. For example, access to an I/O location may cause a register value in an I/O
device to change state or initiate an I/O operation. A memory location is deemed to
have side effects if additional actions beyond the reading or writing of data may
occur when a memory operation on that location is allowed to succeed. See also:
prefetchable.

2.64 speculative load: A load operation that is issued by the processor speculatively,
that is, before it is known whether the load will be executed in the flow of the pro-
gram. Speculative accesses are used by hardware to speed program execution and
are transparent to code. Contrast with nonfaulting load, which is an explicit load

26 2 Definitions

that always completes, even in the presence of faults. Note: Some authors confuse
speculative loads with nonfaulting loads.

2.65 supervisor software: Software that executes when the processor is in privileged
mode.

2.66 trap: The action taken by the processor when it changes the instruction flow in
response to the presence of an exception, a Tcc instruction, or an interrupt. The
action is a vectored transfer of control to supervisor software through a table, the
address of which is specified by the privileged Trap Base Address (TBA) register.

2.67 unassigned: A value (for example, an address space identifier) the semantics of
which are not architecturally mandated and may be determined independently by
each implementation within any guidelines given.

2.68 undefined: An aspect of the architecture that has deliberately been left unspeci-
fied. Software should have no expectation of, nor make any assumptions about, an
undefined feature or behavior. Use of such a feature may deliver random results,
may or may not cause a trap, may vary among implementations, and may vary with
time on a given implementation. Notwithstanding any of the above, undefined
aspects of the architecture shall not cause security holes (such as allowing user
software to access privileged state), put the processor into supervisor mode, or put
the processor into an unrecoverable state.

2.69 unrestricted: An adjective used to describe an address space identifier that may
be used regardless of the processor mode, that is, regardless of the value of
PSTATE.PRIV.

2.70 user application program: Synonym: application program.

2.71 word: An aligned quadlet. Note: The definition of this term is architecture-
dependent and may differ from that used in other processor architectures.

SPARC64-III Implementation-Specific Terms
The following terms define concepts unique to HAL’s implementation.

2.72 checkpoint: SPARC64-III checkpoints the CPU at certain intervals to ensure that
it can recover from mispredicted branches, exceptions, interrupts, and so on. The
checkpoint can be used to return the machine to a known correct state.

2.73 committed: An instruction can be committed only when it has completed without
error and all prior instructions have completed without error and have been com-
mitted. When an instruction is committed the state of the machine is permanently
changed to reflect the result of the instruction; the previously existing state is no
longer needed and can be discarded.

2.74 completed: After an instruction has finished and has sent a nonerror status to the
Issue Unit, it is considered completed. Note: Although the state of the machine has

2 Definitions 27

been temporarily altered by completion of an instruction, the state has not yet been
permanently changed and the old state can be recovered until the instruction has
been committed.

2.75 executed: An instruction is executed by an execution unit such as a Floating-
point Multiply Adder (FMA). An instruction is in execution as long as it is still
being processed by an execution unit.

2.76 fetched: Instructions are fetched from the external U2 instruction cache, the inter-
nal I0 instruction cache, the internal I1 instruction cache, or from the instruction
prefetch buffers and sent to the Issue Unit.

2.77 finished: An instruction is finished when it has completed execution in a func-
tional unit and has written its results onto a result bus. Results on the result busses
go the register files and to waiting instructions in the instruction queues.

2.78 initiated: An instruction is initiated when it has all of the resources that it needs
(for example, source operands) and it has been selected for execution (for example,
it enters an FMADD unit).

2.79 Instruction Dispatch: The act of issuing an instruction to a reservation station.

2.80 Instruction Issued: An instruction is issued when it has been assigned a serial
number in the active instruction ring. For example, an add instruction is considered
“issued” when it has been assigned a serial number and decided which reservation
station to be sent.

2.81 Instruction Retired: An instruction is retired when all machine resources (serial
numbers, renamed registers) have been reclaimed and are available for use by
other instructions. An instruction can only be retired after it has been committed.

2.82 Instruction Stall: Not every instruction can be issued in a given cycle. The CPU
imposes certain issue constraints based on resource availability and program
requirements. Instructions which may not be issued in this cycle are said to have
stalled.

2.83 issue-stalling instruction: An instruction that prevents new instructions from
being issued until it has committed.

2.84 issue window: This window holds the instructions to be issued in one clock
cycle. SPARC64-III can issue a maximum of four instructions per clock cycle;
thus, the issue window holds up to four instructions.

2.85 machine sync: The machine is synced when all previously executing instructions
have committed; that is, there are no issued but uncommitted instructions in the
machine.

2.86 Memory Management Unit (MMU): This term is used to refer to the address
translation hardware in SPARC64-III that translates 64-bit Virtual Address into

28 2 Definitions

Physical Addresses. The MMU is composed of the µITLB, µDTLB, MTLB, and
the ASR and ASI registers used to manage address translation.

2.87 MTLB: Main TLB. Contains address translations for the µITLB and µDTLB.
When the µITLB or µDTLB do not contain a translation they ask the MTLB for
the translation. If the MTLB contains the translation, it sends the translation to the
respective micro TLB. If it does not contain the translation it causes a fast access
exception to a software translation trap handler which will load the translation
information (PTE) into the MTLB and retry the access. See also: TLB.

2.88 PTE: Page Table Entry. An entry in the µITLB, µDTLB, or MTLB. The PTE con-
tains all the information necessary to translate a virtual address into a physical
address. If none of the TLB’s contain a translation for a virtual address then a trap
is taken to kernel software which will load the correct PTE into the MTLB. See
also: TLB.

2.89 reclaimed: All instruction-related resources that were held until commit have
been released and are available for subsequent instructions. Instruction resources
are usually reclaimed a few cycles after they are committed.

2.90 register renaming: The CPU implements a large set of hardware registers that
are invisible to the programmer. Before instructions are issued, source and destina-
tion registers are mapped onto this set of rename registers. This allows instructions
that normally would be blocked, waiting for an architected register, to proceed in
parallel. When instructions are committed, results in rename registers are posted
to the architected registers in the proper sequence to produce the correct program
results.

2.91 scan: A method used to initialize all of the machine state within a chip. In a chip
that has been designed to be scannable, all of the machine state is connected in one
or several loops called “scan rings.” Initialization data can be scanned into the chip
using the scan rings. The state of the machine also can be scanned out via the scan
rings. The SPARC64-III chip is initialized by scanning in the initialization data
before execution begins.

2.92 serializing instruction: Synonym: syncing instruction.

2.93 superscalar: An implementation that allows several instructions to be issued,
executed, and committed in one clock cycle. The CPU issues up to four instruc-
tions per clock cycle. Up to eight can be committed, and up to 64 can be active per
clock cycle.

2.94 sync: Synonym: machine sync.

2.95 syncing instruction: An instruction that causes a machine sync. Thus, before a
syncing instruction is issued, all previous instructions (in program order) must
have been committed. At that point, the syncing instruction is issued, executed,
completed, and committed by itself.

2 Definitions 29

2.96 Reservation Station: The CPU implements dataflow execution based on operand
availability. Dispatched instructions are sent to reservation stations where they are
buffered until all input operands become available. When operands are available,
the instruction is scheduled for execution. Reservation stations also contain special
tag matching logic which is used to capture the appropriate operand data. The res-
ervation stations are sometimes referred to as queues (for example, the integer
queue).

2.97 Serial Number: Every issued instruction is assigned a serial number (also some-
times called a sequence number) which provides a unique tag for identifying the
instruction. The serial number accompanies the instruction throughout the proces-
sor until eventual retirement.

2.98 TLB: Translation Lookaside Buffer. A cache within the MMU that contains recent
partial translations. These speed up closely following translations by eliminating
the need to reread the Page Table Entry from memory.

2.99 µDTLB: Micro Data TLB. A small fully associative buffer that contains address
translations for data accesses. Misses in the µDTLB are handled by the MTLB. See
also: TLB.

2.100 µITLB: Micro Instruction TLB. A small fully associative buffer that contains
address translations for instruction accesses. Misses in the µITLB are handled by
the MTLB. See also: TLB.

30 2 Definitions

3 Architectural Overview
SPARC64-III architecture supports 32- and 64-bit integer and 32- and 64-bit floating-point
as its principal data types. It also supports 128-bit floating-point operations by software
emulation. The 32- and 64-bit floating-point types conform to IEEE Std 754-1985. The
128-bit floating-point type conforms to IEEE Std 1596.5-1992. The CPU defines general-
purpose integer, floating-point, and special state/status register instructions, all encoded in
32-bit-wide instruction formats. The load/store instructions address a linear, 264-byte vir-
tual address space.

3.1 SPARC-V9 Processor Architecture

Note:
This section and its subsections are repeated from V9. Even though the SPARC64-III processor
architecture is beginning to differ more significantly from this earlier, more simple model, these
sections still provide some useful background for the implementation-specific discussion of the
SPARC64-III processor architecture in 3.4.

A SPARC-V9 processor logically consists of an integer unit (IU) and a floating-point unit
(FPU), each with its own registers. This organization allows for implementations with
concurrent integer and floating-point instruction execution. Integer registers are 64-bits
wide; floating-point registers are 32-, 64-, or 128-bits wide. Instruction operands are single
registers, register pairs, register quadruples, or immediate constants.

The processor can be in either of two modes: privileged or nonprivileged. In privileged
mode, the processor can execute any instruction, including privileged instructions. In non-
privileged mode, an attempt to execute a privileged instruction causes a trap to privileged
software.

3.1.1 Integer Unit (IU)

The integer unit contains the general-purpose registers and controls the overall operation
of the processor. The IU executes the integer arithmetic instructions and computes mem-
ory addresses for loads and stores. It also maintains the program counters and controls
instruction execution for the FPU.

32 3 Architectural Overview

An implementation of the SPARC-V9 IU may contain from 64 to 528 general-purpose 64-
bit r registers. This corresponds to a grouping of the registers into 8 global r registers, 8
alternate global r registers, plus a circular stack of from 3 to 32 sets of 16 registers each,
known as register windows. The number of register windows present (NWINDOWS) is
implementation-dependent; on SPARC64-III, NWINDOWS = 5.

At a given time, an instruction can access the 8 globals (or the 8 alternate globals) and a
register window into the r registers. The 24-register window consists of a 16-register set
— divided into 8 in and 8 local registers — together with the 8 in registers of an adjacent
register set, addressable from the current window as its out registers. See Figure 22 on
page 64.

The current window is specified by the current window pointer (CWP) register. The pro-
cessor detects window spill and fill exceptions via the CANSAVE and CANRESTORE
registers, respectively, which are controlled by hardware and supervisor software. The
actual number of windows in a SPARC-V9 implementation is invisible to a user applica-
tion program.

Whenever the IU accesses an instruction or datum in memory, it appends an address
space identifier (ASI), to the address. All instruction accesses and most data accesses
append an implicit ASI, but some instructions allow the inclusion of an explicit ASI,
either as an immediate field within the instruction, or from the ASI register. The ASI
determines the byte order of the access. All instructions are accessed in big-endian byte
order; data can be referenced in either big- or little-endian order. See 5.2.1, “Processor
State Register (PSTATE)”, for information about changing the default byte order.

3.1.2 Floating-point Unit (FPU)

The FPU has thirty-two 32-bit (single-precision) floating-point registers, thirty-two 64-bit
(double-precision) floating-point registers, and sixteen 128-bit (quad-precision) floating-
point registers, some of which overlap. Double-precision values occupy an even-odd pair
of single-precision registers, and quad-precision values occupy a quad-aligned group of
four single-precision registers. The 32 single-precision registers, the lower half of the dou-
ble-precision registers, and the lower half of the quad-precision registers overlay each
other. The upper half of the double-precision registers and the upper half of the quad-pre-
cision registers overlay each other but do not overlay any of the single-precision registers.
Thus, the floating-point registers can hold a maximum of 32 single-precision, 32 double-
precision, or 16 quad-precision values. The floating-point registers are described in more
detail in 5.1.4, “Floating-point Registers”.

Floating-point load/store instructions are used to move data between the FPU and mem-
ory. The memory address is calculated by the IU. Floating-point operate (FPop) instruc-
tions perform the floating-point arithmetic operations and comparisons.

The floating-point instruction set and 32- and 64-bit data formats conform to the IEEE
Standard for Binary Floating-point Arithmetic, IEEE Std 754-1985. The 128-bit floating-
point data type conforms to the IEEE Standard for Shared Data Formats, IEEE Std
1596.5-1992.

3.2 Instructions 33

If an FPU is not enabled, an attempt to execute a floating-point instruction generates an fp_
disabled trap. In either case, privileged-mode software must:

� Enable the FPU and reexecute the trapping instruction, or

� Emulate the trapping instruction.

3.2 Instructions
Instructions fall into the following basic categories:

� Memory access

� Integer arithmetic / logical / shift

� Control transfer

� State register access

� Floating-point operate

� Conditional move

� Register window management

These classes are discussed in the following subsections.

3.2.1 Memory Access

Load and store instructions, PREFETCHes, and the atomic operations, CASX, SWAP, and
LDSTUB, are the only instructions that access memory. They use two r registers or an r
register and a signed 13-bit immediate value to calculate a 64-bit, byte-aligned memory
address. The IU appends an ASI to this address.

The destination field of the load/store instruction specifies either one or two r registers, or
one or two f registers, that supply the data for a store or receive the data from a load.

Integer load and store instructions support byte, halfword (16-bit), word (32-bit), and dou-
bleword (64-bit) accesses. Some versions of integer load instructions perform sign exten-
sion on 8-, 16-, and 32-bit values as they are loaded into a 64-bit destination register.
Floating-point load and store instructions support word, and doubleword memory
accesses.

CAS, SWAP, and LDSTUB are special atomic memory access instructions that are used
for synchronization and memory updates by concurrent processes.

3.2.1.1 Memory Alignment Restrictions

Halfword accesses are aligned on 2-byte boundaries; word accesses (which include
instruction fetches) are aligned on 4-byte boundaries; extended-word and doubleword
accesses are aligned on 8-byte boundaries. An improperly aligned address in a load, store,

34 3 Architectural Overview

or load-store instruction causes a trap to occur, with the possible exception of cases
described in 6.3.1.1, “Memory Alignment Restrictions”.

3.2.1.2 Addressing Conventions

The CPU uses big-endian byte order by default: the address of a quadword, doubleword,
word, or halfword is the address of its most significant byte. Increasing the address means
decreasing the significance of the unit being accessed. All instruction accesses are per-
formed using big-endian byte order. The CPU also can support little-endian byte order for
data accesses only: the address of a quadword, doubleword, word, or halfword is the
address of its least significant byte. Increasing the address means increasing the signifi-
cance of the unit being accessed. See 5.2.1, “Processor State Register (PSTATE)”, for
information about changing the implicit byte order to little-endian.

Addressing conventions are illustrated in Figure 65 on page 119 on Figure 66 on page
121.

3.2.1.3 Load/Store Alternate

Versions of load/store instructions, the load/store alternate instructions, can specify an
arbitrary 8-bit address space identifier for the load/store data access. Access to alternate
spaces 0016..7F16 is restricted, and access to alternate spaces 8016..FF16 is unrestricted.
Some of the ASIs are available for implementation-dependent uses. Supervisor software
can use the implementation-dependent ASIs to access special protected registers, such as
MMU, cache control, and processor state registers, and other processor- or system-depen-
dent values. See 6.3.1.3, “Address Space Identifiers (ASIs)”, for more information.

Alternate space addressing is also provided for the atomic memory access instructions,
LDSTUB, SWAP, and CASX.

3.2.1.4 Separate I and D Memories

The CPU has separate level-1 instruction and data caches. For this reason, programs that
modify their own code (self-modifying code) must issue FLUSH instructions, or a system
call with a similar effect, to bring the instruction and data caches into a consistent state.

3.2.1.5 Input/Output (I/O)

SPARC-V9 assumes that input/output registers are accessed via load/store alternate
instructions, normal load/store instructions, or read/write Ancillary State Register instruc-
tions (RDASR, WRASR).

This document does not contain information about SPARC64-III-specific I/O registers. In
particular, it does not discuss:

� The semantic effect of accessing I/O locations

� Nonprivileged access to I/O registers

� The addresses and contents of I/O registers

3.2.2 Arithmetic / Logical / Shift Instructions 35

3.2.1.6 Memory Synchronization

Two instructions are used for synchronization of memory operations: FLUSH and MEM-
BAR. Their operation is explained in A.20, “Flush Instruction Memory”, and A.32,
“Memory Barrier”, respectively. Note: STBAR is also available, but it is deprecated and
should not be used in newly developed software.

3.2.2 Arithmetic / Logical / Shift Instructions

The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic, logical,
and shift operations. With one exception, these instructions compute a result that is a func-
tion of two source operands; the result is either written into a destination register or dis-
carded. The exception, SETHI, may be used in combination with another arithmetic or
logical instruction to create a 32-bit constant in an r register.

Shift instructions are used to shift the contents of an r register left or right by a given
count. The shift distance is specified by a constant in the instruction or by the contents of
an r register.

The integer multiply instruction performs a 64 × 64 A 64-bit operation. The integer divi-
sion instructions perform 64 ÷ 64 A 64-bit operations. In addition, for compatibility with
SPARC-V8, 32 × 32 A 64-bit multiply, 64 ÷ 32 A 32-bit divide, and multiply step
instructions are included. Division by zero causes a trap. Some versions of the 32-bit mul-
tiply and divide instructions set the condition codes.

The tagged arithmetic instructions assume that the least-significant two bits of each oper-
and are a data-type tag. The nontrapping versions of these instructions set the integer con-
dition code (icc) and extended integer condition code (xcc) overflow bits on 32-bit (icc) or
64-bit (xcc) arithmetic overflow. In addition, if any of the operands’ tag bits are nonzero,
icc is set. The xcc overflow bit is not affected by the tag bits.

3.2.3 Control Transfer

Control-transfer instructions (CTIs) include PC-relative branches and calls, register-indi-
rect jumps, and conditional traps. Most of the control-transfer instructions are delayed;
that is, the instruction immediately following a control-transfer instruction in logical
sequence is dispatched before the control transfer to the target address is completed.
Note: The next instruction in logical sequence may not be the instruction following the
control-transfer instruction in memory.

The instruction following a delayed control-transfer instruction is called a delay instruc-
tion. A bit in a delayed control-transfer instruction (the annul bit) can cause the delay
instruction to be annulled (that is, to have no effect) if the branch is not taken (or in the
“branch always” case, if the branch is taken).

Compatibility Note:
SPARC-V8 specified that the delay instruction was always fetched, even if annulled, and that an
annulled instruction could not cause any traps. SPARC-V9 does not require the delay instruction to
be fetched if it is annulled.

36 3 Architectural Overview

Branch and CALL instructions use PC-relative displacements. The jump and link (JMPL)
and return (RETURN) instructions use a register-indirect target address. They compute
their target addresses as either the sum of two r registers, or the sum of an r register and a
13-bit signed immediate value. The branch on condition codes without prediction instruc-
tion provides a displacement of ±8 Mbytes; the branch on condition codes with prediction
instruction provides a displacement of ±1 Mbyte; the branch on register contents instruc-
tion provides a displacement of ±128 Kbytes, and the CALL instruction’s 30-bit word dis-
placement allows a control transfer to any address within ±2 gigabytes (±231 bytes).
Note: When 32-bit address masking is enabled (see 5.2.1.6, “PSTATE_address_mask
(AM)”), the CALL instruction may transfer control to an arbitrary 32-bit address. The
return from privileged trap instructions (DONE and RETRY) get their target address from
the appropriate TPC or TNPC register.

3.2.4 State Register Access

The read and write state register instructions read and write the contents of state registers
visible to nonprivileged software (Y, CCR, ASI, PC, TICK, and FPRS). The read and
write privileged register instructions read and write the contents of state registers visible
only to privileged software (TPC, TNPC, TSTATE, TT, TICK, TBA, PSTATE, TL, PIL,
CWP, CANSAVE, CANRESTORE, CLEANWIN, OTHERWIN, WSTATE, and VER).

Software can use read/write ancillary state register instructions to read/write the
SPARC64-III-specific processor registers. See the subsection in 5.2.11, “Ancillary State
Registers (ASRs)”, for information about the implementation-dependent ASRs, including
which of them are privileged.

3.2.5 Floating-point Operate

Floating-point operate (FPop) instructions perform all floating-point calculations; they are
register-to-register instructions that operate on the floating-point registers. Like arithmetic/
logical/shift instructions, FPops compute a result that is a function of one or two source
operands. Specific floating-point operations are selected by a subfield of the FPop1/FPop2
instruction formats.

In addition the CPU has extended the SPARC-V9 architecture with floating-point multi-
ply-add and multiply-subtract instructions. See A.23.1, “IMPDEP2 (Floating-point Multi-
ply-Add/Subtract)”, for more information.

3.2.6 Conditional Move

Conditional move instructions conditionally copy a value from a source register to a desti-
nation register, depending on an integer or floating-point condition code or upon the con-
tents of an integer register. These instructions increase performance by reducing the
number of branches.

3.2.7 Register Window Management 37

3.2.7 Register Window Management

These instructions are used to manage the register windows. SAVE and RESTORE are
nonprivileged and cause a register window to be pushed or popped. FLUSHW is nonprivi-
leged and causes all of the windows except the current one to be flushed to memory.
SAVED and RESTORED are used by privileged software to end a window spill or fill trap
handler.

3.3 Traps
A trap is a vectored transfer of control to privileged software through a trap table that may
contain the first eight instructions (thirty-two for fill/spill traps) of each trap handler. The
base address of the table is established by software in a state register (the Trap Base
Address register, TBA). The displacement within the table is encoded in the type number
of each trap and the level of the trap. One half of the table is reserved for hardware traps;
one quarter is reserved for software traps generated by trap (Tcc) instructions; the final
quarter is reserved for future expansion of the architecture.

A trap causes the current PC and nPC to be saved in the TPC and TNPC registers. It also
causes the CCR, ASI, PSTATE, and CWP registers to be saved in TSTATE. TPC, TNPC,
and TSTATE are entries in a hardware trap stack, where the number of entries in the trap
stack is equal to the number of trap levels supported (which is 4 in the CPU). A trap also
sets bits in the PSTATE register, one of which can enable an alternate set of global regis-
ters for use by the trap handler. Normally, the CWP is not changed by a trap; on a window
spill or fill trap, however, the CWP is changed to point to the register window to be saved
or restored.

A trap may be caused by a Tcc instruction, an asynchronous exception, an instruction-
induced exception, or an interrupt request not directly related to a particular instruction.
Before executing each instruction, the processor determines if there are any pending
exceptions or interrupt requests. If any are pending, the processor selects the highest-prior-
ity exception or interrupt request and causes a trap.

See Chapter 7, “Traps” for a complete description of traps.

38 3 Architectural Overview

3.4 SPARC64-III Processor Architecture
This section describes the internal architecture of the CPU. Figure 1 contains the
SPARC64-III Block Diagram.

Figure 1: SPARC64-III CPU Block Diagram

...

...

...

...

Integer

FP

CC

Branch
Mispredict

Issue
Unit

Execution
Results and

I0 Cache Fetch

Instructions

RPT

Dispatch

Insts
Prefetch
Buffers

Branch
Unit

Unit

Status

Precise
State
Unit

Status

Handler

Rename and
Register Files

Reservation
Stations

Integer

FP

Agen

LS

Multiple
Execution

Units

BHT
Ren

Ren

Ren

LS units

U2 Cache

D1 Cache

Translation
Unit (TR)

Control

Load/Store
Pipes

and UPA
Interface

I1 Cache D1 Cache

UPA

Unit (UC)

to U2 Tag &to

µITLB µDTLB

Data Chips

I1 Cache
Control

va

va

papa

miss pa’s

(16 Kb)

(64 Kb) (64 Kb)

ILT

(1~16 Mb)

3.4.1 Life Cycle of an Instruction 39

3.4.1 Life Cycle of an Instruction

All instructions pass through the following states within the CPU:

Fetched:
Instructions are fetched from the external instruction cache, the internal I0 instruc-
tion cache, or the instruction prefetch buffers (described in 3.4.3, “Branch Unit
(BRU)”); they are then sent to the Issue Unit.

Issued:
A serial number is assigned to each instruction when it is issued. After an instruc-
tion is issued, it is immediately dispatched.

Dispatched:
Instructions are dispatched when they are sent to a functional unit queue. For
example, an add instruction is considered dispatched when it is sent to the queue
for one of the integer adders in the Fixed-point Integer Functional Unit (described
in 3.4.6.1.3).

Initiated:
An instruction is initiated when it has all of the resources it needs and it has been
selected for execution by an execution unit.

Executed:
An instruction is executed by an execution unit in the Data Flow Unit; for example,
an integer multiply is executed by a the integer multiplier (IMUL) in the Fixed-
point Functional Unit (described in 3.4.6.1.3). An instruction is in execution as
long as it is still being processed by an execution unit.

Finished:
An instruction is finished when it has completed execution in a functional unit and
has written its results into a register file. When an instruction finishes, the execu-
tion unit informs the Issue Unit (ISU) and reports its status.

Completed:
An instruction is completed when it has finished and has sent a nonerror status to
the ISU. Note: Although the state of the machine is altered temporarily when an
instruction is completed, the state change is not yet permanent; the old machine
state can be recovered until the instruction has been committed.

Committed:
An instruction is committed when it has completed without error and all prior
instructions (in program order) have completed without error. When an instruc-
tion is committed, the state of the machine is permanently changed to reflect the
result of the instruction.

Reclaimed:
All instruction-related resources are usually reclaimed a few cycles after the
instruction is committed. After the resources are reclaimed, they are again avail-
able for subsequent instructions.

40 3 Architectural Overview

The following sequence clarifies the ordering within these states. Instructions are:

1. Fetched in order.

2. Issued in order.

3. Dispatched in order.

4. Initiated out of order.

5. Executed out of order.

6. Completed out of order.

7. Committed in order.

During an instruction’s lifetime within the CPU it undergoes a series of transformations
that allow it to be processed more efficiently. These transformations include:

Recoding:
The instruction opcode is converted into a more efficient internal format.

Register Renaming:
The source and destination registers encoded in the instruction are renamed by
mapping them onto a much larger internal register set. A more complete descrip-
tion of this process is given in 3.4.1.1.

Numbering:
A serial number is assigned to an instruction when it is issued. This number is
unique in the system as long as the instruction is active; however, the numbers are
reclaimed and reused after the instruction is committed.

Packetizing:
An instruction packet (IP) is created. It contains the recoded opcode, the serial
number, the renamed register numbers, and some information that allows the
effects of the instruction to be undone if it was executed in error (for example, after
a mispredicted branch). The functional units that actually execute the instructions
deal only with IPs.

3.4.1.1 Register Renaming

Sometimes increasing the number of available registers can allow for more parallelism
within a CPU. For example, consider the following code fragment:

1. ld [%r5+%r6], %r2 ! Load something into %r2
2. add %r2,%r8,%r30 ! Use the loaded data
3. beq %xcc,d12 ! Branch if equal
4. add %r9,%r10,%r2 ! Not equal-store a result into %r2

Clearly, instruction #1 must complete before instruction #2 begins, because %r2 is an out-
put of #1 and an input to #2. Nothing that can be done in hardware will allow these
instructions to execute in parallel. The only reason that instruction #4 cannot execute in
parallel with #1 or #2, however, is that it needs to reuse %r2.

3.4.1 Life Cycle of an Instruction 41

If the destination in instruction #4 is changed to %r9, the instruction could run in parallel
with #1 or #2. But the hardware can’t always use another architected register, because
there isn’t always one available.

SPARC64-III solves this problem by:

1. Providing more physical registers than architected registers, and

2. Providing a mapping between architected and physical registers.

This strategy is called register renaming; it changes the example as follows:
1. ld [%pr15+%pr22],%pr7 ! Load into physical register %pr7
2. add %pr7,%pr8,%pr45 ! Use the loaded data
3. beq %xcc,dog ! Branch if equal
4. add %pr9,%pr21,%pr37 ! Store a result into physical %pr37

Now #4 can be executed in parallel with #1 or #2, since it is no longer dependent on one of
their registers. Note: #1 and #2 are still dependent (as they should be) and cannot be exe-
cuted in parallel.

For a more complete discussion of data dependencies, see 9.6.1, “Data Dependencies” on
page 198.

42 3 Architectural Overview

3.4.2 SPARC64-III Conceptual Architecture

Figure 2 shows a high-level view of the internal architecture of the CPU.

Figure 2: CPU High-Level Internal Architecture

Conceptually, the CPU contains seven sections:

Branch Unit (BRU):
Fetches instructions, controls program counter (PC) sequencing, and attempts to
provide four instructions per clock to the Issue Unit.

Issue Unit (ISU):
Issues and dispatches up to four instructions per clock, and keeps track of all cur-
rently active instructions.

Translation

Execution UnitsQueues

I1 I2 I3 I4

I1-Cache (64 KBytes)

Physical Integer and
Floating-point Registers

Register
Rename

Maps

4
IssueI0 Cache Unit

Branch
Prediction

Branch Unit Data Flow Unit

CPU

U2-Cache & UPA Control Unit

Unit

128 Bits128 Bits128 Bits

128 Bits

128Bits128Bits

UPA BUS U2-Cache SRAMs
(1 ~ 16 MBytes)

D1-Cache
(64 KBytes)

16 KBytes

64
 B

its

64
 B

its

64
 B

its

64
 B

its

3.4.3 Branch Unit (BRU) 43

Data Flow Unit (DFU):
Executes instructions using the integer and floating-point hardware registers, the
register rename maps, the fixed-integer and floating-point execution units, and the
load / store unit.

Level-1 Instruction Cache (I1-Cache):
Receives one instruction fetch request (16 bytes per request) per cycle from BRU,
accesses the level-1 instruction cache (4-way set-associative, 64 Kbytes), and
returns 4 instructions in a cycle. When a cache miss happens, sends a request to
UC to get the line data (64 bytes).

Level-1 Data Cache (D1-Cache):
Receives up to two load or store requests (each request is up to 8 byte access) per
cycle from LSU, accesses the level-1 data cache (4-way set-associative, 64
Kbytes), and returns up to 2 load data in a cycle. When a cache miss happens,
sends a request to UC to get the cache line data (64 bytes).

Translation Unit (TR):
Has the Main TLB which has 256 entries and is fully-associative, accesses it when
the translation request comes from I1-Cache or D1-Cache, and returns the page
table entry to I1-Cache or D1-Cache.

U2-Cache & UPA Control Unit (UC):
Controls the external unified level-2 cache (U2-Cache, direct-map, 1~16 MBytes)
and UPA bus interface. Receives level-1 cache miss requests from I1-Cache and
D1-Cache, accesses U2-Cache, and returns the cache line data (64 Bytes) to I1-
Cache and D1-Cache. When a cache miss happens, sends a request to UPA bus to
get the cache line data.

3.4.3 Branch Unit (BRU)

The Branch Unit is responsible for sending up to four instructions per clock to the Issue
Unit. The BRU gets these instructions from one of these locations:

� The on-chip Level-0 Instruction (I0) Cache

� The on-chip Prefetch Buffers

� The external Level-1 Instruction Caches (through the Instruction Recode Unit)

The BRU contains the following components:

Instruction Recode Unit:
Recodes instructions into a more efficient internal format. Instructions remain in
recoded form throughout their lifetime in the CPU.

Instruction Prefetch Buffers:
Prefetches instructions from the Level-1 Instruction Caches through the Instruction
Recode Unit.

Instruction Level-0 Cache (I0 Cache):
Holds up to 4,096 prefetched and recoded instructions.

44 3 Architectural Overview

Branch Prediction:
Attempts to determine the address of the next four instructions to fetch, using feed-
back from the Issue Unit.

Fetch Unit:
Supplies the addresses of the instructions to be fetched. This unit uses Branch Pre-
diction to attempt to determine the correct fetch address. It then transmits this
address to the I0 Cache, the Prefetch Buffers, and the external I1 Cache.

If the initial fetch address proves to be incorrect, the Fetch Unit discards the incor-
rectly fetched instructions, recalculates the correct fetch address, and retransmits
the correct address to the I0 Cache, the Prefetch Buffers, and the external I1 Cache.

The Fetch Unit also handles mispredicted branches and processes traps.

3.4.4 Issue Unit (ISU)

The Issue Unit issues up to four instructions per clock and keeps track of all currently
active instructions. It contains the following components:

Precise State Unit (PSU):
Tracks the state of all instructions from the time they are issued until they are
reclaimed. It:

� Assigns serial numbers to newly issued instructions

� Waits for the DFU to report finished status on issued instructions

� Completes instructions that are finished and commits them in order

� Reclaims resources used by committed instructions

The PSU can back up the CPU to any previous uncommitted state in the event of
an error or mispredicted branch. The PSU also handles exceptions, errors, and
interrupts.

Register Rename / Freelist Unit:
Manages the list of free physical registers that are available to rename the registers
in the instructions that will be issued in this clock. For performance reasons, the
physical registers and the maps of physical to architected register numbers are kept
in the DFU, but they are logically part of the ISU.

I-Matrix:
Determines how many instructions (from 0 to 4) can be issued in each clock. It
gathers resource usage information (for example, how many queue slots are avail-
able) from many parts of the CPU.

Dispatch:
Sends instruction packets to be enqueued at the DFU’s functional units, described
in 3.4.6 on page 46.

3.4.5 Instruction Fetch, Issue, and Dispatch 45

3.4.5 Instruction Fetch, Issue, and Dispatch

Figure 3 shows a detailed view of the instruction fetch and issue process.

Figure 3: Instruction Fetch, Issue, and Dispatch

Using feedback from the Issue Unit, Branch Prediction attempts to predict the next PC
value. The predicted address is called the Fetch PC (FPC). Next, the Branch Unit sends the
four instructions at the FPC address to the Issue Unit. These instructions will come from:

� The I0 cache, if present there

� The Prefetch Buffers, if present there

� The I1 cache, if the instruction is not already present in the CPU

The Prefetch Buffers are constantly prefetching instructions through the Instruction
Recode Unit, which recodes them into an internal format. These recoded instructions are
then cached in the Prefetch Buffers; eventually they may be sent on to the I0 cache or
directly to the Issue Unit.

Using information gathered by the Precise State Unit, the Issue Unit determines whether
the instructions it has received are from the correct address. If they are, the IU dispatches
up to four of the instructions to the DFU. If the PC was mis-predicted, the Issue Unit feeds
this information back to the BRU and discards the instructions.

Predict
Next PC

I1 Instruction Caches

4

Prefetch and Recode

4

4

Feedback

4

I0 Cache
4K Instructions

(Recoded)
4 To Execution Units

To Rename Maps

2

2

2
Issue
Unit

Branch
Prediction

N = Number of Instructions

and Registers

Branch Unit

Instruction Buffer
(12 instructions)

46 3 Architectural Overview

3.4.6 Data Flow Unit (DFU)

The Data Flow Unit (shown in Figure 4) executes instructions using the integer and float-
ing-point hardware registers and register rename maps, and the fixed-point integer, address
generation, floating-point, and load / store functional units.

Figure 4: Data Flow Unit (DFU)

The functional units are described in 3.4.6.1, “DFU Functional Units.” In addition to the
functional units the DFU also contains:

Physical Integer Register File:
Physical registers to which the architected registers within each integer instruction
are remapped.

Integer Register Rename Map:
Associations needed to remap each integer register reference within an instruction
onto the appropriate physical integer register.

LSU

FX / AGEN

Reservation Station

Reservation Station4
In

st
ru

ct
io

ns
 fr

om
 Is

su
e

U
ni

t

FP Mul / Add

FDIV/FSQRT

ALU

ALU

Even Cache

Odd Cache

ALS

IDIV / IMUL

ALS

R
es

ul
t B

us
se

s

Registers FPU

FXU

Physical Integer and
Floating-point Registers

Register
Rename

Maps

Address Address

Reservation Station

Reservation Station
FP Add

3.4.6 Data Flow Unit (DFU) 47

Physical Floating-point Register File:
Physical registers to which the architected registers within each floating-point
instruction are remapped.

Floating-point Register Rename Map:
Associations needed to remap each floating-point register reference within an
instruction onto the appropriate physical floating-point register.

3.4.6.1 DFU Functional Units

The DFU contains the four functional units that are responsible for executing CPU
instructions. They are:

Floating-point Functional Unit (FPU):
Performs floating-point arithmetic, comparisons, multiplies, divides, and square-
roots (including floating-point multiply-add and multiply-subtract).

Fixed-point Integer Functional Unit (FXU):
Performs fixed-point arithmetic, logical operations, shifts, multiplies, and divides.

Fixed-point Integer / Address Generation Functional Unit (FX/AGEN):
Performs fixed-point arithmetic and logical operations and calculates load/store
addresses.

Load / Store Functional Unit (LSU):
Processes all load and store instructions.

Each functional unit contains:

Reservation Station:
Stores the instruction packet (IP) and source register(s) for each instruction that
has been issued and is waiting to be initiated in the functional unit.

Execution Units:
Perform the processing necessary to execute each instruction. Note: The execution
units for the LSU are actually the external data caches, which execute the loads
and stores.

Subsection 3.4.6.1.1 describes the reservation stations. Subsections 3.4.6.1.3 through
3.4.6.1.5 describe the functional units.

3.4.6.1.1 Reservation Stations

Each reservation station contains an Instruction Packet Queue (IPQ), which holds the
instruction packets (IPs) waiting to begin execution in the functional unit. Associated with
each queue entry is one or more Register Caches, which hold the source operand(s) for the
instruction. When a source operand of an enqueued instruction is generated by a previous

48 3 Architectural Overview

instruction, that queue entry must wait until its source operands are available. Figure 5
shows the general form of a reservation station.

Figure 5: Reservation Station Detail

Each reservation station is an N × (S + 1) matrix, where N is the number of entries, S is the
number of source registers, and 1 is the IPQ entry. Table 2 gives the values for N and S for
each functional unit in the DFU.

3.4.6.1.2 Floating-point Functional Unit (FPU)

The Floating-point Functional Unit (see Figure 4 on page 46) executes floating-point
instructions using one floating-point multiply-adder (FMA), one floating-point divider
(FDIV/FSQRT), and one floating-point adder (FA).

The FPU can initiate one floating-point add and either one floating-point multiply-add or
one floating-point divide operation per clock, and can generate one floating-point add and
one multiply-addition or one division result per clock. Once the operations are initiated,
however, the FMA and FDIV/FSQRT units execute in parallel.

The FMA is pipelined and has a latency of 4 cycles. The FMA also performs floating-
point moves, which take one clock. The FA is pipelined and has a latency of 3 cycles.

Table 2—Reservation Station Sizes

Functional Unit Number of
Entries (N)

Number of
Source Registers

(S)
FXU 8 2
FX / AGEN 8 2
FPU 8 3
LSU 12 1

I[0]

R1[0]

R2[0]

I[1]

R1[1]

R2[1]

I[2]

R1[2]

R2[2]

I[3]

R1[3]

R2[3]

I[4]

R1[4]

R2[4]

I[5]

R1[5]

R2[5]

I[6]

R1[6]

R2[6]

I[7]

R1[7]

R2[7]

IPQ

Source

Source

Result Bus

To Functional Units

Register 2

Register 1

3.4.6 Data Flow Unit (DFU) 49

The FDIV/FSQRT has a latency of approximately 12 cycles (single) and 22-23 cycles
(double). The FDIV/FSQRT unit blocks the FMA for one clock in order to start the divi-
sion and for another clock when it places the result on the result bus. While the divide is in
progress, however, the FMA and FDIV/FSQRT execute in parallel.

3.4.6.1.3 Fixed-point Integer Functional Unit (FXU)

The Fixed-point Integer Functional Unit (see Figure 4 on page 46) executes integer
instructions using two independent Arithmetic/Logical/Shift Units (ALSs), one of which
contains an integer multiplier/divider.

One of the ALSs shares its operand and result busses with the integer multiplier/divider.
This combined unit can initiate either one MULDIV or one ALS operation per clock, and
can generate one MULDIV or one ALS result per clock. Once the operations are initiated,
however, the ALS and multiplier/divider units execute in parallel.

Each ALS contains:

� An integer adder

� A logic unit (computes AND, OR, and so forth)

� A 64-bit barrel shifter

ALS operations take only one clock each, so there is no need to pipeline them.

An integer multiply operation takes between 4 (32-bits) and 6 (64-bits) clocks. An integer
divide takes between 2 and 37 clocks, depending on the arguments; the average is about 13
clocks. The multiplier/divider “steals” one ALS cycle to place its results on the result bus.

3.4.6.1.4 Fixed-point/Address Generation Functional Unit (FX / AGEN)

The Fixed-point / Address Generation Functional Unit (see Figure 4 on page 46) executes
integer instructions and calculates load/store addresses using two independent Arithmetic/
Logical Units. Note: Unlike the FXU, the FX/AGEN does not contain a shifter or an inte-
ger multiplier/divider.

The FX/AGEN is used to calculate:

� Effective addresses for loads and stores

� Integer arithmetic operations that do not require a shift, multiply, or divide

Calculations are required for some CPU addressing modes; for example, in the instruction
ld [%o6 + 64], %i5

the FX/AGEN adds 64 to the contents of %o6 to obtain the effective address for the load.
The FX/AGEN sends the calculated address and the instruction serial number to the Load
Store Unit.

The FX/AGEN can perform up to two calculations per clock, in the following combina-
tions:

� Two effective address calculations

50 3 Architectural Overview

� One address calculation and one integer calculation

� Two integer calculations

3.4.6.1.5 Load / Store Functional Unit (LSU)

The Load / Store Functional Unit (see Figure 4 on page 46) executes load and store
instructions accessing the level-1 even and odd data caches.

The LSU is responsible for guaranteeing that loads and stores execute correctly. Some out-
of-order execution is allowed, but some operations must execute in order.

The LSU can perform two simultaneous loads or stores to the level-1 data caches per
clock, one to the even cache and one to the odd cache. It can accept up to two new load or
store requests per clock. The level-1 caches have a three-clock latency, but they are pipe-
lined, so two new accesses can be started and two old accesses completed during each
clock.

4 Data Formats
The CPU architecture recognizes these fundamental data types:

� Signed Integer: 8, 16, 32, and 64 bits.

� Unsigned Integer: 8, 16, 32, and 64 bits.

� Floating Point: 32 and 64 bits. Operations on 128-bit floating-point data are emulated
by system software.

The widths of the data types are:

� Byte: 8 bits

� Halfword: 16 bits

� Word: 32 bits

� Extended Word: 64 bits

� Tagged Word: 32 bits (30-bit value plus 2-bit tag)

� Doubleword: 64 bits

� Quadword: 128 bits (emulated)

The signed integer values are stored as two’s-complement numbers with a width commen-
surate with their range. Unsigned integer values, bit strings, Boolean values, strings, and
other values representable in binary form are stored as unsigned integers with a width
commensurate with their range. The floating-point formats conform to the IEEE Standard
for Binary Floating-point Arithmetic, IEEE Std 754-1985. In tagged words, the least sig-
nificant two bits are treated as a tag; the remaining 30 bits are treated as a signed integer.

Subsections 4.1 through 4.11 illustrate the signed integer, unsigned integer, and tagged
formats. Subsections 4.12 through 4.14 illustrate the floating-point formats. In 4.4, 4.9,
4.13, and 4.14, the individual subwords of the multiword data formats are assigned names.
The arrangement of the subformats in memory and processor registers based on these
names is shown in Table 3 on page 56. Tables 4 through 7 on pages 57 through 58 define
the integer and floating-point formats.

52 4 Data Formats

4.1 Signed Integer Byte

Figure 6 illustrates the signed integer byte data format.

Figure 6: Signed Integer Byte Data Format

4.2 Signed Integer Halfword

Figure 7 illustrates the signed integer halfword data format.

Figure 7: Signed Integer Halfword Data Format

4.3 Signed Integer Word

Figure 8 illustrates the signed integer word data format.

Figure 8: Signed Integer Word Data Format

4.4 Signed Integer Double

Figure 9 illustrates both components (SD-0 and SD-1) of the signed integer double data
format.

Figure 9: Signed Integer Double Data Format

7 6 0

S

15 14 0

S

31 30 0

S

31 30 0

S signed_dbl_integer[62:32]

SD–0

SD–1

31 0

signed_dbl_integer[31:0]

4.5 Signed Extended Integer 53

4.5 Signed Extended Integer
Figure 10 illustrates the signed extended integer (SX) data format.

SX

Figure 10: Signed Extended Integer Data Format

4.6 Unsigned Integer Byte
Figure 11 illustrates the unsigned integer byte data format.

Figure 11: Unsigned Integer Byte Data Format

4.7 Unsigned Integer Halfword
Figure 12 illustrates the unsigned integer halfword data format.

Figure 12: Unsigned Integer Halfword Data Format

4.8 Unsigned Integer Word
Figure 13 illustrates the unsigned integer word data format.

Figure 13: Unsigned Integer Word Data Format

63 62 0

S signed_ext_integer

7 0

15 0

31 0

54 4 Data Formats

4.9 Unsigned Integer Double
Figure 14 illustrates both components (UD-0 and UD-1) of the unsigned integer double
data format.

Figure 14: Unsigned Integer Double Data Format

4.10 Unsigned Extended Integer
Figure 15 illustrates the unsigned extended integer (UX) data format.

UX

Figure 15: Unsigned Extended Integer Data Format

4.11 Tagged Word
Figure 16 illustrates the tagged word data format.

Figure 16: Tagged Word Data Format

4.12 Floating-point Single Precision
Figure 17 illustrates the floating-point single-precision data format.

Figure 17: Floating-point Single-precision Data Format

31 0

unsigned_dbl_integer[63:32]UD–0

UD–1
31 0

unsigned_dbl_integer[31:0]

63 0

unsigned_ext_integer

31 0

tag
2 1

31 30 0

S exp[7:0] fraction[22:0]
2223

4.13 Floating-point Double Precision 55

4.13 Floating-point Double Precision
Figure 18 illustrates both components (FD-0 and FD-1) of the floating-point double-preci-
sion data format.

Figure 18: Floating-point Double-precision Data Format

4.14 Floating-point Quad-precision
The CPU does not implement any quad-precision floating-point operations in hardware.
These operations cause an fp_exception_other trap with FSR.ftt = unimplemented_FPop). See
5.1.7, “Floating-point State Register (FSR)”, for more information. The OS kernel then
emulates the quad operation and stores the result into a quad-aligned set of floating-point
registers, which are defined in Table 3, “Double- and Quadwords in Memory and Regis-
ters (V9=1).”

Implementation Note:
The OS kernel does not contain emulation routines for the quad-precision multiply-add or multiply-
subtract instructions.

The LDQF, LDQFA, STQF, and STQFA instructions cause an illegal_instruction exception;
they are emulated by system software.

31 30 0

S exp[10:0] fraction[51:32]
1920

FD–0

FD–1
31 0

fraction[31:0]

56 4 Data Formats

Figure 19 illustrates all four components (FQ-0 through FQ-3) of the floating-point quad-
precision data format.

Figure 19: Floating-point Quad-precision Data Format

Table 3 describes the memory and register alignment for double- and quadword.

† Although a floating-point doubleword is required only to be word-aligned in memory, it is rec-
ommended that it be doubleword-aligned (that is, the address of its FD-0 word should be 0 mod
8).

‡ Although a floating-point quadword is required only to be word-aligned in memory, it is recom-
mended that it be quadword-aligned (that is, the address of its FQ-0 word should be 0 mod 16).

Implementation Note:
Floating-point quad is not implemented in the CPU. Quad-precision operations, except floating-
point multiply-add and multiply-subtract, are emulated in the OS kernel.

Table 3: Double- and Quadwords in Memory and Registers (V9=1)

Subformat
Name Subformat Field

Required
Address

Alignment
Memory
Address

Register
Number

Alignment
Register
Number

SD-0 signed_dbl_integer[63:32] 0 mod 8 n 0 mod 2 r
SD-1 signed_dbl_integer[31:0] 4 mod 8 n + 4 1 mod 2 r + 1
SX signed_ext_integer[63:0] 0 mod 8 n — r
UD-0 unsigned_dbl_integer[63:32] 0 mod 8 n 0 mod 2 r
UD-1 unsigned_dbl_integer[31:0] 4 mod 8 n + 4 1 mod 2 r + 1
UX unsigned_ext_integer[63:0] 0 mod 8 n — r
FD-0 s:exp[10:0]:fraction[51:32] 0 mod 4 † n 0 mod 2 f
FD-1 fraction[31:0] 0 mod 4 † n + 4 1 mod 2 f + 1
FQ-0 s:exp[14:0]:fraction[111:96] 0 mod 4 ‡ n 0 mod 4 f
FQ-1 fraction[95:64] 0 mod 4 ‡ n + 4 1 mod 4 f + 1
FQ-2 fraction[63:32] 0 mod 4 ‡ n + 8 2 mod 4 f + 2
FQ-3 fraction[31:0] 0 mod 4 ‡ n + 12 3 mod 4 f + 3

31 30 0

S exp[14:0] fraction[111:96]
1516

FQ–0

FQ–1

FQ–2

FQ–3

31 0

fraction[95:64]

31 0

fraction[63:32]

31 0

fraction[31:0]

4.14 Floating-point Quad-precision 57

Table 4 describes the width and ranges of the signed, unsigned, and tagged integer data
formats.

Table 5 describes the floating-point single-precision data formats.

Table 4: Signed Integer, Unsigned Integer, and Tagged Format Ranges (V9=2)

Data Type Width (bits) Range

Signed integer byte 8 <27 to 27 < 1
Signed integer halfword 16 <215 to 215 < 1
Signed integer word 32 <231 to 231 < 1
Signed integer tagged word 32 <229 to 229 < 1
Signed integer double 64 <263 to 263< 1
Signed extended integer 64 <263 to 263 < 1

Unsigned integer byte 8 0 to 28 < 1
Unsigned integer halfword 16 0 to 216 < 1
Unsigned integer word 32 0 to 232 < 1
Unsigned integer tagged word 32 0 to 230 < 1
Unsigned integer double 64 0 to 264 < 1
Unsigned extended integer 64 0 to 264 < 1

Table 5: Floating-point Single-precision Format Definition (V9=3)

s = sign (1 bit)
e = biased exponent (8 bits)
f = fraction (23 bits)
u = undefined

Normalized value (0 < e < 255): (<1)s × 2e<127 × 1.f
Subnormal value (e = 0): (<1)s × 2<126 × 0.f
Zero (e = 0) (<1)s × 0
Signalling NaN s = u; e = 255 (max); f = .0uu--uu

(At least one bit of the fraction must be nonzero)
Quiet NaN s = u; e = 255 (max); f = .1uu--uu
< ' (negative infinity) s = 1; e = 255 (max); f = .000--00
+ ' (positive infinity) s = 0; e = 255 (max); f = .000--00

58 4 Data Formats

Table 6 describes the floating-point double-precision data formats.

Table 7 describes the floating-point quad-precision data formats.

Table 6: Floating-point Double-precision Format Definition (V9=4)

s = sign (1 bit)
e = biased exponent (11 bits)
f = fraction (52 bits)
u = undefined

Normalized value (0 < e < 2047): (<1)s × 2e<1023 × 1.f
Subnormal value (e = 0): (<1)s × 2<1022 × 0.f
Zero (e = 0) (<1)s × 0
Signalling NaN s = u; e = 2047 (max); f = .0uu--uu

(At least one bit of the fraction must be nonzero)
Quiet NaN s = u; e = 2047 (max); f = .1uu--uu
< ' (negative infinity) s = 1; e = 2047 (max); f = .000--00
+ ' (positive infinity) s = 0; e = 2047 (max); f = .000--00

Table 7: Floating-point Quad-precision Format Definition (V9=5)

s = sign (1 bit)
e = biased exponent (15 bits)
f = fraction (112 bits)
u = undefined

Normalized value (0 < e < 32767): (-1)s × 2e<16383 × 1.f
Subnormal value (e = 0): (-1)s × 2<16382 × 0.f
Zero (e = 0) (-1)s × 0
Signalling NaN s = u; e = 32767 (max); f = .0uu--uu

(At least one bit of the fraction must be nonzero)
Quiet NaN s = u; e = 32767 (max); f = .1uu--uu
< ' (negative infinity) s = 1; e = 32767 (max); f = .000--00
+ ' (positive infinity) s = 0; e = 32767 (max); f = .000--00

5 Registers
The CPU processor includes two types of registers: general-purpose, or working data reg-
isters, control/status registers, and ASI registers.

Working data registers include:

� Integer working registers (r registers)

� Floating-point working registers (f registers)

Control/status registers include:

� Program Counter register (PC)

� Next Program Counter register (nPC)

� Processor State register (PSTATE)

� Trap Base Address register (TBA)

� Y register (Y)

� Processor Interrupt Level register (PIL)

� Current Window Pointer register (CWP)

� Trap Type register (TT)

� Condition Codes Register (CCR)

� Address Space Identifier register (ASI)

� Trap Level register (TL)

� Trap Program Counter register (TPC)

� Trap Next Program Counter register (TNPC)

� Trap State register (TSTATE)

� Hardware clock-tick counter register (TICK)

� Savable windows register (CANSAVE)

� Restorable windows register (CANRESTORE)

� Other windows register (OTHERWIN)

60 5 Registers

� Clean windows register (CLEANWIN)

� Window State register (WSTATE)

� Version register (VER)

� Implementation-dependent Ancillary State Registers (ASRs)

� Floating-point State Register (FSR)

� Floating-point Registers State register (FPRS)

The ASI registers are defined in Appendix L, “ASI Assignments”.

The SPARC-V9 architecture also defines two implementation-dependent registers: the IU
Deferred-trap Queue and the Floating-point Deferred-trap Queue (FQ); the CPU does not
need or contain either queue. All CPU traps are precise, except for the data_breakpoint trap.
See V9 for more information about these registers.

For convenience, some registers in this chapter are illustrated as fewer than 64 bits wide.
Any bits not shown are reserved for future extensions to the architecture. Such reserved
bits read as zeroes and, when written by software, should always be written as zeroes.

5.1 Nonprivileged Registers
The registers described in this subsection are visible to nonprivileged (application, or
“user-mode”) software.

5.1.1 General Purpose r Registers

At any moment, general-purpose registers appear to nonprivileged software as shown in
Figure 20 on page 61.

The CPU contains 96 general-purpose 64-bit r registers. They are partitioned into eight
global registers, eight alternate global registers, plus five 16-register sets. A register win-
dow consists of the current eight in registers, eight local registers, and eight out registers.
See Table 8 on page 63.

5.1.1.1 Global r Registers

Registers r[0]..r[7] refer to a set of eight registers called the global registers (g0..g7). At
any time, one of two sets of eight registers is enabled and can be accessed as the global
registers. The currently enabled set of global registers is selected by the Alternate Global
(AG) field in the PSTATE register. See 5.2.1, “Processor State Register (PSTATE),” for a
description of the AG field.

Global register zero (g0) always reads as zero; writes to it have no program-visible effect.

Compatibility Note:
Since the PSTATE register is writable only by privileged software, existing nonprivileged
SPARC-V8 software operates correctly on a SPARC64-III implementation if supervisor software
ensures that nonprivileged software sees a consistent set of global registers.

V9

5.1.1 General Purpose r Registers 61

Figure 20: General-purpose Registers (Nonprivileged View) (V9=1)

Programming Note:
The alternate global registers are present to give trap handlers a set of scratch registers that are inde-
pendent of nonprivileged software’s registers. The AG bit in PSTATE allows supervisor software to
access the normal global registers if required (for example, during instruction emulation).

5.1.1.2 Windowed r Registers

At any time, an instruction can access the eight global registers and a 24-register window
into the r registers. A register window comprises the eight in and eight local registers of a
particular register set, together with the eight in registers of an adjacent register set, which

i7 r[31]
i6 r[30]
i5 r[29]
i4 r[28]
i3 r[27]
i2 r[26]
i1 r[25]
i0 r[24]

r[23]
r[22]
r[21]
r[20]
r[19]
r[18]
r[17]
r[16]
r[15]
r[14]
r[13]
r[12]
r[11]
r[10]
r[9]
r[8]
r[7]
r[6]
r[5]
r[4]
r[3]
r[2]
r[1]
r[0]

l7
l6
l5
l4
l3
l2
l1
l0
o7
o6
o5
o4
o3
o2
o1
o0
g7
g6
g5
g4
g3
g2
g1
g0

62 5 Registers

are addressable from the current window as out registers. See Figure 21 on page 62 and
Table 8 on page 63.

Figure 21: Three Overlapping Windows and the Eight Global Registers (V9=2)

The number of windows or register sets, NWINDOWS, is five for the CPU. The total num-
ber of r registers in a given implementation is eight (for the global registers), plus eight
(for the alternate global registers), plus the number of sets times 16 registers/set. Thus, the

Window (CWP – 1)

r[31]

r[24]
ins

.

.

r[23]

r[16]
locals

.

.

r[15]

r[8]
outs

.

.

Window (CWP)

r[31]

r[24]
ins

.

.

r[23]

r[16]
locals

.

.

r[15]

r[8]
outs

.

.

Window (CWP + 1)

r[31]

r[24]
ins

.

.

r[23]

r[16]
locals

.

.

r[15]

r[8]
outs

.

.

r[7]

r[1]
globals

.

.

r[0] 0

63 0

5.1.1 General Purpose r Registers 63

total number of r registers is 96 (five sets of 16 plus the 8 global registers and 8 alternate
global registers).

The current window into the r registers is given by the current window pointer (CWP) reg-
ister. The CWP is decremented by the RESTORE instruction and incremented by the
SAVE instruction. Window overflow is detected via the CANSAVE register, and window
underflow is detected via the CANRESTORE register, both of which are controlled by
privileged software. A window overflow (underflow) condition causes a window spill (fill)
trap.

5.1.1.3 Overlapping Windows

Each window shares its ins with one adjacent window and its outs with another. The outs
of the CWP–1 (modulo NWINDOWS) window are addressable as the ins of the current
window, and the outs in the current window are the ins of the CWP+1 (modulo NWIN-
DOWS) window. The locals are unique to each window.

An outs register with address o, where 8) o) 15, refers to exactly the same register as
(o+16) does after the CWP is incremented by 1 (modulo NWINDOWS). Likewise, an, in
register with address i, where 24) i) 31, refers to exactly the same register as address (i<
16) does after the CWP is decremented by 1 (modulo NWINDOWS). See Figure 21 on
page 62 and Figure 22 on page 64.

Since CWP arithmetic is performed modulo NWINDOWS, the highest numbered imple-
mented window (window 4 in the CPU) overlaps with window 0. The outs of window
NWINDOWS<1 are the ins of window 0. Implemented windows are numbered contigu-
ously from 0 through NWINDOWS<1 (4 in the CPU).

Programming Note:
Since the procedure call instructions (CALL and JMPL) do not change the CWP, a procedure can
be called without changing the window. See H.1.2, “Leaf-Procedure Optimization,” in V9.

Because the windows overlap, the number of windows available to software is one less than the
number of implemented windows; that is, NWINDOWS – 1 or 4 in SPARC64-III. When the regis-
ter file is full, the outs of the newest window are the ins of the oldest window, which still contains
valid data.

The local and out registers of a register window are guaranteed to contain either zeroes or an old
value that belongs to the current context upon reentering the window through a SAVE instruction. If
a program executes a RESTORE followed by a SAVE, the resulting window’s locals and outs may
not be valid after the SAVE, since a trap may have occurred between the RESTORE and the SAVE.
However, if the clean_window protocol is being used, system software must guarantee that registers

Table 8: Window Addressing (V9=6)

Windowed Register Address r Register Address
in[0] – in[7] r[24] – r[31]
local[0] – local[7] r[16] – r[23]
out[0] – out[7] r[8] – r[15]
global[0] – global[7] r[0] – r[7]

V9

64 5 Registers

in the current window after a SAVE always contains only zeroes or valid data from that context. See
5.2.10.6, “Clean Windows (CLEANWIN) Register”.

Section 6.3.6, “Register Window Management Instructions”, describes how the windowed
integer registers are managed.

Figure 22: Windowed r Registers for NWINDOWS = 5 (V9=3)

w1 outs

w2 outs

w3 outs

w0 outs

w4 locals

w0 ins

w1 locals

w1 ins

w3 locals w3 ins

w2 locals

OTHERWIN = 1

CANRESTORE = 1

CANSAVE + CANRESTORE + OTHERWIN = NWINDOWS – 2

The current window (window 0) and the overlap window (window 2) account for the two windows
in the right side of the equation. The “overlap window” is the window that must remain unused
because its ins and outs overlap two other valid windows.

SAVE RESTORE w2 ins

CANSAVE = 1

(Overlap)

w0 locals

w4 outs

w4 ins

CWP = 0
(Current Window Pointer)

5.1.2 Special r Registers 65

5.1.2 Special r Registers

The usage of two of the r registers is fixed, in whole or in part, by the architecture:

� The value of r[0] is always zero; writes to it have no program-visible effect.

� The CALL instruction writes its own address into register r[15] (out register 7).

5.1.2.1 Register-Pair Operands

LDD, LDDA, STD, and STDA instructions access a pair of words in adjacent r registers
and require even-odd register alignment. The least-significant bit of an r register number
in these instructions is reserved and should be supplied as zero by software.

When the r[0] – r[1] register pair is used as a destination in LDD or LDDA, only r[1] is
modified. When the r[0] – r[1] register pair is used as a source in STD or STDA, a zero is
written to the 32-bit word at the lowest address, and the least significant 32 bits of r[1] are
written to the 32-bit word at the highest address (in big-endian mode).

An attempt to execute an LDD, LDDA, STD, or STDA instruction that refers to a mis-
aligned (odd) destination register number causes an illegal_instruction trap.

5.1.2.2 Register Usage

See H.1.1, “Registers” in V9 for information about the conventional usage of the r regis-
ters.

In Figure 22 on page 64, NWINDOWS = 5. The eight global registers are not illustrated.
CWP = 0, CANSAVE = 1, OTHERWIN = 1, and CANRESTORE = 1. If the procedure
using window w0 executes a RESTORE, window w4 becomes the current window. If the
procedure using window w0 executes a SAVE, window w1 becomes the current window.

5.1.3 IU Control/Status Registers

The nonprivileged IU control/status registers include the program counters (PC and nPC),
the 32-bit multiply/divide (Y) register, and seven implementation-dependent Ancillary
State Registers (ASRs), which are defined in 5.2.11, “Ancillary State Registers (ASRs).”

5.1.3.1 Program Counters (PC, nPC)

The PC contains the address of the instruction currently being executed. The nPC holds
the address of the next instruction to be executed, if a trap does not occur. The low-order
two bits of PC and nPC always contain zero.

For a delayed control transfer, the instruction that immediately follows the transfer
instruction is known as the delay instruction. This delay instruction is executed (unless the
control transfer instruction annuls it) before control is transferred to the target. During
execution of the delay instruction, the nPC points to the target of the control transfer
instruction, while the PC points to the delay instruction. See Chapter 6, “Instructions”.

V9

66 5 Registers

The PC is used implicitly as a destination register by CALL, Bicc, BPcc, BPr, FBfcc,
FBPfcc, JMPL, and RETURN instructions. It can be read directly by an RDPC instruc-
tion.

5.1.3.2 32-bit Multiply/Divide Register (Y)

Figure 23: Y Register (V9=4)

The low-order 32 bits of the Y register, illustrated in Figure 23, contain the more signifi-
cant word of the 64-bit product of an integer multiplication, as a result of either a 32-bit
integer multiply (SMUL, SMULcc, UMUL, UMULcc) instruction or an integer multiply
step (MULScc) instruction. The Y register also holds the more significant word of the 64-
bit dividend for a 32-bit integer divide (SDIV, SDIVcc, UDIV, UDIVcc) instruction.

Although Y is a 64-bit register, its high-order 32 bits are reserved and always read as 0.

The Y register is read and written with the RDY and WRY instructions, respectively.

5.1.3.3 Ancillary State Registers (ASRs)

SPARC-V9 provides for optional ancillary state registers (ASRs). Access to a particular
ASR may be privileged or nonprivileged; see 5.2.11, “Ancillary State Registers (ASRs),”
for a more complete description of ASRs, including SPARC64-III’s implementation-
dependent ASRs.

5.1.4 Floating-point Registers

The FPU contains:

� 32 single-precision (32-bit) floating-point registers, numbered f[0], f[1], . . f[31].

� 32 double-precision (64-bit) floating-point registers, numbered f[0], f[2], . . f[62].

� 16 quad-precision (128-bit) floating-point registers, numbered f[0], f[4], . . f[60].

The Y register is deprecated; it is provided only for compatibility with previous ver-
sions of the architecture. It should not be used in new SPARC-V9 software. It is
recommended that all instructions that reference the Y register (that is, SMUL,
SMULcc, UMUL, UMULcc, MULScc, SDIV, SDIVcc, UDIV, UDIVcc, RDY, and
WRY) be avoided. See the appropriate pages in Appendix A, “Instruction Defini-
tions”, for suitable substitute instructions.

63 032 31

— product<63:32> or dividend<63:32>

5.1.4 Floating-point Registers 67

The floating-point registers are arranged so that some of them overlap, that is, are aliased.
The layout and numbering of the floating-point registers are shown in figures 24, 25, and
26. Unlike the windowed r registers, all of the floating-point registers are accessible at any
time. The floating-point registers can be read and written by FPop (FPop1/FPop2 format)
instructions, and by load/store single/double/quad floating-point instructions.

Figure 24: Single-precision Floating-point Registers, with Aliasing (V9=5)
Operand
 Register

ID
From

Register

f31 f31<31:0>
f30 f30<31:0>
f29 f29<31:0>
f28 f28<31:0>
f27 f27<31:0>
f26 f26<31:0>
f25 f25<31:0>
f24 f24<31:0>
f23 f23<31:0>
f22 f22<31:0>
f21 f21<31:0>
f20 f20<31:0>
f19 f19<31:0>
f18 f18<31:0>
f17 f17<31:0>
f16 f16<31:0>
f15 f15<31:0>
f14 f14<31:0>
f13 f13<31:0>
f12 f12<31:0>
f11 f11<31:0>
f10 f10<31:0>
f9 f9<31:0>
f8 f8<31:0>
f7 f7<31:0>
f6 f6<31:0>
f5 f5<31:0>
f4 f4<31:0>
f3 f3<31:0>
f2 f2<31:0>
f1 f1<31:0>
f0 f0<31:0>

68 5 Registers

Figure 25: Double-precision Floating-point Registers, with Aliasing (V9=6)

Operand
Register ID

Operan
d

Field
From

Register

f62 <63:0> f62<63:0>
f60 <63:0> f60<63:0>
f58 <63:0> f58<63:0>
f56 <63:0> f56<63:0>
f54 <63:0> f54<63:0>
f52 <63:0> f52<63:0>
f50 <63:0> f50<63:0>
f48 <63:0> f48<63:0>
f46 <63:0> f46<63:0>
f44 <63:0> f44<63:0>
f42 <63:0> f42<63:0>
f40 <63:0> f40<63:0>
f38 <63:0> f38<63:0>
f36 <63:0> f36<63:0>
f34 <63:0> f34<63:0>
f32 <63:0> f32<63:0>

f30
<31:0> f31<31:0>
<63:32> f30<31:0>

f28
<31:0> f29<31:0>
<63:32> f28<31:0>

f26
<31:0> f27<31:0>
<63:32> f26<31:0>

f24
<31:0> f25<31:0>
<63:32> f24<31:0>

f22
<31:0> f23<31:0>
<63:32> f22<31:0>

f20
<31:0> f21<31:0>
<63:32> f20<31:0>

f18
<31:0> f19<31:0>
<63:32> f18<31:0>

f16
<31:0> f17<31:0>
<63:32> f16<31:0>

f14
<31:0> f15<31:0>
<63:32> f14<31:0>

f12
<31:0> f13<31:0>
<63:32> f12<31:0>

f10
<31:0> f11<31:0>
<63:32> f10<31:0>

f8
<31:0> f9<31:0>
<63:32> f8<31:0>

f6
<31:0> f7<31:0>
<63:32> f6<31:0>

5.1.4 Floating-point Registers 69

f4
<31:0> f5<31:0>
<63:32> f4<31:0>

f2
<31:0> f3<31:0>
<63:32> f2<31:0>

f0
<31:0> f1<31:0>
<63:32> f0<31:0>

Figure 25: Double-precision Floating-point Registers, with Aliasing (V9=6)

Operand
Register ID

Operan
d

Field
From

Register

70 5 Registers

Figure 26: Quad-precision Floating-point Registers, with Aliasing (V9=7)
Operand
 Register

ID

Operan
d

Field
From

Register

f60
<63:0> f62<63:0>
<127:64> f60<63:0>

f56
<63:0> f58<63:0>
<127:64> f56<63:0>

f52
<63:0> f54<63:0>
<127:64> f52<63:0>

f48
<63:0> f50<63:0>
<127:64> f48<63:0>

f44
<63:0> f46<63:0>
<127:64> f44<63:0>

f40
<63:0> f42<63:0>
<127:64> f40<63:0>

f36
<63:0> f38<63:0>
<127:64> f36<63:0>

f32
<63:0> f34<63:0>
<127:64> f32<63:0>

f28

<31:0> f31<31:0>
<63:32> f30<31:0>
<95:64> f29<31:0>
<127:96> f28<31:0>

f24

<31:0> f27<31:0>
<63:32> f26<31:0>
<95:64> f25<31:0>
<127:96> f24<31:0>

f20

<31:0> f23<31:0>
<63:32> f22<31:0>
<95:64> f21<31:0>
<127:96> f20<31:0>

f16

<31:0> f19<31:0>
<63:32> f18<31:0>
<95:64> f17<31:0>
<127:96> f16<31:0>

f12

<31:0> f15<31:0>
<63:32> f14<31:0>
<95:64> f13<31:0>
<127:96> f12<31:0>

f8

<31:0> f11<31:0>
<63:32> f10<31:0>
<95:64> f9<31:0>
<127:96> f8<31:0>

5.1.4 Floating-point Registers 71

5.1.4.1 Floating-point Register Number Encoding

Register numbers for single, double, and quad registers are encoded differently in the 5-bit
register number field of a floating-point instruction. If the bits in a register number field
are labeled b<4>..b<0> (where b<4> is the most-significant bit of the register number),
the encoding of floating-point register numbers into 5-bit instruction fields is as given in
Table 9.

Compatibility Note:
In SPARC-V8, bit 0 of double and quad register numbers encoded in instruction fields was required
to be zero. Therefore, all SPARC-V8 floating-point instructions can run unchanged on the
SPARC64-III using the encoding in Table 9.

5.1.4.2 Double and Quad Floating-point Operands

A single f register can hold one single-precision operand; a double-precision operand
requires an aligned pair of f registers, and a quad-precision operand requires an aligned
quadruple of f registers. At a given time, the floating-point registers can hold a maximum
of 32 single-precision, 16 double-precision, or 8 quad-precision values in the lower half of
the floating-point register file, plus an additional 16 double-precision or 8 quad-precision
values in the upper half, or mixtures of the three sizes.

Programming Note:
Data to be loaded into a floating-point double or quad register that is not doubleword-aligned in
memory must be loaded into the lower 16 double registers (8 quad registers) using single-precision

f4

<31:0> f7<31:0>
<63:32> f6<31:0>
<95:64> f5<31:0>
<127:96> f4<31:0>

f0

<31:0> f3<31:0>
<63:32> f2<31:0>
<95:64> f1<31:0>
<127:96> f0<31:0>

Table 9: Floating-point Register Number Encoding (V9=7)

Register
Operand

Type
6-bit Register Number

Encoding in a
5-bit Register Field

in an Instruction

Single 0 b<4> b<3> b<2> b<1> b<0> b<4> b<3> b<2> b<1> b<0>

Double b<5> b<4> b<3> b<2> b<1> 0 b<4> b<3> b<2> b<1> b<5>

Quad b<5> b<4> b<3> b<2> 0 0 b<4> b<3> b<2> 0 b<5>

Figure 26: Quad-precision Floating-point Registers, with Aliasing (V9=7)
Operand
 Register

ID

Operan
d

Field
From

Register

72 5 Registers

LDF instructions. If desired, it can then be copied into the upper 16 double registers (8 quad regis-
ters).

An attempt to execute an instruction that refers to a misaligned floating-point register
operand (that is, a quad-precision operand in a register whose 6-bit register number is not
0 mod 4) shall cause an fp_exception_other trap, with FSR.ftt = 6 (invalid_fp_register).

Programming Note:
Given the encoding in Table 9, it is impossible to specify a misaligned double-precision register.

The CPU does not handle quad-precision operands in hardware. All SPARC-V9 FP opera-
tions trap to the OS kernel and are emulated. Quad-precision multiply-add and multiply-
subtract are not emulated.

5.1.5 Condition Codes Register (CCR)

Figure 27: Condition Codes Register (V9=8)

The Condition Codes Register (CCR), shown in Figure 27, holds the integer condition
codes.

5.1.5.1 CCR Condition Code Fields (xcc and icc)

All instructions that set integer condition codes set both the xcc and icc fields. The xcc
condition codes indicate the result of an operation when viewed as a 64-bit operation. The
icc condition codes indicate the result of an operation when viewed as a 32-bit operation.
For example, if an operation results in the 64-bit value 0000 0000 FFFF FFFF16, the 32-bit
result is negative (icc.N is set to 1), but the 64-bit result is nonnegative (xcc.N is set to 0).

Each of the 4-bit condition-code fields is composed of four 1-bit subfields, as shown in
Figure 28.

Figure 28: Integer Condition Codes (CCR_icc and CCR_xcc) (V9=9)

The n bits indicate whether the 2’s-complement ALU result was negative for the last
instruction that modified the integer condition codes. 1 = negative, 0 = not negative.

The z bits indicate whether the ALU result was zero for the last instruction that modified
the integer condition codes. 1 = zero, 0 = nonzero.

7 4 03

xcc iccCCR

7 5 4
0

6
13 2

xcc:
icc:

cvn z

5.1.6 Floating-point Registers State (FPRS) Register 73

The v bits indicate whether the ALU result was within the range of (was representable in)
64-bit (xcc) or 32-bit (icc) 2’s complement notation for the last instruction that modified
the integer condition codes. 1 = overflow, 0 = no overflow.

The c bits indicate whether a 2’s complement carry (or borrow) occurred during the last
instruction that modified the integer condition codes. Carry is set on addition if there is a
carry out of bit 63 (xcc) or bit 31 (icc). Carry is set on subtraction if there is a borrow into
bit 63 (xcc) or bit 31 (icc). 1 = carry, 0 = no carry.

5.1.5.1.1 CCR_extended_integer_cond_codes (xcc)

Bits 7 through 4 are the IU condition codes, which indicate the results of an integer opera-
tion, with both of the operands considered to be 64 bits long. These bits are modified by
the arithmetic and logical instructions the names of which end with the letters “cc” (for
example, ANDcc) and by the WRCCR instruction. They can be modified by a DONE or
RETRY instruction, which replaces these bits with the CCR field of the TSTATE register.
The BPcc and Tcc instructions may cause a transfer of control based on the values of these
bits. The MOVcc instruction can conditionally move the contents of an integer register
based on the state of these bits. The FMOVcc instruction can conditionally move the con-
tents of a floating-point register based on the state of these bits.

5.1.5.1.2 CCR_integer_cond_codes (icc)

Bits 3 through 0 are the IU condition codes, which indicate the results of an integer opera-
tion, with both of the operands considered to be 32 bits. These bits are modified by the
arithmetic and logical instructions the names of which end with the letters “cc” (for exam-
ple, ANDcc) and by the WRCCR instruction. They can be modified by a DONE or
RETRY instruction, which replaces these bits with the CCR field of the TSTATE register.
The BPcc, Bicc, and Tcc instructions may cause a transfer of control based on the values
of these bits. The MOVcc instruction can conditionally move the contents of an integer
register based on the state of these bits. The FMOVcc instruction can conditionally move
the contents of a floating-point register based on the state of these bits.

5.1.6 Floating-point Registers State (FPRS) Register

Figure 29: Floating-point Registers State Register (V9=10)

The Floating-point Registers State (FPRS) register, shown in Figure 29, holds control
information for the floating-point register file; this information is readable and writable by
nonprivileged software.

5.1.6.1 FPRS_enable_fp (FEF)

Bit 2, FEF, determines whether the FPU is enabled. If it is disabled, executing a floating-
point instruction causes an fp_disabled trap. If this bit is set but the PSTATE.PEF bit is not

012

DLFEF DUFPRS

74 5 Registers

set, then executing a floating-point instruction causes an fp_disabled trap; that is, both
FPRS.FEF and PSTATE.PEF must be set to enable floating-point operations.

5.1.6.2 FPRS_dirty_upper (DU)

Bit 1 is the “dirty” bit for the upper half of the floating-point registers; that is, f32..f62. It
is set whenever any of the upper floating-point registers is modified. Its setting in the CPU
is pessimistic; it is set whenever a floating-point instruction is issued, but if that instruction
never completes, no output register is modified. The DU bit is cleared only by software.

5.1.6.3 FPRS_dirty_lower (DL)

Bit 0 is the “dirty” bit for the lower 32 floating-point registers; that is, f0..f31. It is set
whenever any of the lower floating-point registers is modified. Its setting in the CPU is
pessimistic; it is set whenever a floating-point instruction is issued, but if that instruction
never completes, no output register is modified. The DL bit is cleared only by software.

Implementation Note:
SPARC64-III sets FPRS.DL and FPRS.DU pessimistically. Specifically, they are set whenever an
instruction that might change one of the floating-point registers is issued. In some cases, the issued
instruction is never committed, and the destination register is not actually changed.

5.1.7 Floating-point State Register (FSR)

The FSR register fields, illustrated in Figure 30, contain FPU mode and status information.
The lower 32 bits of the FSR are read and written by the STFSR and LDFSR instructions;
all 64 bits of the FSR are read and written by the STXFSR and LDXFSR instructions,
respectively. The ver, ftt, and reserved fields are not modified by LDFSR or LDXFSR.

Figure 30: FSR Fields (V9=11)

Bits 63..38, 29..28, 21..20, and 12 are reserved. When read by an STXFSR instruction,
these bits shall read as zero. Software should issue LDXFSR instructions only with zero
values in these bits, unless the values of these bits are exactly those derived from a previ-
ous STFSR.

Subsections 5.1.7.1 through 5.1.7.10.5 describe the remaining fields in the FSR.

5.1.7.1 FSR_fp_condition_codes (fcc0, fcc1, fcc2, fcc3)

There are four sets of floating-point condition code fields, labeled fcc0, fcc1, fcc2, and
fcc3.

63 3235 34 3338 37

31 141923 13 12 11 5 4 091017 162730 29 28 22 21 20

36

fcc3 fcc2 fcc1—

RD — TEM NS — ver ftt qne — fcc0 aexc cexc

5.1.7 Floating-point State Register (FSR) 75

Compatibility Note:
SPARC-V9’s fcc0 is the same as SPARC-V8’s fcc.

The fcc0 field consists of bits 11 and 10 of the FSR, fcc1 consists of bits 33 and 32, fcc2
consists of bits 35 and 34, and fcc3 consists of bits 37 and 36. Execution of a floating-point
compare instruction (FCMP or FCMPE) updates one of the fccn fields in the FSR, as
selected by the instruction. The fccn fields are read and written by STXFSR and LDXFSR
instructions, respectively. The fcc0 field may also be read and written by STFSR and
LDFSR, respectively. FBfcc and FBPfcc instructions base their control transfers on these
fields. The MOVcc and FMOVcc instructions can conditionally copy a register based on
the state of these fields.

In Table 10, frs1 and frs2 correspond to the single, double, or quad values in the floating-
point registers specified by a floating-point compare instruction’s rs1 and rs2 fields. The
question mark (‘?’) indicates an unordered relation, which is true if either frs1 or frs2 is a
signalling NaN or quiet NaN. If FCMP or FCMPE generates an fp_exception_ieee_754
exception, then fccn is unchanged.

5.1.7.2 FSR_rounding_direction (RD)

Bits 31 and 30 select the rounding direction for floating-point results according to IEEE
Std 754-1985. Table 11 shows the encodings.

5.1.7.3 FSR_trap_enable_mask (TEM)

Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point exceptions
that can be indicated in the current_exception field (cexc). See Figure 31 on page 80. If a
floating-point operate instruction generates one or more exceptions and the TEM bit corre-
sponding to any of the exceptions is 1, an fp_exception_ieee_754 trap is caused. A TEM bit
value of 0 prevents the corresponding exception type from generating a trap.

Table 10: Floating-point Condition Codes (fccn) Fields of FSR (V9=8)

Content of
fccn Indicated Relation

0 frs1 = frs2
1 frs1 < frs2
2 frs1 > frs2
3 frs1 ? frs2 (unordered)

Table 11: Rounding Direction (RD) Field of FSR (V9=9)

RD Round Toward
0 Nearest (even, if tie)
1 0
2 + '

3 < '

76 5 Registers

5.1.7.4 FSR_nonstandard_fp (NS)

SPARC-V9 defines the FSR.NS bit which, when set to 1, causes the FPU to produce
implementation-defined results that may not correspond to IEEE Std 754-1985.
SPARC64-III does not need and therefore does not implement any nonstandard floating-
point functionality. Writes to FSR.NS are ignored; reads from FSR.NS always return zero.
See V9 for more information about FSR.NS and nonstandard floating-point operation in
SPARC-V9.

Implementation Note:
The multiply-add and multiply-subtract instructions are considered to be extensions to the
SPARC-V9 architecture and not nonstandard floating-point behavior.

5.1.7.5 FSR_version (ver)

For each SPARC-V9 IU implementation (as identified by its VER.impl field), there may
be one or more FPU implementations, or none. This field identifies the particular FPU
implementation present. For the first SPARC64-III, FSR.ver = 0; however, future versions
of the architecture may set FSR.ver to other values. Consult the SPARC64-III Data Sheet,
which is described in the Bibliography, for the setting of FSR.ver for your chipset.

The ver field is read-only; it cannot be modified by the LDFSR and LDXFSR instructions.

5.1.7.6 FSR_floating-point_trap_type (ftt)

Several conditions can cause a floating-point exception trap. When a floating-point excep-
tion trap occurs, ftt (bits 16 through 14 of the FSR) identifies the cause of the exception,
the “floating-point trap type.” After a floating-point exception occurs, the ftt field encodes
the type of the floating-point exception until an STFSR or an FPop is executed.

The ftt field can be read by the STFSR and STXFSR instructions. The LDFSR and
LDXFSR instructions do not affect ftt.

Privileged software that handles floating-point traps must execute an STFSR (or STXFSR)
to determine the floating-point trap type. STFSR and STXFSR shall zero ftt after the store
completes without error. If the store generates an error and does not complete, ftt remains
unchanged.

Programming Note:
Neither LDFSR nor LDXFSR can be used for this purpose, since both leave ftt unchanged. How-
ever, executing a nontrapping FPop such as “fmovs %f0,%f0” prior to returning to nonprivi-
leged mode will zero ftt. The ftt remains valid until the next FPop instruction completes execution.

V9

5.1.7 Floating-point State Register (FSR) 77

The ftt field encodes the floating-point trap type according to Table 12. Note: The value
“7” is reserved for future expansion.

The sequence_error, hardware_error, and invalid_fp_register never occur in SPARC64-III. In
contrast, IEEE_754_exception, unfinished_FPop, and unimplemented_FPop will likely arise
occasionally in the normal course of computation and must be recoverable by system soft-
ware.

When a floating-point trap occurs, the following results are observed by user software:

1. The value of aexc is unchanged.

2. The value of cexc is unchanged, except that for an IEEE_754_exception a bit corre-
sponding to the trapping exception is set. The unfinished_FPop, unimplemented_FPop,
sequence_error, and invalid_fp_register floating-point trap types do not affect cexc.

3. The source registers are unchanged (usually implemented by leaving the destination
registers unchanged).

4. The value of fccn is unchanged.

The foregoing describes the result seen by a user trap handler if an IEEE exception is sig-
nalled, either immediately from an IEEE_754_exception or after recovery from an
unfinished_FPop or unimplemented_FPop. In either case, cexc as seen by the trap handler
reflects the exception causing the trap.

In the cases of unfinished_FPop and unimplemented_FPop exceptions that do not subse-
quently generate IEEE traps, the recovery software should define cexc, aexc, and the desti-
nation registers or fccs, as appropriate.

5.1.7.6.1 ftt = IEEE_754_exception

The IEEE_754_exception floating-point trap type indicates that a floating-point exception
conforming to IEEE Std 754-1985 has occurred. The exception type is encoded in the cexc
field. Note: The aexc and fccs fields and the destination f register are not affected by an
IEEE_754_exception trap.

Table 12: Floating-point Trap Type (ftt) Field of FSR (V9=10)

ftt Trap Type Trap Vector SPARC64-III Action
0 None No trap taken No trap taken
1 IEEE_754_exception fp_exception_ieee_

754
As described in V9

2 unfinished_FPop fp_exception_other See 5.1.7.6.2
3 unimplemented_FPop fp_exception_other See 5.1.7.6.3
4 sequence_error — Does not occur in SPARC64-III
5 hardware_error — Does not occur in SPARC64-III
6 invalid_fp_register — Does not occur in SPARC64-III
7 reseved — Does not occur in SPARC64-III

78 5 Registers

5.1.7.6.2 ftt = unfinished_FPop

The unfinished_FPop floating-point trap type indicates that the CPU was unable to generate
correct results, or that exceptions as defined by IEEE Std 754-1985 have occurred. Where
exceptions have occurred, the cexc field is unchanged. The following paragraphs discuss
when the unfinished_FPop trap type can occur.

DIVIDE:

� Either or both source operands are denormalized numbers in certain cases,

� The result would have been a denormalized number

In these cases, the result register(s) will not be written by hardware. Also the FSR.cexc
field will not be updated by hardware. The kernel trap routine will calculate the divide
result and store it in the destination register and correctly set the FSR.cexc bits. If either
operand has a special value (zero, infinity, NaN) or the result can be calculated based only
on the exponent value, the CPU will return the correct special result.

SQUARE ROOT:

� The source operand is a positive denormalized number.

In this case, the result register(s) will not be written by hardware. Also the FSR.cexc field
will not be updated by hardware. The kernel trap routine will calculate the square root
result and store it in the destination register and correctly set the FSR.cexc bits.

5.1.7.6.3 ftt = unimplemented_FPop

The unimplemented_FPop floating-point trap type indicates that the CPU decoded an FPop
that it does not implement. In this case, the cexc field is unchanged.

All quad FPops variations set ftt = unimplemented_FPop.

5.1.7.6.4 ftt = sequence_error

The sequence_error floating-point trap type can never occur on the CPU processor. See V9
for more information about this trap.

5.1.7.6.5 ftt = hardware_error

The hardware_error floating-point trap type can never occur on the CPU processor. See V9
for more information about this trap.

5.1.7.6.6 ftt = invalid_fp_register

Since the CPU does not implement any quad-precision operations in hardware, this error
can never occur. Quad operations set ftt = unimplemented_FPop. System software checks
for a valid quad register specifier during its emulation of the instruction.

V9

V9

5.1.7 Floating-point State Register (FSR) 79

5.1.7.7 FSR_FQ_not_empty (qne)

All floating-point traps on the CPU are precise; therefore, the CPU does not need or con-
tain a Floating-point Deferred-trap Queue. Thus, writes to qne are ignored and reads from
it always return zero.

5.1.7.8 FSR_accrued_exception (aexc)

Bits 9 through 5 accumulate IEEE_754 floating-point exceptions as long as floating-point
exception traps are disabled through the TEM field. See Figure 32 on page 80. After an
FPop is reclaimed with ftt = 0, the TEM and cexc fields are logically ANDed together. If
the result is nonzero, aexc is left unchanged and an fp_exception_ieee_754 trap is gener-
ated; otherwise, the new cexc field is ORed into the aexc field and no trap is generated.
Thus, while (and only while) traps are masked, exceptions are accumulated in the aexc
field.

This field is also written with the appropriate value when an LDFSR or LDXFSR instruc-
tion is executed.

5.1.7.9 FSR_current_exception (cexc)

Bits 4 through 0 indicate that one or more IEEE_754 floating-point exceptions were gen-
erated by the most recently executed FPop instruction. The absence of an exception causes
the corresponding bit to be cleared. See Figure 33 on page 80.

On the CPU the cexc bits are set according the following pseudo-code:

if (<LDFSR or LDXFSR commits>)

<update using data from LDFSR or LDXFSR>;

else if (<FPop commits with ftt == 0>)

<update using value from FPU>

else if (<FPop commits with IEEE_754_exception>)

<set one bit in the CEXC field as supplied by FPU>;

else if (<FPop commits with unfinished_FPop error>)

<see 5.1.7.6.2 for details>;

else if (<FPop commits with unimplemented_FPop error>)

<see 5.1.7.6.3 for details>;

else

<no change>;

Note: If the FPop traps and software emulates or finishes the instruction, the system soft-
ware in the trap handler is responsible for creating a correct FSR.cexc value before return-
ing to a nonprivileged program.

If the execution of an FPop causes a trap other than fp_exception_ieee_754 due to an IEEE
Std 754-1985 exception, FSR.cexc is left unchanged.

80 5 Registers

5.1.7.10 Floating-point Exception Fields

The current and accrued exception fields and the trap enable mask assume the following
definitions of the floating-point exception conditions (per IEEE Std 754-1985):

Figure 31: Trap Enable Mask (TEM) Fields of FSR (V9=12)

Figure 32: Accrued Exception Bits (aexc) Fields of FSR (V9=13)

Figure 33: Current Exception Bits (cexc) Fields of FSR (V9=14)

5.1.7.10.1 FSR_invalid (nvc, nva)

An operand is improper for the operation to be performed. For example, 0.0 ÷ 0.0 and ' –
' are invalid. 1 = invalid operand(s), 0 = valid operand(s).

5.1.7.10.2 FSR_overflow (ofc, ofa)

The result, rounded as if the exponent range were unbounded, would be larger in magni-
tude than the destination format’s largest finite number. 1 = overflow, 0 = no overflow.

5.1.7.10.3 FSR_underflow (ufc, ufa)

The rounded result is inexact and would be smaller in magnitude than the smallest normal-
ized number in the indicated format. 1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is zero. Otherwise:

If UFM = 0: Underflow occurs if a nonzero result is tiny and a loss of
accuracy occurs.

If UFM = 1: Underflow occurs if a nonzero result is tiny.

SPARC-V9 allows tininess to be detected either before or after rounding. In all cases and
regardless of the setting of UFM, the CPU detects tininess before rounding.

24 2327 26 25

NVM OFM UFM DZM NXM

6 59 8 7

nva ofa ufa dza nxa

1 04 3 2

nvc ofc ufc dzc nxc

5.1.8 Address Space Identifier (ASI) Register 81

5.1.7.10.4 FSR_division-by-zero (dzc, dza)

X ÷ 0.0, where X is subnormal or normalized. Note: 0.0 ÷ 0.0 does not set the dzc or dza
bits. 1 = division by zero, 0 = no division by zero.

5.1.7.10.5 FSR_inexact (nxc, nxa)

The rounded result of an operation differs from the infinitely precise unrounded result.
1 = inexact result, 0 = exact result.

5.1.7.11 FSR Conformance

SPARC-V9 allows the TEM, cexc, and aexc fields to be implemented in hardware in either
of two ways (both of which comply with IEEE Std 754-1985). The CPU follows case (1);
that is, it implements all three fields in conformance with IEEE Std 754-1985. See
5.1.7.11 in V9 for more information about other implementation methods.

Programming Note:
Software must be capable of simulating the operation of the FPU in order to properly handle the
unimplemented_FPop, unfinished_FPop, and IEEE_754_exception floating-point trap types. Thus,
a user application program always sees an FSR that is fully compliant with IEEE Std 754-1985.

5.1.8 Address Space Identifier (ASI) Register

Figure 34: ASI Register (V9=15)

The ASI register specifies the address space identifier to be used for load and store alter-
nate instructions that use the “rs1 + simm13” addressing form. Nonprivileged (user-mode)
software may write any value into the ASI register; however, values with bit 7 = 0 indicate
restricted ASIs. When a nonprivileged instruction makes an access that uses an ASI with
bit 7 = 0, a privileged_action exception is generated. See 6.3.1.3, “Address Space Identifiers
(ASIs)”,for details.

5.1.9 Tick (TICK) Register

Figure 35: TICK Register (V9=16)

The counter field of the TICK register is a 63-bit counter that counts CPU clock cycles.
Bit 63 of the TICK register is the Nonprivileged Trap (NPT) bit, which controls access to
the TICK register by nonprivileged software. Privileged software can always read the

V9

7 0

ASI

063 62

TICK NPT counter

82 5 Registers

TICK register with either the RDPR or RDTICK instruction. Privileged software can
always write the TICK register with the WRPR instruction; there is no WRTICK instruc-
tion.

Nonprivileged software can read the TICK register using the RDTICK instruction when
TICK.NPT is 0. When TICK.NPT = 1, an attempt by nonprivileged software to read the
TICK register causes a privileged_action exception. Nonprivileged software cannot write
the TICK register.

TICK.NPT is set to 1 by a power-on reset trap. The value of TICK.counter is undefined
after a power-on reset trap.

After the TICK register is written, reading the TICK register returns a value incremented
(by one or more) from the last value written, rather than from some previous value of the
counter. The number of counts between a write and a subsequent read do not accurately
reflect the number of processor cycles between the write and the read. Software may rely
only on read-to-read counts of the TICK register for accurate timing, not on write-to-read
counts.

Implementation Note:
On the SPARC64-III the value returned when the TICK register is read is the value of
TICK.counter when the RDTICK instruction is issued. The difference between the values read
from the TICK register on two reads reflects the number of processor cycles executed between the
issues of the RDTICK instructions, not their commits. In longer code sequences, the difference
between this value and the value obtained when the instructions are committed will be small.

Programming Note:
TICK.NPT may be used by a secure operating system to control access by user software to high-
accuracy timing information. The operation of the timer might be emulated by the trap handler,
which could read TICK.counter and “fuzz” the value to lower accuracy.

5.2 Privileged Registers

The registers described in this subsection are visible only to software running in privileged
mode; that is, when PSTATE.PRIV = 1. Privileged registers are written using the WRPR
instruction and read using the RDPR instruction.

5.2.1 Processor State Register (PSTATE)

Figure 36: PSTATE Fields (V9=17)

The PSTATE register holds the current state of the processor. There is only one instance of
the PSTATE register. See Chapter 7, “Traps”, for more details.

4 0

PSTATE PEF AM PRIV IE AG

3 2 16 5

MM RED

7

TLECLE

9 8

5.2.1 Processor State Register (PSTATE) 83

Writing PSTATE is nondelayed; that is, new machine state written to PSTATE is visible to
the next instruction executed. The privileged RDPR and WRPR instructions are used to
read and write PSTATE, respectively.

Subsections 5.2.1.1 through 5.2.1.10 describe the fields contained in the PSTATE register.

5.2.1.1 PSTATE_current_little_endian (CLE)

When PSTATE.CLE = 1, all data reads and writes using an implicit ASI are performed in
little-endian byte order with an ASI of ASI_PRIMARY_LITTLE. When
PSTATE.CLE = 0, all data reads and writes using an implicit ASI are performed in big-
endian byte order with an ASI of ASI_PRIMARY. Instruction accesses are always big-
endian.

5.2.1.2 PSTATE_trap_little_endian (TLE)

When a trap is taken, the current PSTATE register is pushed onto the trap stack and the
PSTATE.TLE bit is copied into PSTATE.CLE in the new PSTATE register. This allows
system software to have a different implicit byte ordering than the current process. Thus, if
PSTATE.TLE is set to 1, data accesses using an implicit ASI in the trap handler are little-
endian. The original state of PSTATE.CLE is restored when the original PSTATE register
is restored from the trap stack.

5.2.1.3 PSTATE_mem_model (MM)

This 2-bit field determines the memory model in use by the processor. The SPARC64-III
values and the corresponding values defined in SPARC-V9 are shown in Table 13:

The current memory model is determined by the value of PSTATE.MM. For more infor-
mation about how the SPARC64-III determines the memory model, see Chapter 8, “Mem-
ory Models”. Software should always refrain from using the combination ‘11’, since it is
reserved for future SPARC-V9 extensions.

Load/Store Order (LSO):
Loads and stores are ordered with loads and stores. Thus, loads and stores cannot
bypass earlier loads and stores. Load Store Order in SPARC64-III is stronger than
Total Store Order in SPARC-V9.

Total Store Order (TSO):
Loads are ordered with loads. Stores are ordered with loads and stores. Thus,
loads can bypass earlier stores, but cannot bypass earlier loads; Stores cannot

Table 13: MM Encodings

MM Value SPARC64-III Memory Model SPARC-V9
00 Load/Store Order (LSO) TSO
01 Total Store Order (TSO) PSO
10 Store Order (STO) RMO
11 reserved reserved

84 5 Registers

bypass earlier loads and stores. Total Store Order in SPARC64-III is stronger than
Total Store Order and Partial Store Order in SPARC-V9.

Store Order (STO):
Stores are ordered with loads and stores. Thus, loads can bypass earlier loads and
stores; Stores cannot bypass earlier loads and stores. Store Order in SPARC64-III
is stronger than Relaxed Memory Order in SPARC-V9.

5.2.1.4 PSTATE_RED_state (RED)

PSTATE.RED (Reset, Error, and Debug state) is set whenever the SPARC64-III processor
takes a RED state disruptive or nondisruptive trap. See 7.2.1, “RED_state”. It can also be
set by software using a WRPR %PSTATE or WRPR %TSTATE, followed by a DONE or
RETRY. Software can exit RED_state by one of two methods:

1. Execute a DONE or RETRY instruction, which restores the stacked copy of PSTATE
and clears PSTATE.RED if it was 0 in the stacked copy.

2. Write a 0 to PSTATE.RED with a WRPR instruction.

Programming Note:
Changing PSTATE.RED may cause a change in address mapping on some systems. It is recom-
mended that writes of PSTATE.RED be placed in the delay slot of a JMPL; the target of this JMPL
should be in the new address mapping. The JMPL sets the nPC, which becomes the PC for the
instruction that follows the WPR in its delay slot. The effect of the WPR instruction is immediate.

When the CPU enters RED_state, the I0 cache and prefetch buffers are invalidated. See
Chapter 7, “Traps”, for more details.

5.2.1.5 PSTATE_enable_floating-point (PEF)

When set to 1, this bit enables the floating-point unit, which allows privileged software to
manage the FPU. For the FPU to be usable, both PSTATE.PEF and FPRS.FEF must be set.
Otherwise, any floating-point instruction (including the SPARC64-III-specific multiply-
add and multiply-subtract instructions) that tries to reference the FPU causes an fp_dis-
abled trap.

5.2.1.6 PSTATE_address_mask (AM)

When PSTATE.AM = 1, the high-order 32 bits of any instruction and data addresses are
cleared to zero in the following cases:

� Before data addresses are sent out of the CPU

� For instruction accesses to internal or external caches

� Before being used to detect a data breakpoint (ASR #26—see 5.2.11.9)

The following cases disregard the setting of PSTATE.AM:

� When an exception occurs, all 64 bits are stored in the Data Fault Address Register
(ASR #28). See 5.2.11.10.1, “Data Access Fault Address Register (ASR28)”.

5.2.2 Trap Level Register (TL) 85

� CALL, JMPL, and RDPC always transmit the full 64-bit address to the specified desti-
nation registers.

� Traps always transmit all 64 bits of the PC and NPC to TPC[n] and TNPC[n] respec-
tively.

Thirty-two-bit application software must run with this bit set.

5.2.1.7 PSTATE_privileged_mode (PRIV)

When PSTATE.PRIV = 1, the processor is in privileged mode.

5.2.1.8 PSTATE_interrupt_enable (IE)

When PSTATE.IE = 1, the processor can accept interrupts.

5.2.1.9 PSTATE_alternate_globals (AG)

When PSTATE.AG = 0, the processor interprets integer register numbers in the range 0..7
as referring to the normal global register set. When PSTATE.AG = 1, the processor inter-
prets integer register numbers in the range 0..7 as referring to the alternate global register
set.

5.2.1.10 PSTATE_interrupt_globals_enable, PSTATE_MMU_globals_enable

These bits, which are defined for Sun Microsystems’ UltraSPARC processor, are not part
of the SPARC-V9 standard and are not defined for the SPARC64-III.

5.2.2 Trap Level Register (TL)

Figure 37: Trap Level Register (V9=18)

The trap level register specifies the current trap level. TL = 0 is the normal (nontrap) level
of operation. TL > 0 implies that one or more traps are being processed. The maximum
valid value that the TL register may contain is “MAXTL,” which is always equal to the
number of supported trap levels beyond level 0. See Chapter 7, “Traps”, for more details
about the TL register. The SPARC64-III CPU supports four trap levels beyond level 0; that
is, MAXTL = 4.

Programming Notes:
Writing the TL register with a value of 5, 6, or 7 causes the value 4 to be written.

Writing the TL register with a wrpr %tl instruction does not alter any other machine state; that
is, it is not equivalent to taking or returning from a trap.

2 0

TL TL

86 5 Registers

SPARC64-III renames trap levels, allowing speculative entrance into common exceptions
such as window spill/fill traps. Four extra trap levels are available for renaming, making a
total of 8 trap levels. Due to pipelining effects and in order to reduce complexity, the 8th
trap level is only usable at certain times.

When only 2 trap levels are available for renaming and back-to-back traps are encoun-
tered, the second trap will stall until the processor pipeline is able to update resource infor-
mation.

5.2.3 Processor Interrupt Level (PIL) Register

Figure 38: Processor Interrupt Level Register (V9=19)

The processor interrupt level (PIL) is the interrupt level above which the processor will
accept an interrupt. Interrupt priorities are mapped so that interrupt level 2 has greater pri-
ority than interrupt level 1, and so on. See Table 29 on page 149 for a list of exception and
interrupt priorities.

Compatibility Note:

On SPARC-V8 processors, the level 15 interrupt is considered to be nonmaskable, so it has differ-
ent semantics from other interrupt levels. SPARC-V9 processors do not treat level 15 interrupts dif-
ferently from other interrupt levels. See 7.6.2.4, “Externally Initiated Reset (XIR) Traps”, for a
facility in SPARC-V9 that is similar to a nonmaskable interrupt.

The CPU exhibits some special timing associated with the PIL register, which is related to
the fact that the PIL register has only one level of register renaming. If a WRPR to the PIL
is issued using a register other than %g0, a pending write to the PIL is generated. When
such a pending write exists, the following instructions stall the machine:

� rdpr %pil

� wrpr %pil

In addition, while a write to the PIL is pending, all interrupts (INTR requests) are ignored.
This pending write exists until the CPU calculates a new value for the PIL. The actual time
that interrupts are ignored in practice is only a few cycles at most.

The following instruction writes the immed_val directly into the PIL and does not cause a
pending write to the PIL; thus, RDPRs and WRPRs that occur later in the code do not stall
the machine.

� wrpr %g0, immed_val, %pil

3 0

PIL PIL

5.2.4 Trap Program Counter (TPC) Register 87

5.2.4 Trap Program Counter (TPC) Register

Figure 39: Trap Program Counter Register (V9=20)

The TPC register contains the program counter (PC) from the previous trap level. There
are MAXTL instances (four in SPARC64-III) of the TPC, but only one is accessible at any
time. The current value in the TL register determines which instance of the TPC register is
accessible. An attempt to read or write the TPC register when TL = 0 causes an illegal_
instruction exception.

On SPARC64-III all 64 bits of the PC are written into TPC on a trap, regardless of the set-
ting of PSTATE.AM.

After a power-on reset the contents of TPC[1..4] are undefined. During normal operation
the value of TPC[n], when n is greater than the current trap level (n > TL), is undefined.

5.2.5 Trap Next Program Counter (TNPC) Register

Figure 40: Trap Next Program Counter Register (V9=21)

The TNPC register, shown in Figure 40, is the next program counter (nPC) from the previ-
ous trap level. There are MAXTL instances (four in SPARC64-III) of the TNPC, but only
one is accessible at any time. The current value in the TL register determines which
instance of the TNPC register is accessible. An attempt to read or write the TNPC register
when TL = 0 causes an illegal_instruction exception.

On SPARC64-III all 64 bits of the NPC are written into TNPC on a trap, regardless of the
setting of PSTATE.AM.

After a power-on reset the contents of TNPC[1..4] are undefined. During normal operation
the value of TNPC[n], when n is greater than the current trap level (n > TL), is undefined.

TPC1 PC from trap while TL = 0

2

00

63 1 0

TPC2 PC from trap while TL = 1 00

TPC3 PC from trap while TL = 2 00

TPC4 PC from trap while TL = 3 00

TNPC1 nPC from trap while TL = 0

2

00

63 1 0

TNPC2 nPC from trap while TL = 1 00

TNPC3 nPC from trap while TL = 2 00

TNPC4 nPC from trap while TL = 3 00

88 5 Registers

5.2.6 Trap State (TSTATE) Register

Figure 41: Trap State Register (V9=22)

The Trap State (TSTATE) Register, shown in Figure 41, contains the state from the previ-
ous trap level, comprising the contents of the CCR, ASI, CWP, and PSTATE registers from
the previous trap level. There are MAXTL instances (four in SPARC64-III) of the
TSTATE register, but only one is accessible at a time. The current value in the TL register
determines which instance of TSTATE is accessible. An attempt to read or write the
TSTATE register when TL = 0 causes an illegal_instruction exception.

Since the CCR is renamed on the CPU, a write to TSTATE due to a trap may need to wait
for a few cycles for the appropriate copy of CCR to be available. Because it is not desir-
able to serialize the machine in this case, the write to TSTATE “completes” but the CCR
value is allowed to arrive late. If the issue unit encounters a DONE, RETRY, or rdpr
%tstate instruction before the CCR value has been stored in TSTATE.CCR, the
machine stalls until the value arrives. Stalling is not expected to be a problem in normal
code, since the CCR normally arrives within a few cycles.

The CPU implements only bits 2..0 of the TSTATE.CWP field. Writes to bits 4 and 3 are
ignored and reads of these bits always return zeroes.

Note:

Since a certain class of exceptions (issue traps) may be entered and completed speculatively, modi-
fication of certain fields in the TSTATE register by privileged software will result in speculative res-
toration of control registers. For example, if the ASI field in TSTATE contained ASI_PO and it
were changed to ASI_PRIMARY, upon a DONE instruction, all succeeding LD %asi will not be
in program order. This may be dangerous if these load instructions are to I/O space.

Note:

Spurious setting of the PSTATE.RED bit by privileged software should not be performed, since it
will take the SPARC64-III into RED mode without the required sequencing.

After a power-on reset the contents of TSTATE[1..4] are undefined. During normal opera-
tion the value of TSTATE[n], when n is greater than the current trap level (n > TL), is
undefined.

39 0

TSTATE1 CCR from TL = 0 CWP from TL = 0ASI from TL = 0 PSTATE from TL = 0— —

432 31 24 23 18 8 7 517

TSTATE2 CCR from TL = 1 CWP from TL = 1ASI from TL = 1 PSTATE from TL = 1— —

TSTATE3 CCR from TL = 2 CWP from TL = 2ASI from TL = 2 PSTATE from TL = 2— —

TSTATE4 CCR from TL = 3 CWP from TL = 3ASI from TL = 3 PSTATE from TL = 3— —

5.2.7 Trap Type (TT) Register 89

5.2.7 Trap Type (TT) Register

Figure 42: Trap Type Register (V9=23)

The TT register normally contains the trap type of the trap that caused entry to the current
trap level. On a reset trap the TT field contains the trap type of the reset (see 7.2.1.1,
“RED_state Trap Table”).

There are MAXTL instances of the TT register (four in SPARC64-III), but only one is
accessible at a time. The current value in the TL register determines which instance of the
TT register is accessible. An attempt to read or write the TT register when TL = 0 causes
an illegal_instruction exception.

After a power-on reset the contents of TT[1..3] are undefined; TT[4] = 1. During normal
operation the value of TT[n], when n is greater than the current trap level (n > TL) is unde-
fined.

5.2.8 Trap Base Address (TBA) Register

Figure 43: Trap Base Address Register (V9=24)

The TBA register, shown in Figure 43, provides the upper 49 bits of the address used to
select the trap vector for a trap. The lower 15 bits of the TBA always read as zero, and
writes to them are ignored.

The full address for a trap vector is specified by the TBA, TL, TT[TL], and five zeroes:

Figure 44: Trap Vector Address Register (V9=25)

Note: The “(TL>0)” bit is 0 if TL = 0 when the trap was taken, and 1 if TL > 0 when the
trap was taken. This implies that there are two trap tables: one for traps from TL = 0 and
one for traps from TL > 0. See Chapter 7, “Traps”, for more details on trap vectors.

TT1 Trap type from trap while TL = 0

8 0

TT2 Trap type from trap while TL = 1

TT3 Trap type from trap while TL = 2

TT4 Trap type from trap while TL = 3

63 15 14 0

000000000000000Trap Base Address

63 15 14 0

TBA<63:15>

13 45

TL>0 TTTL 00000

90 5 Registers

5.2.9 Version (VER) Register

Figure 45: Version Register (V9=26)

The version register, shown in Figure 45, specifies the fixed parameters pertaining to a par-
ticular CPU implementation and mask set. The VER register is read-only. Table 14 shows
the values for the VER register for SPARC64-III:

The manuf field contains Fujitsu’s 8-bit JEDEC code in the lower 8 bits and zeroes in the
upper 8 bits. The manuf, impl, and mask fields are implemented so that they may change in
future CPU versions. The mask field is incremented by one any time a programmer-visible
revision is made to the CPU. See the SPARC64-III Data Sheet, described in the Bibliogra-
phy, to determine the current setting of the mask field.

The CPU also contains an 8-bit revision register which is visible via scan during bringup.
The revision register will be integrated into the command register of each chip’s Test
Access Port (TAP) unit.

5.2.10 Register-Window State Registers

The state of the register windows is determined by a set of privileged registers. They can
be read/written by privileged software using the RDPR/WRPR instructions. In addition,
these registers are modified by instructions related to register windows and are used to
generate traps that allow supervisor software to spill, fill, and clean register windows.

The details of how the window-management registers are used by hardware are presented
in 6.3.6, “Register Window Management Instructions”.

Implementation Note:
Because NWINDOWS = 5 in SPARC64-III, only the lower 3 bits are implemented in the CWP,
CANSAVE, CANRESTORE, and OTHERWIN registers described in the following subsections.
When any of these registers is moved into a 64-bit integer register with an RDPR instruction, the
upper 61 bits are set to zero.

Table 14: VER Register Encodings

Field Value
manuf 000416

impl 3
mask n (a)

a. The value of n depends on
the processor chip version.

maxtl 4
maxwin 4

63 48 47 24 23 16 15 8 7 05 432 31

maxwin—maxtl—maskimplmanuf

5.2.10 Register-Window State Registers 91

Programming Note:
CANSAVE, CANRESTORE, and OTHERWIN must never be set to 4. Setting any of these to 4
violates the register window state definition in 6.4.1, “Register Window State Definition”. Notice
that hardware does not enforce this restriction; it is up to system software to keep the window state
consistent.

5.2.10.1 Current Window Pointer (CWP) Register

Figure 46: Current Window Pointer Register (V9=27)

The CWP register, shown in Figure 46, is a counter that identifies the current window into
the set of integer registers. See 6.3.6, “Register Window Management Instructions”, and
Chapter 7, “Traps”, for information on how hardware manipulates the CWP register.

Compatibility Note:
The following differences between SPARC-V8 and SPARC-V9 are visible only to privileged soft-
ware; they are invisible to nonprivileged software:

1) In SPARC-V9, SAVE increments CWP and RESTORE decrements CWP. In SPARC-V8, the oppo-
site is true: SAVE decrements PSR.CWP and RESTORE increments PSR.CWP.

2) PSR.CWP in SPARC-V8 is changed on each trap. In SPARC-V9, CWP is affected only by a trap
caused by a window fill or spill exception.

3) In SPARC-V8, writing a value into PSR.CWP that is greater than or equal to the number of imple-
mented windows causes an illegal_instruction exception. In SPARC-V9, the effect of writing an out-
of-range value to CWP is undefined.

5.2.10.2 Savable Windows (CANSAVE) Register

Figure 47: CANSAVE Register (V9=28)

The CANSAVE register, shown in Figure 47, contains the number of register windows fol-
lowing CWP that are not in use and are, hence, available to be allocated by a SAVE
instruction without generating a window spill exception

5.2.10.3 Restorable Windows (CANRESTORE) Register

Figure 48: CANRESTORE Register (V9=29)

4 0

CWP

3 2

CANSAVE
4 023

CANRESTORE
4 023

92 5 Registers

The CANRESTORE, shown in Figure 48, register contains the number of register win-
dows preceding CWP that are in use by the current program and can be restored (via the
RESTORE instruction) without generating a window fill exception.

5.2.10.4 Other Windows (OTHERWIN) Register

Figure 49: OTHERWIN Register (V9=30)

The OTHERWIN register, shown in Figure 49, contains the count of register windows that
will be spilled/filled using a separate set of trap vectors based on the contents of
WSTATE_OTHER. If OTHERWIN is zero, register windows are spilled/filled using trap
vectors based on the contents of WSTATE_NORMAL.

The OTHERWIN register can be used to split the register windows among different
address spaces and handle spill/fill traps efficiently by using separate spill/fill vectors.

5.2.10.5 Window State (WSTATE) Register

Figure 50: WSTATE Register (V9=31)

The WSTATE register, shown in Figure 50, specifies bits that are inserted into TTTL<4:2>
on traps caused by window spill and fill exceptions. These bits are used to select one of
eight different window spill and fill handlers. If OTHERWIN = 0 at the time a trap is taken
due to a window spill or window fill exception, then the WSTATE.NORMAL bits are
inserted into TT[TL]. Otherwise, the WSTATE.OTHER bits are inserted into TT[TL]. See
6.4, “Register Window Management”, for details of the semantics of OTHERWIN.

5.2.10.6 Clean Windows (CLEANWIN) Register

Figure 51: CLEANWIN Register (V9=32)

The CLEANWIN register, shown in Figure 51, contains the number of windows that can
be used by the SAVE instruction without causing a clean_window exception.

The CLEANWIN register counts the number of register windows that are “clean” with
respect to the current program; that is, register windows that contain only zeros, valid
addresses, or valid data from that program. Registers in these windows need not be
cleaned before they can be used. The count includes the register windows that can be

OTHERWIN
4 023

WSTATE
05 3 2

OTHER NORMAL

CLEANWIN
4 03 2

5.2.11 Ancillary State Registers (ASRs) 93

restored (the value in the CANRESTORE register) and the register windows following
CWP that can be used without cleaning. When a clean window is requested (via a dSAVE
instruction) and none is available, a clean_window exception occurs to cause the next win-
dow to be cleaned.

Implementation Note:
Only the lower three bits are implemented in the CLEANWIN register. When this register is moved
into a 64-bit integer register with an RDPR instruction, the upper 61 bits are set to zero.

Programming Note:
CLEANWIN must never be set to 6 or 7. Setting CLEANWIN > 5 would violate the register win-
dow state definition in 6.4.1, “Register Window State Definition”. Note: Hardware does not enforce
this restriction; it is up to system software to keep the window state consistent.

5.2.11 Ancillary State Registers (ASRs)

The SPARC-V9 architecture provides for up to 25 ancillary state registers (ASRs), num-
bered from 7 through 31. SPARC64-III implements 13 ASRs.

ASRs numbered 7..15 are reserved for future use by the architecture and should not be
referenced by software.

The SPARC-V9 architecture leaves ASRs numbered 16..31 available for implementation-
dependent uses. The SPARC64-III implements ASRs #18 through #31; they are defined in
the subsections that follow.

An ASR is read and written with the RDASR and WRASR instructions, respectively. An
RDASR or WRASR instruction is privileged if the accessed register is privileged.

5.2.11.1 Hardware Mode Register (ASR18)

Figure 52: Hardware Mode Register (ASR18)

DPE: Data Prefetch Enable
When set, two consecutive D1 cache lines from within a 4Kb boundary will be
fetched from the UC in case of a D1 cache miss.

0

0
63 1234567891011

—DPE BRM RMO PSO TSO

94 5 Registers

BRM: Branch Prediction Mode
See 9.3, “Branches and Branch Prediction” for details.

Resv: Reserved
Reads as zero, writes are ignored.

RMO: Relaxed Memory Order Memory Model
Selects the hardware memory model to use when PSTATE.MM = 2.

PSO: Partial Store Order Memory Model
Selects the hardware memory model to use when PSTATE.MM = 1.

TSO: Total Store Order Memory Model
Selects the hardware memory model to use when PSTATE.MM = 0.

See 8.1.1, “SPARC64-III Hardware Memory Models” for details of the SPARC64-III
hardware memory models.

5.2.11.2 Graphic Status Register (GSR) (ASR19)

Figure 53: Graphic Status Register (GSR) (ASR19)

Non-privileged read/write register used for VIS (Sun Microsystems’ Visual Instruction
Set) emulation.

Access to this register causes an fp_disabled exception if either PSTATE.PEF or FPRS.FEF
is 0.

Table 15: ASR18 Branch Prediction Mode Field Encodings

Encoding Meaning
00 2-level adaptive
01 Conventional 2-bit scheme
10 reserved
11 Conventional 2-bit scheme for Bicc/FBfcc:

Use instruction p bit for BRcc, BPr, and FBPfcc:
If p = 0, then predict not taken
If p = 1, then predict taken

Table 16: ASR18 RMO, PSO, and TSO Field Encodings

Encoding Hardware MM
00 HLSO
01 HTSO
10 HSTO
11 reserved

0

0
63 1234567

SF AO

5.2.11 Ancillary State Registers (ASRs) 95

SF: scale_factor
See UltraSPARC Programmer’s Reference Manual for details.

AO: alignaddr_offset
See UltraSPARC Programmer’s Reference Manual for details.

5.2.11.3 Set SCHED_INT Register (ASR20)

Figure 54: Set SCHED_INT Register (ASR20)

A Write State Register instruction (WR) to ASR20 sets the corresponding bits in the
SCHED_INT Register (ASR22); that is, when set, bits <15:1> in ASR20 set the corre-
sponding bits in ASR22. Other bits in ASR20 are ignored.

ASR20 is a privileged, write-only register.

5.2.11.4 Clear SCHED_INT Register (ASR21)

Figure 55: Clear SCHED_INT Register (ASR21)

A Write State Register instruction (WR) to ASR21 clears the corresponding bits in the
SCHED_INT Register (ASR22); that is, when set, bits <15:1> in ASR21 clear the corre-
sponding bits in ASR22. Other bits in ASR21 are ignored.

ASR21 is a privileged, write-only register.

5.2.11.5 Schedule Interrupt (SCHED_INT) Register (ASR22)

Figure 56: SCHED_INT Register (ASR22)

The OS kernel uses this privileged, read/write register to schedule interrupts.

INT_LEVEL:
When a bit is set within this field (bits <15:1>), it causes an interrupt at the corre-
sponding interrupt level.

0

0
63 11516

—ASR22 Bits to be set

0

0
63 11516

—ASR22 Bits to be cleared

0

0
63 11516

TINT_LEVEL M

96 5 Registers

TM = TICK_MATCH:
When the TICK_MATCH (ASR23) Register’s MATCH_DIS (match disable) field
is zero (that is, tick matching is enabled) and its MATCH_VALUE field matches
the value in the TICK register, then the TICK_MATCH field in ASR22 is set and a
level 14 interrupt is generated. See 5.2.11.6, “TICK Match Register (ASR23)” for
details.

5.2.11.6 TICK Match Register (ASR23)

Figure 57: TICK Match Register (ASR23)

ASR23 is a privileged, read/write register.

MD = MATCH_DISABLE
If this field is 0 (that is, tick matching is enabled) a level 14 interrupt will be gener-
ated and the TICK_MATCH field of ASR22 will be set whenever the TICK_
MATCH condition is met, as described in the next field.

TICK_MATCH
When the TICK_MATCH field matches the current value in the TICK register (bits
<62:0>), the TICK_MATCH condition is true.

5.2.11.7 Instruction Access Fault Type Register (ASR24)

Figure 58: Instruction Access Fault Type Register (ASR24)

This privileged, read-only register is written by the hardware on instruction_access_error
traps. Reading ASR24 clears the TYPE field to zero.

Programming Note:
If multiple errors occur on the same machine cycle, the TYPE field will contain the highest priority
error, as determined by Table 17.

TYPE
The instruction access error, as encoded in the following table:

Table 17: Instruction Access Fault Type Encoding

<3:0> TYPE Priority
016 No Error —
116 uITLB Multiple Hit 01
216 MTLB Parity Error 02

0

M

63

TICK_MATCHD
62

04 3

0 TYPE

63

5.2.11 Ancillary State Registers (ASRs) 97

The Instruction Access Fault Type Register facilitates the handling of traps that involve an
instruction access. The register is privileged and read-only. System software must take
care to read this register on entry to the fault handler before any other instruction faults can
occur that would overwrite it.

System software should use the TPC value in the Trap Stack to identify the instruction that
caused an instruction_access_error trap. The TPC value on instruction_access_error trap is
guaranteed to point to the cache line address (64 byte block address) in which the error
condition exists, but is not guaranteed to point to the exact address of the instruction that
caused the error.

See 7.7, “Exception and Interrupt Descriptions” for detailed information on the instruction_
access_error trap.

5.2.11.8 Software Scratch Registers 0 through 3 (ASR25)

Bits <9:8> of the opcode specifies one of 4 Software Scratch Registers. These registers are
privileged, read/write. Writing the scratch registers causes a machine sync; reading them
does not cause a machine sync.

Note:

The four registers can be used in conjunction with the eight ASI_MMU_SCRATCH registers. See
Appendix L, “ASI Assignments” for details of the ASI_MMU_SCRATCH registers

5.2.11.9 Data Breakpoint Registers (ASR26A and ASR26B)

These privileged read/write registers are used to trap any data accesses to a double word
aligned breakpoint address. Selection of ASR26a or ASR26b is made by bit 12 of the
opcode.

316 MTLB Multiple Hit 03
416 I1 Cache Tag Parity Error 04
516 I1 Cache Tag Multiple Hit 05
616 I1 Cache Data ECC Single Error 07
716 I1 Cache Data ECC Multiple Error 06
816 UPA Bus Error 08
916 UPA Time Out 09
A16 (unused) —
B16 (unused) —
C16 (unused) —
D16 (unused) —
E16 I0 Cache Tag Parity Error 10
F16 I0 Cache Data Parity Error. 11

Table 17: Instruction Access Fault Type Encoding

<3:0> TYPE Priority

98 5 Registers

5.2.11.9.1 Data Breakpoint Address Register (ASR26A)

Figure 59: Data Breakpoint Address Register (ASR26A)

This privileged read/write register specifies the double-word aligned virtual address of the
data breakpoint.

Breakpoint Address:
A doubleword-aligned breakpoint address

P:
Privileged / Nonprivileged access mode (Privileged = 1)

R:
Read breakpoint enable

W:
Write breakpoint enable

For each read/write, the virtual address is masked as specified by the Data Breakpoint
Mask Register (see below) and then compared with the double-word aligned breakpoint
address field in ASR26A. If the PSTATE.AM bit is set, the upper 32-bits of the 61-bit vir-
tual address are masked to zero before the compare. If the addresses match and the break-
point is enabled for the type of access, the CPU will generate an implementation specific
data_breakpoint trap (TT = 0x61, priority = 14).

If the P bit is set, the access mode used for the access must be privileged in order for a
match to occur. Conversely, if the P bit is cleared, the access must be non-privileged in
order for a match to occur.

The access mode used for the comparison to the P bit is the access mode as seen by the
Caches and MMU. For example, if the access is done in privileged mode but with ASI_
AS_IF_USER, then the access mode is non-privileged.

If the R bit is set and W is not set, then the access must be a read and the access mode must
match the P bit for the trap to occur. If the W bit is set and R is not set, then the access
must be a write and the access mode must match the P bit for the trap to occur. If both R
and W are set then the breakpoint is enabled for both reads and writes that have the pre-
scribed access mode.

If bits R and W are both set to zero then the data breakpoint feature is disabled.

The data_breakpoint trap is a deferred trap; it is generated after the completion of the corre-
sponding read/write instruction. The TPC points to the instruction that caused the data_
breakpoint.

A data breakpoint can be installed by privileged software using the WRASR instruction.
ASR 26A is readable in the SPARC64-III.

02 1

Breakpoint Address R

63

P W

3

5.2.11 Ancillary State Registers (ASRs) 99

5.2.11.9.2 Data Breakpoint Mask Register (ASR26B)

Figure 60: Data Breakpoint Mask Register (ASR26B)

This privileged read/write register specifies a mask to be used when comparing the current
virtual address with the Data Breakpoint Address in ASR26A.

HI: Mask High
Bits set to 1 in Mask High specify which bits of VA<63:61> should be ignored in
the comparison.

LO: Mask Low
Bits set to 1 in Mask Low specify which bits of VA<12:3> should be ignored in the
comparison.

VA<60:13> are always used in the comparison; VA<2:0> are always ignored in the com-
parison.

5.2.11.10 Data Access Fault Address and Data Access Fault Type Registers
(ASR28 and ASR29)

The Data Access Fault Address and Data Access Fault Type registers facilitate the han-
dling of traps that involve a data memory access. The registers are privileged and read-
only. System software must read these registers on entry to the fault handler before any
other fault can occur that would overwrite them.

The following trap types cause ASR 28 and ASR 29 to be set:

� data_access_exception

� data_access_error

� mem_address_not_aligned

� LDDF_mem_address_not_aligned

� STDF_mem_address_not_aligned

� data_breakpoint

� privileged_action (memory access only)

� 32i_data_access_MMU_miss

� 32i_data_access_protection

5.2.11.10.1 Data Access Fault Address Register (ASR28)

The Data Access Fault Address Register contains the virtual address (VA) of the last data
memory access that has caused the CPU to trap. The register contains all 64 bits of the
address, even if PSTATE.AM is set.

02

—

63 3

—
12131516

LOHI

100 5 Registers

5.2.11.10.2 Data Access Fault Type Register (ASR29)

This register records information about the last data memory access that caused the CPU
to trap. The Data Access Fault Type Register has the following format:

Figure 61: Data Access Fault Type Register (ASR29)

CONTEXT:
The identifier of the context that caused the fault. This field is interpreted accord-
ing to the value stored in the ASI field.

ASI:
The 8-bit ASI that was used for the access. For a normal load/store access this field
should be set to ASI_PRIMARY (8016) or ASI_PRIMARY_LITTLE (8816), the
default value. Note: ASI_PRIMARY_LITTLE is set if PSTATE.CLE = 1.

P: PRIV
The access mode as seen by the Caches and MMU. PRIV is set to one if the access
was privileged and to zero if the access was non-privileged. Note that the access
mode may be different from the execution mode of the CPU. For example, if the
access was done in privileged mode but with ASI_AS_IF_USER, then PRIV
would be zero.

R and W:
These bits are set if the access involved a read or a write to memory, respectively.
Both bits are set for atomic load-store instructions (CAS, LDSTUB, SWAP).

FTYPE:
This field defines the type of error or fault that caused the trap. The encoding of
this field is given below. The priority of each type is also given below.

Table 18: Data Access Fault Type Encoding

FTYPE Description Priority Trap Generated
016 No error — —
116 µDTLB Multiple Hit 02 data_access_error
216 MTLB Parity Error 03 data_access_error
316 MTLB Multiple Hit 04 data_access_error
416 D1 Cache Tag Parity Error 10 data_access_error
516 D1 Cache Tag Multiple Hit 11 data_access_error
616 D1 Cache Data ECC Single Bit Error 13 data_access_error
716 D1 Cache Data ECC Multiple Bit Error 12 data_access_error
816 UPA Bus Error 14 data_access_error
916 UPA Time Out 15 data_access_error
A16 (unused) — —
B16 (unused) — —

0263 411

ASI

12 3 1

WR– P

1516

FTYPE

4748

—

5960

— CONTEXT

5.2.11 Ancillary State Registers (ASRs) 101

Note that data_access_error, data_access_exception, 32i_data_access_MMU_miss, and 32i_
data_access_protection trap priorities are all assigned to the same rank in 7.5.2, “Trap Type
(TT)”. The priorities of 32i_data_access_protection and 32i_data_access_MMU_miss trap are
defined below in relation to data_access_execption and data_access_error.

� 32i_data_access_protection: priority=09

� 32i_data_access_MMU_miss: priority=05

See 7.7, “Exception and Interrupt Descriptions” for detailed descriptions of data_access_
error, data_access_exception, 32i_data_access_MMU_miss, and 32i_data_access_protection
traps.

5.2.11.11 Performance Monitor Registers (ASR30)

This privileged read/write register specifies 35 event and latency monitors which are used
to track processor performance. The performance monitors can be divided into four
groups:

1. Issue and commit counters that measure instruction execution rate.

2. Stall counters that indicate the mixture and number of various issue stall conditions.

3. Memory access latency monitors that measure the latency of certain types of memory
accesses.

4. Memory access event monitors that measure the frequency of certain types of memory
accesses.

Details of the performance monitor registers are described in Appendix Q, “Performance
Monitoring”. Performance monitor registers can be enabled for User, Supervisor, or User
& Supervisor mode via the PMEM_SEL bits in ASR31 (bits 15:14).

5.2.11.12 State Control Register (ASR 31)

The privileged State Control Register (SCR) is a 64-bit implementation-specific register
containing flags that control the state of the CPU. The register can be read/written via the
RDASR/WRASR instruction.

C16 Illegal Access to Strongly Ordered (SO) page 07 data_access_exception
D16 Illegal Access to Non Faulting Only (NFO) page 08 data_access_exception
E16 Illegal Access to Noncacheable Page 06 data_access_exception
F16 Invalid ASI 01 data_access_exception

Table 18: Data Access Fault Type Encoding

FTYPE Description Priority Trap Generated

102 5 Registers

Table 19 describes the State Control Register fields and their meanings:

Table 19: State Control Register (ASR31) Field Definitions

Bits Abbrev Name Meaning
63:53 — (reserved)

52 D_
ASEET

DISABLE_ASYNC_
SECC_ERR_TRAP

When set, any Asynchronous Single ECC Error (from U2
Cache or UPA) won’t cause a trap.

51 D_AET DISABLE_ASYNC_
ERROR_TRAP

When set, any Asynchronous Error won’t cause trap.

50 D_U2E DISABLE_U2_ECC_
CHECK

When set, ECC error checking of the U2 cache data is disabled.

49 D_D1E DISABLE_D1_ECC_
CHECK

When set, ECC error checking of the D1 cache data is disabled.

48 D_I1E DISABLE_I1_ECC_
CHECK

When set, ECC error checking of the I1 cache data is disabled.

47 D_UPA DISABLE_UPA_ECC_
CHECK

When set, ECC error checking of the UPA is disabled.

46 D_MTP DISABLE_MTLB_
PARITY_CHECK

When set, parity error checking of the MTLB is disabled.

45 D_UDTP DISABLE uDTLB_
MULTIPLE_HIT_
CHECK

When set, multiple hit error checking of the µDTLB is disabled.

44 D_UITM DISABLE_uITLB_
MULTIPLE_HIT_
CHECK

When set, multiple hit error checking of the µITLB is disabled.

43 D_U2P DISABLE_U2_
PARITY_CHECK

When set, parity error checking of the U2 cache tag is disabled.

42 D_D1P DISABLE_D1_
PARITY_CHECK

When set, parity error checking of the D1 cache tag is disabled.

41 D_I1P DISABLE_I1_PARITY_
CHECK

When set, the parity checking of the I1 Cache is disabled

40 D_I0P DISABLE_I0_PARITY_
CHECK

When set, the parity checking of the I0 Cache is disabled

39 D_DCW3 DISABLE_D1_WAY3 When set, Way 3 of the D1 Cache is disabled
38 D_DCW2 DISABLE_D1_WAY2 When set, Way 2 of the D1 Cache is disabled
37 D_DCW1 DISABLE_D1_WAY1 When set, Way 1 of the D1 Cache is disabled
36 D_DCW0 DISABLE_D1_WAY0 When set, Way 0 of the D1 Cache is disabled
35 D_ICW3 DISABLE_I1_WAY3 When set, Way 3 of the I1 Cache is disabled
34 D_ICW2 DISABLE_I1_WAY2 When set, Way 2 of the I1 Cache is disabled
33 D_ICW1 DISABLE_I1_WAY1 When set, Way 1 of the I1 Cache is disabled
32 D_ICW0 DISABLE_I1_WAY0 When set, Way 0 of the I1 Cache is disabled
31 D_UAE DISABLE_UPA_

ADDR_ERR
When set, UPA Address parity checking is disabled

30 D_
MDTLB

DISABLE_MDTLB When set, the Main TLB is disabled for Data

29 D_
MITLB

DISABLE_MITLB When set, the Main TLB is disabled for Instructions

28 D_
UDTLB

DISABLE_UDTLB When set, the µDTLB is disabled

27 D_UITLB DISABLE_UITLB When set, the µITLB is disabled

5.2.11 Ancillary State Registers (ASRs) 103

26:21 — unused —
20 E_CSE ENABLE_

CONSERVATIVE_
STORE_EXECUTION

When set, store won’t start its execution until all previous
instructions except load/store have been completed.

19:18 DB_
CSEL

DEBUG_BUS_CPU_
SELECTION[1:0]

Selects one of the four CPU views for debug signals.
00 Instruction Tracking Bus I
01 Instruction Tracking Bus II
10 Load Store Bus Control
11 Load Store Bus VA and Control

17:16 DB_
GSEL

DEBUG_BUS_MMU_
SELECTION[1:0]

Selects one of the four MMU views for debug signals.
00 MMU Global
01 IC Intensive + DC Misc.
10 DC Intensive
11 UC Intensive

15:14 PMEN_
SEL

PERFORMANCE_
ENABLE_SELEC-
TION[1:0]

Select when performance counters get updated.
00 User & Supervisor mode
01 User mode only
10 Supervisor mode only

13 PM_US PERFORMANCE_
MONITOR_USER_
ACCESS

When not set (PM_US=0), an attempt by nonprivileged soft-
ware to read or write the performance monitor registers causes a
privileged_opcode exception. When set (PM_US=1), non-
privileged and privileged software can read or write the perfor-
mance monitor registers.

12:11 W_EN
W_RED

WDT_EN
WDT_RED

00 Watchdog trap never occurs.
01 Undefined. Should not be specified
10 Watchdog trap is processed in Exec_state in case the

watchdog timer counts 2n, where n is dependent on
W_SEL

11 Watchdog trap is processed in RED_state in case the
watchdog timer counts 2n, where n is dependent on
W_SEL

Table 19: State Control Register (ASR31) Field Definitions (Continued)

Bits Abbrev Name Meaning

104 5 Registers

When the CPU enters or exits from RED_state, the I0 cache and prefetch buffers are inval-
idated.

10:8 W_SEL WDT_SELECT[2:0] Selects the watchdog timer value that will cause a trap. If
watchdog_traps are disabled (WDT_ENABLE = 0), the value
of WDT_SELECT has no meaning. The encodings are:

000=212

001=216

010=218

011=220

100=222

101=224

110=228

111=230

If the watchdog timer counts to 231, a RED_state trap is taken
regardless of the values of WDT_RED. This lets software
attempt to recover before entering error_state.
If the watchdog timer counts to 232, the CPU enters error_state
unconditionally and asserts CPU_HALTED, preserving as
much state as possible. The CPU must be rescanned with the
reset state before execution can resume.
See 7.2.2, “Error_state” for more information.

7 TR SOFTWARE_TRIGGER When this bit is set, the software_trigger bit going out on the
debug bus is asserted. This allows software to determine when
to trigger equipment attached to the debug bus.

6:3 — unused —
2 PM PIPELINE_MODE When set, the processor will execute all instructions sequen-

tially, one-at-a-time, in pipeline mode. Specifically, the CPU
attempts to issue one instruction every cycle. The CPU will still
speculate and predict branches. Instruction issue constraints and
processor operation is identical to superscalar operation, with
the additional constraint that a maximum of one instruction is
issued per cycle.

1 II0 INVALIDATE_I0 A write-only bit; always reads as zero. When set, causes the
level-0 instruction cache (I0) and all prefetch buffers to be
invalidated.

0 SM SEQUENTIAL_MODE When set, the processor will execute all instructions sequen-
tially, one-at-a-time. Specifically, before an instruction is
issued, the previous instruction must have been retired and have
completed all modifications to machine state. The SM bit also
disables speculative instruction prefetching. Instruction
accesses occur only when an instruction can be issued. Note
that block prefetch around the instruction is still possible.
This mode of operation severely cripples CPU performance, so
use it sparingly. When the SM bit is reset, normal superscalar
execution is taking place (unless the PM bit is set).
The SM bit (SEQUENTIAL_MODE) takes precedence over
the PM bit (PIPELINE_MODE).

Table 19: State Control Register (ASR31) Field Definitions (Continued)

Bits Abbrev Name Meaning

5.2.12 Floating-point Deferred-trap Queue (FQ) 105

When the CPU enters RED_state due to a trap or reset, bit 0 (SM), bit 27 (D_UITLB), bit
28 (D_UDTLB), bit 29 (D_MITLB), and bit 30 (D_MDTLB) are set by the hardware. It is
the software’s responsibility to reset these bits when required (for example, when the CPU
exits from RED_state).

When the CPU enters RED_state not due to a trap or reset (that is, when software sets the
PSTATE.RED bit using WRPR), all of the SCR register bits are unchanged unlike the case
above.

When the CPU is in RED_state, it behaves as if bit 0 (SM), bit 27 (D_UITLB), and bit 29
(D_MITLB) are set, regardless of their actual values in the SCR register.

5.2.12 Floating-point Deferred-trap Queue (FQ)
The CPU does not contain a Floating-Point Deferred-trap Queue. An attempt to read FQ
with an RDPR instruction causes an illegal_instruction exception.

5.2.13 IU Deferred-trap Queue
The CPU does not have or need an IU Deferred-trap Queue.

5.2.14 RSTV Register
The CPU implements RSTV, the RED_State Trap Vector as a constant address:

� VA = FFFF FFFF F000 000016

� PA = 0000 01FF F000 000016

5.2.15 Emulation Trap Registers

The CPU provides a mechanism for the hardware to trap or sync certain instruction encod-
ings. This mechanism was designed to provide a way around hardware errors that may be
found in silicon during bringup. For example, if an instruction is failing on a particular
mask set, it can be trapped and emulated in software.

The CPU implements the following registers to support emulation traps:

� Four Emulation Trap Register Values (ETRVs)

� Four Emulation Trap Register Masks (ETRMs)

� Four sets of 2 control bits

All of these registers are “scan-only.” They can be scanned in by the debug monitor during
bringup. The ETRV and ETRM registers are each 27 bits wide. The purpose of these reg-
isters is to identify a pattern of instructions.

A pair of registers, ETRV and ETRM, form a “CAM” like pattern matcher. The associated
Control bits determine what action will be taken on a match. There are 4 pairs of ETRV
and ETRM registers and 4 pairs of control bits. Each pair of registers applies to instruc-

106 5 Registers

tions in all the issue slots.1 This requires 16 simultaneous compares for each set of instruc-
tions fetched from the I0 Cache.

The ETRM and ETRV register bits correspond to the upper 27 bits in an instruction2.
When a bit in an ETRM is set that bit in an instruction being issued will be ignored (don’t
care). If it is reset, that bit of the ETRV specifies a value to match. For example:

ETRM: 0011 1111 1111 0000 0011 1111 111- ----
ETRV: 0000 0000 0000 1010 1000 0000 000- ----
matches: 00xx xxxx xxxx 1010 10xx xxxx xxxx xxxx

When an instruction matches, the value in the Control bits is checked to see what action to
take.

If more than one ETR pair matches in the same cycle, the earliest instruction that matches
(in program order) will cause the Action in the above table to be initiated.

Also, if more than one ETR pair matches the same instruction the control bits will be or’ed
together and the result will be used to determine the action. Syncing issue traps will wait
for all previous instructions to commit and retire before the trap is taken. A non-syncing
issue trap will vector to the appropriate trap target speculatively. It may later be undone by
a backup. If a trap is taken it is the programmed_emulation_trap (tt = 6216, priority = 6).

1. This is different from the SPARC64-III where each ETRV:ETRM pair only applied to one particular
issue slot.

2. The rs2 field was omitted from the comparison because of its low utility.

Table 20:

Control Bits Action
00 No action. (ETR is disabled.)
01 Make the instruction a syncing instruction.
10 Generate a non-syncing issue trap.
11 Generate a syncing issue trap.

6 Instructions
Instructions are accessed by the processor from memory and are executed, annulled, or
trapped. Instructions are encoded in five major formats and partitioned into eleven general
categories.

6.1 Instruction Execution

The instruction at the memory location specified by the program counter is fetched and
then executed. Instruction execution may change program-visible processor and/or mem-
ory state. As a side effect of its execution, new values are assigned to the program counter
(PC) and the next program counter (nPC).

An instruction may generate an exception if it encounters some condition that makes it
impossible to complete normal execution. Such an exception may in turn generate a pre-
cise trap. Other events may also cause traps: an exception caused by a previous instruction
(a deferred trap), an interrupt or asynchronous error (a disrupting trap), or a reset request
(a reset trap). If a trap occurs, control is vectored into a trap table. See Chapter 7, “Traps”,
for a detailed description of exception and trap processing.

If a trap does not occur and the instruction is not a control transfer, the next program
counter is copied into the PC, and the nPC is incremented by 4 (ignoring overflow, if any).
If the instruction is a control-transfer instruction, the next program counter is copied into
the PC and the target address is written to nPC. Thus, the two program counters provide
for a delayed-branch execution model.

For each instruction access and each normal data access, the IU appends an 8-bit address
space identifier, or ASI, to the 64-bit memory address. Load/store alternate instructions
(see 6.3.1.3, “Address Space Identifiers (ASIs)”) can provide an arbitrary ASI with their
data addresses, or use the ASI value currently contained in the ASI register.

The CPU is a superscalar implementation of SPARC-V9. Several instructions may be
issued and executed in parallel. Although the CPU provides serial program execution
semantics, some of the implementation characteristics described below are part of the
architecture visible to software for correctness and efficiency considerations. The affected
software includes optimizing compilers and supervisor code.

108 6 Instructions

6.1.1 Speculative Execution

The CPU does speculative (out of program order) execution of instructions; the effect of
these instructions can be undone if the speculation proves to be incorrect. In general, this
mechanism is transparent to software, since the CPU maintains serial program execution
semantics for all architecturally visible state. The exception to this rule is the load instruc-
tion, which produces two types of side effects visible to software.

1. Speculative loads may be issued to any address including a memory-mapped I/O regis-
ter that causes side effects in an I/O device. The supervisor software must ensure that
all memory-mapped pages containing registers and memory that could be affected by
speculative loads must have the “strongly ordered” bit set in the page table entry. If the
strongly ordered (SO) bit is not set for such pages, incorrect behavior may occur.

2. Speculative loads often are useful to prefetch data. Sometimes, however, they may
cause the cache, MMU, and memory subsystem to make spurious accesses; that is,
some of these loads may replace “useful” lines in the cache. This simply degrades sys-
tem throughput; it does not cause incorrect program behavior.

The CPU provides two mechanisms to avoid speculative execution of a load:

1. Avoid speculation by disallowing speculative accesses to certain memory pages or I/O
spaces. This can be done by setting the SO (Strongly Ordered) bit in the PTE for all
memory pages that should not allow speculation. All accesses made to memory pages
that have the SO bit set in their PTE will be delayed until they are no longer specula-
tive or until they are cancelled. See Appendix F, “MMU Architecture” for details.

2. Alternate space load instructions that force program order such as ASI_PO_P will not
be speculatively executed. See Appendix L, “ASI Assignments” for details of the CPU
ASIs.

Method one is preferred for the SPARC64-III. Method two is supported for backward
compatibility with SPARC64-I and SPARC64-II systems.

6.1.2 Instruction Prefetch

The CPU prefetches instructions in order to minimize cases where the CPU must wait for
instruction fetch. In combination with branch prediction, prefetching may cause the CPU
to access instructions that are not subsequently executed. In some cases the speculative
instruction accesses will reference data pages. In order to avoid speculative instruction
accesses to the area which has side-effects by the references, the software should not set
any executable permission bits (SX and UX) to the page. Then the data in those pages are
never referenced or cached in the I0- or I1-Cache. The CPU does not generate a trap for
any exception that is caused by an instruction fetch until all of the instructions before it (in
program order) have been committed.1

1. Hardware errors and other asynchronous errors may generate a trap even if the instruction that
caused the trap is never committed.

6.1.3 Serializing Instructions 109

Instructions prefetched by the CPU are cached in an internal cache, called the I0 cache.
The prefetch action is independent of the data access path and is not directly affected by
instructions that serialize the execution of instructions or the data path. The I0 cache can
be invalidated but not disabled. See the description of the SCR register in 5.2.11.12, “State
Control Register (ASR 31)”, and the description of the WRASR instruction in A.63,
“Write State Register”, for details.

Programming Note:
The I0 cache also caches instructions that cause faults, because it cannot determine that they will
fault when executed later. For example, an instruction with only one executable permission bit (SX or
UX) set may be cached in I0. If the kernel software changes the page’s PTE to set both executable permis-
sion bits, it must also invalidate the I0 cache to avoid getting stale information.

Instruction cache lines are also prefetched into the level 1 instruction cache (I1) from the
Unified Cache. This prefetching should improve performance of database applications.
Prefetching into I1 is invisible to the application programmer.

6.1.3 Serializing Instructions

Serializing instructions are issued one at a time and only when the CPU has no other
uncommitted instruction pending. After an instruction in this class is issued, the CPU
waits until the instruction is committed before issuing the next instruction. In other words,
the following sequence is observed:

1. All outstanding instructions must commit before the serializing instruction is issued
(this is equivalent to machine sync)

2. The serializing instruction is issued by itself

3. The serializing instruction is executed by itself

4. The serializing instruction is committed by itself

5. Instructions following the serializing instruction begin to be issued again

Table 21 lists the serializing RDASR and WRASR instructions:

110 6 Instructions

6.1.3.1 Other Serializing Instructions

The following instructions also serialize the CPU:

� WRPR for CWP, CANSAVE, CANRESTORE, CLEANWIN, WSTATE and OTHER-
WIN when the addressing mode is not “%g0 + simm13”.

� WRPR for TPC, TNPC, TSTATE, TT, TICK, TBA, PSTATE and TL.

� TCC1 (except for TA %g0 + simm13).

� LD(X)FSR and ST(X)FSR.

� CAS(X)A

Table 21: SPARC64-III Serializing RDASR and WRASR Instructions

ASR
Number Name Priv? Serialize on

Reading?
Serialize on

Writing
0 Y Register No No Yes
2 Condition Code Register No No No
3 ASI Register No No Yes(a)

a. Does not sync if address mode is %g0 + imm.

4 Tick Register Yes/No(b)

b. Privileged if TICK.NPT = 1, otherwise it is not privileged.

No —
5 Program Counter No No —
6 Floating-Point Register Status No No Yes(a)

15 Store Barrier, Membar, SIR(c)

c. These are not really considered RD/WRASR instructions by SPARC-V9, but they share the
RD/WRASR opcode encoding so they are listed here for clarity.

Yes/No(d)

d. SIR is treated as NOP if executed while PSTATE.PRIV = 0.

Yes/No(e)

e. Sync only for MEMBAR#Sync or MEMBAR#MemIssue.

Yes
18 Hardware Mode Register Yes No Yes
19 Graphic Status Register No No Yes
20 Set Bits in Sched_Int Register Yes — Yes
21 Clear Bits in Sched_Int Register Yes — Yes
22 Sched_Int Register Yes No Yes
23 Tick Match Register Yes No Yes
24 Instruction Fault Type Yes Yes —
25 Scratch Registers Yes No Yes
26 Data Breakpoint Registers Yes Yes Yes
28 Data Fault Address Yes Yes —
29 Data Fault Type Yes Yes —
30 Performance Monitor Registers Yes Yes Yes
31 System Control Register Yes No Yes

1. All Tcc instructions except TA (with %g0 or immediate addressing) can be used to cause the CPU
to sync. TN is suggested for forcing a sync.

6.1.4 Issue Stalling Instructions 111

� MULScc, UMUL, UMULcc, SMUL, SMULcc (32-bit multiplies)

� FLUSH

� WRY

6.1.4 Issue Stalling Instructions

The following instructions prevent new instructions from issuing until they have com-
pleted:

� RDPR %PIL and WRPR %PIL (if there is a pending write to the PIL register). There
is a pending write to the PIL register if there was a previous WRPR %PIL instruction
with a source register (other than %g0) that has not completed.

� DONE, RETRY and RDPR TSTATE stall until the TSTATE register is updated with
the correct value of the condition codes. When a trap occurs, the TSTATE register may
not be updated with the condition codes if there are pending instructions that modify
the condition codes. See 5.2.6, “Trap State (TSTATE) Register” for further details.

6.2 Instruction Formats
Instructions are encoded in five major 32-bit formats and several minor formats, as shown
in Figure 62, Figure 63 on page 112, and Figure 64 on page 113.

Figure 62: Summary of Instruction Formats: Formats 1 and 2 (V9=33)

31 030 29

disp30op

Format 1 (op = 1): CALL

Format 2 (op = 0): SETHI and Branches (Bicc, BPcc, BPr, FBfcc, FBPfcc)

31 2224 21 02530 29

disp22op2condop a

disp19op2condop a

d16loop2rcondop a

20 19 1828

0

cc1cc0 p

pd16hi

14 13

rs1

imm22op2rdop

112 6 Instructions

Figure 63: Summary of Instruction Formats: Format 3 ((V9=33) and (V9=34))

op3rdop rs1 i=1 mmask

Format 3 (op = 2 or 3): Arithmetic, Logical, MOVr, MEMBAR, Prefetch, Load, and Store
op3rdop —rs1 i=0 rs2

op3rdop rs1 i=1 simm13

op3rdop rcondrs1 i=0 rs2

op3rdop rs1 i=1 simm10rcond

—

—

op3rdop rs1 i=0 rs2—

op3—op —rs1 i=0 rs2

op3—op rs1 i=1 simm13

cmask

op rd op3 rs1 i=0 imm_asi rs2

op3impl-depop impl-dep

31 24 02530 29 19 18

rdop op3 —

14 13 12 5 4

rs1 rs2i=0 x

rdop op3 —rs1 shcnt32i=1 x=0

rdop op3 —rs1 shcnt64i=1 x=1

6

op fcn op3 —

11

op3rdop rs1 —

op3rdop —

op3rdop rs2opf—

op3rdop rs1 rs2opf

op op3 rs2000 rs1 opfcc1 cc0

10 9 8 7 3

op3fcnop —rs1 i=0 rs2

op3fcnop rs1 i=1 simm13

6.2.1 Instruction Fields 113

Figure 64: Summary of Instruction Formats: Formats 4 and 5 (V9=34)

6.2.1 Instruction Fields

The instruction fields are interpreted as follows:

a:
The a bit annuls the execution of the following instruction if the branch is condi-
tional and not taken, or if it is unconditional and taken.

cc2, cc1, and cc0:
cc2:cc1:cc0 specify the condition codes (icc, xcc, fcc0, fcc1, fcc2, fcc3) to be used
in the instruction. Individual bits of the same logical field are present in several
other instructions: Branch on Floating-point Condition Codes with Prediction
Instructions (FBPfcc), Branch on Integer Condition Codes with Prediction (BPcc),
Floating-point Compare Instructions, Move Integer Register If Condition Is Satis-
fied (MOVcc), Move Floating-point Register If Condition Is Satisfied (FMOVcc),
and Trap on Integer Condition Codes (Tcc). In instructions such as Tcc that do not
contain the cc2 bit, the missing cc2 bit takes on a default value. See Table 77 on
page 365 for a description of these fields’ values.

cmask:
This 3-bit field specifies sequencing constraints on the order of memory references
and the processing of instructions before and after a MEMBAR instruction.

op3rdop rs1 i=0 rs2

op3rdop rs1 i=1 sw_trap#

cc1cc0 —

cc1cc0

Format 4 (op = 2): MOVcc, FMOVr, FMOVcc, and Tcc

op3rdop rs1 i=1 simm11

31 141924 18 13 12 5 4 02530 29 11 10 9

cc1cc0

7 6

—

op rd op3 cond opf_cc opf_low rs2

op rd op3 0 rcond opf_low rs2rs1

0

17

rdop op3 —cond rs2i=0

rdop op3 cond simm11i=1

cc2

cc2

cc1

cc1

cc0

cc0

op3rdop rs1 rs3 rs2var

Format 5 (op = 2, op3 = 0x37): FMADD and FMSUB (in place of IMPDEP2)

31 141924 18 13 12 5 4 02530 29 11 10 9 7 617 8

size

114 6 Instructions

cond:
This 4-bit field selects the condition tested by a branch instruction. See
Appendix E, “Opcode Maps”, for descriptions of its values.

d16hi and d16lo:
These 2-bit and 14-bit fields together comprise a word-aligned, sign-extended, PC-
relative displacement for a branch-on-register-contents with prediction (BPr)
instruction.

disp19:
This 19-bit field is a word-aligned, sign-extended, PC-relative displacement for an
integer branch-with-prediction (BPcc) instruction or a floating-point branch-with-
prediction (FBPfcc) instruction.

disp22 and disp30:
These 22-bit and 30-bit fields are word-aligned, sign-extended, PC-relative dis-
placements for a branch or call, respectively.

fcn:
This 5-bit field provides additional opcode bits to encode the DONE and RETRY
instructions.

i:
The i bit selects the second operand for integer arithmetic and load/store instruc-
tions. If i = 0, the operand is r[rs2]. If i = 1, the operand is simm10, simm11, or
simm13, depending on the instruction, sign-extended to 64 bits.

imm22:
This 22-bit field is a constant that SETHI places in bits 31..10 of a destination reg-
ister.

imm_asi:
This 8-bit field is the address space identifier in instructions that access alternate
space.

impl-dep:
The meaning of these fields is completely implementation-dependent for
IMPDEP1 and IMPDEP2 instructions.

mmask:
This 4-bit field imposes order constraints on memory references appearing before
and after a MEMBAR instruction.

op and op2:
These 2- and 3-bit fields encode the three major formats and the Format 2 instruc-
tions. See Appendix E, “Opcode Maps” for descriptions of their values.

op3:
This 6-bit field (together with one bit from op) encodes the Format 3 instructions.
See Appendix E, “Opcode Maps” for descriptions of its values.

opf:
This 9-bit field encodes the operation for a floating-point operate (FPop) instruc-
tion. See Appendix E, “Opcode Maps” for possible values and their meanings.

6.2.1 Instruction Fields 115

opf_cc:
Specifies the condition codes to be used in FMOVcc instructions. See cc0, cc1,
and cc2 above for details.

opf_low:
This 6-bit field encodes the specific operation for a Move Floating-point Register if
Condition is satisfied (FMOVcc) or Move Floating-point register if contents of
integer register match condition (FMOVr) instruction.

p:
This 1-bit field encodes static prediction for BPcc and FBPfcc instructions, as
show in Table 22:

rcond:
This 3-bit field selects the register-contents condition to test for a move based on
register contents (MOVr or FMOVr) instruction or a branch on register contents
with prediction (BPr) instruction. See Appendix E, “Opcode Maps” for descrip-
tions of its values.

rd:
This 5-bit field is the address of the destination (or source) r or f register(s) for a
load, arithmetic, or store instruction.

rs1:
This 5-bit field is the address of the first r or f register(s) source operand.

rs2:
This 5-bit field is the address of the second r or f register(s) source operand with
i = 0.

rs3:
This 5-bit field is the address of the third f register source operand for the floating-
point multiply-add and multiply-subtract instruction.

shcnt32:
This 5-bit field provides the shift count for 32-bit shift instructions.

shcnt64:
This 6-bit field provides the shift count for 64-bit shift instructions.

simm10:
This 10-bit field is an immediate value that is sign-extended to 64 bits and used as
the second ALU operand for a MOVr instruction when i = 1.

simm11:
This 11-bit field is an immediate value that is sign-extended to 64 bits and used as
the second ALU operand for a MOVcc instruction when i = 1.

Table 22: Branch Prediction Bit (p) Encodings

p Branch Prediction
0 Predict that branch will not be taken
1 Predict that branch will be taken

116 6 Instructions

simm13:
This 13-bit field is an immediate value that is sign-extended to 64 bits and used as
the second ALU operand for an integer arithmetic instruction or for a load/store
instruction when i = 1.

size:
Specifies the size of the operands for the floating-point multiply-add and multiply-
subtract instructions.

sw_trap#:
This 7-bit field is an immediate value that is used as the second ALU operand for a
Trap on Condition Code instruction.

var:
Specifies which specific operation (variation) to perform for the floating-point
multiply-add and multiply-subtract instructions.

x:
The x bit selects whether a 32- or 64-bit shift will be performed.

6.3 Instruction Categories
SPARC-V9 instructions can be grouped into the following categories:

� Memory access

� Memory synchronization

� Integer arithmetic

� Control transfer (CTI)

� Conditional moves

� Register window management

� State register access

� Privileged register access

� Floating-point operate

� Implementation-dependent

� Reserved

Each of these categories is further described in the following subsections.

6.3.1 Memory Access Instructions

Load, Store, Prefetch, Load Store Unsigned Byte, Swap, and Compare and Swap are the
only instructions that access memory. All of the instructions except Compare and Swap
use either two r registers or an r register and simm13 to calculate a 64-bit byte memory

6.3.1 Memory Access Instructions 117

address. Compare and Swap uses a single r register to specify a 64-bit byte memory
address. To this 64-bit address, the IU appends an ASI that encodes address space infor-
mation.

The destination field of a memory reference instruction specifies the r or f register(s) that
supply the data for a store or receive the data from a load or LDSTUB. For SWAP, the des-
tination register identifies the r register to be exchanged atomically with the calculated
memory location. For Compare and Swap, an r register is specified whose value is com-
pared with the value in memory at the computed address. If the values are equal, the desti-
nation field specifies the r register that is to be exchanged atomically with the addressed
memory location. If the values are unequal, the destination field specifies the r register that
is to receive the value at the addressed memory location; in this case, the addressed mem-
ory location remains unchanged.

The destination field of a PREFETCH instruction is used to encode the type of the
prefetch.

Integer load and store instructions support byte (8-bit), halfword (16-bit), word (32-bit),
and doubleword (64-bit) accesses. Floating-point load and store instructions support word,
doubleword, and quadword memory accesses. LDSTUB accesses bytes, SWAP accesses
words, and CAS accesses words or doublewords. PREFETCH accesses at least 64 bytes.

Programming Note:
By setting i = 1 and rs1 = 0, any location in the lowest or highest 4K bytes of an address space can
be accessed without using a register to hold part of the address.

6.3.1.1 Memory Alignment Restrictions

Halfword accesses shall be aligned on 2-byte boundaries, word accesses (which include
instruction fetches) shall be aligned on 4-byte boundaries, extended word and doubleword
accesses shall be aligned on 8-byte boundaries, and quadword accesses shall be aligned on
16-byte boundaries.

An improperly aligned address in a load, store, or load-store instruction causes a mem_
address_not_aligned exception to occur, except:

� An LDDF or LDDFA instruction accessing an address that is word-aligned but not
doubleword-aligned causes an LDDF_mem_address_not_aligned exception.

� An STDF or STDFA instruction accessing an address that is word-aligned but not dou-
bleword-aligned causes an STDF_mem_address_not_aligned exception.

� An LDQF, LDQFA, STQF, or STQFA instruction causes an illegal_instruction excep-
tion; all of these instructions are emulated in software.

6.3.1.2 Addressing Conventions

The CPU uses big-endian byte order for all instruction accesses and, by default, for data
accesses. It is possible to access data in little-endian format by using selected ASIs. It is

118 6 Instructions

also possible to change the default byte order for implicit data accesses. See 5.2.1, “Pro-
cessor State Register (PSTATE)”, for more information.1

6.3.1.2.1 Big-endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the most significant; a
byte’s significance decreases as its address increases. The big-endian addressing conven-
tions are illustrated in Figure 65 and defined as follows:
byte:

A load/store byte instruction accesses the addressed byte in both big- and little-
endian modes.

halfword:
For a load/store halfword instruction, two bytes are accessed. The most significant
byte (bits 15..8) is accessed at the address specified in the instruction; the least sig-
nificant byte (bits 7..0) is accessed at the address + 1.

word:
For a load/store word instruction, four bytes are accessed. The most significant
byte (bits 31..24) is accessed at the address specified in the instruction; the least
significant byte (bits 7..0) is accessed at the address + 3.

doubleword or extended word:
For a load/store extended or floating-point load/store double instruction, eight
bytes are accessed. The most significant byte (bits 63..56) is accessed at the
address specified in the instruction; the least significant byte (bits 7..0) is accessed
at the address + 7.
For the deprecated integer load/store double instructions (LDD/STD), two big-
endian words are accessed. The word at the address specified in the instruction cor-
responds to the even register specified in the instruction; the word at address + 4
corresponds to the following odd-numbered register.

quadword:
For a load/store quadword instruction, sixteen bytes are accessed. The most signif-
icant byte (bits 127..120) is accessed at the address specified in the instruction; the
least significant byte (bits 7..0) is accessed at the address + 15.

1. See Cohen, D., “On Holy Wars and a Plea for Peace,” Computer 14:10 (October 1981), pp. 48-54.

6.3.1 Memory Access Instructions 119

Figure 65: Big-endian Addressing Conventions (V9=35)

6.3.1.2.2 Little-endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the least significant; a
byte’s significance increases as its address increases. The little-endian addressing conven-
tions are illustrated in Figure 66 and defined as follows:

byte:
A load/store byte instruction accesses the addressed byte in both big- and little-
endian modes.

halfword:
For a load/store halfword instruction, two bytes are accessed. The least significant
byte (bits 7..0) is accessed at the address specified in the instruction; the most sig-
nificant byte (bits 15..8) is accessed at the address + 1.

Byte
7 0

Halfword
15 0

Word
31 0

Doubleword /
63 32

31 0

78

15 78162324

47 3940485556

15 78162324

0 1

00 01 10 11

Address

Address<0> =

Address<1:0> =

Address<2:0> =

Address<2:0> =

000 001 010 011

100 101 110 111

Quadword
127 96

95 64

111 103104112119120

79 7172808788

Address<3:0> =

Address<3:0> =

0000 0001 0010 0011

0100 0101 0110 0111

63 32

31 0

47 3940485556

15 78162324

Address<3:0> =

Address<3:0> =

1000 1001 1010 1011

1100 1101 1110 1111

Extended word

120 6 Instructions

word:
For a load/store word instruction, four bytes are accessed. The least significant
byte (bits 7..0) is accessed at the address specified in the instruction; the most sig-
nificant byte (bits 31..24) is accessed at the address + 3.

doubleword or extended word:
For a load/store extended or floating-point load/store double instruction, eight
bytes are accessed. The least significant byte (bits 7..0) is accessed at the address
specified in the instruction; the most significant byte (bits 63..56) is accessed at the
address + 7.
For the deprecated integer load/store double instructions (LDD/STD), two little-
endian words are accessed. The word at the address specified in the instruction + 4
corresponds to the even register in the instruction; the word at the address specified
in the instruction corresponds to the following odd-numbered register.

quadword:
For a load/store quadword instruction, sixteen bytes are accessed. The least signif-
icant byte (bits 7..0) is accessed at the address specified in the instruction; the most
significant byte (bits 127..120) is accessed at the address + 15.

6.3.1 Memory Access Instructions 121

Figure 66: Little-endian Addressing Conventions (V9=36)

6.3.1.3 Address Space Identifiers (ASIs)

Load and store instructions provide an implicit ASI value of ASI_PRIMARY, ASI_
PRIMARY_LITTLE, ASI_NUCLEUS, or ASI_NUCLEUS_LITTLE. Load and store
alternate instructions provide an explicit ASI, specified by the imm_asi instruction field
when i = 0, or the contents of the ASI register when i = 1.

ASIs 0016 through 7F16 are restricted; only privileged software is allowed to access them.
An attempt to access a restricted ASI by nonprivileged software results in a privileged_
action exception. ASIs 8016 through FF16 are unrestricted; software is allowed to access
them whether the processor is operating in privileged or nonprivileged mode. This is illus-
trated in Table 23.

Byte
7 0

Halfword
7 8

Word
7 24

Doubleword /

150

23 31168150

0 1

00 01 10 11

Address

Address<0> =

Address<1:0> =

Address<2:0> =

Address<2:0> =

000 001 010 011

100 101 110 111

Quadword Address<3:0> =

Address<3:0> =

0000 0001 0010 0011

0100 0101 0110 0111

Address<3:0> =

Address<3:0> =

1000 1001 1010 1011

1100 1101 1110 1111

39 5655 6348404732

7 2423 31168150

39 5655 6348404732

7 2423 31168150

103 120119 12711210411196

71 8887 9580727964

Extended word

122 6 Instructions

The SPARC-V9 architecture defines the following ASI assignments as implementation-
dependent: restricted ASIs 0016..0316, 0516..0B16, 0D16..0F16, 1216..1716, and 1A16..7F16;
and unrestricted ASIs C016 .. FF16. SPARC64-III’s implementation of ASIs completely
conforms to the SPARC-V9 architecture specification. See 6.3.1.3, “Address Space Identi-
fiers (ASIs)” in V9 for more information about the implementation-dependent aspects of
ASIs. See Appendix L, “ASI Assignments” for the complete list of ASI assignments for
SPARC64-III.

6.3.1.4 Separate Instruction Memory

The CPU uses separate level-1 instruction and data caches referred to as the I1 and D1
caches. These caches can be bypassed; see 5.2.11.12, “State Control Register (ASR 31)”.

In addition to the I1 and D1 caches, the CPU contains an internal level 0 instruction cache,
called the I0 cache. The I0 cache can be invalidated but it cannot be disabled or bypassed.
See 5.2.11.12, “State Control Register (ASR 31)” for details.

A program containing self-modifying code must have the FLUSH instructions before the
program executes its self-modifying code portions to ensure the consistency of the pro-
gram execution.

6.3.2 Memory Synchronization Instructions

Two forms of memory barrier (MEMBAR) instructions allow programs to manage the
order and completion of memory references. Ordering MEMBARs induce a partial order-
ing between sets of loads and stores and future loads and stores. Sequencing MEMBARs
exert explicit control over completion of loads and stores. Both barrier forms are encoded
in a single instruction, with subfunctions bit-encoded in an immediate field.

The CPU syncs and also waits for all pending cacheable and non-cacheable stores to reach
the global visibility before issuing MEMBAR#MemIssue and MEMBAR#Sync.

6.3.3 Integer Arithmetic Instructions

The integer arithmetic instructions are generally triadic-register-address instructions that
compute a result that is a function of two source operands. They either write the result into
the destination register r[rd] or discard it. One of the source operands is always r[rs1]. The
other source operand depends on the i bit in the instruction; if i = 0, the operand is r[rs2];
if i = 1, the operand is the constant simm10, simm11, or simm13 sign-extended to 64 bits.

Table 23: Allowed Accesses to ASIs (V9=11)

Value Access Type Processor State
(PSTATE.PRIV) Result of ASI Access

0016..7F16 Restricted
Nonprivileged (0) privileged_action exception

Privileged (1) Valid access

8016..FF16 Unrestricted
Nonprivileged (0) Valid access

Privileged (1) Valid access

V9

6.3.4 Control-transfer Instructions (CTIs) 123

Note: The value of r[0] always reads as zero, and writes to it are ignored.

6.3.3.1 Setting Condition Codes

Most integer arithmetic instructions have two versions: one sets the integer condition
codes (icc and xcc) as a side effect; the other does not affect the condition codes. A special
comparison instruction for integer values is not needed, since it is easily synthesized using
the “subtract and set condition codes” (SUBcc) instruction. See G.3, “Synthetic Instruc-
tions”, for details.

6.3.3.2 Shift Instructions

Shift instructions shift an r register left or right by a constant or variable amount. None of
the shift instructions changes the condition codes.

6.3.3.3 Set High 22 Bits of Low Word

The “set high 22 bits of low word of an r register” instruction (SETHI) writes a 22-bit con-
stant from the instruction into bits 31 through 10 of the destination register. It clears the
low-order 10 bits and high-order 32 bits, and it does not affect the condition codes. Its pri-
mary use is to construct constants in registers.

6.3.3.4 Integer Multiply/Divide

The integer multiply instruction performs a 64 × 64 A 64-bit operation; the integer divide
instructions perform 64 ÷ 64 A 64-bit operations. For compatibility with SPARC-V8,
32 × 32 A 64-bit multiply instructions, 64 ÷ 32 A 32-bit divide instructions, and the mul-
tiply step instruction are provided. Division by zero causes a division_by_zero exception.

6.3.3.5 Tagged Add/Subtract

The tagged add/subtract instructions assume tagged-format data, in which the tag is the
two low-order bits of each operand. If either of the two operands has a nonzero tag, or if
32-bit arithmetic overflow occurs, tag overflow is detected. TADDcc and TSUBcc set the
CCR.icc.V bit if tag overflow occurs; they set the CCR.xcc.V bit if 64-bit arithmetic over-
flow occurs. The trapping versions (TADDccTV, TSUBccTV) of these instructions cause
a tag_overflow trap if tag overflow occurs. If 64-bit arithmetic overflow occurs but tag over-
flow does not, TADDccTV and TSUBccTV set the CCR.xcc.V bit but do not trap.

6.3.4 Control-transfer Instructions (CTIs)

These are the basic control-transfer instruction types:

� Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)

� Unconditional branch

� Call and link (CALL)

� Jump and link (JMPL, RETURN)

124 6 Instructions

� Return from trap (DONE, RETRY)

� Trap (Tcc)

A control-transfer instruction functions by changing the value of the next program counter
(nPC) or by changing the value of both the program counter (PC) and the next program
counter (nPC). When only the next program counter, nPC, is changed, the effect of the
transfer of control is delayed by one instruction. Most control transfers in SPARC-V9 are
of the delayed variety. The instruction following a delayed control transfer instruction is
said to be in the delay slot of the control transfer instruction. Some control transfer
instructions (branches) can optionally annul, that is, not execute, the instruction in the
delay slot, depending upon whether the transfer is taken or not-taken. Annulled instruc-
tions have no effect upon the program-visible state nor can they cause a trap.

Programming Note:
The annul bit increases the likelihood that a compiler can find a useful instruction to fill the delay
slot after a branch, thereby reducing the number of instructions executed by a program. For exam-
ple, the annul bit can be used to move an instruction from within a loop to fill the delay slot of the
branch that closes the loop. Likewise, the annul bit can be used to move an instruction from either
the “else” or “then” branch of an “if-then-else” program block to the delay slot of the branch that
selects between them. Since a full set of conditions is provided, a compiler can arrange the code
(possibly reversing the sense of the condition) so that an instruction from either the “else” branch or
the “then” branch can be moved to the delay slot.

Table 24 below defines the value of the program counter and the value of the next program
counter after execution of each instruction. Conditional branches have two forms:
branches that test a condition, represented in the table by “Bcc,” and branches that are
unconditional, that is, always or never taken, represented in the table by “B.” The effect of
an annulled branch is shown in the table through explicit transfers of control, rather than
by fetching and annulling the instruction.

The effective address, EA in Table 24, specifies the target of the control transfer instruc-
tion. The effective address is computed in different ways, depending on the particular
instruction.

PC-relative Effective Address:
A PC-relative effective address is computed by sign extending the instruction’s
immediate field to 64-bits, left-shifting the word displacement by two bits to create
a byte displacement, and adding the result to the contents of the PC.

Register-indirect Effective Address:
A register-indirect effective address computes its target address as either
r[rs1]+r[rs2] if i = 0, or r[rs1]+sign_ext(simm13) if i = 1.

Trap Vector Effective Address:
A trap vector effective address first computes the software trap number as the least
significant 7 bits of r[rs1]+r[rs2] if i = 0, or as the least significant 7 bits of
r[rs1]+sw_trap# if i = 1. The trap level, TL, is incremented. The hardware trap
type is computed as 256 + sw_trap# and stored in TT[TL]. The effective address is
generated by concatenating the contents of the TBA register, the “TL > 0” bit, and

6.3.4 Control-transfer Instructions (CTIs) 125

the contents of TT[TL]. See 5.2.8, “Trap Base Address (TBA) Register”, for
details.

Trap State Effective Address:
A trap state effective address is not computed but is taken directly from either
TPC[TL] or TNPC[TL].

Compatibility Note:
SPARC-V8 specified that the delay instruction was always fetched, even if annulled, and that an
annulled instruction could not cause any traps. SPARC-V9 does not require the delay instruction to
be fetched if it is annulled.

Compatibility Note:
SPARC-V8 left as undefined the result of executing a delayed conditional branch that had a delayed
control transfer in its delay slot. For this reason, programmers should avoid such constructs when
backwards compatibility is an issue.

6.3.4.1 Conditional Branches

A conditional branch transfers control if the specified condition is true. If the annul bit is
0, the instruction in the delay slot is always executed. If the annul bit is 1, the instruction in
the delay slot is not executed unless the conditional branch is taken. Note: The annul
behavior of a taken conditional branch is different from that of an unconditional branch.

See 9.3, “Branches and Branch Prediction” for detailed information about branch predic-
tion in SPARC64-III.

Table 24: Control Transfer Characteristics (V9=13)

Instruction Group Address
Form Delayed Taken Annul

Bit New PC New nPC

Non-CTIs — — — — nPC nPC + 4
Bcc PC-relative Yes Yes 0 nPC EA
Bcc PC-relative Yes No 0 nPC nPC + 4
Bcc PC-relative Yes Yes 1 nPC EA
Bcc PC-relative Yes No 1 nPC + 4 nPC + 8
B PC-relative Yes Yes 0 nPC EA
B PC-relative Yes No 0 nPC nPC + 4
B PC-relative Yes Yes 1 EA EA + 4
B PC-relative Yes No 1 nPC + 4 nPC + 8
CALL PC-relative Yes — — nPC EA
JMPL, RETURN Register-ind. Yes — — nPC EA
DONE Trap state No — — TNPC[TL] TNPC[TL] + 4
RETRY Trap state No — — TPC[TL] TNPC[TL]
Tcc Trap vector No Yes — EA EA + 4
Tcc Trap vector No No — nPC nPC + 4

126 6 Instructions

6.3.4.2 Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition is
“always”; it never transfers control if its specified condition is “never.” If the annul bit is 0,
the instruction in the delay slot is always executed. If the annul bit is 1, the instruction in
the delay slot is never executed. Note: The annul behavior of an unconditional branch is
different from that of a taken conditional branch.

6.3.4.3 CALL and JMPL Instructions

The CALL instruction writes the contents of the PC, which points to the CALL instruction
itself, into r[15] (out register 7) and then causes a delayed transfer of control to a PC-rela-
tive effective address. The value written into r[15] is visible to the instruction in the delay
slot.

The JMPL instruction writes the contents of the PC, which points to the JMPL instruction
itself, into r[rd] and then causes a register-indirect delayed transfer of control to the
address given by “r[rs1] + r[rs2]” or “r[rs1] + a signed immediate value”. The value writ-
ten into r[rd] is visible to the instruction in the delay slot.

The CPU always writes all 64 bits of the PC into the destination register. The upper 32 bits
of r[15] (CALL) or to r[rd] (JMPL) are not cleared when PSTATE.AM = 1.

The CPU implements special JMPL and CALL prediction hardware which is 4-entry, 64-
bit FILO to make function returns faster. This hardware is called the Return Prediction
Stack (RPS). When a CALL or JMPL that writes to %o7 (r[15]) occurs, the CPU saves the
return address (PC+8) into the RPS entry indexed by some hardware pointer. When the
synthetic instructions retl (JMPL [%o7+8]) and ret (JMPL [%i7+8]) are executed, the
return address is predicted to be the address stored in the RPS[CWP].

If the prediction in the RPS is incorrect, the CPU backs up and starts issuing instructions
from the correct target address. This backup takes a few extra cycles but does not affect
correctness.

Programming Note:
For maximum performance, software and compilers must take into account how the RPS works.
For example, tricks that do nonstandard returns in hopes of boosting performance may require more
cycles if they cause the wrong RPS value to be used for predicting the address of the return.
Heavily nested calls will also cause earlier entries in the RPS to be overwritten by newer entries,
since the RPS has only four entries. Eventually, some return addresses will be mispredicted because
of the overflow of the RPS.

6.3.4.4 RETURN Instruction

The RETURN instruction is used to return from a trap handler executing in nonprivileged
mode. RETURN combines the control-transfer characteristics of a JMPL instruction with
r[0] specified as the destination register and the register-window semantics of a
RESTORE instruction.

6.3.5 Conditional Move Instructions 127

6.3.4.5 DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a trap.
These instructions restore the machine state to values saved in the TSTATE register.

RETRY returns to the instruction that caused the trap in order to reexecute it. DONE
returns to the instruction pointed to by the value of nPC associated with the instruction
that caused the trap, that is, the next logical instruction in the program. DONE presumes
that the trap handler did whatever was requested by the program and that execution should
continue.

6.3.4.6 Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by its cond field matches the
current state of the condition code register specified by its cc field; otherwise it executes as
a NOP. If the trap is taken, it increments the TL register, computes a trap type that is stored
in TT[TL], and transfers to a computed address in the trap table pointed to by TBA. See
5.2.8, “Trap Base Address (TBA) Register”.

A Tcc instruction can specify one of 128 software trap types. When a Tcc is taken, 256
plus the 7 least significant bits of the sum of the Tcc’s source operands is written to
TT[TL]. The only visible difference between a software trap generated by a Tcc instruc-
tion and a hardware trap is the trap number in the TT register. See Chapter 7, “Traps”, for
more information.

Programming Note:
Tcc can be used to implement breakpointing, tracing, and calls to supervisor software. Tcc can also
be used for run-time checks, such as out-of-range array index checks or integer overflow checks.

6.3.5 Conditional Move Instructions

6.3.5.1 MOVcc and FMOVcc Instructions

The MOVcc and FMOVcc instructions copy the contents of any integer or floating-point
register to a destination integer or floating-point register if a condition is satisfied. The
condition to test is specified in the instruction and may be any of the conditions allowed in
conditional delayed control-transfer instructions. This condition is tested against one of
the six condition codes (icc, xcc, fcc0, fcc1, fcc2, and fcc3), as specified by the instruction.
For example:

fmovdg %fcc2, %f20, %f22

moves the contents of the double-precision floating-point register %f20 to register %f22
if floating-point condition code number 2 (fcc2) indicates a greater-than relation
(FSR.fcc2 = 2). If fcc2 does not indicate a greater-than relation (FSR.fcc2 & 2), then the
move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in pro-
grams. In most implementations, branches will be more expensive than the MOVcc or
FMOVcc instructions. For example, the following C statement:

128 6 Instructions

if (A > B) X = 1; else X = 0;

can be coded as:
cmp %i0, %i2 ! (A > B)
or %g0, 0, %i3 ! set X = 0
movg %xcc, %g0,1, %i3 ! overwrite X with 1 if A > B

which eliminates the need for a branch.

6.3.5.2 MOVr and FMOVr Instructions

The MOVr and FMOVr instructions allow the contents of any integer or floating-point
register to be moved to a destination integer or floating-point register if a condition speci-
fied by the instruction is satisfied. The conditions to test are enumerated in Table 25:

Any of the integer registers may be tested for one of the conditions and the result used to
control the move. For example,

movrnz %i2, %l4, %l6

moves integer register %l4 to integer register %l6, if integer register %i2 contains a non-
zero value.

MOVr and FMOVr can be used to eliminate some branches in programs or to emulate
multiple unsigned condition codes by using an integer register to hold the result of a com-
parison.

6.3.6 Register Window Management Instructions

This subsection describes the instructions used to manage register windows in
SPARC64-III. The privileged registers affected by these instructions are described in
5.2.10, “Register-Window State Registers”.

6.3.6.1 SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register win-
dow by incrementing the CWP register.

If CANSAVE = 0, execution of a SAVE instruction causes a window_spill exception.

If CANSAVE & 0, but the number of clean windows is zero, that is:

Table 25: MOVr and FMOVr Test Conditions

Condition Description
NZ Nonzero
Z Zero
GEZ Greater than or equal to zero
LZ Less than zero
LEZ Less than or equal to zero
GZ Greater than zero

6.3.6 Register Window Management Instructions 129

(CLEANWIN – CANRESTORE) = 0

then SAVE causes a clean_window exception.

If SAVE does not cause an exception, it performs an ADD operation, decrements CAN-
SAVE, and increments CANRESTORE. The source registers for the ADD are from the
old window (the one to which CWP pointed before the SAVE), while the result is written
into a register in the new window (the one to which the incremented CWP points).

6.3.6.2 RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing the
CWP register.

If CANRESTORE = 0, execution of a RESTORE instruction causes a window_fill excep-
tion.

If RESTORE does not cause an exception, it performs an ADD operation, decrements
CANRESTORE, and increments CANSAVE. The source registers for the ADD are from
the old window (the one to which CWP pointed before the RESTORE), while the result is
written into a register in the new window (the one to which the decremented CWP points).

Programming Note:
This note describes a common convention for use of register windows, SAVE, RESTORE, CALL,
and JMPL instructions.

A procedure is invoked by executing a CALL (or a JMPL) instruction. If the procedure requires a
register window, it executes a SAVE instruction. A routine that does not allocate a register window
of its own (possibly a leaf procedure) should not modify any windowed registers except out regis-
ters 0 through 6. See H.1.2, “Leaf-Procedure Optimization” in V9.

A procedure that uses a register window returns by executing both a RESTORE and a JMPL
instruction. A procedure that has not allocated a register window returns by executing a JMPL only.
The target address for the JMPL instruction is normally eight plus the address saved by the calling
instruction, that is, the instruction after the instruction in the delay slot of the calling instruction.

The SAVE and RESTORE instructions can be used to atomically establish a new memory stack
pointer in an r register and switch to a new or previous register window. See H.1.4, “Register Allo-
cation within a Window” in V9.

6.3.6.3 SAVED Instruction

The SAVED instruction should be used by a spill trap handler to indicate that a window
spill has completed successfully. It increments CANSAVE:

CANSAVE @ (CANSAVE + 1)

If the saved window belongs to a different address space (OTHERWIN & 0), it decrements
OTHERWIN:

OTHERWIN @ (OTHERWIN – 1)

Otherwise, the saved window belongs to the current address space (OTHERWIN = 0), so
SAVED decrements CANRESTORE:

V9

V9

130 6 Instructions

CANRESTORE @ (CANRESTORE – 1)

6.3.6.4 RESTORED Instruction

The RESTORED instruction should be used by a fill trap handler to indicate that a window
has been filled successfully. It increments CANRESTORE:

CANRESTORE @ (CANRESTORE + 1)

If the restored window replaces a window that belongs to a different address space
(OTHERWIN & 0), it decrements OTHERWIN:

OTHERWIN @ (OTHERWIN – 1)

Otherwise, the restored window belongs to the current address space (OTHERWIN = 0),
so RESTORED decrements CANSAVE:

CANSAVE @ (CANSAVE – 1)

If CLEANWIN is less than NWINDOWS – 1, the RESTORED instruction increments
CLEANWIN:

if (CLEANWIN < (NWINDOWS – 1)) then CLEANWIN @ (CLEANWIN + 1)

6.3.6.5 Flush Windows Instruction

The FLUSHW instruction flushes all of the register windows except the current window,
by performing repetitive spill traps. The FLUSHW instruction is implemented by causing
a spill trap if any register window (other than the current window) has valid contents. The
number of windows with valid contents is computed as

NWINDOWS – 2 – CANSAVE

If this number is nonzero, the FLUSHW instruction causes a spill trap. Otherwise,
FLUSHW has no effect. If the spill trap handler exits with a RETRY instruction, the
FLUSHW instruction will continue causing spill traps until all the register windows
except the current window have been flushed.

6.3.7 State Register Access

The read/write state register instructions access program-visible state and status registers.
These instructions read/write the state registers into/from r registers. A read/write Ancil-
lary State Register instruction is privileged only if the accessed register is privileged.

The supported RDASR and WRASR instructions are described in Table 26; for more
information see 5.2.11, “Ancillary State Registers (ASRs)”.

Table 26: Supported RDASR and WRASR Instructions

ASR
Number Name Priv?

0 Y Register No
2 Condition Code Register No

6.3.8 Privileged Register Access 131

6.3.8 Privileged Register Access

The read/write privileged register instructions access state and status registers that are vis-
ible only to privileged software. These instructions read/write privileged registers into/
from r registers. The read/write privileged register instructions are privileged.

6.3.9 Floating-point Operate (FPop) Instructions

Floating-point operate instructions (FPops) are generally triadic-register-address instruc-
tions. They compute a result that is a function of one or two source operands and place the
result in one or more destination f registers. The exceptions are:

� Floating-point convert operations, which use one source and one destination operand

� Floating-point compare operations, which do not write to an f register but update one
of the fccn fields of the FSR instead

3 ASI Register No
4 Tick Register Yes/No(a)

5 Program Counter No
6 Floating-Point Register Status No
15 Store Barrier, Membar, SIR(b) Yes/No(c)

18 Hardware Mode Register Yes
19 Graphic Status Register No
20 Set Bits in Sched_Int Register Yes
21 Clear Bits in Sched_Int Register Yes
22 Sched_Int Register Yes
23 Tick Match Register Yes
24 Instruction Fault Type Yes
25 Scratch Registers Yes
26 Data Breakpoint Registers Yes
28 Data Fault Address Yes
29 Data Fault Type Yes
30 Performance Monitor Registers Yes
31 System Control Register Yes
a. Privileged if TICK.NPT = 1, otherwise it is not privi-

leged.
b. These are not really considered RD/WRASR instruc-

tions by SPARC-V9, but they share the RD/WRASR
opcode encoding so they are listed here for clarity.

c. SIR is treated as NOP if executed while PSTATE.PRIV
= 0.

Table 26: Supported RDASR and WRASR Instructions

ASR
Number Name Priv?

132 6 Instructions

The term “FPop” refers to those instructions encoded by the FPop1 and FPop2 opcodes
and does not include branches based on the floating-point condition codes (FBfcc and
FBPfcc) or the load/store floating-point instructions.

The FMOVcc instructions function for the floating-point registers as the MOVcc instruc-
tions do for the integer registers. See 6.3.5.1, “MOVcc and FMOVcc Instructions.”

The FMOVr instructions function for the floating-point registers as the MOVr instructions
do for the integer registers. See 6.3.5.2, “MOVr and FMOVr Instructions.”

If no floating-point unit is present or if PSTATE.PEF = 0 or FPRS.FEF = 0, any instruc-
tion that attempts to access an FPU register, including an FPop instruction, generates an
fp_disabled exception.

All FPop instructions clear the ftt field and set the cexc field, unless they generate an
exception. Floating-point compare instructions also write one of the fccn fields. All FPop
instructions that can generate IEEE exceptions set the cexc and aexc fields, unless they
generate an exception. FABS(s,d,q), FMOV(s,d,q), FMOVcc(s,d,q), FMOVr(s,d,q), and
FNEG(s,d,q) cannot generate IEEE exceptions, so they clear cexc and leave aexc
unchanged.

See 5.1.7.6.2, “ftt = unfinished_FPop” to see which instructions can produce an
unfinished_FPop exception. See 5.1.7.6.3, “ftt = unimplemented_FPop” to see which
instructions can produce an unimplemented_FPop exception.

The CPU-specific FMADD and FMSUB instructions (described in 6.3.10, “Implementa-
tion-dependent Instructions”) are also floating-point operations. They require the floating-
point unit to be enabled; otherwise, an fp_disabled trap is generated. They also affect the
FSR like FPop instructions. However, these instructions are not included in the FPop cate-
gory and, hence, reserved encodings in these opcodes result in an illegal_instruction trap, as
defined in section 6.3.11, “Reserved Opcodes and Instruction Fields”.

6.3.10 Implementation-dependent Instructions

SPARC-V9 provides two instructions that are entirely implementation-dependent:
IMPDEP1 and IMPDEP2.

Compatibility Note:
The IMPDEPn instructions replace the CPopn instructions in SPARC-V8.

SPARC64-III has used the IMPDEP2 instruction to implement the Floating-point Multi-
ply-Add/Subtract and Negative Multiply-Add/Subtract instructions; these have an op3
field = 3716 (IMPDEP2). See A.23.1, “IMPDEP2 (Floating-point Multiply-Add/Sub-
tract)”, for more full definitions of these instructions. Opcode space is reserved in
IMPDEP2 for the quad-precision forms of these instructions. However, SPARC64-III does
not currently implement the quad-precision forms, and the CPU takes an illegal_instruction
exception if a quad precision form is specified. Since these instructions are not part of the
required SPARC-V9 architecture, the OS does not supply software emulation routines for
the quad versions of these instructions.

6.3.11 Reserved Opcodes and Instruction Fields 133

6.3.11 Reserved Opcodes and Instruction Fields

An attempt to execute an opcode to which no instruction is assigned causes a trap. Specif-
ically, attempting to execute a reserved FPop causes an fp_exception_other trap (with
FSR.ftt = unimplemented_FPop); attempting to execute any other reserved opcode shall
cause an illegal_instruction trap. See Appendix E, “Opcode Maps”, for a complete enumera-
tion of the reserved opcodes.

6.3.12 Summary of Unimplemented Instructions

Certain SPARC-V9 instructions are not implemented in hardware in the CPU. Executing
any of these instructions results in implementation-dependent behavior, described in Table
27.

Programming Note:
The OS emulates all of these instructions except RDPR FQ (SPARC64-III does not have or need an
FQ).

6.4 Register Window Management

The state of the register windows is determined by the contents of the set of privileged reg-
isters described in 5.2.10, “Register-Window State Registers”. Those registers are affected
by the instructions described in 6.3.6, “Register Window Management Instructions”. Priv-
ileged software can read/write these state registers directly by using RDPR/WRPR
instructions.

6.4.1 Register Window State Definition

In order for the state of the register windows to be consistent, the following must always
be true:

CANSAVE + CANRESTORE + OTHERWIN = NWINDOWS – 2

Figure 22 on page 64 shows how the register windows are partitioned to obtain the above
equation. The partitions are as follows:

Table 27: SPARC64-III Actions on Unimplemented Instructions

Instructions Trap Taken SPARC64-III-specific Behavior
Quad FPops:
(including FdMULq)

fp_exception_other FSR.ftt = unimplemented_FPop

POPC illegal_instruction None
RDPR FPQ illegal_instruction(a)

a. SPARC64-III causes an illegal_instruction exception rather than the optional fp_exception_
other (with FSR.ftt set to sequence_error).

There is no FPQ
STQF(A)
LDQF(A)

illegal_instruction No hardware quad support

134 6 Instructions

� The current window and the window that overlaps two other valid windows and so
must not be used (in Figure 22, windows 0 and 2, respectively) are always present and
account for the 2 subtracted from NWINDOWS in the right side of the equation.

� Windows that do not have valid contents and can be used (via a SAVE instruction)
without causing a spill trap. These windows (window 1 in Figure 22) are counted in
CANSAVE.

� Windows that have valid contents for the current address space and can be used (via
the RESTORE instruction) without causing a fill trap. These windows (window 4 in
Figure 22) are counted in CANRESTORE.

� Windows that have valid contents for an address space other than the current address
space. An attempt to use these windows via a SAVE (RESTORE) instruction results in
a spill (fill) trap to a separate set of trap vectors, as discussed in the following subsec-
tion. These windows (window 3 in Figure 22) are counted in OTHERWIN.

In addition,

CLEANWIN * CANRESTORE

since CLEANWIN is the sum of CANRESTORE and the number of clean windows fol-
lowing CWP.

In order to use the window-management features of the architecture described in this sec-
tion, the state of the register windows must be kept consistent at all times, except within
the trap handlers for window spilling, filling, and cleaning. While handling window traps
the state may be inconsistent. Window spill/fill strap handlers should be written so that a
nested trap can be taken without destroying state.

Programming Note:
System software is responsible for keeping the state of the register windows consistent at all times.
Failure to do so will cause undefined behavior. For example, CANSAVE, CANRESTORE, and
OTHERWIN must never be greater than or equal to 4 (NWINDOWS–1).

6.4.2 Register Window Traps

Window traps are used to manage overflow and underflow conditions in the register win-
dows, to support clean windows, and to implement the FLUSHW instruction.

6.4.2.1 Window Spill and Fill Traps

A window overflow occurs when a SAVE instruction is executed and the next register win-
dow is occupied (CANSAVE = 0). An overflow causes a spill trap that allows privileged
software to save the occupied register window in memory, thereby making it available for
use.

A window underflow occurs when a RESTORE instruction is executed and the previous
register window is not valid (CANRESTORE = 0). An underflow causes a fill trap that
allows privileged software to load the registers from memory.

6.4.2 Register Window Traps 135

6.4.2.2 Clean-Window Trap

The CPU provides the clean_window trap so that software can create a secure environment
in which it is guaranteed that register windows contain only data from the same address
space.

A clean register window is one in which all of the registers, including uninitialized regis-
ters, contain either zero or data assigned by software executing in the address space to
which the window belongs. A clean window cannot contain register values from another
process, that is, software operating in a different address space.

Supervisor software specifies the number of windows that are clean with respect to the
current address space in the CLEANWIN register. This number includes register windows
that can be restored (the value in the CANRESTORE register) and the register windows
following CWP that can be used without cleaning. Therefore, the number of clean win-
dows that are available to be used by the SAVE instruction is

CLEANWIN – CANRESTORE

The SAVE instruction causes a clean_window trap if this value is zero. This allows supervi-
sor software to clean a register window before it is accessed by a user.

6.4.2.3 Vectoring of Fill/Spill Traps

In order to make handling of fill and spill traps efficient, SPARC-V9 provides multiple
trap vectors for the fill and spill traps. These trap vectors are determined as follows:

� Supervisor software can mark a set of contiguous register windows as belonging to an
address space different from the current one. The count of these register windows is
kept in the OTHERWIN register. A separate set of trap vectors (fill_n_other and spill_n_
other) is provided for spill and fill traps for these register windows (as opposed to reg-
ister windows that belong to the current address space).

� Supervisor software can specify the trap vectors for fill and spill traps by presetting the
fields in the WSTATE register. This register contains two subfields, each three bits
wide. The WSTATE.NORMAL field is used to determine one of eight spill (fill) vec-
tors to be used when the register window to be spilled (filled) belongs to the current
address space (OTHERWIN = 0). If the OTHERWIN register is nonzero, the
WSTATE.OTHER field selects one of eight fill_n_other (spill_n_other) trap vectors.

See Chapter 7, “Traps”, for more details on how the trap address is determined.

6.4.2.4 CWP on Window Traps

On a window trap the CWP is set to point to the window that must be accessed by the trap
handler, as follows (Note: All arithmetic on CWP is done modulo NWINDOWS).

� If the spill trap occurs due to a SAVE instruction (when CANSAVE = 0), there is an
overlap window between the CWP and the next register window to be spilled:

CWP @ (CWP + 2) mod NWINDOWS

136 6 Instructions

If the spill trap occurs due to a FLUSHW instruction, there can be unused windows
(CANSAVE) in addition to the overlap window, between the CWP and the window to
be spilled:

CWP @ (CWP + CANSAVE + 2) mod NWINDOWS

Implementation Note:
All spill traps can use

CWP @ (CWP + CANSAVE + 2) mod NWINDOWS

since CANSAVE is zero whenever a trap occurs due to a SAVE instruction.

� On a fill trap, the window preceding CWP must be filled:
CWP @ (CWP – 1) mod NWINDOWS

� On a clean_window trap, the window following CWP must be cleaned. Then
CWP @ (CWP + 1) mod NWINDOWS

6.4.2.5 Window Trap Handlers

The trap handlers for fill, spill, and clean_window traps must handle the trap appropriately
and return using the RETRY instruction, to reexecute the trapped instruction. The state of
the register windows must be updated by the trap handler, and the relationship among
CLEANWIN, CANSAVE, CANRESTORE, and OTHERWIN must remain consistent.
The following recommendations should be followed:

� A spill trap handler should execute the SAVED instruction for each window that it
spills.

� A fill trap handler should execute the RESTORED instruction for each window that it
fills.

� A clean_window trap handler should increment CLEANWIN for each window that it
cleans:

CLEANWIN @ (CLEANWIN + 1)

Window trap handlers in SPARC64-III can be very efficient. See H.2.2, “Example Code
for Spill Handler” in V9 for details and sample code.V9

7 Traps

7.1 Overview
A trap is a vectored transfer of control to supervisor software through a trap table that con-
tains the first eight (thirty-two for clean window, spill, fill, 32i_instruction_access_MMU_
miss, 32i_data_access_MMU_miss, and 32i_data_access_protection traps) instructions of
each trap handler. The base address of the table is established by supervisor software, by
writing the Trap Base Address (TBA) register. The displacement within the table is deter-
mined by the trap type and the current trap level (TL). One-half of the table is reserved for
hardware traps; one-quarter is reserved for software traps generated by Tcc instructions;
the remaining quarter is reserved for future use.

A trap behaves like an unexpected procedure call. It causes the hardware to

1. Save certain processor state (program counters, CWP, ASI, CCR, PSTATE, and the
trap type) on a hardware register stack

2. Enter privileged execution mode with a predefined PSTATE

3. Begin executing trap handler code in the trap vector

When the trap handler has finished, it uses either a DONE or RETRY instruction to return.

A trap may be caused by a Tcc instruction, an instruction-induced exception, a reset, an
asynchronous error, or an interrupt request not directly related to a particular instruction.
The processor must appear to behave as though, before executing each instruction, it
determines if there are any pending exceptions or interrupt requests. If there are pending
exceptions or interrupt requests, the processor selects the highest-priority exception or
interrupt request and causes a trap.

Thus, an exception is a condition that makes it impossible for the processor to continue
executing the current instruction stream without software intervention. A trap is the
action taken by the processor when it changes the instruction flow in response to the pres-
ence of an exception, interrupt, or Tcc instruction.

7.2 Processor States, Normal and Special Traps
The processor is always in one of three discrete states:

138 7 Traps

� execute_state, which is the normal execution state of the processor

� RED_state (Reset, Error, and Debug state), which is a restricted execution state
reserved for processing traps that occur when TL = MAXTL – 1, and for processing
hardware- and software-initiated resets

� error_state, which is a halted state that is entered as a result of a trap when
TL = MAXTL

Traps processed in execute_state are called normal traps. Traps processed in RED_state
are called special traps.

Figure 67 shows the processor state diagram.

Figure 67: Processor State Diagram (V9=37)

7.2.1 RED_state

RED_state is an acronym for Reset, Error, and Debug state. The processor enters RED_
state under any one of the following conditions:

� A trap is taken when TL = MAXTL–1.

� Any of the four reset requests occurs (POR, XIR, SIR).

� System software sets PSTATE.RED = 1.

RED_state serves two mutually exclusive purposes:

� During trap processing, it indicates that there are no more available trap levels; that is,
if another nested trap is taken, the processor will enter error_state and halt. RED_state
provides system software with a restricted execution environment.

� It provides the execution environment for all reset processing.

RED_stateexecute_state error_state

POR,

Including Power Off

Trap or SIR @

Trap @
TL = MAXTL

Trap @
TL = MAXTL–1,

DONE,

TL = MAXTL

RED = 1

RED = 0
RETRY,

XIR

Any State

Trap or SIR @
TL < MAXTL

Trap @
TL < MAXTL–1

Trap or SIR @
TL< MAXTL,

7.2.1 RED_state 139

RED_state is indicated by PSTATE.RED. When this bit is set, the processor is in RED_
state; when this bit is clear, the processor is not in RED_state, independent of the value of
TL. Executing a DONE or RETRY instruction in RED_state restores the stacked copy of
the PSTATE register, which clears the PSTATE.RED flag if the stacked copy had it
cleared. System software can also set or clear the PSTATE.RED flag with a WRPR
instruction, which also forces the processor to enter or exit RED_state, respectively. In this
case, the WRPR instruction should be placed in the delay slot of a jump, so that the PC can
be changed in concert with the state change.

Programming Note:
Setting TL = MAXTL with a WRPR instruction does not also set PSTATE.RED = 1; nor does it
alter any other machine state. The values of PSTATE.RED and TL are independent.

Setting PSTATE.RED via a WRPR instruction causes the CPU to execute in RED_state. This
results in the execution environment, as defined in 7.2.1.2, “RED_state Execution Environment”.
However, it is different from a RED_state trap in the sense that there are no trap related changes in
the machine state (e.g., TL does not change).

7.2.1.1 RED_state Trap Table

Traps occurring in RED_state or traps that cause the processor to enter RED_state use an
abbreviated trap vector. The RED_state trap vector is constructed so that it can overlay the
normal trap vector if necessary. Figure 68 illustrates the RED_state trap vector layout.

‡TT = 3 if an externally initiated reset (XIR) occurs while the processor is not in error_state;
TT = trap type of the exception that caused entry into error_state if the externally initiated reset
occurs in error_state.

*TT = trap type of the exception. See Table 29 on page 149.

Figure 68: RED_state Trap Vector Layout (V9=38)

The RED_state trap vector is located at an implementation-dependent address referred to
as RSTVaddr. In SPARC64-III RSTVaddr is implemented as a 49-bit wide register in the
CPU. The value of RSTVaddr is a constant which, for SPARC64-III is
FFFF FFFF F000 000016. This translates to physical address 0000 01FF F000 000016 in
RED_state.

7.2.1.2 RED_state Execution Environment

In RED_state the processor is forced to execute in a restricted environment by overriding
the values of some processor controls and state registers.

Programming Note:
The values are overridden, not set, allowing them to be switched atomically.

Offset TT Reason
0016 0 Reserved (SPARC-V8 reset)
2016 1 Power-on reset (POR)
6016 3‡ Externally initiated reset (XIR)
8016 4 Software-initiated reset (SIR)
A016 * All other exceptions in RED_state

140 7 Traps

SPARC64-III has the following implementation-dependent behavior in RED_state.

� The CPU executes in sequential mode. This overrides the setting in SCR.sm.

� On entry to and exit from RED_state, the CPU invalidates the I0 cache, prefetch buff-
ers, and the instruction buffer (IB).

� On entry to RED_state, Main Instruction TLB, Micro Instruction TLB, Main Data
TLB, Micro Data TLB are disabled and the corresponding ASR31 bits <30:27> are
set. However, control functions like write to Main TLB are still available.

� While Main TLBs and Micro TLBs are disabled, all accesses are assumed to be non-
cacheable and strongly ordered for data access. See F.7.2, “Translation Off Mode” for
details.

� The software can reset ASR31 bits <30:27> during the RED_state. By doing this,
Main Data TLB and Micro Data TLB can be re-enabled in RED_state. But Main
Instruction TLB and Micro Instruction TLB cannot be re-enabled although the soft-
ware reset their disable bits in RED_state. RED_state overrides ASR31 bits <27, 29>
and assumes they are always one. The bits become effective right after exiting RED_
state.

� XIR Errors are not masked and can cause a trap.

Programming Note:
When RED_state is entered due to component failures, the handler should attempt to recover from
potentially catastrophic error conditions or to disable the failing components. When RED_state is
entered after a reset, the software should create the environment necessary to restore the system to a
running state.

7.2.1.3 RED_state Entry Traps

The following traps are processed in RED_state in all cases.

� POR (Power-on reset): Implemented by scan in SPARC64-III; not really a trap

� WDR (Watchdog reset): Not implemented in SPARC64-III

In addition, the following traps are processed in RED_state if TL < MAXTL when the trap
is taken. Otherwise it is processed in error_state.

� SIR (Software-initiated Reset)

� XIR (Externally initiated reset)

The following SPARC64-III implementation-dependent traps cause entry into RED_state.

� Some watchdog timer overflows cause entry to RED_state with the trap type set to
watchdog (TT = 7F16). See 5.2.11.12, “State Control Register (ASR 31)”, for details.

Traps that occur when TL = MAXTL – 1 also set PSTATE.RED = 1; that is, any trap han-
dler entered with TL = MAXTL runs in RED_state.

Any nonreset trap that sets PSTATE.RED = 1, or that occurs when PSTATE.RED = 1,
branches to a special entry in the RED_state trap vector at RSTVaddr + A016.

7.2.2 Error_state 141

In systems in which it is desired that traps not enter RED_state, the RED_state handler
may transfer to the normal trap vector by executing the following code:

! Assumptions:
! -- In RED_state handler, therefore we know that
! PSTATE.RED = 1, so a WRPR can directly toggle it to 0
! and, we don’t have to worry about intervening traps.
! -- Registers %g1 and %g2 are available as scratch registers.
...
#define PSTATE_RED 0x0020 ! PSTATE.RED is bit 5
...
rdpr %tt,%g1 ! Get the normal trap vector
rdpr %tba,%g2 ! address in %g2.
add %g1,%g2,%g2
rdpr %pstate,%g1 ! Read PSTATE into %g1.
jmpl %g2 ! Jump to normal trap vector,
wrpr %g1,PSTATE_RED,%pstate ! toggling PSTATE.RED to 0.

7.2.1.4 RED_state Software Considerations

In effect, RED_state reserves one level of the trap stack for recovery and reset processing.
Software should be designed to require only MAXTL – 1 trap levels for normal process-
ing. That is, any trap that causes TL = MAXTL is an exceptional condition that should
cause entry to RED_state.

The minimum value for MAXTL is 4; typical usage of the trap levels is shown in Table 28:

Programming Note:
In order to log the state of the processor, RED_state-handler software needs either a spare register
or a preloaded pointer to a save area. To support recovery, the operating system might reserve one
of the alternate global registers (for example, %a7) for use in RED_state.

7.2.2 Error_state

The processor enters error_state when a trap occurs while the processor is already at its
maximum supported trap level, that is, when TL = MAXTL.

The following implementation-dependent condition causes SPARC64-III to enter error_
state:

� An internal CPU watchdog time-out occurs after no instruction has been committed
for 232 cycles. This is approximately 17 seconds with a 4 nsec clock.

On entry into error_state, the CPU asserts the output signal P_FERR to the UPA Bus.

Table 28: Typical Usage for Trap Levels

TL Usage
0 Normal execution
1 System calls; interrupt handlers; instruction emulation
2 Window spill / fill
3 Page-fault handler
4 RED_state handler

142 7 Traps

Note:
Entry into error_state due to watchdog time-outs (see 5.2.11.12, “State Control Register (ASR
31)”) can be disabled by resetting the WDT_EN and WDT_RED bits in ASR31 to 0. This feature
should only be used during system bringup in order to allow single-stepping in one processor, while
the other processors in an MP system continue to operate on a free-running clock.

7.3 Trap Categories
An exception or interrupt request can cause any of the following trap types:

� A precise trap

� A deferred trap

� A disrupting trap

� A reset trap

7.3.1 Precise Traps

SPARC64-III will generate a precise trap for all traps induced by instruction execution,
except for data_breakpoint traps.

SPARC64-III implements precise traps using two different approaches; these approaches
affect the performance of the CPU but not the semantics of the trap.

Precise Issue Traps (Itraps):
Itraps (issue traps) are detected when the instruction is issued. The CPU treats the
trap as a branch to the trap handler and starts issuing instructions from the corre-
sponding trap handler. Itrap examples include window_fill, window_spill, and illegal_
instruction exceptions, the trap always (TA) instruction, and so on.

Precise Execution Traps (Etraps):
Etraps (execution traps) are detected when the instruction is being executed. The
CPU cancels all instructions following the trap-inducing instruction and waits for
all instructions prior to the trap-inducing instruction to complete. If the trap is still
pending (there are no prior instruction traps), the CPU takes the trap and starts
issuing instructions from the corresponding trap handler. Etrap examples include
fp_exception_other with ftt = unimplemented_FPop, data_access_exception, and
division_by_zero exceptions, and so on.

7.3.2 Deferred Traps

A deferred trap is also induced by a particular instruction, but unlike a precise trap, a
deferred trap may occur after program-visible state has been changed. Such state may
have been changed by the execution of the trap-inducing instruction.

Associated with a particular deferred-trap implementation, there must exist:

� An instruction that causes a potentially outstanding deferred-trap exception to be taken
as a trap

7.3.3 Disrupting Traps 143

� Privileged instructions that access the state information needed by the supervisor soft-
ware to emulate the deferred-trap-inducing instruction and to resume execution of the
trapped instruction stream.

Programming Note:
Among the actions that software can take after a deferred trap are:

� Emulate the instructions that caused the exception and use RETRY to return con-
trol to the instruction at which the deferred trap was invoked, or

� Terminate the program or process associated with the trap.

SPARC64-III implements a deferred trap for the following trap type.

data_breakpoint (SPARC64-III-specific):
The CPU completes all program visible changes for the trap-inducing instruction.
Privileged software can skip the trap-inducing instruction to continue execution in
the context of the trap. The priority of the data_breakpoint is lower than all other
traps that can be induced via a load/store operation. See 5.2.11.9, “Data Breakpoint
Registers (ASR26a and ASR26b)”, for details.

For deferred traps, the TPC points to the trap inducing instruction, which may have made
program visible state changes, as described above. All instructions prior to TPC have com-
pleted and all instruction subsequent to TPC remain unexecuted. Note: SPARC64-III does
not need a deferred-trap queue as described in SPARC-V9, since deferred traps are
deferred only within the scope of the trap-inducing instruction.

7.3.3 Disrupting Traps

A disrupting trap is neither a precise trap nor a deferred trap. A disrupting trap is caused
by a condition (for example, an interrupt), rather than directly by a particular instruction;
this distinguishes it from precise and deferred traps. When a disrupting trap has been ser-
viced, program execution resumes where it left off. This differentiates disrupting traps
from reset traps, which resume execution at the unique reset address.

Disrupting traps are controlled by a combination of the Processor Interrupt Level (PIL)
register and the Interrupt Enable (IE) field of PSTATE. A disrupting trap condition is
ignored when interrupts are disabled (PSTATE.IE = 0) or when the condition’s interrupt
level is lower than that specified in PIL.

A disrupting trap may be due either to an interrupt request not directly related to a previ-
ously executed instruction or to an exception related to a previously executed instruction.
Interrupt requests may be either internal or external. An interrupt request can be induced
by the assertion of a signal not directly related to any particular processor or memory state.
Examples of this are the assertion of an “I/O done” signal.

A disrupting trap related to an earlier instruction causing an exception is similar to a
deferred trap in that it occurs after instructions following the trap-inducing instruction
have modified the processor or memory state. The difference is that the condition which
caused the instruction to induce the trap may lead to unrecoverable errors, since the imple-

144 7 Traps

mentation may not preserve the necessary state. An example of this is an ECC data-access
error reported after the corresponding load instruction has completed.

Disrupting trap conditions should persist until the corresponding trap is taken.

Programming Note:
Among the actions that trap-handler software might take after a disrupting trap are:

� Use RETRY to return to the instruction at which the trap was invoked

(PC @ old PC, nPC @ old nPC), or

� Terminate the program or process associated with the trap.

SPARC64-III implements disrupting traps in response to asynchronous events that are
detected via input signals as well as for asynchronous errors detected within the CPU. The
SPARC64-III CPU recognizes two categories of disrupting traps.

Normal Disrupting Trap:
A normal disrupting trap is caused by interrupt signals from the UPA bus, setting
SCHED_INT register (ASR22), or a watchdog timer overflow when WDT_EN=1
and WDT_RED = 0 in the SCR register, or by an asynchronous error. See
5.2.11.12, “State Control Register (ASR 31)”, for details.

� Interrupts: When the CPU is ready to accept an interrupt signal (based on
PSTATE.IE and the PIL), it stops issuing instructions and waits for the CPU to qui-
esce. It then issues instructions from the corresponding trap handler if the interrupt
condition is still valid. The TPC points to the instruction that would have executed
in the absence of the disrupting trap. All instructions prior to TPC have completed
and all instructions including and subsequent to TPC remain unexecuted.

� Watchdog: The TPC points to the earliest uncommitted instruction.

� Asynchronous error: The TPC points to the instruction that would have executed in
the absence of the disrupting trap. All instruction including and subsequent to TPC
remain unexecuted.

RED_state Disrupting Trap:
A RED-state disrupting trap is caused by an external signal (XIR). Watchdog timer
overflows can also cause a RED_state disrupting trap if WDT_RED = 1 in the
SCR register. See 5.2.11.12, “State Control Register (ASR 31)” for details. When
the CPU detects such a signal, it cancels all instructions that have been issued and
waits for the CPU to quiesce. The CPU may not be able to cancel a store instruc-
tion that has been issued to the D1-Cache. Note: The same applies to loads (to I/O
registers) that have side effects. The TPC points to the instruction that has not exe-
cuted (has not made any program-visible state change). The exception to this rule:
TPC points to a load/store operation, in which case the load/store operation may
have caused program visible state changes. All instructions prior to TPC have
completed, and all instructions subsequent to TPC remain unexecuted.

7.3.4 Reset Traps 145

7.3.4 Reset Traps

A reset trap occurs when supervisor software or the implementation’s hardware deter-
mines that the machine must be reset to a known state. Reset traps differ from disrupting
traps, since they do not resume execution of the program that was running when the reset
trap occurred.

Power-on Reset (POR) is implemented by scanning in the reset state on SPARC64-III.

The following reset traps are defined for SPARC64-III:

Software-initiated reset (SIR):
Initiated by software by executing the SIR instruction.

Power-on reset (POR):
Initiated when power is applied (or reapplied) to the processor.

Externally initiated reset (XIR):
Initiated in response to an external signal. This reset trap is normally used for criti-
cal system events, such as power failure.

7.3.5 Uses of the Trap Categories

The SPARC-V9 trap model stipulates that:

1. Reset traps, except software_initiated_reset traps, occur asynchronously to program exe-
cution.

2. When recovery from an exception can affect the interpretation of subsequent instruc-
tions, such exceptions shall be precise. These exceptions are:
� software_initiated_reset
� instruction_access_exception
� privileged_action
� privileged_opcode
� trap_instruction
� instruction_access_error
� clean_window
� fp_disabled
� LDDF_mem_address_not_aligned
� STDF_mem_address_not_aligned
� tag_overflow
� spill_n_normal
� spill_n_other
� fill_n_normal

� fill_n_other

3. All exceptions that occur as the result of program execution are precise in
SPARC64-III, except for data_breakpoint.

146 7 Traps

4. An exception caused after the initial access of a multiple-access load or store instruc-
tion (load-store doubleword, LDSTUB, CASA, CASXA, or SWAP) that causes a cata-
strophic exception is precise.

5. Exceptions caused by external events unrelated to the instruction stream, such as inter-
rupts, are disrupting.

A deferred trap may occur one instruction after the trap-inducing instruction is dispatched.

The only deferred trap in SPARC64-III is data_breakpoint. Even on a deferred trap the TPC
points to the instruction that caused the trap and following instructions have not yet exe-
cuted. Thus SPARC64-III does not need an integer or floating-point deferred-trap queue.

7.4 Trap Control
Several registers control how any given trap is processed:

� The interrupt enable (IE) field in PSTATE and the processor interrupt level (PIL) regis-
ter control interrupt processing.

� The enable floating-point unit (FEF) field in FPRS, the floating-point unit enable
(PEF) field in PSTATE, and the trap enable mask (TEM) in the FSR control floating-
point traps.

� The TL register, which contains the current level of trap nesting, controls whether a
trap causes entry to execute_state, RED_state, or error_state.

� PSTATE.TLE determines whether implicit data accesses in the trap routine will be
performed using the big- or little-endian byte order.

7.4.1 PIL Control

SPARC64-III receives external interrupts from the UPA interconnect. They cause an
interrupt_vector_trap (TT=6016). The interrupt vector trap handler reads the interrupt infor-
mation and then schedules SPARC-V9 compatible interrupts by writing bits in the
SCHED_INT register. See 5.2.11.5, “Schedule Interrupt (SCHED_INT) Register
(ASR22)” for details.

If the PIL register is modified (with a WRPR instruction) using a source register (other
than %g0 + imm), the CPU does not respond to interrupt requests until the WRPR instruc-
tion completes (that is, until the new value of PIL is available).

During handling of SPARC-V9 compatible interrupts by the CPU, the PIL register is
checked twice. The first check causes the CPU to quiesce to a point where no instructions
are active. At this point the value of the PIL register is compared against the current inter-
rupt level to determine if all criteria are still met for the interrupt. If so, the interrupt will
be taken.

Between the execution of instructions, the IU prioritizes the outstanding exceptions and
interrupt requests according to Table 30 on page 150. At any given time, only the highest
priority exception or interrupt request is taken as a trap.1 When there are multiple out-

7.4.2 TEM Control 147

standing exceptions or interrupt requests, SPARC-V9 assumes that lower-priority interrupt
requests will persist and lower-priority exceptions will recur if an exception-causing
instruction is reexecuted.

For interrupt requests, the IU compares the interrupt request level against the processor
interrupt level (PIL) register. If the interrupt request level is greater than PIL, the processor
takes the interrupt request trap, assuming there are no higher-priority exceptions outstand-
ing.

SPARC64-III takes a normal disrupting trap for external interrupt signals.

7.4.2 TEM Control

The occurrence of floating-point traps of type IEEE_754_exception can be controlled with
the user-accessible trap enable mask (TEM) field of the FSR. If a particular bit of TEM is
1, the associated IEEE_754_exception can cause an fp_exception_ieee_754 trap.

If a particular bit of TEM is 0, the associated IEEE_754_exception does not cause an fp_
exception_ieee_754 trap. Instead, the occurrence of the exception is recorded in the FSR’s
accrued exception field (aexc).

If an IEEE_754_exception results in an fp_exception_ieee_754 trap, then the destination f
register, fccn, and aexc fields remain unchanged. However, if an IEEE_754_exception does
not result in a trap, then the f register, fccn, and aexc fields are updated to their new values.

7.5 Trap-table Entry Addresses
Privileged software initializes the trap base address (TBA) register to the upper 49 bits of
the trap-table base address. Bit 14 of the vector address (the “TL>0” field) is set based on
the value of TL at the time the trap is taken; that is, to 0 if TL = 0 and to 1 if TL > 0. Bits
13..5 of the trap vector address are the contents of the TT register. The lowest five bits of
the trap address, bits 4..0, are always 0 (hence each trap-table entry is at least 25 or 32
bytes long). Figure 69 illustrates this.

Figure 69: Trap Vector Address (V9=39)

1. The highest priority exception or interrupt is the one with the lowest priority value in Table 30. For
example, a priority 2 exception is processed before a priority 3 exception.

63 15 14 0

TBA<63:15>

13 45

TL>0 TTTL 00000

148 7 Traps

7.5.1 Trap Table Organization

The trap table layout is as illustrated in Figure 70.

Figure 70: Trap Table Layout (V9=40)

The trap table for TL = 0 comprises 512 32-byte entries; the trap table for TL > 0 com-
prises 512 more 32-byte entries. Therefore, the total size of a full trap table is
512 × 32 × 2, or 32K bytes. However, if privileged software does not use software traps
(Tcc instructions) at TL > 0, the table can be made 24K bytes long.

7.5.2 Trap Type (TT)

When a normal trap occurs, a value that uniquely identifies the trap is written into the cur-
rent 9-bit TT register (TT[TL]) by hardware. Control is then transferred into the trap table
to an address formed by the TBA register (“TL>0”) and TT[TL] (see 5.2.8, “Trap Base
Address (TBA) Register”). The lowest five bits of the address are always zero; each entry
in the trap table may contain the first eight instructions of the corresponding trap handler.

Programming Note:
The spill/fill and clean_window trap types are spaced such that their trap-table entries are 128 bytes
(32 instructions) long. This allows the complete code for one spill/fill or clean_window routine to
reside in one trap-table entry.

When a special trap occurs, the TT register is set as described in 7.2.1, “RED_state”, Con-
trol is then transferred into the RED_state trap table to an address formed by the RST-
Vaddr and an offset depending on the condition.

TT values 00016..0FF16 are reserved for hardware traps. TT values 10016..17F16 are
reserved for software traps (traps caused by execution of a Tcc instruction). TT values
18016..1FF16 are reserved for future uses. The assignment of TT values to traps is shown in
Table 29; Table 30 lists the traps in priority order. Traps marked with ‘†’ are the
SPARC64-III-specific traps.

Programming Note:
These two tables correspond to tables 14 and 15 in V9, except that unimplemented traps in
SPARC64-III are omitted from tables 29 and 30.

The trap type for the clean_window exception is 02416. Three subsequent trap vectors
(02516..02716) are reserved to allow for an inline (branchless) trap handler. Window spill/

Value of TL
Before the Trap

Trap Table Contents Trap Type

TL = 0

Hardware traps
Spill/fill traps
Software traps
Reserved

00016..07F16
08016..0FF16
10016..17F16
18016..1FF16

TL > 0

Hardware traps
Spill/fill traps
Software traps
Reserved

20016..27F16
28016..2FF16
30016..37F16
38016..3FF16

7.5.2 Trap Type (TT) 149

fill traps are described in 7.5.2.1. Three subsequent trap vectors are reserved for each spill/
fill vector, to allow for an inline (branchless) trap handle

Table 29: Exception and Interrupt Requests, by TT Value (V9=14)

Exception or Interrupt Request TT Priority Comments
power_on_reset 00116 0
externally_initiated_reset 00316 1
software_initiated_reset 00416 1
RED_state_exception 00516 1
instruction_access_exception 00816 5 MMU misses–protection exceptions only
instruction_access_error 00A16 3
illegal_instruction 01016 7
privileged_opcode 01116 6
fp_disabled 02016 8
fp_exception_ieee_754 02116 11
fp_exception_other 02216 11
tag_overflow 02316 14
clean_window 02416..02716 10
division_by_zero 02816 15
data_access_exception 03016 12
data_access_error 03216 12
mem_address_not_aligned 03416 10
LDDF_mem_address_not_aligned 03516 10
STDF_mem_address_not_aligned 03616 10
privileged_action 03716 11
interrupt_level_n (n = 1..15) 04116..04F16 32–n
interrupt_vector_trap † 06016 16
data_breakpoint † 06116 14
programmed_emulation_trap † 06216 6
async_error † 06316 2
32i_instruction_access_MMU_miss † 06416..06716 2 32 instr. trap for I-TLB miss
32i_data_access_MMU_miss † 06816..06B16 12 32 instr. trap for D-TLB miss
32i_data_access_protection † 06C16..06F16 12 32 instr. trap for data protection, including

write to clean page.
Watchdog † 07F16 1
spill_n_normal (n = 0..7) 08016..09F16 9
spill_n_other (n = 0..7) 0A016..0BF16 9
fill_n_normal (n = 0..7) 0C016..0DF16 9
fill_n_other (n = 0..7) 0E016..0FF16 9
trap_instruction 10016..17F16 16

150 7 Traps

Table 30: Exception and Interrupt Requests, by Priority (0 = High; 31 = Low) (V9=15)

Exception or Interrupt Request TT Priority
power_on_reset 00116 0
externally_initiated_reset 00316 1
software_initiated_reset 00416 1
RED_state_exception 00516 1
Watchdog † 07F16 1
asnc_error † 06316 2
32i_instruction_access_MMU_miss † 06416..06716 2
instruction_access_error 00A16 3
instruction_access_exception 00816 5
privileged_opcode 01116 6
programmed_emulation_trap † 06216 6
illegal_instruction 01016 7
fp_disabled 02016 8
spill_n_normal (n = 0..7) 08016..09F16 9
spill_n_other (n = 0..7) 0A016..0BF16 9
fill_n_normal (n = 0..7) 0C016..0DF16 9
fill_n_other (n = 0..7) 0E016..0FF16 9
clean_window 02416..02716 10
mem_address_not_aligned 03416 10
LDDF_mem_address_not_aligned 03516 10
STDF_mem_address_not_aligned 03616 10
fp_exception_ieee_754 02116 11
fp_exception_other 02216 11
privileged_action 03716 11
data_access_exception 03016 12
data_access_error 03216 12
32i_data_access_MMU_miss † 06416..06B16 12
32i_data_access_protection † 06C16..06F16 12
tag_overflow 02316 14
data_breakpoint † 06116 14
division_by_zero 02816 15
interrupt_vector_trap † 06016 16
trap_instruction 10016..17F16 16
interrupt_level_n (n = 1..15) 04116..04F16 32–n

7.5.3 Details of Supported Traps 151

7.5.2.1 Trap Type for Spill/Fill Traps

The trap type for window spill/fill traps is determined based on the contents of the OTH-
ERWIN and WSTATE registers as shown in Figure 71:

Figure 71: Trap Type Encoding For Spill / Fill Traps

The fields have the following values:

SPILL_OR_FILL:
0102 for spill traps; 0112 for fill traps

OTHER:
(OTHERWIN&0)

WTYPE:
If (OTHER) then WSTATE.OTHER else WSTATE.NORMAL

7.5.3 Details of Supported Traps

7.5.3.1 New 32 Instruction Length Traps

SPARC64-III supports three 32 instruction traps for handling the most performance sensi-
tive MMU traps:
1. 32i_instruction_access_MMU_miss

2. 32i_data_access_MMU_miss

3. 32i_data_access_protection

The first two traps are taken when the main TLBs miss on an instruction or data access.
The third type of trap is taken when a protection violation occurs. The common case of
this trap would be when a write request is made to a page marked as clean in the TLB.

Each of these trap vectors takes up 4 slots in the trap table; this means that each trap han-
dlers can contain up to 32 instructions before a branch is needed.

7.5.3.2 Other SPARC64-III Implementation-Specific Traps

SPARC64-III supports the following implementation-specific trap types:
1. interrupt_vector_trap

2. data_breakpoint

3. async_error

4. watchdog

5. programmed_emulation_trap

Trap Type

05 2

0SPILL_OR_FILL

1468

0WTYPEOTHER

152 7 Traps

7.5.3.3 Unimplemented Traps in SPARC64-III
1. Watchdog reset

2. instruction_access_MMU_miss

3. unimplemented_LDD

4. unimplemented_STD

5. internal_processor_error

6. data_access_MMU_miss

7. data_access_protection

8. LDQF_mem_address_not_aligned

9. STQF_mem_address_not_aligned

10. async_data_error

7.5.4 Trap Priorities

Table 29 on page 149 shows the assignment of traps to TT values and the relative priority
of traps and interrupt requests. Priority 0 is highest, priority 31 is lowest; that is, if X < Y, a
pending exception or interrupt request with priority X is taken instead of a pending excep-
tion or interrupt request with priority Y.

However, the TT values for the exceptions and interrupt requests shown in Table 29 must
remain the same for every implementation.

The trap priorities given above always need to be considered in light of how the CPU actu-
ally issues and executes instructions. For example, if an instruction_access_error occurs
(priority 3), it will be taken even if the instruction was an SIR (priority 1). This occurs
because the CPU gets the instruction_access_error during I-fetch and never actually issues
or executes the instruction, so the SIR is never seen by the backend of the CPU. This is an
obvious case, but there are other more subtle cases.

In summary, the trap priorities are used to prioritize traps that occur in the same clock
cycle. They do not take into consideration that an instruction may be alive for multiple
cycles and that a trap may be detected and initiated early in the life on an instruction. Once
the early trap is taken, any errors that might have occurred later in the instruction’s life
will not be seen.

7.5.4.1 Priority Ordering of Priority 1 and 2 Traps

Since multiple priority 1 and 2 traps can occur simultaneously, SPARC64-III enforces the
following priority within the priority 1 and 2 traps:

1. XIR

2. SIR

3. async_error

7.6 Trap Processing 153

For example, if the SPARC64-III CPU detects an async_error and SIR simultaneously, it
takes the SIR.

7.6 Trap Processing

The processor’s action during trap processing depends on the trap type, the current level of
trap nesting (given in the TL register), and the processor state. All traps use normal trap
processing, except those due to reset requests, catastrophic errors, traps taken when
TL = MAXTL – 1, and traps taken when the processor is in RED_state. These traps use
special RED_state trap processing.

During normal operation, the processor is in execute_state. It processes traps in execute_
state and continues.

When a normal trap or software-initiated reset (SIR) occurs with TL = MAXTL, there are
no more levels on the trap stack, so the processor enters error_state and halts. In order to
avoid this catastrophic failure, SPARC-V9 provides the RED_state processor state. Traps
processed in RED_state use a special trap vector and a special trap-vectoring algorithm.
RED_state vectoring and the setting of the TT value for RED_state traps are described in
7.2.1, “RED_state.”

Traps that occur with TL = MAXTL – 1 are processed in RED_state. In addition, reset
traps are also processed in RED_state. Reset trap processing is described in 7.6.2, “Special
Trap Processing.” Finally, supervisor software can force the processor into RED_state by
setting the PSTATE.RED flag to one.

Once the processor has entered RED_state, no matter how it got there, all subsequent traps
are processed in RED_state until software returns the processor to execute_state or a nor-
mal or SIR trap is taken when TL = MAXTL, which puts the processor in error_state.
Tables 31, 32, and 33 describe the processor mode and trap-level transitions involved in
handling traps:

†This state occurs when software changes TL to MAXTL and does not set PSTATE.RED, or if it
clears PSTATE.RED while at MAXTL.

Table 31: Trap Received While in execute_state (V9=16)

New State, after receiving trap type

Original State Normal Trap
or Interrupt POR XIR,

Impl. Dep. SIR

execute_state
TL < MAXTL – 1

execute_state
TL + 1

RED_state
MAXTL

RED_state
TL + 1

RED_state
TL + 1

execute_state
TL = MAXTL – 1

RED_state
MAXTL

RED_state
MAXTL

RED_state
MAXTL

RED_state
MAXTL

execute_state†

TL = MAXTL
error_state
MAXTL

RED_state
MAXTL

error_state
MAXTL

error_state
MAXTL

154 7 Traps

Implementation Note:
The processor does not recognize interrupts while it is in error_state.

7.6.1 Normal Trap Processing

A normal trap causes the following state changes to occur:

� If the processor is already in RED_state, the new trap is processed in RED_state unless
TL = MAXTL. See 7.6.2.6, “Normal Traps When the Processor Is in RED_state.”

� If the processor is in execute_state and the trap level is one less than its maximum
value, that is, TL = MAXTL–1, the processor enters RED_state. See 7.2.1, “RED_
state” and 7.6.2.1, “Normal Traps with TL = MAXTL – 1.”

� If the processor is in either execute_state or RED_state, and the trap level is already at
its maximum value, that is, TL = MAXTL, the processor enters error_state. See 7.2.2,
“Error_state.”

Otherwise, the trap uses normal trap processing, and the following state changes occur:

� The trap level is set. This provides access to a fresh set of privileged trap-state registers
used to save the current state, in effect, pushing a frame on the trap stack.

TL @ TL + 1

� Existing state is preserved

Table 32: Trap Received While in RED_state (V9=17)

New State, after receiving trap type

Original State Normal Trap
or Interrupt POR XIR,

Impl. Dep. SIR

RED_state
TL < MAXTL – 1

RED_state
TL + 1

RED_state
MAXTL

RED_state
TL + 1

RED_state
TL + 1

RED_state
TL = MAXTL – 1

RED_state
MAXTL

RED_state
MAXTL

RED_state
MAXTL

RED_state
MAXTL

RED_state
TL = MAXTL

error_state
MAXTL

RED_state
MAXTL

error_state
MAXTL

error_state
MAXTL

Table 33: Reset Received While in error_state (V9=18)

New State, after receiving trap type

Original State Normal Trap
or Interrupt POR XIR,

Impl. Dep. SIR

error_state
TL < MAXTL – 1

—
RED_state
MAXTL

RED_state
TL + 1

—

error_state
TL = MAXTL – 1

—
RED_state
MAXTL

RED_state
MAXTL

—

error_state
TL = MAXTL

—
RED_state
MAXTL

error_state
MAXTL

—

7.6.1 Normal Trap Processing 155

TSTATE[TL].CCR @ CCR

TSTATE[TL].ASI @ ASI

TSTATE[TL].PSTATE @ PSTATE

TSTATE[TL].CWP @ CWP

TPC[TL] @ PC

TNPC[TL] @ nPC

� The trap type is preserved.

TT[TL] @ the trap type

� The PSTATE register is updated to a predefined state

PSTATE.MM is unchanged

PSTATE.RED @ 0

PSTATE.PEF @ 1 if FPU is present, 0 otherwise

PSTATE.AM @ 0 (address masking is turned off)

PSTATE.PRIV @ 1 (the processor enters privileged mode)

PSTATE.IE @ 0 (interrupts are disabled)

PSTATE.AG @ 1 (global regs are replaced with alternate globals)

PSTATE.CLE @ PSTATE.TLE (set endian mode for traps)

PSTATE.TLE is unchanged

� For a register-window trap only, CWP is set to point to the register window that must
be accessed by the trap-handler software, that is:

� If TT[TL] = 02416 (a clean_window trap), then CWP @ CWP + 1.

� If (08016) TT[TL]) 0BF16) (window spill trap), then CWP @
CWP + CANSAVE + 2.

� If (0C016) TT[TL]) 0FF16) (window fill trap), then CWP @ CWP–1.

For nonregister-window traps, CWP is not changed.

� Control is transferred into the trap table:
PC @ TBA<63:15> (TL>0) TT[TL] 0 0000

nPC @ TBA<63:15> (TL>0) TT[TL] 0 0100

where “(TL>0)” is 0 if TL = 0, and 1 if TL > 0.

Interrupts are ignored as long as PSTATE.IE = 0.

156 7 Traps

Programming Note:
State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only changed autonomously by the processor
when a trap is taken while TL = n–1; however, software can change any of these values with a
WRPR instruction when TL = n.

7.6.2 Special Trap Processing

The following conditions invoke special trap processing:

� Traps taken with TL = MAXTL – 1

� Power-on reset traps

� Watchdog reset traps

� Externally initiated reset traps

� Software-initiated reset traps

� Traps taken when the processor is already in RED_state

� Implementation-dependent traps

7.6.2.1 Normal Traps with TL = MAXTL – 1

Normal traps that occur when TL = MAXTL – 1 are processed in RED_state. The follow-
ing state changes occur:

� The trap level is advanced.

TL @ MAXTL

� Existing state is preserved

TSTATE[TL].CCR @ CCR

TSTATE[TL].ASI @ ASI

TSTATE[TL].PSTATE @ PSTATE

TSTATE[TL].CWP @ CWP

TPC[TL] @ PC

TNPC[TL] @ nPC

� The trap type is preserved.

TT[TL] @ the trap type

� The PSTATE register is set as follows:

PSTATE.MS @ 002 (TSO)

PSTATE.RED @ 1 (enter RED_state)

PSTATE.PEF @ 1 if FPU is present, 0 otherwise

7.6.2 Special Trap Processing 157

PSTATE.AM @ 0 (address masking is turned off)

PSTATE.PRIV @ 1 (the processor enters privileged mode)

PSTATE.IE @ 0 (interrupts are disabled)

PSTATE.AG @ 1 (global regs are replaced with alternate globals)

PSTATE.CLE @ 0 (big-endian mode for traps)

PSTATE.TLE @ 0 (big-endian mode for traps)

� For a register-window trap only, CWP is set to point to the register window that must
be accessed by the trap-handler software, that is:

� If TT[TL] = 02416 (a clean_window trap), then CWP @ CWP + 1.

� If (08016) TT[TL]) 0BF16) (window spill trap), then CWP @
CWP + CANSAVE + 2.

� If (0C016) TT[TL]) 0FF16)(window fill trap), then CWP @ CWP–1.

For nonregister-window traps, CWP is not changed.

� Implementation-specific state changes; for example, disabling an MMU

� Control is transferred into the RED_state trap table
PC @ RSTVaddr<63:8> 1010 00002

nPC @ RSTVaddr<63:8> 1010 01002

7.6.2.2 Power-On Reset (POR) Traps

POR traps occur when power is applied to the processor. If the processor is in error_state,
a power-on reset (POR) brings the processor out of error_state and places it in RED_state.
Processor state is undefined after POR, except for the following:

� The trap level is set.

TL @ MAXTL

� The trap type is set.

TT[TL] @ 00116

� The PSTATE register is set as follows:

PSTATE.MM @ 002 (TSO)

PSTATE.RED @ 1 (enter RED_state)

PSTATE.PEF @ 1 if FPU is present, 0 otherwise

PSTATE.AM @ 0 (address masking is turned off)

PSTATE.PRIV @ 1 (the processor enters privileged mode)

PSTATE.IE @ 0 (interrupts are disabled)

158 7 Traps

PSTATE.AG @ 1 (global regs are replaced with alternate globals)

PSTATE.TLE @ 0 (big-endian mode for traps)

PSTATE.CLE @ 0 (big-endian mode for non-traps)

� The TICK register is protected.

TICK.NPT @ 1 (TICK unreadable by nonprivileged software)

� Implementation-specific state changes; for example, disabling an MMU

� Control is transferred into the RED_state trap table
PC @ RSTVaddr<63:8> 0010 00002

nPC @ RSTVaddr<63:8> 0010 01002

For any reset when TL = MAXTL, for all n<MAXTL, the values in TPC[n], TNPC[n],
and TSTATE[n] are undefined.

In SPARC64-III POR state is scanned into the CPU from the Scan PROM. After the scan
the CPU clock is started and the CPU begins executing the POR trap handler.

See O.1.1, “Power-on Reset (POR)” for more information.

7.6.2.3 Watchdog Reset (WDR) Traps

SPARC64-III does not support Watchdog Reset (WDR) reset traps.

7.6.2.4 Externally Initiated Reset (XIR) Traps

XIR traps are initiated by an external signal. They behave like an interrupt that cannot be
masked by IE = 0 or PIL. Typically, XIR is used for critical system events such as power
failure, reset button pressed, failure of external components that does not require a WDR
(which aborts operations), or system-wide reset in a multiprocessor.

The following state changes occur:

� If TL = MAXTL, the CPU enters error_state. Otherwise, it does the following:

� The trap level is set.

TL @ TL + 1

� Existing state is preserved.

TSTATE[TL].CCR @ CCR

TSTATE[TL].ASI @ ASI

TSTATE[TL].PSTATE @ PSTATE

TSTATE[TL].CWP @ CWP

TPC[TL] @ PC

TNPC[TL] @ nPC

7.6.2 Special Trap Processing 159

� TT[TL] is set as described below.

� The PSTATE register is set as follows:

PSTATE.MM @ 002 (TSO)

PSTATE.RED @ 1 (enter RED_state)

PSTATE.PEF @ 1 if FPU is present, 0 otherwise

PSTATE.AM @ 0 (address masking is turned off)

PSTATE.PRIV @ 1 (the processor enters privileged mode)

PSTATE.IE @ 0 (interrupts are disabled)

PSTATE.AG @ 1 (global regs are replaced with alternate globals)

PSTATE.CLE @ 0 (big endian mode for traps)

PSTATE.TLE @ 0 (big endian mode for traps)

� Implementation-specific state changes; for example, disabling an MMU.

� Control is transferred into the RED_state trap table.
PC @ RSTVaddr<63:8> 0110 00002

nPC @ RSTVaddr<63:8> 0110 01002

TT is set in the same manner as for watchdog reset. If the processor is in execute_state
when the externally initiated reset (XIR) occurs, TT = 3.

For any reset when TL = MAXTL, for all n<MAXTL, the values in TPC[n], TNPC[n],
and TSTATE[n] are undefined.

See O.1.3, “Externally Initiated Reset (XIR)” for more information.

7.6.2.5 Software-initiated Reset (SIR) Traps

Normally in SPARC-V9 CPUs, SIR traps are initiated by executing an SIR instruction. In
SPARC64-III, however, SIR is initiated by a WRASR #27 (WRSIR) instruction. Supervi-
sor software uses the SIR trap as a panic operation, or a meta-supervisor trap.

The following state changes occur:

� If TL = MAXTL, then enter error_state. Otherwise, do the following:

� The trap level is set.

TL @ TL + 1

� Existing state is preserved

TSTATE[TL].CCR @ CCR

TSTATE[TL].ASI @ ASI

TSTATE[TL].PSTATE @ PSTATE

160 7 Traps

TSTATE[TL].CWP @ CWP

TPC[TL] @ PC

TNPC[TL] @ nPC

� The trap type is set.

TT[TL] @ 0416

� The PSTATE register is set as follows:

PSTATE.MM @ 002 (TSO)

PSTATE.RED @ 1 (enter RED_state)

PSTATE.PEF @ 1 if FPU is present, 0 otherwise

PSTATE.AM @ 0 (address masking is turned off)

PSTATE.PRIV @ 1 (the processor enters privileged mode)

PSTATE.IE @ 0 (interrupts are disabled)

PSTATE.AG @ 1 (global regs are replaced with alternate globals)

PSTATE.CLE @ 0 (big endian mode for traps)

PSTATE.TLE @ 0 (big endian mode for traps)

� Implementation-specific state changes; for example, disabling an MMU.

� Control is transferred into the RED_state trap table
PC @ RSTVaddr<63:8> 1000 00002

nPC @ RSTVaddr<63:8> 1000 01002

For any reset when TL = MAXTL, for all n < MAXTL, the values in TPC[n], TNPC[n],
and TSTATE[n] are undefined.

See O.1.4, “Software Initiated Reset (SIR)” for more information.

7.6.2.6 Normal Traps When the Processor Is in RED_state

Normal traps taken when the processor is already in RED_state are also processed in
RED_state, unless TL = MAXTL, in which case the processor enters error_state.

The processor state shall be set as follows:

� The trap level is set.

TL @ TL + 1

� Existing state is preserved.

TSTATE[TL].CCR @ CCR

TSTATE[TL].ASI @ ASI

7.7 Exception and Interrupt Descriptions 161

TSTATE[TL].PSTATE @ PSTATE

TSTATE[TL].CWP @ CWP

TPC[TL] @ PC

TNPC[TL] @ nPC

� The trap type is preserved.

TT[TL] @ trap type

� The PSTATE register is set as follows:

PSTATE.MM @ 002 (TSO)

PSTATE.RED @ 1 (enter RED_state)

PSTATE.PEF @ 1 if FPU is present, 0 otherwise

PSTATE.AM @ 0 (address masking is turned off)

PSTATE.PRIV @ 1 (the processor enters privileged mode)

PSTATE.IE @ 0 (interrupts are disabled)

PSTATE.AG @ 1 (global regs are replaced with alternate globals)

PSTATE.CLE @ 0 (big endian mode for traps)

PSTATE.TLE @ 0 (big endian mode for traps)

� For a register-window trap only, CWP is set to point to the register window that must
be accessed by the trap-handler software, that is:

� If TT[TL] = 02416 (a clean_window trap), then CWP @ CWP + 1.

� If (08016) TT[TL]) 0BF16) (window spill trap), then
CWP @ CWP + CANSAVE + 2.

� If (0C016) TT[TL]) 0FF16) (window fill trap), then CWP @ CWP – 1.

For nonregister-window traps, CWP is not changed.

� Implementation-specific state changes; for example, disabling an MMU

� Control is transferred into the RED_state trap table
PC @ RSTVaddr<63:8> 1010 00002

nPC @ RSTVaddr<63:8> 1010 01002

7.7 Exception and Interrupt Descriptions
The following paragraphs describe the various exceptions and interrupt requests and the
conditions that cause them. Each exception and interrupt request describes the correspond-
ing trap type as defined by the trap model. Traps marked with a closed bullet ‘� ’ are

162 7 Traps

defined by SPARC-V9 and implemented in SPARC64-III. Traps marked with a dagger ‘†’
are implementation-dependent and defined only in SPARC64-III. Note: This encoding
differs from that shown in V9. Each trap is marked as precise, deferred, disrupting, or
reset. Example exception conditions are included for each exception type. Appendix A,
“Instruction Definitions”, enumerates which traps can be generated by each instruction.

† 32i_data_access_MMU_miss [tt = 06816 through 06B16] (Precise ETrap)
This trap occurs when the MMU detects a Main TLB miss while making an data
access. This trap takes 4 trap vectors. This allows the main TLB miss handler to
execute up to 32 instructions before needing to branch out of the trap handler.

† 32i_data_access_protection [tt = 06C16 through 06F16] (Precise ETrap)
This trap occurs when the MMU detects a Main TLB protection violation while
making a data access. This trap takes 4 trap vectors. This allows the main TLB
miss handler to execute up to 32 instructions before needing to branch out of the
trap handler.

† 32i_instruction_access_MMU_miss [tt = 06416 through 06716] (Precise ITrap)
This trap occurs when the MMU detects a Main TLB miss while making an
instruction access. This trap takes 4 trap vectors. This allows the main TLB miss
handler to execute up to 32 instructions before needing to branch out of the trap
handler.

† async_error [tt = 06316] (Disrupting)
The CPU detects an asynchronous error. See P.7.1, “Read/Write TDU Error Log
Register”, P.7.2, “Read/Write ICU Error Log Register”, and P.7.3, “Read/Write
DC Error Log Register” for details of the types of hardware errors that can cause
this trap.

� clean_window [tt = 02416..02716] (Precise)
A SAVE instruction discovered that the window about to be used contains data
from another address space; the window must be cleaned before it can be used.

� data_access_error [tt = 03216] (Precise)
An error occurred on a data access. The detailed information of the data access

error is logged into the FTYPE field of Data Access Fault Type Register (ASR29).
Below is the list of errors and their descriptions which cause an data_access_error
trap.

µDTLB Multiple Hit:
A mulitple hit in uDTLB occurs on a data access.

 MTLB Parity Error:
A parity error in MTLB occurs on a data access.

 MTLB Multiple Hit:
A mulitple hit in MTLB occurs on a data access.

 D1 Cache Tag Parity Error:
A parity error in D1 Cache Tag occurs on a data access.

7.7 Exception and Interrupt Descriptions 163

D1 Cache Tag Multiple Hit:
A multiple hit in D1 Cache Tag occurs on a data access.

D1 Cache Data ECC Single Bit Error:
An ECC single bit error in D1 Cache Data occurs on a data access.

D1 Cache Data ECC Multiple Bit Error:
An ECC multiple bit error in D1 Cache Data occurs on a data access.

UPA Bus Error:
A S_ERR reply is received from the system controller for a data access.

UPA Time Out:
A S_RTO reply is received from the system controller for a data access.

See 5.2.11.10.2, “Data Access Fault Type Register (ASR29)” for theTYPE encod-
ing and the error priority.

� data_access_exception [tt = 03016] (Precise)
An exception occurred on a data access. The detailed information of the data

access error is logged into FTYPE field of Data Access Fault Type Register
(ASR29). Below is the list of exceptions and their descriptions which cause an
data_access_exception trap.

Invalid ASI:
An attempt to do load or store with undefined or reserved ASI.

Illegal Access to Strongly Ordered Page:
An attempt to access a strongly ordered page by any type of load instruc-
tion with non_faulting ASI.
An attempt to access a strongly ordered page by FLUSH instruction.

Illegal Access to Non Faulting Only Page:
An attempt to access a non faulting only page by any type of load or store
instruction or FLUSH instruction with ASI other than non-faulting ASI.

Illegal Access to Noncacheble Page:
An attempt to access a noncacheable page by atomic instructions (CASA,
CASXA, SWAP, SWAPA, LDSTUB, LDSTUBA).
An attempt to access a noncacheable page by atomic quad load instructions
(LDDA with ASI=24, 2c).
An attempt to access a noncacheable page by FLUSH instruction.

See 5.2.11.10.2, “Data Access Fault Type Register (ASR29)” for the TYPE encod-
ing and the exception prioprity.

† data_breakpoint [tt = 06116] (Deferred)
The virtual address and access privilege of a committed load or store match the
address and access privilege in the Data Breakpoint Register.

164 7 Traps

� division_by_zero [tt = 02816] (Precise)
An integer divide instruction attempted to divide by zero.

� externally_initiated_reset [tt = 00316] (Reset)
An external signal was asserted. This trap is used for catastrophic events such as
power failure, reset button pressed, and system-wide reset in multiprocessor sys-
tems.

� fill_n_normal [tt = 0C016..0DF16] (Precise)
� fill_n_other [tt = 0E016..0FF16] (Precise)

A RESTORE or RETURN instruction has determined that the contents of a regis-
ter window must be restored from memory.

Compatibility Note:
The SPARC-V9 fill_n_* exceptions supersede the SPARC-V8 window_underflow exception.

� fp_disabled [tt = 02016] (Precise)
An attempt was made to execute an FPop, a floating-point branch, or a floating-
point load/store instruction while an FPU was not present, PSTATE.PEF = 0, or
FPRS.FEF = 0.

� fp_exception_ieee_754 [tt = 02116] (Precise)
An FPop instruction generated an IEEE_754_exception and its corresponding trap
enable mask (TEM) bit was 1. The floating-point exception type, IEEE_754_excep-
tion, is encoded in the FSR.ftt, and specific IEEE_754_exception information is
encoded in FSR.cexc.

� fp_exception_other [tt = 02216] (Precise)
An FPop instruction generated an exception other than an IEEE_754_exception. For
example, the FPop is unimplemented, or there was a sequence or hardware error in
the FPU. The floating-point exception type is encoded in the FSR’s ftt field.

� illegal_instruction [tt = 01016] (Precise)
An attempt was made to execute an instruction with an unimplemented opcode, an
ILLTRAP instruction, an instruction with invalid field usage, or an instruction that
would result in illegal processor state. Note: Unimplemented FPop instructions
generate fp_exception_other traps.

� instruction_access_error [tt = 00A16] (Precise)
An error occurred on an instruction access. The detailed information of the

instruction access error is logged into the FTYPE field of Instruction Access Fault
Type Register (ASR24). Below is the list of errors and their descriptions which
cause an instruction_access_error trap.

I0 Cache Tag Parity Error:
A parity error in I0 Cache Tag occurs on an instruction access.

I0 Cache Data Parity Error:
A parity error in I0 Cache Data occurs on an instruction access.

7.7 Exception and Interrupt Descriptions 165

µITLB Multiple Hit:
A mulitple hit in uITLB occurs on an instruction access.

MTLB Parity Error:
A parity error in MTLB occurs on an instruction access.

MTLB Multiple Hit:
A mulitple hit in MTLB occurs on an instruction access.

I1 Cache Tag Parity Error:
A parity error in I1 Cache Tag occurs on an instruction access.

I1 Cache Tag Multiple Hit:
A multiple hit in I1 Cache Tag occurs on an instruction access.

I1 Cache Data ECC Single Bit Error:
An ECC single bit error in I1 Cache Data occurs on an instruction access.

I1 Cache Data ECC Multiple Bit Error:
An ECC multiple bit error in I1 Cache Data occurs on an instruction
access.

UPA Bus Error:
A S_ERR reply is received from the system controller for an instruction
access.

UPA Time Out:
A S_RTO reply is received from the system controller for an instruction
access.

See 5.2.11.7, “Instruction Access Fault Type Register (ASR24)” for the TYPE
encoding and the error prioprity.

� instruction_access_exception [tt = 00816] (Precise)
A protection exception occurred on an instruction access. That is, an MMU indi-
cated that the page was not executable.

� interrupt_level_n [tt = 04116..04F16] (Disrupting)
An interrupt request level of n was presented to the IU, while PSTATE.IE = 1 and
(interrupt request level > PIL).

† interrupt_vector_trap [tt = 06016] (Disrupting)
PSTATE.IE is set and an interrupt transaction (P_INT_REQ) and the interrupt data
are received from the UPA bus.

� LDDF_mem_address_not_aligned [tt = 03516] (Precise)
An attempt was made to execute an LDDF instruction and the effective address
was not doubleword-aligned. See A.25, “Load Floating-point”.

166 7 Traps

� mem_address_not_aligned [tt = 03416] (Precise)
A load/store instruction generated a memory address that was not properly aligned
according to the instruction, or a JMPL or RETURN instruction generated a non-
word-aligned address.

� power_on_reset [tt = 00116] (Reset)
An external signal was asserted. This trap is issued to bring a system reliably from
the power-off to the power-on state.

� privileged_action [tt = 03716] (Precise)
An action defined to be privileged has been attempted while PSTATE.PRIV = 0.
Examples: a data access by nonprivileged software using an ASI value with its
most significant bit = 0 (a restricted ASI), or an attempt to read the TICK register
by nonprivileged software when TICK.NPT = 1.

� privileged_opcode [tt = 01116] (Precise)
An attempt was made to execute a privileged instruction while PSTATE.PRIV = 0.

Compatibility Note:
This trap type is identical to the SPARC-V8 privileged_instruction trap. The name was changed to
distinguish it from the new privileged_action trap type.

† programmed_emulation_trap (tt = 0x062, priority = 6, Precise).
Allow emulation of certain instructions that have not been implemented correctly
in a particular revision of the SPARC64-III CPU. The encoding of instructions that
will cause this trap can be “scanned” into internal registers (not visible to supervi-
sor software) via the debugging console. See 5.2.15, “Emulation Trap Registers”
for details.

� software_initiated_reset [tt = 00416] (Reset)
Caused by the execution of the WRSIR, write to SIR register, instruction. It allows
system software to reset the processor.

� spill_n_normal [tt = 08016..09F16] (Precise)
� spill_n_other [tt = 0A016..0BF16] (Precise)

A SAVE or FLUSHW instruction has determined that the contents of a register
window must be saved to memory.

Compatibility Note:
The SPARC-V9 spill_n_* exceptions supersede the SPARC-V8 window_overflow exception.

� STDF_mem_address_not_aligned [tt = 03616] (Precise)
An attempt was made to execute an STDF instruction and the effective address was
not doubleword-aligned. See A.52, “Store Floating-point”.

� tag_overflow [tt = 02316] (Precise)
A TADDccTV or TSUBccTV instruction was executed, and either 32-bit arith-
metic overflow occurred or at least one of the tag bits of the operands was nonzero.

7.7 Exception and Interrupt Descriptions 167

� trap_instruction [tt = 10016..17F16] (Precise)
A Tcc instruction was executed and the trap condition evaluated to TRUE.

† watchdog [tt = 07F16] (Disrupting)
This trap occurs when the watchdog timer (which will be increased every cycle
and reset on any instruction committed) overflows a value specified in the SCR
register. Whether this trap is handled in RED_state or normal state is determined
by the W_RED bit in the SCR. See 5.2.11.12, “State Control Register (ASR 31)”
for details on how the watchdog timer is enabled and controlled.

All other trap types are reserved.

168 7 Traps

8 Memory Models
Although this chapter contains a great deal of theoretical information, we have included it
so that the discussion of the SPARC64-III’s memory models in 8.1.1 has sufficient back-
ground.

8.1 Introduction

The SPARC-V9 memory models define the semantics of memory operations. The
instruction set semantics require that loads and stores seem to be performed in the order in
which they appear in the dynamic control flow of the program. The actual order in which
they are processed by the memory may be different. The purpose of the memory models is
to specify what constraints, if any, are placed on the order of memory operations.

The memory models apply both to uniprocessor and to shared-memory multiprocessors.
Formal memory models are necessary in order to precisely define the interactions between
multiple processors and input/output devices in a shared-memory configuration. Program-
ming shared-memory multiprocessors requires a detailed understanding of the operative
memory model and the ability to specify memory operations at a low level in order to
build programs that can safely and reliably coordinate their activities. See Appendix J,
“Programming With the Memory Models” in V9 for additional information on the use of
the models in programming real systems.

The SPARC-V9 architecture is a model that specifies the behavior observable by software
on SPARC-V9 systems. Therefore, access to memory can be implemented in any manner,
as long as the behavior observed by software conforms to that of the models described
here and defined in Appendix D, “Formal Specification of the Memory Models” in V9.

The SPARC-V9 architecture defines three different memory models: Total Store Order
(TSO), Partial Store Order (PSO), and Relaxed Memory Order (RMO). All
SPARC-V9 processors must provide Total Store Order (or a more strongly ordered model,
for example, Sequential Consistency) to ensure SPARC-V8 compatibility.

Whether the PSO or RMO models are supported by SPARC-V9 systems is implementa-
tion-dependent; they are not supported as defined by SPARC64-III. See 8.1.1,
“SPARC64-III Hardware Memory Models” for details.

V9

V9

170 8 Memory Models

Figure 72 shows the relationship of the various SPARC-V9 memory models, from the
least restrictive to the most restrictive. Programs written assuming one model will function
correctly on any included model.

Figure 72: Memory Models: Least Restrictive (RMO) to Most Restrictive (TSO)
(V9=41)

SPARC-V9 provides multiple memory models so that:

� Implementations can schedule memory operations for high performance.

� Programmers can create synchronization primitives using shared memory.

These models are described informally in this subsection and formally in Appendix D,
“Formal Specification of the Memory Models” in V9. If there is a conflict in interpretation
between the informal description provided here and the formal models, the formal models
supersede the informal description.

There is no preferred memory model for SPARC-V9. Programs written for Relaxed Mem-
ory Order will work in both Partial Store Order and Total Store Order. Programs written
for Partial Store Order will work in Total Store Order. Programs written for a weak model,
such as RMO, may execute more quickly, since the model exposes more scheduling
opportunities, but may also require extra instructions to ensure synchronization. Multi-
processor programs written for a stronger model will behave unpredictably if run in a
weaker model.

Machines that implement sequential consistency (also called strong ordering or strong
consistency) automatically support programs written for TSO, PSO, and RMO. Sequential
consistency is not a SPARC-V9 memory model. In sequential consistency, the loads,
stores, and atomic load-stores of all processors are performed by memory in a serial order
that conforms to the order in which these instructions are issued by individual processors.
A machine that implements sequential consistency may deliver lower performance than an
equivalent machine that implements a weaker model. Although particular SPARC-V9
implementations may support sequential consistency, portable software must not rely on
having this model available.

Notes About the SPARC64-III Memory Models

From the programmers point of view SPARC64-III completely supports the memory mod-
els specified in SPARC-V9.

However, SPARC64-III makes a distinction between the memory model chosen by the
programmer for running his code and the underlying memory models supported by the
hardware. When a programmer writes a piece of code he assumes that the code will be run

RMO PSO TSO

V9

8.1.1 SPARC64-III Hardware Memory Models 171

in one of the SPARC-V9 memory models. His code will be written with the proper mem-
ory barriers and synchronization for the model he has selected.

SPARC-V9 does not specify exactly how the hardware must support a particular
SPARC-V9 memory model, except that the hardware support for the V9 memory model
must guarantee that a correct program written for that memory model will run correctly on
the hardware. For example, a slightly stronger (more restrictive) hardware memory model
might be used than what is required by the SPARC-V9 memory model.

One problem with permanently binding a particular hardware memory model to a
SPARC-V9 model is that the optimal hardware memory model may vary based on the sys-
tem running the program. For example, the optimal binding for a uniprocessor might be
different from the optimal binding for a multiprocessor.

Note:

For the remainder of this chapter, the words “V9 memory model” will be used to denote the mem-
ory model selected by the programmer in PSTATE.MM, while the words “hardware memory
model” will be used to denote the underlying hardware memory models.

8.1.1 SPARC64-III Hardware Memory Models

The SPARC64-III supports these hardware memory models:

Load/Store Order (HLSO)
The CPU orders all loads and stores. This is superset of TSO, PSO and RMO, the
SPARC-V9 memory models. Therefore, programs written for TSO, PSO or RMO
will always work on SPARC64-III if run under Load/Store Order.

Total Store Order (HTSO)
All loads are ordered with respect to loads, and all stores are ordered with respect
to loads and stores. This is superset of PSO and RMO, the SPARC-V9 memory
models. Therefore, programs written for PSO or RMO will always work on
SPARC64-III if run under Total Store Order.

Store Order (HSTO)
All stores are ordered with respect to each other, but loads are not ordered with
respect to stores or to other loads. This is a superset of RMO (Relaxed Memory
Order). Programs written for RMO will always work on SPARC64-III if run under
Store Order.

In uniprocessor systems Store Order can also be used to run application programs written
for TSO or PSO, since “program consistency” guarantees that a uniprocessor will not be
able to detect the difference between LSO and STO.

172 8 Memory Models

Figure 73 illustrates the general relationship among the five memory models; see the note
following the picture, however. As in Figure 72, the models are listed in order from least to
most restrictive.

Figure 73: Hardware Memory Models from Least Restrictive to Most Restrictive

8.1.2 Mapping SPARC-V9 Memory Models to Hardware Memory Models

SPARC64-III contains a register that maps the SPARC-V9 memory models to the hard-
ware memory models. This register contains three fields that map the corresponding
SPARC-V9 memory model as specified in PSTATE.MM into the Hardware Memory
Model. For details of the register containing the mapping fields see 5.2.11.1, “Hardware
Mode Register (ASR18)”.

Below is the definition of the PSTATE.MM bits:

The table below has the encoding of hardware memory models for SPARC64-III:

The diagram below show the mapping fields in ASR18. During boot1 the operating system
will write these bits with the mappings that are most appropriate for the current system.

PSTATE.MM Memory Model
00 TSO
01 PSO
10 RMO
11 reserved

Hardware
Memory Model

Encoding
Hardware Memory

Model

00 HLSO
01 HTSO
10 HSTO
11 reserved

1. They can be changed at any time, but most likely they will only be written at boot time.

PSO

HTSO HLSORMO

HSTO

PSTATE.MM = TSOPSORMO

4 0

ASR18[5:0]

1235

8.2 Memory, Real Memory, and I/O Locations 173

For example, the mapping for a uniprocessor workstation might be:

This mapping works for most uniprocessors since the weaker HSTO can be used for PSO
and TSO without causing programs written for PSO or TSO to fail.

The following could be used in a coherent multiprocessor system.

In the MP case TSO must be mapped to the hardware HTSO mode. PSO must also be
mapped to the stronger HTSO.

8.2 Memory, Real Memory, and I/O Locations
Memory is the collection of locations accessed by the load and store instructions
(described in Appendix A, “Instruction Definitions”). Each location is identified by an
address consisting of two elements: an address space identifier (ASI), which identifies an
address space, and a 64-bit address, which is a byte offset into that address space. Mem-
ory addresses may be interpreted by the memory subsystem to be either physical addresses
or virtual addresses; addresses may be remapped and values cached, provided that mem-
ory properties are preserved transparently and coherency is maintained.

When two or more data addresses refer to the same datum, the address is said to be
aliased. In this case, the processor and memory system must cooperate to maintain consis-
tency; that is, a store to an aliased address must change all values aliased to that address.

Memory addresses identify either real memory or I/O locations.

Real memory stores information without side effects. A load operation returns the value
most recently stored. Operations are side-effect-free in the sense that a load, store, or
atomic load-store to a location in real memory has no program-observable effect, except
upon that location.

I/O locations may not behave like memory and may have side effects. Load, store, and
atomic load-store operations performed on I/O locations may have observable side effects,
and loads may not return the value most recently stored. The value semantics of operations
on I/O locations are not defined by the memory models, but the constraints on the order in
which operations are performed is the same as it would be if the I/O locations were real
memory. The storage properties, contents, semantics, ASI assignments, and addresses of I/
O registers are implementation-dependent.

Programming Note:
It is recommended that all memory pages that contain I/O registers having side effects or requiring
strong ordering be mapped with the MMU Strongly Ordered (SO) bit set in the TLB. All accesses

PSTATE.MM = TSOPSORMO

4 0

ASR18[5:0]

1235

HSTO HSTO HSTO

PSTATE.MM = TSOPSORMO

4 0

ASR18[5:0]

1235

HSTO HTSO HTSO

174 8 Memory Models

to pages with the SO bit set will be forced to occur in the order they were written by the program-
mer and will not be executed speculatively.

Compatibility Note:
Operations to I/O locations are not guaranteed to be sequentially consistent among themselves, as
they are in SPARC-V8.

SPARC-V9 does not distinguish real memory from I/O locations in terms of ordering. All refer-
ences, both to I/O locations and real memory, conform to the memory model’s order constraints.
References to I/O locations may need to be interspersed with MEMBAR instructions to guarantee
the desired ordering.

Systems supporting SPARC-V8 applications that use memory mapped I/O locations must ensure
that SPARC-V8 sequential consistency of I/O locations can be maintained when those locations are
referenced by a SPARC-V8 application. The MMU either must enforce such consistency or cooper-
ate with system software and/or the processor to provide it.

8.3 Addressing and Alternate Address Spaces
An address in SPARC-V9 is a tuple consisting of an 8-bit address space identifier (ASI)
and a 64-bit byte-address offset in the specified address space. Memory is byte-addressed,
with halfword accesses aligned on 2-byte boundaries, word accesses (which include
instruction fetches) aligned on 4-byte boundaries, extended-word and doubleword
accesses aligned on 8-byte boundaries, and quadword quantities aligned on 16-byte
boundaries. With the possible exception of the cases described in 6.3.1.1, “Memory Align-
ment Restrictions”, an improperly aligned address in a load, store, or load-store instruc-
tion always causes a trap to occur. The largest datum that is guaranteed to be atomically
read or written is an aligned doubleword. Also, memory references to different bytes, half-
words, and words in a given doubleword are treated for ordering purposes as references to
the same location. Thus, the unit of ordering for memory is a doubleword.

Programming Note:
While the doubleword is the coherency unit for update, programmers should not assume that dou-
bleword floating-point values are updated as a unit unless they are doubleword-aligned and always
updated using double-precision loads and stores. Some programs use pairs of single-precision oper-
ations to load and store double-precision floating-point values when the compiler cannot determine
that they are doubleword-aligned. Also, while quad-precision operations are defined in the
SPARC-V9 architecture, the granularity of loads and stores for quad-precision floating-point values
may be word or doubleword.

The processor provides an address space identifier with every address. This ASI may serve
several purposes:

� To identify which of several distinguished address spaces the 64-bit address offset is to
be interpreted as addressing

� To provide additional access control and attribute information, for example, the pro-
cessing which is to be taken if an access fault occurs or to specify the endian-ness of
the reference

� To specify the address of an internal control register in the processor, cache, or mem-
ory management hardware

8.3 Addressing and Alternate Address Spaces 175

The memory management hardware can associate an independent 264-byte memory
address space with each ASI. If this is done, it becomes possible to allow system software
easy access to the address space of the faulting program when processing exceptions, or to
implement access to a client program’s memory space by a server program.

The architecturally specified ASIs are listed in Appendix L, “ASI Assignments”.

When TL = 0, normal accesses by the processor to memory when fetching instructions
and performing loads and stores implicitly specify ASI_PRIMARY or ASI_PRIMARY_
LITTLE, depending on the setting of the PSTATE.CLE bit.

When TL > 0 the implicit ASI for instruction and data fetches is ASI_NUCLEUS. Loads
and stores will use ASI_NUCLEUS if PSTATE.CLE = 0 or ASI_NUCLEUS_LITTLE if
PSTATE.CLE = 1. (Impl. Dep. #124)

SPARC64-III supports the PRIMARY{_LITTLE}, SECONDARY{_LITTLE}, and
NUCLEUS{_LITTLE} address spaces.

Accesses to other address spaces use the load/store alternate instructions. For these
accesses, the ASI is either contained in the instruction (for the register-register addressing
mode) or taken from the ASI register (for register-immediate addressing).

ASIs are either nonrestricted or restricted. A nonrestricted ASI is one that may be used
independent of the privilege level (PSTATE.PRIV) at which the processor is running.
Restricted ASIs require that the processor be in privileged mode for a legal access to
occur. Restricted ASIs have their high-order bit equal to zero. The relationship between
processor state and ASI restriction is shown in Table 23 on page 122.

Several restricted ASIs must be provided: ASI_AS_IF_USER_PRIMARY{_LITTLE}
and ASI_AS_IF_USER_SECONDARY{_LITTLE}. The intent of these ASIs is to give
system software efficient access to the memory space of a program.

The normal address space is primary address space, which is accessed by the unre-
stricted ASI_PRIMARY{_LITTLE}. The secondary address space, which is accessed
by the unrestricted ASI_SECONDARY{_LITTLE}, is provided to allow a server program
to access a client program’s address space.

ASI_PRIMARY_NOFAULT{_LITTLE} and ASI_SECONDARY_NOFAULT{_LIT-
TLE} support nonfaulting loads. These ASIs are aliased to ASI_PRIMARY{_LITTLE}
and ASI_SECONDARY{_LITTLE}, respectively, and have exactly the same action. They
may be used to color (that is, distinguish into classes) loads in the instruction stream so
that, in combination with a judicious mapping of low memory and a specialized trap han-
dler, an optimizing compiler can move loads outside of conditional control structures.

Programming Note:
Nonfaulting loads allow optimizations that move loads ahead of conditional control structures that
guard their use; thus, they can minimize the effects of load latency by improving instruction sched-
uling. The semantics of nonfaulting loads are the same as for any other load, except when non-
recoverable catastrophic faults occur (for example, address-out-of-range errors). When such a fault
occurs, it is ignored and the hardware and system software cooperate to make the load appear to
complete normally, returning a zero result. The compiler’s optimizer generates load-alternate
instructions with the ASI field or register set to ASI_PRIMARY_NOFAULT{_LITTLE} or ASI_
SECONDARY_NOFAULT{_LITTLE} for those loads it determines should be nonfaulting. To

176 8 Memory Models

minimize unnecessary processing if a fault does occur, it is desirable to map low addresses (espe-
cially address zero) to a page of all zeros, so that references through a NULL pointer do not cause
unnecessary traps.

8.4 SPARC-V9 Memory Model
The SPARC-V9 processor architecture specifies the organization and structure of a
SPARC-V9 central processing unit but does not specify a memory system architecture.
Appendix F, “MMU Architecture”, summarizes the MMU support required by a
SPARC-V9 central processing unit.

The memory models specify the possible order relationships between memory-reference
instructions issued by a processor and the order and visibility of those instructions as seen
by other processors. The memory model is intimately intertwined with the program execu-
tion model for instructions.

8.4.1 SPARC-V9 Program Execution Model

The SPARC-V9 processor model consists of three units: an issue unit, a reorder unit, and
an execute unit, as shown in Figure 74.

The issue unit reads instructions over the instruction path from memory and issues them in
program order. Program order is precisely the order determined by the control flow of
the program and the instruction semantics, under the assumption that each instruction is
performed independently and sequentially.

Issued instructions are collected, reordered, and then dispatched to the execute unit.
Instruction reordering allows an implementation to perform some operations in parallel
and to better allocate resources. The reordering of instructions is constrained to ensure that
the results of program execution are the same as they would be if the instructions were
performed in program order. This property is called processor self-consistency.

Figure 74: Processor Model: Uniprocessor System (V9=42)

Processor self-consistency requires that the result of execution, in the absence of any
shared memory interaction with another processor, be identical to the result that would be
observed if the instructions were performed in program order. In the model in Figure 74,
instructions are issued in program order and placed in the reorder buffer. The processor is

Processor

Memory

Data Path

Instruction PathIssue Reorder Execute

8.4.2 Processor / Memory Interface Model 177

allowed to reorder instructions, provided it does not violate any of the data-flow con-
straints for registers or for memory.

The data-flow order constraints for register reference instructions are:

1. An instruction cannot be performed until all earlier instructions that set a register it
uses have been performed (read-after-write hazard; write-after-write hazard).

2. An instruction cannot be performed until all earlier instructions that use a register it
sets have been performed (write-after-read hazard).

An implementation can avoid blocking instruction execution in case 2 by using a renam-
ing mechanism that provides the old value of the register to earlier instructions and the
new value to later uses.

The data-flow order constraints for memory-reference instructions are those for register
reference instructions, plus the following additional constraints:

1. A memory-reference instruction that sets (stores to) a location cannot be performed
until all previous instructions that use (load from) the location have been performed
(write-after-read hazard).

2. A memory-reference instruction that uses (loads) the value at a location cannot be per-
formed until all earlier memory-reference instructions that set (store to) the location
have been performed (read-after-write hazard).

As with the case for registers, implementations can avoid blocking instructions in case (2)
by providing an additional mechanism, in this case, a write buffer which guarantees that
the value returned by a load is that which would be returned by the most recent store, even
though the store has not completed. As a result, the value associated with an address may
appear to be different when observed from a processor that has written the location and is
holding the value in its write buffer than it would be when observed from a processor that
references memory (or its own write buffer). Moreover, the load that was satisfied by the
write buffer never appears at the memory.

Memory-barrier instructions (MEMBAR and STBAR) and the active memory model
specified by PSTATE.MM also constrain the issue of memory-reference instructions. See
8.4.3, “MEMBAR Instruction,” and 8.4.4, “Memory Models,” for a detailed description.

The constraints on instruction execution assert a partial ordering on the instructions in the
reorder buffer. Every one of the several possible orderings is a legal execution ordering for
the program. See Appendix D, “Formal Specification of the Memory Models” in V9 for
more information.

8.4.2 Processor / Memory Interface Model

Each processor in a multiprocessor system is modeled as shown in Figure 75; that is, hav-
ing two independent paths to memory: one for instructions and one for data. Caches and
mappings are considered to be part of the memory. Data caches are maintained by hard-
ware to be consistent (coherent). Instruction caches need not be kept consistent with data
caches and, therefore, require explicit program action to ensure consistency when a pro-

V9

178 8 Memory Models

gram modifies an executing instruction stream. Memory is shared in terms of address
space, but it may be inhomogeneous and distributed in an implementation. Mapping and
caches are ignored in the model, since their functions are transparent to the memory
model.1

In real systems addresses may have attributes that the processor must respect. The proces-
sor executes loads, stores, and atomic load-stores in whatever order it chooses, as con-
strained by program order and the current memory model. The ASI address-couples it
generates are translated by a memory management unit (MMU), which associates
attributes with the address and may, in some instances, abort the memory transaction and
signal an exception to the CPU. For example, a region of memory may be marked as non-
prefetchable, noncacheable, read-only, or restricted. It is the MMU’s responsibility, work-
ing in conjunction with system software, to ensure that memory attribute constraints are
not violated. See Appendix F, “MMU Architecture”, for more information.

Instructions are performed in an order constrained by local dependencies. Using this
dependency ordering, an execution unit submits one or more pending memory transac-
tions to the memory. The memory performs transactions in memory order. The memory
unit may perform transactions submitted to it out of order; hence, the execution unit must
not submit two or more transactions concurrently that are required to be ordered.

Figure 75: Data Memory Paths: Multiprocessor System (V9=43)

The memory accepts transactions, performs them, and then acknowledges their comple-
tion. Multiple memory operations may be in progress at any time and may be initiated in a
nondeterministic fashion in any order, provided that all transactions to a location preserve
the per-processor partial orders. Memory transactions may complete in any order. Once
initiated, all memory operations are performed atomically: loads from one location all see
the same value, and the result of stores are visible to all potential requestors at the same
instant.

1. The model described here is only a model; implementations of SPARC-V9 systems are
unconstrained, as long as their observable behaviors match those of the model.

Processors
Memory Transactions

In Memory Order

Memory

Instructions

Data

8.4.3 MEMBAR Instruction 179

The order of memory operations observed at a single location is a total order that pre-
serves the partial orderings of each processor’s transactions to this address. There may be
many legal total orders for a given program’s execution.

8.4.3 MEMBAR Instruction

MEMBAR serves two distinct functions in SPARC-V9. One variant of the MEMBAR, the
ordering MEMBAR, provides a way for the programmer to control the order of loads and
stores issued by a processor. The other variant of MEMBAR, the sequencing MEMBAR,
allows the programmer to explicitly control order and completion for memory operations.
Sequencing MEMBARs are needed only when a program requires that the effect of an
operation become globally visible, rather than simply being scheduled.1 As both forms are
bit-encoded into the instruction, a single MEMBAR can function both as an ordering
MEMBAR and as a sequencing MEMBAR.

MEMBAR#Lookaside, MEMBAR#StoreStore, and MEMBAR#LoadStore are treated as
NOPs in SPARC64-III, since the hardware memory models always enforce the semantics
of these MEMBARs for all memory accesses. MEMBAR#StoreLoad and MEM-
BAR#LoadLoad enforce the ordering specified by the instruction in the Load/Store Unit in
SPARC64-III. MEMBAR#Sync and MEMBAR#MemIssue cause the processor to sync
and cause the effects of all cacheable and noncacheable memory accesses made before the
MEMBAR to be visible from the other processors in the system.

8.4.3.1 Ordering MEMBAR Instructions

Ordering MEMBAR instructions induce an ordering in the instruction stream of a single
processor. Sets of loads and stores that appear before the MEMBAR in program order are
ordered with respect to sets of loads and stores that follow the MEMBAR in program
order. Atomic operations (LDSTUB(A), SWAP(A), CASA, and CASXA) are ordered by
MEMBAR as if they were both a load and a store, since they share the semantics of both.
An STBAR instruction, with semantics that are a subset of MEMBAR, is provided for
SPARC-V8 compatibility. MEMBAR and STBAR operate on all pending memory opera-
tions in the reorder buffer, independent of their address or ASI, ordering them with respect
to all future memory operations. This ordering applies only to memory-reference instruc-
tions issued by the processor issuing the MEMBAR. Memory-reference instructions
issued by other processors are unaffected.

The ordering relationships are bit-encoded as shown in Table 34. For example, MEMBAR
0116, written as “membar #LoadLoad” in assembly language, requires that all load
operations appearing before the MEMBAR in program order complete before any of the
load operations following the MEMBAR in program order complete. Store operations are
unconstrained in this case. MEMBAR 0816 (#StoreStore) is equivalent to the STBAR
instruction; it requires that the values stored by store instructions appearing in program

1. Sequencing MEMBARs are needed for some input/output operations, forcing stores into specialized
stable storage, context switching, and occasional other systems functions. Using a Sequencing
MEMBAR when one is not needed may cause a degradation of performance. See Appendix J,
“Programming With the Memory Models” in V9 for examples of their use.

180 8 Memory Models

order prior to the STBAR instruction be visible to other processors prior to issuing any
store operations that appear in program order following the STBAR.

In Table 34 these ordering relationships are specified by the ‘<m’ symbol, which signifies
memory order. See Appendix D, “Formal Specification of the Memory Models” in V9 for
a formal description of the <m relationship.

Selections may be combined to form more powerful barriers. For example, a MEMBAR
instruction with a mask of 0916 (#LoadLoad | #StoreStore) orders loads with
respect to loads and stores with respect to stores, but it does not order loads with respect to
stores or vice versa.

Programming Note:
Future versions of HAL machines will support several MEMBAR variations. Thus, programs
should use the correct MEMBAR encoding for upward compatibility.

8.4.3.2 Sequencing MEMBAR Instructions

A sequencing MEMBAR exerts explicit control over the completion of operations. There
are three sequencing MEMBAR options, each with a different degree of control and a dif-
ferent application.

Lookaside Barrier:
Ensures that loads following this MEMBAR are from memory and not from a
lookaside into a write buffer. Lookaside Barrier requires that pending stores
issued prior to the MEMBAR be completed before any load from that address fol-
lowing the MEMBAR may be issued. A Lookaside Barrier MEMBAR may be
needed to provide lock fairness and to support some plausible I/O location seman-
tics. See the example in J.14.1, “I/O Registers With Side Effects” in V9.
SPARC64-III ensures this sequencing all the time. Therefore this sequencing
MEMBAR is treated as a NOP in the CPU.

Memory Issue Barrier:
Ensures that all memory operations appearing in program order before the
sequencing MEMBAR complete before any new memory operation may be initi-
ated. See the example in J.14.2, “The Control and Status Register (CSR)” in V9.
This sequencing MEMBAR behaves in the same way as the Synchronization Bar-
rier MEMBAR in SPARC64-III.

Synchronization Barrier:
Ensures that all instructions (memory reference and others) preceding the MEM-
BAR complete and the effects of any fault or error have become visible before any

Table 34: Ordering Relationships Selected by Mask (V9=19)

Ordering Relation,
Earlier < Later

Suggested
Assembler Tag

Mask
Value

nmask
Bit #

Load <m Load #LoadLoad 0116 0
Store <m Load #StoreLoad 0216 1
Load <m Store #LoadStore 0416 2
Store <m Store #StoreStore 0816 3

V9

V9

V9

8.4.4 Memory Models 181

instruction following the MEMBAR in program order is initiated. A Synchroniza-
tion Barrier MEMBAR fully synchronizes the processor that issues it.

Table 35 shows the encoding of these functions in the MEMBAR instruction.

8.4.4 Memory Models

The SPARC-V9 memory models are defined below in terms of order constraints placed
upon memory-reference instruction execution, in addition to the minimal set required for
self-consistency. These order constraints take the form of MEMBAR operations implicitly
performed following some memory-reference instructions.

8.4.4.1 Relaxed Memory Order (RMO)

Relaxed Memory Order places no ordering constraints on memory references beyond
those required for processor self-consistency. When ordering is required, it must be pro-
vided explicitly in the programs using MEMBAR instructions.

8.4.4.2 Partial Store Order (PSO)

Partial Store Order may be provided for compatibility with existing SPARC-V8 pro-
grams. Programs that execute correctly in the RMO memory model will execute correctly
in the PSO model.

The rules for PSO are:

� Loads are blocking and ordered with respect to earlier loads.

� Atomic load-stores are ordered with respect to loads.

Thus, PSO ensures that:

� Each load and atomic load-store instruction behaves as if it were followed by a MEM-
BAR with a mask value of 0516.

� Explicit MEMBAR instructions are required to order store and atomic load-store
instructions with respect to each other.

8.4.4.3 Total Store Order (TSO)

Total Store Order must be provided for compatibility with existing SPARC-V8 pro-
grams. Programs that execute correctly in either RMO or PSO will execute correctly in the
TSO model.

Table 35: Sequencing Barrier Selected by Mask (V9=20)

Sequencing
Function

Assembler
Tag

Mask
Value

cmask
Bit #

Lookaside Barrier #Lookaside 1016 0
Memory Issue Barrier #MemIssue 2016 1
Synchronization Barrier #Sync 4016 2

182 8 Memory Models

The rules for TSO are:

� Loads are blocking and ordered with respect to earlier loads.

� Stores are ordered with respect to stores.

� Atomic load-stores are ordered with respect to loads and stores.

Thus, TSO ensures that:

� Each load instruction behaves as if it were followed by a MEMBAR with a mask value
of 0516.

� Each store instruction behaves as if it were followed by a MEMBAR with a mask of
0816.

� Each atomic load-store behaves as if it were followed by a MEMBAR with a mask of
0D16.

8.4.5 Mode Control

The memory model is specified by the two-bit state in PSTATE.MM, described in 5.2.1.3,
“PSTATE_mem_model (MM)”.

Writing a new value into PSTATE.MM causes subsequent memory reference instructions
to be performed with the order constraints of the specified memory model.

SPARC-V9 processors need not provide all three memory models; undefined values of
PSTATE.MM have implementation-dependent effects.

Except when a trap enters RED_state, PSTATE.MM is left unchanged when a trap is
entered and the old value is stacked. When entering RED_state, the value of PSTATE.MM
is set to TSO.

8.4.6 Hardware Primitives for Mutual Exclusion

In addition to providing memory-ordering primitives that allow programmers to construct
mutual-exclusion mechanisms in software, SPARC-V9 provides three hardware primitives
for mutual exclusion:

� Compare and Swap (CASA, CASXA)

� Load Store Unsigned Byte (LDSTUB, LDSTUBA)

� Swap (SWAP, SWAPA)

Each of these instructions has the semantics of both a load and a store in all three memory
models. They are all atomic, in the sense that no other store can be performed between the
load and store elements of the instruction. All of the hardware mutual exclusion operations
conform to the memory models and may require barrier instructions to ensure proper data
visibility.

8.4.7 Synchronizing Instruction and Data Memory 183

When the hardware mutual-exclusion primitives address I/O locations, the results are
implementation-dependent. In addition, the atomicity of hardware mutual-exclusion prim-
itives is guaranteed only for processor memory references and not when the memory loca-
tion is simultaneously being addressed by an I/O device such as a channel or DMA.

The Compare and Swap instructions (CASA and CASXA) serialize the SPARC64-III
CPU (see section 6.1.3, “Serializing Instructions” for details).

The Load Store Unsigned Byte (LDSTUB and LDSTUBA) and the Swap (SWAP and
SWAPA) instructions have implementation-specific memory ordering behavior in the
SPARC64-III CPU. If the CPU is running with the SPARC64-III HLSO model, the behav-
ior is as expected. Since these instructions have both load and store semantics, they are
executed in order.

8.4.6.1 Compare and Swap (CASA, CASXA)

Compare-and-swap is an atomic operation that compares a value in a processor register to
a value in memory, and, if and only if they are equal, swaps the value in memory with the
value in a second processor register. Both 32-bit (CASA) and 64-bit (CASXA) operations
are provided. The compare-and-swap operation is atomic in the sense that once begun, no
other processor can access the memory location specified until the compare has completed
and the swap (if any) has also completed and is potentially visible to all other processors
in the system.

Compare-and-swap is substantially more powerful than the other hardware synchroniza-
tion primitives. It has an infinite consensus number; that is, it can resolve, in a wait-free
fashion, an infinite number of contending processes. Because of this property, compare-
and-swap can be used to construct wait-free algorithms that do not require the use of
locks. See Appendix J, “Programming With the Memory Models” in V9 for examples.

8.4.6.2 Swap (SWAP)

SWAP atomically exchanges the lower 32 bits in a processor register with a word in mem-
ory. Swap has a consensus number of two; that is, it cannot resolve more than two con-
tending processes in a wait-free fashion.

8.4.6.3 Load Store Unsigned Byte (LDSTUB)

LDSTUB loads a byte value from memory to a register and writes the value FF16 into the
addressed byte atomically. LDSTUB is the classic test-and-set instruction. Like SWAP, it
has a consensus number of two and so cannot resolve more than two contending processes
in a wait-free fashion.

8.4.7 Synchronizing Instruction and Data Memory

The SPARC-V9 memory models do not require that instruction and data memory images
be consistent at all times. The instruction and data memory images may become inconsis-
tent if a program writes into the instruction stream. As a result, whenever instructions are
modified by a program in a context where the data (that is, the instructions) in the memory

V9

184 8 Memory Models

and the data cache hierarchy may be inconsistent with instructions in the instruction cache
hierarchy, some special programmatic action must be taken.

The FLUSH instruction will ensure consistency between the instruction stream and the
data references across any local caches for a particular doubleword value in the processor
executing the FLUSH. It will ensure eventual consistency across all caches in a multipro-
cessor system. The programmer must be careful to ensure that the modification sequence
is robust under multiple updates and concurrent execution. Since, in the general case,
loads and stores may be performed out of order, appropriate MEMBAR and FLUSH
instructions must be interspersed as needed to control the order in which the instruction
data is mutated.

The FLUSH instruction ensures that subsequent instruction fetches from the doubleword
target of the FLUSH by the processor executing the FLUSH appear to execute after any
loads, stores, and atomic load-stores issued by the processor to that address prior to the
FLUSH. FLUSH acts as a barrier for instruction fetches in the processor that executes it
and has the properties of a store with respect to MEMBAR operations.

FLUSH has no latency on the issuing processor; the modified instruction stream is imme-
diately available.1

If all caches in a system (uniprocessor or multiprocessor) have a unified cache consistency
protocol, FLUSH need do nothing for correctness.

Use of FLUSH in a multiprocessor environment may cause unexpected performance deg-
radation in some systems, because every processor that may have a copy of the modified
data in its instruction cache must invalidate that data. In the worst case naive system, all
processors must invalidate the data.

Programming Note:
Because FLUSH is designed to act on a doubleword, and because, on some implementations,
FLUSH may trap to system software, it is recommended that system software provide a user-call-
able service routine for flushing arbitrarily sized regions of memory. On some implementations,
this routine would issue a series of FLUSH instructions; on others, it might issue a single trap to
system software that would then flush the entire region.

1. SPARC-V8 specified a five-instruction latency. Invalidation of instructions in execution in the
instruction cache is likely to force an instruction-cache fault.

9 Guidelines for Instruction Scheduling
9.1 Introduction
SPARC64-III is a Superscalar RISC Processor that implements the SPARC-V9 architec-
ture. It can issue at most four instructions per clock; that is, it is a four-way superscalar
machine. It has a data flow back-end that can commit up to eight instructions per clock.
Up to 63 instructions can be in progress in the machine at any time, where “in progress”
refers to instructions that have been issued but not yet reclaimed. (Terms that describe
instruction states are defined in 9.1.1, “Life Cycle of an Instruction”.) The average number
of instructions committed per clock is called the IPC (Instructions Per Cycle). All current
superscalar processors have constraints that cause them to issue and commit fewer than
the maximum number of instructions per clock on average; SPARC64-III is no exception.

This chapter outlines strategies that the compiler writer can use to more optimally gener-
ate code for SPARC64-III. The text describes some constraint, limitation, or feature of the
CPU and then suggests strategies to avoid the constraint or to utilize the feature. Before
proceeding you should familiarize yourself with the terminology and concepts introduced
in 3.4, “SPARC64-III Processor Architecture”.

Note:
In order to determine the version of a SPARC64 CPU, code can examine the Version (VER) regis-
ter, in particular, bits <47:32>, VER.impl; its value is ‘3’ for a SPARC64-III CPU. The entire VER
register is reproduced below:

VER: 0004 0003 XX00 040416

9.1.1 Life Cycle of an Instruction

The following terms describe the states that an instruction goes through in its lifetime.
They are commonly used by the CPU designers when discussing SPARC64-III internal
states.

Fetched:
Instructions are fetched from memory, the external U2 cache, the internal I1 cache,
or the internal I0 cache; they are then sent to the Issue Unit.

Issued:
An instruction is issued when it is assigned a serial number.

186 9 Guidelines for Instruction Scheduling

Dispatched:
An instruction is dispatched when it sent to a functional unit queue. For example,
an ADD instruction is considered dispatched when it is sent to the queue for one of
the adders.

Initiated:
An instruction is initiated when it has all of the resources it needs (for example, its
source operands) and it has been selected for execution (that is, it enters an execu-
tion unit).

Executed:
An instruction is executed by an execution unit such as a Floating-point Multiply
Adder (FMA). An instruction is in execution as long as it is still being processed
by an execution unit.

Finished:
An instruction is finished when it has completed execution in an execution unit and
has written its results onto a result bus. Results on the result busses go to register
files and to waiting instructions in the in the instruction queues.

Completed:
An instruction is completed when it has finished and has sent a non-error status to
the Issue Unit (ISU).

Note:
Although the state of the machine has been temporarily altered when an instruction is completed,
the state has not yet been permanently changed and the old state can be recovered up until the time
that the instruction is committed.

Committed:
An instruction can be committed only when it has completed without error and all
prior instructions have completed without error. When an instruction is committed
the state of the machine is permanently changed to reflect the result of the instruc-
tion.

Reclaimed:
All resources relating to the instruction that were held until it was committed have
been released and are available for use by subsequent instructions. Instruction
resources usually are reclaimed a few cycles after the instruction is committed (for
example, the serial number can be reused).

9.2 Instruction Fetch 187

Figure 76 illustrates the SPARC64-III pipeline as it relates to the instruction states
described above.

Figure 76: SPARC64-III Pipeline Diagram with Instruction States

9.2 Instruction Fetch
During the fetch phase the Fetch Unit fetches instructions from one of these locations:

� The internal Level-0 Instruction Cache (I0)

� The Prefetch Buffers

� The internal Level-1 Instruction Cache (I1)

� The external Level-2 Unified Cache (U2)

� Memory

It then presents the Issue Unit (ISU) with four candidate instructions. The Fetch Unit is
also responsible for predicting branches and fetching and issuing instructions from the
predicted branch path.

Note:
Only instructions that are committed are counted in the IPC; instructions that are completed but are
later found to be from mispredicted branch paths do not affect the IPC.

9.2.1 Internal Level-0 Instruction Cache (I0)

The I0 Cache is direct mapped and contains 4,096 recoded instructions (occupying
approximately 16K bytes). The I0 cache line size is 16 instructions (64-bytes before
recoding). The logic that sends instructions from the I0 Cache to the Issue Unit (ISU)

Instructions

Load
Instructions

Integer
FE

5

IS DI EX CP DE CM RC

Additional Pipe Stage
as compared to SPARC64-II

FE Fetch
IS Issue
DI Dispatch
EX Execute
CP Complete
DP Data Cache Priority
DA Data Cache Access
DX Data Cache Transfer
DE Deallocate
CM Commit
RC Reclaim

FE IS DI DP DA DX CP DE
7

CM RC

188 9 Guidelines for Instruction Scheduling

attempts to fetch four instructions at the current predicted fetch PC. The I0 Cache allows
the set of four instructions to be on any arbitrary alignment in the I0 Cache; that is, the
four instructions are not required to be aligned modulo 4 instructions. There is one excep-
tion to this, however; if the set of four instructions would cross the boundary into a differ-
ent I0 Cache line, only the instructions remaining in the current I0 Cache line can be
supplied in one clock.

In the example shown in Table 36 instructions 6 through 9 are sent to the ISU in one clock.

In the example in Table 37 only two instructions can be sent to the ISU on the first cycle.
Instructions 0 and 1 in Line 2 cannot be sent in cycle 1, because they are in a different
cache line. In the second cycle instructions 0 through 3 in line 2 could be sent to the ISU.

This is called the “I0 Line Break” constraint.

9.2.2 I0 Cache Strategies

The following subsections contain strategies for handling constraints and features of the I0
instruction cache.

9.2.2.1 Avoid I0 Cache Thrashing

Since the I0 Cache is direct mapped, the compiler and linker should avoid placing major
code blocks 16K apart (that is, at addresses that are equal modulo 16K) or thrashing may
occur in the I0 Cache. For example, if the main loop of a program and a procedure called
from within that loop are mapped modulo 16K bytes, the two blocks will constantly over-
write each other’s lines in the I0 cache.

Table 36: I0 Accesses Need Not be Aligned on Four-instruction Boundaries

inst 0 inst 1 inst 2 inst 3
I0 Line 1: inst 4 inst 5 inst 6 – YES inst 7 – YES

inst 8 – YES inst 9 – YES inst 10 inst 11
inst 12 inst 13 inst 14 inst 15

Table 37: I0 Accesses Cannot Span Two I0 Cache Lines

inst 0 inst 1 inst 2 inst 3
I0 Line 1: inst 4 inst 5 inst 6 inst 7

inst 8 inst 9 inst 10 inst 11
inst 12 inst 13 inst 14 – YES inst 15 – YES

inst 0 – NO! inst 1 – NO! inst 2 inst 3
I0 Line 2: inst 4 inst 5 inst 6 inst 7

inst 8 inst 9 inst 10 inst 11
inst 12 inst 13 inst 14 inst 15

9.2.3 Internal Level 1 Instruction Cache (I1) 189

9.2.2.2 Align Short Loops to Avoid 64-byte Boundaries.

Many short loops fit within 16 instructions. If these loops are all in one cache line, they
incur only one cache miss at the start of the loop. Also the loop will not suffer from the “I0
Line Break” constraint, as described in 9.2.1. Note: The line break penalty is paid for each
iteration of the loop; thus, it is advisable to align short loops so that the entire loop is con-
tained within one 64-byte I0 Cache line. The compiler may need to generate some NOPs
to make the loop fall in one cache line, or it could put the loop into one cache line and then
branch to that cache line.

The above can be extended to loops with greater than 16 instructions. For example, a loop
with 32 instructions or less would only cause two cache misses and one line break if it is
aligned within two cache lines. If unaligned, it might cause three cache misses and two
line breaks. But as the loops get bigger, the percentage of the loop time that is saved by
aligning the loops gets smaller. For large loops 64-byte alignment provides very little per-
formance gain.

9.2.2.3 Align the Start of Code Sections on 64-byte Boundaries

Aligning the start of all program code sections on 64-byte boundaries may avoid extra
cache misses. Align all procedures and library routines to start modulo 64-bytes (but not
modulo 16K bytes).

It may appear that these alignment adjustments do not help very much. However, perfor-
mance measurements and code analysis have shown that the optimizations described in
this subsection provide significant gains in throughput. Keeping the path from the I0
Cache to the ISU as full as possible provides significant performance gains.

9.2.3 Internal Level 1 Instruction Cache (I1)

Instructions are fetched from the I1-Cache whenever the I0-Cache does not contain the
desired cache lines. The I1-Cache size is 64K bytes; the line size is 64 bytes (16 instruc-
tions). The I1-Cache has a 3-cycle latency but it is pipelined, so it can send new instruc-
tions to the CPU during each clock cycle.

There is little that the compiler or assembly language programmer must do for the I1-
Cache. Since the compiler and linkers should already be trying to align major code seg-
ments on 64-byte boundaries (as described in 9.2.1 above) this will also be an adequate
alignment for the I1-Cache.

The I1-Cache is four-way set associative, so it is not necessary for the linker to be too con-
cerned about placement of routines to avoid thrashing in the I1-Cache.

Note:

I0 strategies to avoid thrashing, which are described in 9.2.2, also prevent thrashing in the I1-
Cache.

190 9 Guidelines for Instruction Scheduling

9.2.4 External Unified Cache (U2)

Instructions are fetched from the U2-Cache whenever the I1-Cache does not contain the
desired cache lines. The U2-Cache size is between 1 Mbyte and 16 Mbytes; it is direct
mapped, and the line size is 64 bytes (16 instructions). The U2-Cache has an 8 cycle
latency, and is shared for both instructions and data.

There is little that the compiler or assembly language programmer must do for the U2-
Cache. Since the compiler and linker should already by trying to align major code seg-
ments on 64 byte boundaries (as described above), this will also be an adequate alignment
for the U2-Cache.

9.3 Branches and Branch Prediction

Branches are always expensive for any superscalar processor; they cause several prob-
lems:

� The CPU branch prediction logic may incorrectly predict the branch and start specula-
tively issuing instructions from the wrong path. Once the correct path is determined
the speculative instructions must be cancelled and the machine must reset itself to the
state that existed before the branch. This causes from one to several clocks of delay.
Also, the instructions that were discarded cannot be counted in the committed IPC.

� Speculative instructions that are later cancelled may have side affects. For example, a
speculative load that causes a cache miss creates needless work for the memory sys-
tem. Thus, future nonspeculative cache misses may need to wait for the memory to
become free. Speculative misses can also pollute the caches by replacing good data/
instructions with data/instructions that will not be used. However, in many cases the
speculative data/instructions act as prefetches for future activity.

SPARC64-III implements two different branch prediction schemes, 2-bit conventional and
2-level adaptive, one of which is selected through ASR18<9:8>.

Note:

Changing ASR18<9:8> causes the current Branch History Table (BHT) to be discarded, because
both branch prediction mechanisms use the same physical BHT RAM. Therefore, it is not advisable
to change these bits frequently.

9.3.1 Two-Bit Conventional Branch Prediction

This scheme is selected when ASR18<9:8> are set to 012 or 112. The branch prediction is
done through a 2-bit saturating up-down counter kept in an 8K × 2 entry BHT RAM,
indexed by Fetch Program Counter (FPC) bits <14:2>.

9.3.2 2-Level Adaptive Branch Prediction 191

If ASR18<9:8> is 112 and the branch is with prediction, the instruction prediction bit
always has higher priority in the prediction than the hardware counter. Figure 77 illustrates
2-bit Conventional Branch Prediction

Figure 77: 2-Bit Conventional Branch Prediction

9.3.2 2-Level Adaptive Branch Prediction

This scheme is selected when ASR18<9:8> = 002.

The adaptive branch prediction algorithm shows better prediction accuracy than conven-
tional 2-bit prediction. In 1991 Yale N. Patt et al at Michigan University introduced the
new 2-level adaptive branch prediction scheme. This scheme boasts the highest prediction
accuracy of all schemes that have been proposed so far.

There are some variations in the 2-level adaptive scheme; SPARC64-III uses one called
“global-branch-history-register and global-pattern-history-table with branch address hash-
ing.” This is easier to implement and costs less than other variations, and yet still provides
good prediction accuracy. SPARC64-III contains a 2K Byte Branch History Table (BHT).

The Branch-History-Register (BHR) accumulates the recent taken/not-taken information
of predicted branches. The BHT is made of RAM which is indexed by the concatenated
result of BHR and FPC<9:4>. Each entry of BHT consists of a conventional 2-bit saturat-
ing up-down counter. Figure 78 illustrates the SPARC64-III 2-Level Adaptive Branch Pre-
diction scheme.

Branch History Table (BHT)

Fetch PC<14:2>
(2bits × 8K-entries = 2KByte)

Index

BPR<1:0>
2-bit saturating up-
down counter
00 Strongly not taken
01 Weakly not taken
10 Weakly taken
11 Strongly taken

192 9 Guidelines for Instruction Scheduling

Figure 78: 2-Level Adaptive Branch Prediction

9.3.3 Computed Branches

Computed branches using JMPLs cause issue to stall until the JMPL target is calculated.
Special hardware is provided to handle the case when the JMPL functions as a subroutine
return.

When a CALL or JMPL with a destination register of %o7 is issued (JMPL call) the return
address is calculated and pushed onto an internal hardware 4-level stack called the Return
Prediction Stack (RPS). When a JMPL with the address specified as [%o7+8] or
[%i7+8](which usually are subroutine returns) is encountered, the return address is pre-
dicted to be the value stored in the RPS.

Thus, if a subroutine returns through [%o7+8] or [%i7+8], the next PC will be pre-
dicted much like a conditional branch. Also like a conditional branch, if the actual target
address is eventually determined to be different from the predicted address, the CPU must
discard the incorrect instructions and begin fetching the correct ones.

9.3.4 Branch and Branch Prediction Strategies

The following subsections describe strategies for handling and predicting branches.

9.3.4.1 Eliminate Branches and Make Larger Basic Blocks

Without question, the most important thing a SPARC64-III compiler or assembly lan-
guage programmer can do is to eliminate as many branches as possible.

There are several techniques that can be used to remove branches and create larger basic
blocks:

1. Replace branches with conditional moves. Sometimes simple basic blocks can be
removed by doing one or several conditional moves. The CPU can perform several

Shift

1 0 10 0

BHR<4:0>

Branch History Table (BHT)Fetch PC<11:4>
(2bits × 8K-entries = 2KByte)

Index

Branch History Register 0 Not taken
1 Taken(BHR)

BPR<1:0>
2-bit saturating up-
down counter
00 Strongly not taken
01 Weakly not taken
10 Weakly taken
11 Strongly taken

9.3.4 Branch and Branch Prediction Strategies 193

conditional moves for the price of one branch. MOVcc, FMOVcc, MOVr, and FMOVr
all take the same amount of time to execute.

2. Loop Unrolling: Even a modest amount of loop unrolling can be a big benefit. Unroll-
ing by two might double the size of a basic block and greatly improve the efficiency of
SPARC64-III.

3. Procedure Inlining: Most compilers implement some inlining. A lot of non-supersca-
lar compliers inline mostly to prevent pipeline stalls, to cover cache latencies, to
remove prologue and epilog code, and to allow better register allocation. On
SPARC64-III all of these reasons apply. In addition, SPARC64-III benefits by the
removal of the subroutine calls and returns and by reducing the change of a window
spill or fill trap. Note: Call and return are considered as branches in the CPU.

4. Moving instructions from one basic block to another to make a bigger basic block.
Recent literature contains examples of this kind of code movement. Some of these
techniques require compensation code in the less likely paths in order to expand the
size of the more likely paths.

5. All of this not withstanding, it is still a good idea for the compiler to use standard
strength reduction techniques to remove redundant instructions. That is, do not use
redundant or useless instructions simply to create larger basic blocks.

Many processors benefit from these techniques, but a superscalar processor like
SPARC64-III benefits even more.

9.3.4.2 Arrange Code for the Fall-through Case

Since SPARC64-III does not issue past the delay slot of a predicted taken branch, there is
an advantage if the code can be reorganized so that the most likely path through the code is
in the branch not taken path (the fall through path). The compiler or assembly language
programmer can do this if it is possible to statically predict the direction of a branch with
reasonable accuracy. Using this static prediction the compiler or programmer can ensure
that in most cases the predicted code is in the fall through path.

The compiler or assembly language programmer should avoid using anulled branches if
these branches are usually not taken because SPARC64-III will create hardware “glitches”
to annul instructions and thereby cause some performance loss.

9.3.4.3 Calculate Condition Codes Early

Attempt to place the comparisons that set condition codes as far as possible before the
branches that use the condition codes. The hardware still predicts the branch using the
branch prediction hardware instead of the condition code bits, but it looks at the condition
code bits in the next cycle or as soon as they are available. If the condition code bits are
not valid at the time of the branch, the CPU cannot tell if the branch was mispredicted
until they are available.

Note:
Setting the condition code or register value early benefits the CPU, but it is not as great a benefit for
SPARC64-III as it is for scalar or pipelined processors. This is because SPARC64-III performs

194 9 Guidelines for Instruction Scheduling

branch prediction and therefore does not stall waiting for the branch condition to be set. However, if
the branch prediction is incorrect, the speculative instructions must be cancelled and the correct
path fetched. The sooner the CPU discovers it mispredicted the branch, the fewer cycles it will
waste executing the wrong instructions.

9.3.4.4 Subroutine Returns

Use a CALL instruction or a JMPL with a destination of %o7 for all procedure calls. For
subroutine returns, use a JMPL with [%i7+8] if the routine did a SAVE or a JMPL with
[%o7+8] if it was a leaf routine. Avoid using JMPLs with %o7 or %i7 except for sub-
routine calls or returns, since they corrupt the RPS. For example, avoid using a JMPL %o7
for a switch statement, because it corrupts the RPS and might cause a future return to be
mispredicted.

9.3.4.5 Align Short Loops to Make “Delay Slot” the Last Instruction

It may be difficult or impossible to align short loops to start on an I0 cache line boundary.
In these cases an alternate and equally efficient method is to align the loop so that the last
instruction in a cache line is the delay slot of a branch. This improves throughput, because
it puts the delay slot in a known I0 cache line break; that is, there was going to be a code
break caused by the end of the cache line anyway.

9.4 Instruction Issue
The strategies outlined above should produce a regular stream of instructions to the Issue
Unit (ISU). At this point the compiler should adjust the order and mix of the instructions
to maximize performance. The CPU can issue at most four instructions per clock. How-
ever, various issue constraints may make this impossible in some cases. The following
sections describe these issue constraints and present some strategies to reduce their
effects.

9.4.1 Issue Strategies

If the compiler or assembly language programmer could always determine exactly which
instructions were going to be issued in one clock, it would be easier to determine the opti-
mum instruction mix to generate for the next clock. But this isn’t always possible, because
of SPARC64-III’s data flow nature. For example, the compiler might generate two integer
instructions and two loads and expect that they would issue in one clock, since there are
enough ports to the queues for these instructions. However, if the Load/Store Unit (LSU)
queue has 11 of its queue slots occupied when the CPU attempts to issue these instruc-
tions, only one of the loads could actually be issued. If the compiler assumes that all four
were issued, it is “out of sync” with the hardware.

Sometimes, however, the compiler or assembly language programmer has a fairly good
idea which instructions will be issued next. For example, after a branch to an I0 aligned
(64-byte aligned) location, the compiler can be fairly certain that the CPU will attempt to
issue the next four instructions if there are no static or dynamic issue constraints.

9.5 Instruction Dispatch, and the DFM Queue 195

It is not possible to schedule instructions perfectly. However, there are some ground rules
for scheduling a basic block. First, break the instructions into the following basic classes:

INT only:
Shifts, normal integer instructions, integer multiplies and divides, and instructions
with a condition code (icc or xcc) source.

INT / AGEN:
Normal integer instructions, MOVr, atomics, prefetches, and loads and stores.

FP:
All floating-point instructions.

LSU:
Loads, stores, prefetches, and atomic instructions.

See Table 39 on page 200 for a complete list of the instructions that can be executed in
each execution unit.

Now, assume that the compiler must schedule an instruction of one class. For example,
assume that the first instruction in the dependency graph is a shift. We know that the shift
will be sent to the INT queue, since that is the only place where it can be executed. For the
next instruction the compiler should check the dependency graph to see if it can find an
instruction that can be issued into one of the other classes; for example, an FMUL. The
compiler repeats this process, always looking for an instruction that is not in the same
class. This algorithm attempts to ensure that no two adjacent instructions are in the same
class; it guarantees that no more than two instructions are issued to any class in one clock,
regardless of where the CPU starts issuing the instructions.

It may not always be possible to find an instruction for a different class that can be inserted
into the code stream. At this point the compiler must do some experimentation to find an
algorithm that gives the best performance. Larger basic blocks always help, since they
give the algorithm more instructions to choose from for scheduling.

9.5 Instruction Dispatch, and the DFM Queue
Figure 79 on page 196 shows a block diagram of the SPARC64-III Data Flow Unit.

Up to 4 instructions are issued and dispatched in each cycle from the Issue Unit and arrive
at the Data Flow Unit. These instructions are sent to the Queues where they await all their
source operands (if they are not already available from previous instructions). Once all of
the source operands are available the instructions are eligible to be sent to one of the exe-
cution units. (If all the source operands are available when an instruction is issued and dis-
patched, and if the appropriate queue is empty, then the instruction can go directly from
the Issue Unit to the appropriate execution unit.)

When the results are generated by the execution units, they are sent on the Result Busses
to the Register File and also sent to the Queues where they are captured by any waiting
instruction that needs the result as an input operand. When more instructions are eligible

196 9 Guidelines for Instruction Scheduling

for execution than there are execution units served by the instruction’s queue, then the old-
est eligible instructions are selected for execution.

Figure 79: SPARC64-III Data Flow Unit

This collection of queues and execution units is called a “data flow” unit, because the
order of execution of the instructions is determined by the availability of the data needed
to start execution (the flow of the data) and not by the original order of the instructions in
the program.

The SPARC64-III CPU contains five instruction queues. Each queue may feed one or
more execution units. Table 38 on page 197 describes the queues, their ports, the number
of queue entries, and the number and type of functional units they feed with instructions,
and the latency of the functional units.

LOAD/STORE QUEUE

Four Instructions from the Result Busses

Addr

Renamed / Architected Register File

SYS

WP × 16WATCHPOINT QUEUE

INT QUEUE

FP QUEUE

Even Cache

FPMul/Add
FPDiv/Sqrt

ALS1
IMul/IDiv

ALS2

ALU3

ALU4

Odd Cache

INT/AGEN QUEUE

FP Add

Issue / Dispatch Unit

9.5 Instruction Dispatch, and the DFM Queue 197

The “WPorts” column defines the maximum number of instructions that can be sent from
the ISU to that queue on each cycle. This is one of the issue constraints. The number of
queue ports is a static constraint; that is, the CPU can never issue more instructions to any
queue in any one clock than there are queue ports. The “RPorts” column defines the maxi-
mum number of instructions that can be sent from the queue to the execution units on each
cycle.

The “Entries” column defines the maximum number of instructions that can be resident in
each queue. If the queue is full, the ISU cannot issue more instructions to this queue until
at least one instruction finishes its execution. Instructions leave their queues and are sent to
the execution units when all of their source operands are available. The number of free
queue entries is a dynamic constraint; it is difficult for the compiler to know before an
instruction is issued whether or not the required queue is full.

The “Execution Latency” column defines the amount of time it takes to execute the opera-
tion once it has been dispatched, assuming that it need not wait in a queue for its operands.
The FP divide/sqrt and the integer multiply/divide instructions can run in parallel with
other FP or integer operations. However, they share a result bus and must steal one clock
from the Floating Point Multiply/Add unit or one of the integer ALS’s when they generate
a result.

The Floating point Multiply-Add Unit and Floating point Divide/Sqrt Unit share the
source/result data bus. Thus, they can neither start nor finish their execution at the same
time. But the Floating point Multiply-Add Unit can start or finish a new multiply-add
while the Floating point Divide/Sqrt Unit is in the middle of execution.

Table 38: DFM Queue Structures

Queue Name
WPorts/
Entries/
RPorts

Execution Units Supplied from the Queue Execution Latency

Floating Point (FP) 2 / 8 / 2 1 Floating Point Multiply Add Unit (FMA)

1 Floating Point Divide/Sqrt Unit

1 Floating Point Add Unit (FA)

4 (FMA)(a)

1 (FMOV)
12(FDIVs)
22(FDIVd)
12(FSQRTs)
22(FSQRTd)
3 (FADD)(a)

a. Pipelined

Integer (INT) 2 / 8 / 2 2 ALS (Arithmetic/Logical/Shift) Units
1 Integer Multiply/Divide Unit

1
4 (32bits multiply)
6 (64bits multiply)
2-37(13 avg divide)

Integer and
Address
Generation
(INT/AGEN)

2 / 8 / 2 2 ALU (Arithmetic/Logical Units)
Note: ALUs used for Address Generation

1

Load/Store (LSU) 2(b) / 12 / 2

b. 1 for STDF, STDFA, STF, STFA, and STFSR

Even and Odd Data Caches 3 (hit)(a)

Watchpoint (WP) 1 / 16 / 16 Watchpoint x 16
(branch condition calculation)

1

198 9 Guidelines for Instruction Scheduling

The Floating point Multiply-Add Unit, Floating point Add unit, and Data Cache Unit are
pipelined. They can start a new multiply/add, load/store each clock and complete one each
clock. Floating point moves bypass the pipeline and can complete in 1 cycle, if there is no
Floating point Multiply-Add instruction in the pipeline which will produce a result in the
next cycle.

The Floating point Divide/Sqrt Unit, the Integer Multiply/Add Unit are not pipelined.
They cannot start new operations while they are busy.

Anything issued to the Load Store Unit (LSU) queue must also be issued to the INT/
AGEN queue to have its address generated. The INT/AGEN units can do address genera-
tions or most integer instructions. However, they cannot do shifts, multiplies, divides, or
instructions that have a condition code register as a source operand; for example, MOVcc,
ADDC, or SUBC. The INT units cannot do MOVr instructions. For a complete listing of
what integer instruction can be issued to INT or INT/AGEN see 9.6.3, “Where Instruc-
tions Are Executed”.

9.6 Data Flow Unit

9.6.1 Data Dependencies

There are three types of data dependency: true dependency, output dependency, and anti-
dependency. The following code fragment contains an example of each type; they are
described further in the subsections that follow:

1. add r1, r2 � r3 True Dependency

2. sub r3, r4 � r5 Output Dependency

3. or r7, r8 � r3 Anti-Dependency

All three of these instructions can be issued into the queues in one clock.

9.6.1.1 True Dependencies

Instruction 1 writes a result to r3 and instruction 2 uses that result as a source operand.
This is called a “true dependency.” It is impossible to execute instruction 2 before instruc-
tion 1 and obtain the correct answer. No computer can remove true dependencies.

9.6.1.2 Output Dependencies

Instruction 1 writes a result to r3. Instruction 3 also writes a result to r3. It appears that
instruction a can not execute before or in parallel with instruction 1, or else instruction 2
might get the wrong source value in r3. However, register renaming as found on
SPARC64-III can remove this restriction. Register renaming works by “renaming” all des-
tination registers from their architectural register name to an internal “physical” register
name. The renaming is done at dispatch time. To make renaming work efficiently the CPU
needs more physical registers than architected registers. For instance, assume that the

9.6.2 True Dependency Strategies 199

example above were renamed in the following manner. (Here we use the notation pn to
mean physical register “n”.)

1. add p1, p2 � p78

2. sub p78, p4 � p42

3. or p7, p8 � p34

First the destination of 1 is renamed to p78. This also causes the source register in 2 to be
renamed to p78. After renaming, the program is logically equivalent to the original. How-
ever, now there is no reason that instruction 3 could not be executed before or simulta-
neously with 1, because they now write different destination registers. Thus, register
renaming removed the output dependency between instructions 1 and 3.

9.6.1.3 Anti-dependencies

In the original example instruction 2 uses r3 as a source and instruction 3 writes its result
into r3. It appears that instruction 3 can not execute before instruction 2, because instruc-
tion 3 would overwrite the source register (r3) needed in instruction 2. This is called an
anti-dependency.

The renamed register version in 9.6.1.2 above illustrates how SPARC64-III handles this
problem. Since the destination of 3 was renamed to p34 and instruction 2 needs p78,
instruction 3 can now be executed before or with instruction 2b. Thus register renaming
also removes anti-dependencies.

9.6.2 True Dependency Strategies

Since register renaming removes output and anti dependencies, the compiler or assembly
language programmer need only be concerned about true dependencies. These cannot be
removed by register renaming. In fact, there is no way to remove true dependencies and
have a correctly operating program.

For short sequences of code or for code that is not in a loop, it is probably not worthwhile
to worry about true dependencies. SPARC64-III can have up to 64 instructions in its
instruction queues at any time. This allows enough buffering so that most true dependen-
cies are resolved before they cause any machine stalls. This is especially true for integer
operations where the instruction latencies are usually only 1 clock.

Note:
Load and Store will be discussed in more detail later.

In certain loops, especially in floating-point loops, the scheduling of true dependencies
may make a big difference in performance. If one iteration of a loop generates multiple
floating-point results that are used in the next iteration of the loop, the FP queue can
become filled. That is, the ISU can issue two instructions per clock to the FP Queue and
each operation has at least three clocks of latency. In these cases it is possible for true
dependencies to stall the machine because the FP queue is full. If possible, the compiler
should schedule these loops to prevent the FP queue from filling.

200 9 Guidelines for Instruction Scheduling

9.6.3 Where Instructions Are Executed

Table 39 lists the queues to which instructions can be issued. A check mark (�) in a col-
umn indicates that the instruction(s) can be executed in the associated unit; an ‘� ’ indi-
cates that it uses multiple execution units. ‘L’ indicates that it uses Even/Odd Cache in
addition to ALU1/2 attached to the INT/AGEN queue.

Table 39: Where Instructions are Executed

Queue INT INT/AGEN FP WP SYS
Result bus FX1 FX2 FX3 FX4 FP1 FP2

Execution Unit ALS1 Imul/
Div ALS2 ALU3 ALU4 FMA Fdiv/

Sqrt FA WP SYS

ADD, ADDcc � � � �

ADDC, ADDCcc � �

AND, ANDcc, ANDN, ANDNcc � � � �

BPcc, Bicc, BPr �

CALL � �

CASA, CASXA L L
DONE � � �

FABS �

FADD � �

FBfcc, FBPfcc �

FCMP, FCMPE, FiTO(s, d) �

FDIV �

FLUSH L L
FLUSHW �

FMOV, FMOVcc, FMOVr, FMOVr,
FMUL, FNEG, FsMULd, F(s, d)TOi,
F(s, d)TO(s, d), F(s, d)TOx, FxTO(s, d)

�

FSQRT �

FSUB � �

ILLTRAP �

IMPDEP2(FMA) �

JMPL � �

LDD, LDDA L L �

LDDF, LDDF, LDDFA, LDF, LDFA,
LDFSR

L L

LDSB, LDSBA, LDSH, LDSHA,
LDSTUB, LDSTUBA, LDSW,
LDSWA, LDUB, LDUBA, LDUH,
LDUHA, LDUW, LDUWA, LDX,
LDXA, LDXFSR

L L

MEMBAR L L
MOVcc � �

MOVr � �

MULScc �

MULX �

NOP � � � �

UMUL, SMUL, UMULcc, SMULcc �

9.6.4 Loads and Stores 201

9.6.4 Loads and Stores

SPARC64-III contains a 64K byte Data Cache, which is divided into two banks, even and
odd, with 8 bytes boundary. The Data Cache is indexed by virtual address bit <13:6>. The
data caches have a line size of 64 bytes and are four-way set associative. The associativity
means that cache thrashing is minimized. Nevertheless, the compiler should not align
large data arrays modulo 16K bytes apart.

OR, ORcc, ORN, ORNcc � � � �

PREFETCH, PREFETCHA L L
RDASI, RDASR, RDCCR, RDFPRS,
RDPC, RDPR, RDTICK, RDY

� �

RESTORE � �

RESTORED � �

RETRY � � �

RETURN � �

SAVE � � �

SAVED � �

SDIV, SDIVcc, SDIVX �

SETHI � � � �

SIR �

SLL, SLLX � �

SDIV, SDIVXcc, SDIVX �

SLL, SRL � �

SMUL, SMULcc �

SRA, SRAX, SRL, SRLX � �

STB, STBA, STBAR L L
STD, STDA L L �

STDF, STDFA, STF, STFA, STFSR L L
STH, STHA, STW, STWA, STX,
STXA, STXFSR

L L

SUB, SUBcc � � � �

SUBC, SUBCcc � �

SWAP, SWAPA L L
TADDcc, TADDccTV � �

Tcc � �

TSUBcc, TSUBccTV � �

UDIV, UDIVcc, UDIVX �

UMUL, UMULcc �

WRASI, WRASR, WRCCR, WRF-
PRS, WRPR, WRY

� �

XOR, XORcc, XNOR, XNORcc � � � �

Table 39: Where Instructions are Executed (Continued)

Queue INT INT/AGEN FP WP SYS
Result bus FX1 FX2 FX3 FX4 FP1 FP2

Execution Unit ALS1 Imul/
Div ALS2 ALU3 ALU4 FMA Fdiv/

Sqrt FA WP SYS

202 9 Guidelines for Instruction Scheduling

Note:
This is 16K byes instead of 64K, because of the four-way set associativity.

The caches are “non-blocking”. That is, while the cache is waiting for data from memory
because of a cache miss, it can still process further cache accesses, most of which will be
hits. The cache only blocks further accesses when it encounters a miss that requires a
fourth data cache line to be loaded from memory. (Misses to a data cache line that is in the
process of being loaded from memory do not block other data accesses to the cache.) The
non-blocking nature of the caches allows the CPU to perform a great deal of work while
waiting for cache misses.

SPARC64-III has a large (256 entry, fully associative) Translation Lookaside Buffer
(TLB). Nevertheless, it is important to avoid TLB misses as much as possible, since they
are handled in software and take a great deal of time, typically 80-100 cycles or more.

The SPARC64-III Load/Store Unit (LSU) can start two loads or two stores in each clock,
as long as one has an even address and the other has an odd address. These accesses can be
totally independent; they can even be a mixture of loads and stores.

The data cache requires a load/store latency of three cycles, but it is pipelined and can
accept two new load or store requests every clock and can complete two loads or stores
every clock.

The SPARC64-III level 2 cache system has about a 13 clock latency for loads that miss in
the data cache. Fortunately, the data flow nature of SPARC64-III allows the CPU to do
other useful work while waiting for a cache miss. However, it is hard for the CPU alone to
find enough work to do fill 13 clocks of latency. Subsequent load misses to the same cache
line are queued in the data cache and will complete as soon as the data arrives (usually
only a few cycle after the 13 cycles to get the data for the first miss). Too many data cache
misses to different cache lines in a short period of time eventually cause the CPU to stall.

The next section describes strategies the compiler can use to avoid the cache miss latency
penalty.

9.6.4.1 Load and Store Latencies

Table 40 shows the Data Cache latencies (in clocks) for various load and store events:

Table 40: Data Cache Latencies

Type Latency(a)

(load)

a. All latencies are approximate; many factors determine the actual number of cycles of latency
that will occur.

Latency(a)

(store) Comments

Hit at D1$ 3 3 Pipelined
Miss at D1$, but Hit in U2$ 3+10 3+10 Non-blocking
Miss at D1$ and U2$ 3+10+46 3+10+53 Non-blocking
Miss at TLB 100+ 100+ Handled by Software

9.6.5 Load and Store Strategies 203

9.6.4.2 Load and Store Ordering Constraints

SPARC64-III does not allow stores to execute out of order, even when the CPU is using
the Relaxed Memory Order (RMO) memory model. SPARC64-III does allow loads to
execute out of order in RMO mode, however. It also allows loads to pass stores, if the load
is not to the same page offset as any store that is also in the Load/Store Queue. Explicitly,
in order for a load to pass a store in the Load/Store Queue, address bits 13..0 of the load
and store must differ.

Speculative stores, which are stores that are encountered on a predicted, but not yet veri-
fied, branch path, are not allowed to execute until they are no longer speculative. Stores in
a nonspeculative path are also not executed until it is known that all instructions before the
store will complete without error. This prevents a store from erroneously modifying a
cache or memory location.

Speculative loads, which are loads on a predicted branch path, are allowed to execute. If
the CPU later determines that the branch was mispredicted, all speculative loads and spec-
ulative stores that are still in the LSU queue are cancelled. Loads that have already started
execution (that is, they are in the process of loading data from the U2-Cache or memory)
are not cancelled; instead, the data is loaded into the level-1 data cache, but the data is not
sent to the DFMLSU.

9.6.5 Load and Store Strategies

The following sections discuss strategies for hiding data cache latencies.

9.6.5.1 Schedule Loads as Early as Possible

It is a good idea to schedule loads as early as possible; that is, try to schedule loads as far
before any instructions that uses the result of the load as possible. This may cover the
entire latency of a data cache hit, and it will definitely help if there is a data cache miss.
Loop unrolling or software pipelining may allow a load to be started long before the data
is needed. Larger basic blocks also make it easier to schedule loads earlier.

Several factors may make it difficult or undesirable to schedule loads too far before the
data is used:

� The load instructions tie up an architected register until the data is used. Too many
“early” loads would tie up all of the architected registers and prevent later instructions
from issuing.

� Often loads cannot be moved from a later basic block to an earlier one, because the
intervening branch might be checking to determine if it is valid to do the load. For
example, while traversing a linked list, it would speed things up if the compiler could
start to access the data in the next list node before checking to see if the node pointer is
null. However, with normal loads using a null pointer causes a data_access_exception,
so this load cannot be moved before the branch.

The next sections discuss two techniques available in SPARC64-III that can circumvent
some of these restrictions.

204 9 Guidelines for Instruction Scheduling

9.6.5.2 Data Prefetches

SPARC-V9 provides a set of data prefetch instructions. These instructions are defined to
“attempt” to prefetch data. The prefetch instructions specify an address like a normal load
or store, but do not require a destination (source) register. The prefetch operation attempts
to move the data as close as possible to the CPU. For SPARC64-III the prefetch loads the
data into the level-1 data cache, if it is not already there.

If a data_access_exception occurs during the prefetch, the instruction is treated as a NOP;
that is, the data is not loaded and no exception occurs. This allows the compiler to sched-
ule prefetches before it is certain that the source address is valid.

On SPARC64-III the compiler needs to schedule only one prefetch per cache line (64
bytes), since the prefetch always loads an entire cache line into the cache.

SPARC-V9 defines five different prefetch types, but SPARC64-III supports only two
types: “Prefetch for Several Reads” and “Prefetch for Several Writes.” (See A.42,
“Prefetch Data”, for more information.) Both types cause a cache line to be loaded into the
data cache if it is not already there. The “write” version also informs the coherence mech-
anism that the requestor must have exclusive ownership of the cache line. All prefetches
are non-blocking; that is, the data cache can process other cache accesses while the
prefetch is loading the cache line from the Unified Cache (U2) or memory.

A Prefetch that misses in the Data Cache causes a cache reload buffer to be busy when the
data returns from the U2 cache or memory. If too many prefetches miss, then subsequent
real loads (or stores) will be delayed because all available prefetch buffers will be in use.
From 2 to 4 prefetches (depending on their address) can miss before a subsequent load
miss will be stalled.

9.6.5.3 Non-Faulting Loads

Non-Faulting Loads are similar to prefetches except that:

� They are only available for loads,

� They load data into an architected register as well as the data cache.

If any data access protection violation occurs during the load, zero is returned to the desti-
nation register but no error trap is taken.

Note:
Error traps are taken for hardware errors such as ECC.

The compiler must verify that the address used for a non-faulting load was valid before it
attempts to use the loaded data. For example, in traversing a linked list the compiler could
use non-faulting loads to access the data in the next node before checking for a null node
pointer. However, the compiled code must check the pointer before using the data that was
loaded, since no exception occurs if the pointer was invalid.

9.6.5.4 Non-Faulting Loads vs. Data Prefetches

Prefetch has the following benefits:

9.7 Some Implementation Specifics 205

� It does not require a register for the result.

� It can be made before the prefetch address is validated.

� Only one Prefetch is needed per data cache line.

� It can be used for loads and stores.

Prefetch has the following disadvantages:

� The data is loaded only into the data cache. The prefetch must be followed by a “real”
load in order to get the data from the cache and to ensure that the address of the
prefetch was valid.

� Too many prefetch misses may make all of the data cache reload buffers busy. This
may then block nonprefetched loads and stores that are more important for making
forward progress in the program.

Non-Faulting Loads have the following advantage:

� The data is loaded into a register, therefore, a follow-up load is not needed.

Non-Faulting Loads have the following disadvantages:

� The address must be validated before the data can be used.

� An architected register is tied up until the data is used.

� They are available only for loads.

� Too many non-faulting loads that miss can make the data cache reload buffers busy.

9.7 Some Implementation Specifics
In addition to the topics discussed above a few topics relate to the particular implementa-
tion of the SPARC64-III machine that the compiler writer or assembly language program-
mer should be aware of to generate efficient code. These are all covered in other sections
of this manual. In addition, they are collected and summarized below.

9.7.1 Unimplemented Instructions

SPARC64-III does not implement some SPARC-V9 instructions in hardware. If the com-
piler issues these instructions, the machine traps and the kernel emulates the instruction.
Avoid these instructions when possible, because kernel emulation is slow. Table 41 enu-
merates the non-privileged instructions that are unimplemented in SPARC64-III.

Table 41: Unimplemented instructions

Unimplemented Instructions Notes
All Quad FPops
LDQF/STQF

Kernel emulation

POPC Kernel emulation

206 9 Guidelines for Instruction Scheduling

9.7.2 Overloaded Instructions

The following instructions are overloaded in SPARC64-III. That is, the instructions are
mapped onto other valid instructions.

9.7.3 Register Windows

SPARC64-III implements five register windows (NWINDOWS = 5). This is fewer win-
dows than most SPARC machines. However, the cost of additional registers in a register
renamed, superscalar processor such as SPARC64-III is very high. (More register win-
dows take more space on the chip and are slower.) However, the window spill and fill rou-
tines are much faster in SPARC-V9 than in SPARC-V8, because of the new SPARC-V9
instructions. Also SPARC64-III speculatively executes into the spill/fill routines, which
allows the spills and fills to start early. Thus, the cost of a window spill or fill is much less
for SPARC-V9 implementations like SPARC64-III than it is for SPARC-V8 machines.

To keep the spill/fill cost low the compiler should not generate unnecessary SAVE and
RESTORE instructions, since these might cause extra window spills or fills. Inlining small
functions helps, since this removes the SAVE and RETURN instructions. Similarly, The
compiler should generate routines as leaf routines whenever possible.

9.7.4 Deprecated Instructions

Table 43 on page 207 lists the SPARC-V8 instructions that have been deprecated in
SPARC64-III. The deprecated instructions may not be supported or may perform poorly in
future SPARC-V9 hardware and may be dropped in SPARC-V10; new compilers should
not generate deprecated instructions.

Table 42: SPARC64-III Unimplemented Non-privileged Instructions

Overloaded Instructions Overload to:
PREFETCH (one read) Mapped to PREFETCH (several reads)
PREFETCH (one write) Mapped to PREFETCH (several writes)
PREFETCH (page) Mapped to PREFETCH (several reads)

9.8 Grouping Rules 207

9.8 Grouping Rules

A maximum of 4 instructions can be issued in a cycle, depending on restrictions described
as follows.

Any data dependency (true, output, anti-dependency) between instructions does not affect
the number of instruction being issued, because of SPARC64-III’s renaming capability.

9.8.1 Fetch limitation

Instruction issue is limited to the number of instructions available in the 12-entry instruc-
tion buffer. The number of instructions that can be fetched (max 4) is dependent on the
conditions described in the following subsections.

9.8.1.1 Instruction Lookaside Table (ILT) Miss

The next fetch address is always predicted through the 4k entry Instruction Lookaside
Table (ILT). The mispredict penalty is 1 cycle.

9.8.1.2 I0 cache Miss

The I0 Cache is 16KB-direct; the I1 Cache is 64Kb, 4-way set associative. The I0 Cache
miss penalty is 3 cycles, and between 10 and 56 (U2 Cache hit/miss) more cycles are
required if the I1 Cache misses as well.

Table 43: Deprecated instructions

Deprecated Instructions Comments
Bicc No performance penalty. No branch prediction bit.
FBFcc No performance penalty, No branch prediction bit.
LDD(A) Single issue instruction
LDFSR Syncs the CPU
MULScc Syncs the CPU
SDIV, SDIVcc No performance penalty
SMUL, SMULcc Syncs the CPU
STBAR No performance penalty
STD(A) Single issue instruction
STFSR Syncs the CPU
SWAP, SWAPA No performance penalty
TADDccTV No performance penalty. Useless in non-tagged programs
TSUBccTV No performance penalty. Useless in non-tagged programs
UDIV,UDIVcc No performance penalty
UMUL, UMULcc Sync the CPU
WRY Sync the CPU

208 9 Guidelines for Instruction Scheduling

9.8.1.3 I0 Cache Line Break

Each I0 Cache line includes 16 instructions; instructions that cross a cache line boundary
cannot be fetched in the same cycle. See 9.2.1, “Internal Level-0 Instruction Cache (I0)”
for the details.

9.8.1.4 Control Transfer Instruction (CTI) Fetch

Instruction addresses have to be contiguous to be issued in the same cycle. A taken CTI
and the target of that CTI cannot both be fetched in the same cycle. A non-taken DCTI
with the annul bit on and the next instruction cannot be fetched in the same cycle. In addi-
tion, multiple CTIs cannot be fetched in the same cycle.

Every CTI except DCTI requires 2 cycle bubbles for the subsequent instructions to be
issued.

9.8.2 Syncing Instructions

Several instructions cause SPARC64-III to sync; that is, they cause the machine to stop
issuing instructions until all previously issued instructions commit. The CPU then exe-
cutes the syncing instruction by itself and waits for it to commit before proceeding. Fortu-
nately, only a few of these instructions might be generated by a compiler. Table 44 lists the
instructions that cause the SPARC64-III to sync.

Table 44: SPARC64-III Syncing Instructions

Syncing Instructions Suggestions
MEMBAR (#sync, #memissue)
FLUSH
SMUL/SMULcc Use MULX
UMUL/UMULcc Use MULX
MULScc Use MULX
Tcc except ‘ta %g0+imm’ Use ‘ta %g0+imm’ form for Unix system

calls
RDASR %asr24, %asr26,%asr28,%asr29, %asr30
WRASR %asr18, %asr19, %asr20, %asr21, %asr22, %asr23,
%asr25, %asr26, %asr30, %asr31
WRPR except
%pil
‘%g0+imm %cwp/%cansave/%canrestore/%cleanwin/%otherwin/
%wstate’
LDFSR/LDXFSR
STFSR/STXFSR
CASA/CASXA
SIR
WRY
WRASI
WRFPRS

9.8.3 slot0_only and last_to_be_issued 209

9.8.3 slot0_only and last_to_be_issued

Some instructions are marked as slot0_only or last_to_be_issued; that is, the instruction
must be the first or last slot of the current issuing instruction window. An instruction
marked as both slot0_only and last_to_be_issued is a single-issue instruction.

Table 45 lists the SPARC64-III slot0_only and last_to_be_issued instructions.

9.8.4 DFM Q Write Port

Each instruction has attributes indicating to which DFM queue the instruction can be
issued and dispatched. Since each DFM queue can accept a limited number of instruc-
tions, the number of issuing instructions is dependent on the type of the instructions. Table
46 indicates each instruction’s type. A check mark (�) in the column indicates that the
instruction(s) can be queued in the named queue; an ‘� ’ indicates that it uses multiple
queues.

Note:
Unlike Serial number and rename register, the DFM queue entry becomes available when the
instruction using the entry starts its execution, rather than when the instruction is retired except
DFM LSU.

.

Table 45: slot0_only and last_to_be_issued Instructions.

Instructions slot0_only last_to_be_issued
FMOVrval �

JMPL(except ret/retl) �

LDD, LDDA � �

RDASI, RDASR, RDFPRS, RDPC, RDPR, RDTICK �

RESTORE � �

RESTORED �

SAVE �

SAVED �

STD, STDA � �

Tcc � �

WRASI, WRASR, WRCCR, WRFPRS, WRPR, WRY �

RETURN �

Table 46: Where Instructions are Queued

Instructions INT
Queue

INT/
AGEN
Queue

Load/
Store
Queue

FP
Queue

WP
Queue SYS

ADD, ADDcc � �

ADDC, ADDCcc �

AND, ANDcc, ANDN, ANDNcc � �

BPcc, Bicc, BPr �

CALL � �

CASA, CASXA �

DONE � �

210 9 Guidelines for Instruction Scheduling

FABS �

FADD �

FBfcc, FBPfcc �

FCMP, FCMPE, FiTO(s,d) �

FDIV �

FLUSH � �

FLUSHW �

FMOV, FMOVcc, FMOVr, FMOVr,
FMUL, FNEG, FsMULd,
F(s,d)TOi, F(s,d)TO(s,d),
F(s,d)TOx, FxTO(s,d)

�

FSQRT �

FSUB �

ILLTRAP �

IMPDEP2(FMA) �

JMPL � �

LDD, LDDA � � �

LDDF, LDDF, LDDFA, LDF,
LDFA, LDFSR

� �

LDSB, LDSBA, LDSH, LDSHA,
LDSTUB, LDSTUBA, LDSW,
LDSWA, LDUB, LDUBA, LDUH,
LDUHA, LDUW, LDUWA, LDX,
LDXA, LDXFSR

� �

MEMBAR � �

MOVcc �

MOVr �

MULScc �

MULX �

NOP � �

UMUL,SMUL,UMULcc,SMULcc �

OR, ORcc, ORN, ORNcc � �

PREFETCH, PREFETCHA � �

RDASI, RDASR, RDCCR, RDF-
PRS, RDPC, RDPR, RDTICK,
RDY

� �

RESTORE �

RESTORED � �

RETRY � �

RETURN � �

SAVE � �

SAVED � �

SDIV, SDIVcc, SDIVX �

SETHI � �

SIR �

SLL, SLLX �

Table 46: Where Instructions are Queued (Continued)

Instructions INT
Queue

INT/
AGEN
Queue

Load/
Store
Queue

FP
Queue

WP
Queue SYS

9.8.5 Mixture of Normal Integer Instructions 211

9.8.5 Mixture of Normal Integer Instructions

When issuing a mixture of normal integer instructions (for example, ADD and SHIFT),
the CPU exhibits a specific behavior. If an issue window contains 4 integer/shift instruc-
tions, they could be issued in 2 possible ways, based on the order of the operations. Table
47 and Table 48 illustrate the two possible issue orderings:

SDIV, SDIVXcc, SDIVX �

SLL, SRL �

SMUL, SMULcc �

SRA, SRAX, SRL, SRLX �

STB, STBA, STBAR � �

STD, STDA � � �

STDF, STDFA, STF, STFA, STFSR � �

STH, STHA, STW, STWA, STX,
STXA, STXFSR

� �

SUB, SUBcc � �

SUBC, SUBCcc �

SWAP, SWAPA � �

TADDcc, TADDccTV �

Tcc � �

TSUBcc, TSUBccTV �

UDIV, UDIVcc, UDIVX �

UMUL, UMULcc �

WRASI, WRASR, WRCCR, WRF-
PRS, WRPR, WRY

� �

XOR,XORcc,XNOR,XNORcc � �

Table 47: Order = shift1, shift2, add1, add2

Execution Unit Operation Cycle #
ALS1 shift 1 1
ALS2 shift 2 1
ALU3 add 1 1
ALU4 add 2 1

Table 46: Where Instructions are Queued (Continued)

Instructions INT
Queue

INT/
AGEN
Queue

Load/
Store
Queue

FP
Queue

WP
Queue SYS

212 9 Guidelines for Instruction Scheduling

The second case takes two clocks. This anomaly occurs because the first 2 integer or shift
instructions are always sent to the INT queue and the remaining integer instructions are
checked to see if they can go to the INT/AGEN queue. Since shift cannot go to the INT/
AGEN queue, the second case cannot execute the shifts in the same clock as the ADDs.
This issue constraint is caused by a critical speed path, which does not allow enough time
to switch the order of the instructions so that they could all issue in a single clock.

Note:
Although the number of instructions being issued is calculated assuming the first 2 integer instruc-
tions are always sent to the INT queue, it is not guaranteed that the first two integer instructions will
be dispatched to the INT queue, except shift and some other instructions (see Table 46 on page 209
for details). SPARC64-III tries to issue and dispatch instructions to the INT queue and INT/AGEN
queue in turn to prevent ALU3/ALU4 from being idle.

9.8.6 Dynamic Resources

An instruction cannot be issued if corresponding dynamic resources are not available. The
instruction will stall until previous instructions using the same resource are retired and the
resource again becomes available.

9.8.6.1 Serial Number

Every issued instruction is tagged with a serial number. The number of available serial
numbers is 63.

9.8.7 Rename Register

Any instruction which will write into an integer register (except %g0, %ag0), a condition
code register, or floating point register requires an available rename register. The number
of available rename registers is 34 for integer, 27 for cc, and 32 (even)+32 (odd) for float-
ing point registers.

Table 48: Order = add1, add2, shift1, shift2

Execution Unit Operation Cycle #
ALS1 add 1 1
ALS2 add 2 1
ALS1 shift 1 2
ALS2 shift 2 2

A Instruction Definitions

A.1 Overview
This appendix describes each SPARC64-III instruction. Related instructions are grouped
into subsections. Each subsection consists of these parts:

1. A table of the opcodes defined in the subsection with the values of the field(s) that
uniquely identify the instruction(s).

2. An illustration of the applicable instruction format(s). In these illustrations a dash ‘—’
indicates that the field is reserved for future versions of the architecture and shall be
zero in any instance of the instruction. If a conforming SPARC-V9 implementation
encounters nonzero values in these fields, its behavior is undefined. See Appendix I,
“Extending the SPARC-V9 Architecture” in V9 for information about extending the
SPARC-V9 instruction set.

3. A list of the suggested assembly language syntax; the syntax notation is described in
Appendix G, “Assembly Language Syntax”.

4. A description of the features, restrictions, and exception-causing conditions.

5. (5) A list of exceptions that can occur as a consequence of attempting to execute the
instruction(s). Exceptions due to an instruction_access_error,
instruction_access_exception, 32i_instruction_access_MMU_miss, async_error,
watchdog, and interrupts are not listed since they can occur on any instruction. Also
any instruction that is not implemented in hardware shall generate an
illegal_instruction exception (or fp_exception_other exception with
ftt=unimplemented_FPop for floating-point instructions) when it is executed. The
data_breakpoint trap can occur on any data memory access instruction and the
programmed_emulation_trap can occur during chip debug on any instruction that has
been programmed into one of the CPU’s Emulation Trap Registers (ETR). These traps
are also not listed under each instruction.

The following traps never occur in SPARC64-III:

� watchdog_reset

� instruction_access_MMU_miss

� internal_processor_error

V9

214 A Instruction Definitions

� data_access_MMU_miss

� data_access_protection

� unimplemented_LDD

� unimplemented_STD

� LDQF_mem_address_not_aligned

� STQF_mem_address_not_aligned

� async_data_error

� fp_exception_other (ftt = invalid_fp_register)

The descriptions in this Appendix list the traps that will not occur for each instruction
group. However, traps in the list above are omitted from the lists in the following pages
since they can never occur in SPARC64-III.

This appendix does not include any timing information (in either cycles or clock time),
since timing is implementation-dependent.

Table 50 summarizes the instruction set; the instruction definitions follow the table.
Within Table 50, throughout this appendix, and in Appendix E, “Opcode Maps,” certain
opcodes are marked with mnemonic superscripts. The superscripts and their meanings are
defined in Table 49:

Table 49: Opcode Superscripts (V9=21)

Superscript Meaning
D Deprecated instruction
P Privileged opcode
PASI Privileged action if bit 7 of the referenced ASI is zero
PASR Privileged opcode if the referenced ASR register is privileged
PNPT Privileged action if PSTATE.PRIV = 0 and TICK.NPT = 1

Table 50: Instruction Set (V9=22)

Opcode Name Page
ADD (ADDcc) Add (and modify condition codes) 218
ADDC (ADDCcc) Add with carry (and modify condition codes) 218
AND (ANDcc) And (and modify condition codes) 270
ANDN (ANDNcc) And not (and modify condition codes) 270
BPcc Branch on integer condition codes with prediction 229
BiccD Branch on integer condition codes 227
BPr Branch on contents of integer register with prediction 219
CALL Call and link 232
CASAPASI Compare and swap word in alternate space 233
CASXAPASI Compare and swap doubleword in alternate space 233
DONEP Return from trap 238
FABS(s,d,q) Floating-point absolute value 246

A.1 Overview 215

FADD(s,d,q) Floating-point add 239
FBfccD Branch on floating-point condition codes 221
FBPfcc Branch on floating-point condition codes with prediction 224
FCMP(s,d,q) Floating-point compare 240
FCMPE(s,d,q) Floating-point compare (exception if unordered) 240
FDIV(s,d,q) Floating-point divide 248
FdMULq Floating-point multiply double to quad 248
FiTO(s,d,q) Convert integer to floating-point 245
FLUSH Flush instruction memory 251
FLUSHW Flush register windows 253
FMOV(s,d,q) Floating-point move 246
FMOV(s,d,q)cc Move floating-point register if condition is satisfied 275
FMOV(s,d,q)r Move f-p reg. if integer reg. contents satisfy condition 279
FMUL(s,d,q) Floating-point multiply 248
FNEG(s,d,q) Floating-point negate 246
FsMULd Floating-point multiply single to double 248
FSQRT(s,d,q) Floating-point square root 250
F(s,d,q)TOi Convert floating point to integer 242
F(s,d,q)TO(s,d,q) Convert between floating-point formats 243
F(s,d,q)TOx Convert floating point to 64-bit integer 242
FSUB(s,d,q) Floating-point subtract 239
FxTO(s,d,q) Convert 64-bit integer to floating-point 245
ILLTRAP Illegal instruction 254
IMPDEP1 Implementation-dependent instruction 255
IMPDEP2 Implementation-dependent instruction 255
JMPL Jump and link 258
LDDD Load doubleword 263
LDDAD, PASI Load doubleword from alternate space 265
LDDF Load double floating-point 259
LDDFAPASI Load double floating-point from alternate space 261
LDF Load floating-point 259
LDFAPASI Load floating-point from alternate space 261
LDFSRD Load floating-point state register lower 259
LDQF Load quad floating-point 259
LDQFAPASI Load quad floating-point from alternate space 261
LDSB Load signed byte 263
LDSBAPASI Load signed byte from alternate space 265
LDSH Load signed halfword 263
LDSHAPASI Load signed halfword from alternate space 265
LDSTUB Load-store unsigned byte 268
LDSTUBAPASI Load-store unsigned byte in alternate space 269
LDSW Load signed word 263
LDSWAPASI Load signed word from alternate space 265
LDUB Load unsigned byte 263
LDUBAPASI Load unsigned byte from alternate space 265

Table 50: Instruction Set (Continued)(V9=22)

Opcode Name Page

216 A Instruction Definitions

LDUH Load unsigned halfword 263
LDUHAPASI Load unsigned halfword from alternate space 265
LDUW Load unsigned word 263
LDUWAPASI Load unsigned word from alternate space 265
LDX Load extended 263
LDXAPASI Load extended from alternate space 265
LDXFSR Load floating-point state register 259
MEMBAR Memory barrier 272
MOVcc Move integer register if condition is satisfied 281
MOVr Move integer register on contents of integer register 285
MULSccD Multiply step (and modify condition codes) 290
MULX Multiply 64-bit integers 287
NOP No operation 292
OR (ORcc) Inclusive-or (and modify condition codes) 270
ORN (ORNcc) Inclusive-or not (and modify condition codes) 270
POPC Population count 293
PREFETCH Prefetch data 295
PREFETCHAPASI Prefetch data from alternate space 295
RDASI Read ASI register 303
RDASRPASR Read ancillary state register 303
RDCCR Read condition codes register 303
RDFPRS Read floating-point registers state register 303
RDPC Read program counter 303
RDPRP Read privileged register 301
RDTICKPNPT Read TICK register 303
RDYD Read Y register 303
RESTORE Restore caller’s window 307
RESTOREDP Window has been restored 309
RETRYP Return from trap and retry 238
RETURN Return 306
SAVE Save caller’s window 307
SAVEDP Window has been saved 309
SDIVD (SDIVccD) 32-bit signed integer divide (and modify condition codes) 235
SDIVX 64-bit signed integer divide 287
SETHI Set high 22 bits of low word of integer register 310
SIR Software-initiated reset 313
SLL Shift left logical 311
SLLX Shift left logical, extended 311
SMULD (SMULccD) Signed integer multiply (and modify condition codes) 288
SRA Shift right arithmetic 311
SRAX Shift right arithmetic, extended 311
SRL Shift right logical 311
SRLX Shift right logical, extended 311
STB Store byte 319
STBAPASI Store byte into alternate space 321

Table 50: Instruction Set (Continued)(V9=22)

Opcode Name Page

A.1 Overview 217

STBARD Store barrier 314
STDD Store doubleword 319
STDAD, PASI Store doubleword into alternate space 321
STDF Store double floating-point 315
STDFAPASI Store double floating-point into alternate space 317
STF Store floating-point 315
STFAPASI Store floating-point into alternate space 317
STFSRD Store floating-point state register 315
STH Store halfword 319
STHAPASI Store halfword into alternate space 321
STQF Store quad floating-point 315
STQFAPASI Store quad floating-point into alternate space 317
STW Store word 319
STWAPASI Store word into alternate space 321
STX Store extended 319
STXAPASI Store extended into alternate space 321
STXFSR Store extended floating-point state register 315
SUB (SUBcc) Subtract (and modify condition codes) 323
SUBC (SUBCcc) Subtract with carry (and modify condition codes) 323
SWAPD Swap integer register with memory 324
SWAPAD, PASI Swap integer register with memory in alternate space 325
TADDcc (TADDccTVD) Tagged add and modify condition codes (trap on overflow) 327
Tcc Trap on integer condition codes 331
TSUBcc (TSUBccTVD) Tagged subtract and modify condition codes (trap on overflow) 329
UDIVD (UDIVccD) Unsigned integer divide (and modify condition codes) 235
UDIVX 64-bit unsigned integer divide 287
UMULD (UMULccD) Unsigned integer multiply (and modify condition codes) 287
WRASI Write ASI register 337
WRASRPASR Write ancillary state register 337
WRCCR Write condition codes register 337
WRFPRS Write floating-point registers state register 337
WRPRP Write privileged register 334
WRYD Write Y register 337
XNOR (XNORcc) Exclusive-nor (and modify condition codes) 270
XOR (XORcc) Exclusive-or (and modify condition codes) 270

Table 50: Instruction Set (Continued)(V9=22)

Opcode Name Page

218 A Instruction Definitions

A.2 Add

Format (3):

Description:

ADD and ADDcc compute “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if
i = 1, and write the sum into r[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry (icc.c)
bit; that is, they compute “r[rs1] + r[rs2] + icc.c” or “r[rs1] + sign_ext(simm13) + icc.c”
and write the sum into r[rd].

ADDcc and ADDCcc modify the integer condition codes (CCR.icc and CCR.xcc). Over-
flow occurs on addition if both operands have the same sign and the sign of the sum is dif-
ferent.

Programming Note:
ADDC and ADDCcc read the 32-bit condition codes’ carry bit (CCR.icc.c), not the 64-bit condi-
tion codes’ carry bit (CCR.xcc.c).

Compatibility Note:
ADDC and ADDCcc were named ADDX and ADDXcc, respectively, in SPARC-V8.

Exceptions:
(none)

Opcode Op3 Operation
ADD 00 0000 Add
ADDcc 01 0000 Add and modify cc’s
ADDC 00 1000 Add with Carry
ADDCcc 01 1000 Add with Carry and modify cc’s

Assembly Language Syntax
add regrs1, reg_or_imm, regrd
addcc regrs1, reg_or_imm, regrd
addc regrs1, reg_or_imm, regrd
addccc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

A.3 Branch on Integer Register with Prediction (BPr) 219

A.3 Branch on Integer Register with Prediction (BPr)

Format (2):

Programming Note:
To set the annul bit for BPr instructions, append “,a” to the opcode mnemonic. For example, use
“brz,a %i3,label.” The preceding table indicates that the “,a” is optional by enclosing it in
braces. To set the branch prediction bit “p,” append either “,pt” for predict taken or “,pn” for
predict not taken to the opcode mnemonic. If neither “,pt” nor “,pn” is specified, the assembler
shall default to “,pt”.

Description:

These instructions branch based on the contents of r[rs1]. They treat the register contents
as a signed integer value.

A BPr instruction examines all 64 bits of r[rs1] according to the rcond field of the instruc-
tion, producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is, the
instruction causes a PC-relative, delayed control transfer to the address “PC + (4 *
sign_ext(d16hi d16lo)).” If FALSE, the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the value of
the annul bit. If the branch is not taken and the annul bit (a) is 1, the delay instruction is
annulled (not executed).

Opcode rcond Operation Register
Contents Test

— 000 Reserved —
BRZ 001 Branch on Register Zero r[rs1] = 0
BRLEZ 010 Branch on Register Less Than or Equal to Zero r[rs1]) 0
BRLZ 011 Branch on Register Less Than Zero r[rs1] < 0

— 100 Reserved —
BRNZ 101 Branch on Register Not Zero r[rs1] & 0
BRGZ 110 Branch on Register Greater Than Zero r[rs1] > 0
BRGEZ 111 Branch on Register Greater Than or Equal to Zero r[rs1] * 0

Assembly Language Syntax
brz{,a}{,pt|,pn} regrs1, label
brlez{,a}{,pt|,pn} regrs1, label
brlz{,a}{,pt|,pn} regrs1, label
brnz{,a}{,pt|,pn} regrs1, label
brgz{,a}{,pt|,pn} regrs1, label
brgez{,a}{,pt|,pn} regrs1, label

31 141924 18 13 027 2530 29 28 22 21 20

00 a 0 rcond 011 d16hi p rs1 d16lo

220 A Instruction Definitions

The predict bit (p) is used to give the hardware a hint about whether the branch is expected
to be taken. A 1 in the p bit indicates that the branch is expected to be taken; a 0 indicates
that the branch is expected not to be taken.

See 6.3.4.1, “Conditional Branches” for details on how SPARC64-III interprets the “p”
(branch prediction) bit.

Annulment, delay instructions, prediction, and delayed control transfers are described fur-
ther in Chapter 6, “Instructions”.

Implementation Note:
If this instruction is implemented by tagging each register value with an N (negative) bit and Z
(zero) bit, use the table below to determine if rcond is TRUE:

Exceptions:
illegal_instruction (if rcond = 0002 or 1002)

Branch Test
BRNZ not Z
BRZ Z
BRGEZ not N
BRLZ N
BRLEZ N or Z
BRGZ not (N or Z)

A.4 Branch on Floating-point Condition Codes (FBfcc) 221

A.4 Branch on Floating-point Condition Codes (FBfcc)

Format (2):

Opcode cond Operation fcc Test
FBAD 1000 Branch Always 1
FBND 0000 Branch Never 0
FBUD 0111 Branch on Unordered U
FBGD 0110 Branch on Greater G
FBUGD 0101 Branch on Unordered or Greater G or U
FBLD 0100 Branch on Less L
FBULD 0011 Branch on Unordered or Less L or U
FBLGD 0010 Branch on Less or Greater L or G
FBNED 0001 Branch on Not Equal L or G or U
FBED 1001 Branch on Equal E
FBUED 1010 Branch on Unordered or Equal E or U
FBGED 1011 Branch on Greater or Equal E or G
FBUGED 1100 Branch on Unordered or Greater or Equal E or G or U
FBLED 1101 Branch on Less or Equal E or L
FBULED 1110 Branch on Unordered or Less or Equal E or L or U
FBOD 1111 Branch on Ordered E or L or G

The FBfcc instructions are deprecated; they are provided only for compatibility
with previous versions of the architecture. They should not be used in new
SPARC-V9 software. It is recommended that the FBPfcc instructions be used in
their place.

31 24 02530 29 28 22 21

cond00 a 110 disp22

222 A Instruction Definitions

Programming Note:
To set the annul bit for FBfcc instructions, append “,a” to the opcode mnemonic. For example, use
“fbl,a label.” The preceding table indicates that the “,a” is optional by enclosing it in braces.

Description:
Unconditional Branches (FBA, FBN):

If its annul field is 0, an FBN (Branch Never) instruction acts like a NOP. If its
annul field is 1, the following (delay) instruction is annulled (not executed) when
the FBN is executed. In neither case does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp22)),” regardless of the value of the floating-point condi-
tion code bits. If the annul field of the branch instruction is 1, the delay instruction
is annulled (not executed). If the annul field is 0, the delay instruction is executed.

Fcc-Conditional Branches:
Conditional FBfcc instructions (except FBA and FBN) evaluate floating-point con-
dition code zero (fcc0) according to the cond field of the instruction. Such evalua-
tion produces either a TRUE or FALSE result. If TRUE, the branch is taken, that
is, the instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp22)).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regard-
less of the value of the annul field. If a conditional branch is not taken and the a
(annul) field is 1, the delay instruction is annulled (not executed). Note: The annul
bit has a different effect on conditional branches than it does on unconditional
branches.

Assembly Language Syntax
fba{,a} label
fbn{,a} label
fbu{,a} label
fbg{,a} label
fbug{,a} label
fbl{,a} label
fbul{,a} label
fblg{,a} label
fbne{,a} label (synonym: fbnz)
fbe{,a} label (synonym: fbz)
fbue{,a} label
fbge{,a} label
fbuge{,a} label
fble{,a} label
fbule{,a} label
fbo{,a} label

A.4 Branch on Floating-point Condition Codes (FBfcc) 223

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 6, “Instructions”.

Compatibility Note:
Unlike SPARC-V8, SPARC-V9 does not require an instruction between a floating-point compare
operation and a floating-point branch (FBfcc, FBPfcc).

If FPRS.FEF = 0 or PSTATE.PEF = 0, or if an FPU is not present, the FBfcc instruction is
not executed and instead, generates an fp_disabled exception.
Exceptions:

fp_disabled

224 A Instruction Definitions

A.5 Branch on Floating-point Condition Codes with Prediction
(FBPfcc)

Format (2):

Opcode cond Operation fcc Test
FBPA 1000 Branch Always 1
FBPN 0000 Branch Never 0
FBPU 0111 Branch on Unordered U
FBPG 0110 Branch on Greater G
FBPUG 0101 Branch on Unordered or Greater G or U
FBPL 0100 Branch on Less L
FBPUL 0011 Branch on Unordered or Less L or U
FBPLG 0010 Branch on Less or Greater L or G
FBPNE 0001 Branch on Not Equal L or G or U
FBPE 1001 Branch on Equal E
FBPUE 1010 Branch on Unordered or Equal E or U
FBPGE 1011 Branch on Greater or Equal E or G
FBPUGE 1100 Branch on Unordered or Greater or Equal E or G or U
FBPLE 1101 Branch on Less or Equal E or L
FBPULE 1110 Branch on Unordered or Less or Equal E or L or U
FBPO 1111 Branch on Ordered E or L or G

cc1 cc0 Condition Code
00 fcc0
01 fcc1
10 fcc2
11 fcc3

31 1924 18 02530 29 28 22 21 20

00 a cond 101 cc1 p disp19cc0

A.5 Branch on Floating-point Condition Codes with Prediction (FBPfcc) 225

Programming Note:
To set the annul bit for FBPfcc instructions, append “,a” to the opcode mnemonic. For example,
use “fbl,a %fcc3,label.” The preceding table indicates that the “,a” is optional by enclos-
ing it in braces. To set the branch prediction bit, append either “,pt” (for predict taken) or “pn”
(for predict not taken) to the opcode mnemonic. If neither “,pt” nor “,pn” is specified, the
assembler shall default to “,pt”. To select the appropriate floating-point condition code, include
"%fcc0", "%fcc1", "%fcc2", or "%fcc3" before the label.

Description:

Unconditional Branches (FBPA, FBPN):
If its annul field is 0, an FBPN (Floating-Point Branch Never with Prediction)
instruction acts like a NOP. If the Branch Never’s annul field is 0, the following
(delay) instruction is executed; if the annul field is 1, the following instruction is
annulled (not executed). In no case does an FBPN cause a transfer of control to
take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional
PC-relative, delayed control transfer to the address “PC + (4 × sign_ext(disp19)).”
If the annul field of the branch instruction is 1, the delay instruction is annulled
(not executed). If the annul field is 0, the delay instruction is executed.

Fcc-Conditional Branches:
Conditional FBPfcc instructions (except FBPA and FBPN) evaluate one of the four
floating-point condition codes (fcc0, fcc1, fcc2, fcc3) as selected by cc0 and cc1,
according to the cond field of the instruction, producing either a TRUE or FALSE
result. If TRUE, the branch is taken, that is, the instruction causes a PC-relative,
delayed control transfer to the address “PC + (4 × sign_ext(disp19)).” If FALSE,
the branch is not taken.

Assembly Language Syntax
fba{,a}{,pt|,pn} %fccn, label
fbn{,a}{,pt|,pn} %fccn, label
fbu{,a}{,pt|,pn} %fccn, label
fbg{,a}{,pt|,pn} %fccn, label
fbug{,a}{,pt|,pn} %fccn, label
fbl{,a}{,pt|,pn} %fccn, label
fbul{,a}{,pt|,pn} %fccn, label
fblg{,a}{,pt|,pn} %fccn, label
fbne{,a}{,pt|,pn} %fccn, label (synonym: fbnz)
fbe{,a}{,pt|,pn} %fccn, label (synonym: fbz)
fbue{,a}{,pt|,pn} %fccn, label
fbge{,a}{,pt|,pn} %fccn, label
fbuge{,a}{,pt|,pn} %fccn, label
fble{,a}{,pt|,pn} %fccn, label
fbule{,a}{,pt|,pn} %fccn, label
fbo{,a}{,pt|,pn} %fccn, label

226 A Instruction Definitions

If a conditional branch is taken, the delay instruction is always executed, regard-
less of the value of the annul field. If a conditional branch is not taken and the a
(annul) field is 1, the delay instruction is annulled (not executed). Note: The annul
bit has a different effect on conditional branches than it does on unconditional
branches.

The predict bit (p) is used to give the hardware a hint about whether the branch is
expected to be taken. A 1 in the p bit indicates that the branch is expected to be
taken. A 0 indicates that the branch is expected not to be taken. See 5.2.11.1,
“Hardware Mode Register (ASR18)” and 9.3, “Branches and Branch Prediction”
for the details of the predict bit handling in SPARC64-III.

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 6, “Instructions”.

If FPRS.FEF = 0 or PSTATE.PEF = 0, or if an FPU is not present, an FBPfcc instruction is
not executed and instead, generates an fp_disabled exception.

Compatibility Note:
Unlike SPARC-V8, SPARC-V9 does not require an instruction between a floating-point compare
operation and a floating-point branch (FBfcc, FBPfcc).

Exceptions:
fp_disabled

A.6 Branch on Integer Condition Codes (Bicc) 227

A.6 Branch on Integer Condition Codes (Bicc)

Format (2):

Opcode cond Operation icc Test
BAD 1000 Branch Always 1
BND 0000 Branch Never 0
BNED 1001 Branch on Not Equal not Z
BED 0001 Branch on Equal Z
BGD 1010 Branch on Greater not (Z or (N xor V))
BLED 0010 Branch on Less or Equal Z or (N xor V)
BGED 1011 Branch on Greater or Equal not (N xor V)
BLD 0011 Branch on Less N xor V
BGUD 1100 Branch on Greater Unsigned not (C or Z)
BLEUD 0100 Branch on Less or Equal Unsigned C or Z
BCCD 1101 Branch on Carry Clear (Greater than or Equal, Unsigned) not C
BCSD 0101 Branch on Carry Set (Less than, Unsigned) C
BPOSD 1110 Branch on Positive not N
BNEGD 0110 Branch on Negative N
BVCD 1111 Branch on Overflow Clear not V
BVSD 0111 Branch on Overflow Set V

The Bicc instructions are deprecated; they are provided only for compatibility with
previous versions of the architecture. They should not be used in new SPARC-V9
software. It is recommended that the BPcc instructions be used in their place.

31 24 02530 29 28 22 21

00 a cond 010 disp22

228 A Instruction Definitions

Programming Note:
To set the annul bit for Bicc instructions, append “,a” to the opcode mnemonic. For example, use
“bgu,a label.” The preceding table indicates that the “,a” is optional by enclosing it in braces.

Description:
Unconditional Branches (BA, BN):

If its annul field is 0, a BN (Branch Never) instruction is treated as a NOP by
SPARC64-III. If its annul field is 1, the following (delay) instruction is annulled
(not executed). In neither case does a transfer of control take place.
BA (Branch Always) causes an unconditional PC-relative, delayed control transfer
to the address “PC + (4 × sign_ext(disp22)).” If the annul field of the branch
instruction is 1, the delay instruction is annulled (not executed). If the annul field is
0, the delay instruction is executed.

Icc-Conditional Branches:
Conditional Bicc instructions (all except BA and BN) evaluate the 32-bit integer
condition codes (icc), according to the cond field of the instruction, producing
either a TRUE or FALSE result. If TRUE, the branch is taken, that is, the instruc-
tion causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp22)).” If FALSE, the branch is not taken.
If a conditional branch is taken, the delay instruction is always executed regardless
of the value of the annul field. If a conditional branch is not taken and the a (annul)
field is 1, the delay instruction is annulled (not executed). Note: The annul bit has a
different effect on conditional branches than it does on unconditional branches.
Annulment, delay instructions, and delayed control transfers are described further
in Chapter 6, “Instructions”.

Exceptions:
(none)

Assembly Language Syntax
ba{,a} label
bn{,a} label
bne{,a} label (synonym: bnz)
be{,a} label (synonym: bz)
bg{,a} label
ble{,a} label
bge{,a} label
bl{,a} label
bgu{,a} label
bleu{,a} label
bcc{,a} label (synonym: bgeu)
bcs{,a} label (synonym: blu)
bpos{,a} label
bneg{,a} label
bvc{,a} label
bvs{,a} label

A.7 Branch on Integer Condition Codes with Prediction (BPcc) 229

A.7 Branch on Integer Condition Codes with Prediction (BPcc)

Format (2):

Opcode cond Operation icc Test
BPA 1000 Branch Always 1
BPN 0000 Branch Never 0
BPNE 1001 Branch on Not Equal not Z
BPE 0001 Branch on Equal Z
BPG 1010 Branch on Greater not (Z or (N xor V))
BPLE 0010 Branch on Less or Equal Z or (N xor V)
BPGE 1011 Branch on Greater or Equal not (N xor V)
BPL 0011 Branch on Less N xor V
BPGU 1100 Branch on Greater Unsigned not (C or Z)
BPLEU 0100 Branch on Less or Equal Unsigned C or Z
BPCC 1101 Branch on Carry Clear (Greater Than or Equal, Unsigned) not C
BPCS 0101 Branch on Carry Set (Less than, Unsigned) C
BPPOS 1110 Branch on Positive not N
BPNEG 0110 Branch on Negative N
BPVC 1111 Branch on Overflow Clear not V
BPVS 0111 Branch on Overflow Set V

cc1 cc0 Condition Code
00 icc
01 —
10 xcc
11 —

31 1924 18 02530 29 28 22 21 20

00 a cond 001 cc1 p disp19cc0

230 A Instruction Definitions

Programming Note:
To set the annul bit for BPcc instructions, append “,a” to the opcode mnemonic. For example, use
“bgu,a %icc,label.” The preceding table indicates that the “,a” is optional by enclosing it in
braces. To set the branch prediction bit, append to an opcode mnemonic either “,pt” for predict
taken or “,pn” for predict not taken. If neither “,pt” nor “,pn” is specified, the assembler shall
default to “,pt”. To select the appropriate integer condition code, include “%icc” or “%xcc”
before the label.

Description:
Unconditional Branches (BPA, BPN):

A BPN (Branch Never with Prediction) instruction for this branch type (op2 = 1) is
used in SPARC-V9 as an instruction prefetch; that is, the effective address
(PC + (4 × sign_ext(disp19))) specifies an address of an instruction that is expected
to be executed soon. Note: SPARC64-III treats this instruction as a NOP; it cannot
be used as an instruction prefetch. If the Branch Never’s annul field is 1, the fol-
lowing (delay) instruction is annulled (not executed). If the annul field is 0, the fol-
lowing instruction is executed. In no case does a Branch Never cause a transfer of
control to take place.

BPA (Branch Always with Prediction) causes an unconditional PC-relative,
delayed control transfer to the address “PC + (4 × sign_ext(disp19)).” If the annul
field of the branch instruction is 1, the delay instruction is annulled (not executed).
If the annul field is 0, the delay instruction is executed.

Conditional Branches:
Conditional BPcc instructions (except BPA and BPN) evaluate one of the two inte-
ger condition codes (icc or xcc), as selected by cc0 and cc1, according to the cond
field of the instruction, producing either a TRUE or FALSE result. If TRUE, the

Assembly Language Syntax
ba{,a}{,pt|,pn} i_or_x_cc, label
bn{,a}{,pt|,pn} i_or_x_cc, label (or: iprefetch label)
bne{,a}{,pt|,pn} i_or_x_cc, label (synonym: bnz)
be{,a}{,pt|,pn} i_or_x_cc, label (synonym: bz)
bg{,a}{,pt|,pn} i_or_x_cc, label
ble{,a}{,pt|,pn} i_or_x_cc, label
bge{,a}{,pt|,pn} i_or_x_cc, label
bl{,a}{,pt|,pn} i_or_x_cc, label
bgu{,a}{,pt|,pn} i_or_x_cc, label
bleu{,a}{,pt|,pn} i_or_x_cc, label
bcc{,a}{,pt|,pn} i_or_x_cc, label (synonym: bgeu)
bcs{,a}{,pt|,pn} i_or_x_cc, label (synonym: blu)
bpos{,a}{,pt|,pn} i_or_x_cc, label
bneg{,a}{,pt|,pn} i_or_x_cc, label
bvc{,a}{,pt|,pn} i_or_x_cc, label
bvs{,a}{,pt|,pn} i_or_x_cc, label

A.7 Branch on Integer Condition Codes with Prediction (BPcc) 231

branch is taken; that is, the instruction causes a PC-relative, delayed control trans-
fer to the address “PC + (4 × sign_ext(disp19)).” If FALSE, the branch is not
taken.

If a conditional branch is taken, the delay instruction is always executed regardless
of the value of the annul field. If a conditional branch is not taken and the a (annul)
field is 1, the delay instruction is annulled (not executed). Note: The annul bit has a
different effect for conditional branches than it does for unconditional branches.

The predict bit (p) is used to give the hardware a hint about whether the branch is
expected to be taken. A 1 in the p bit indicates that the branch is expected to be
taken; a 0 indicates that the branch is expected not to be taken. See 5.2.11.1,
“Hardware Mode Register (ASR18)” and 9.3, “Branches and Branch Prediction”
for the details of the predict bit handling in SPARC64-III.

Annulment, delay instructions, prediction, and delayed control transfers are
described further in Chapter 6, “Instructions”.

Exceptions:
illegal_instruction (cc1 cc0 = 012 or 112)

232 A Instruction Definitions

A.8 Call and Link

Format (1):

Description:

The CALL instruction causes an unconditional, delayed, PC-relative control transfer to
address PC + (4 × sign_ext(disp30)). Since the word displacement (disp30) field is 30 bits
wide, the target address lies within a range of –231 to +231 – 4 bytes. The PC-relative dis-
placement is formed by sign-extending the 30-bit word displacement field to 62 bits and
appending two low-order zeros to obtain a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the
CALL, into r[15] (out register 7). Note: SPARC64-III stores all 64 bits of the PC value in
r[15], regardless of the setting of PSTATE.AM. The value written into r[15] is visible to
the instruction in the delay slot.

Programming Note:
In SPARC64-III the return address of the CALL (PC + 8) is stored in a hardware table. When a ret
or retl is executed, the value in the table is used to predict the return address. See 6.3.4.3, “CALL
and JMPL Instructions” for details of how this hardware table works.

Exceptions:
(none)

Opcode op Operation
CALL 01 Call and Link

Assembly Language Syntax
call label

31 030 29

01 disp30

A.9 Compare and Swap 233

A.9 Compare and Swap

Format (3):

Description:
These instructions are used for synchronization and memory updates by concurrent pro-
cesses. Uses of compare-and-swap include spin-lock operations, updates of shared
counters, and updates of linked-list pointers. The latter two can use wait-free (nonlocking)
protocols.
The CASXA instruction compares the value in register r[rs2] with the doubleword in
memory pointed to by the doubleword address in r[rs1]. If the values are equal, the value
in r[rd] is swapped with the doubleword pointed to by the doubleword address in r[rs1]. If
the values are not equal, the contents of the doubleword pointed to by r[rs1] replaces the
value in r[rd], but the memory location remains unchanged.

The CASA instruction compares the low-order 32 bits of register r[rs2] with a word in
memory pointed to by the word address in r[rs1]. If the values are equal, the low-order 32
bits of register r[rd] are swapped with the contents of the memory word pointed to by the
address in r[rs1] and the high-order 32 bits of register r[rd] are set to zero. If the values are
not equal, the memory location remains unchanged, but the zero-extended contents of the
memory word pointed to by r[rs1] replace the low-order 32 bits of r[rd] and the high-order
32 bits of register r[rd] are set to zero.

A compare-and-swap instruction comprises three operations: a load, a compare, and a
swap. The overall instruction is atomic; that is, no intervening interrupts or deferred traps
are recognized by the processor, and no intervening update resulting from a compare-and-
swap, swap, load, load-store unsigned byte, or store instruction to the doubleword contain-
ing the addressed location, or any portion of it, is performed by the memory system.

A compare-and-swap operation does not imply any memory barrier semantics. When
compare-and-swap is used for synchronization, the same consideration should be given to
memory barriers as if a load, store, or swap instruction were used.

Opcode op3 Operation
CASAPASI 11 1100 Compare and Swap Word from Alternate space
CASXAPASI 11 1110 Compare and Swap Extended from Alternate space

Assembly Language Syntax
casa [regrs1] imm_asi, regrs2, regrd
casa [regrs1] %asi, regrs2, regrd
casxa [regrs1] imm_asi, regrs2, regrd
casxa [regrs1] %asi, regrs2, regrd

31 141924 18 13 12 5 4 02530 29

11 rd op3 rs1 i=0 imm_asi rs2

11 rd op3 rs1 i=1 — rs2

234 A Instruction Definitions

A compare-and-swap operation behaves as if it performs a store, either of a new value
from r[rd] or of the previous value in memory. The addressed location must be writable,
even if the values in memory and r[rs2] are not equal.

If i = 0, the address space of the memory location is specified in the imm_asi field; if i = 1,
the address space is specified in the ASI register.

A mem_address_not_aligned exception is generated if the address in r[rs1] is not properly
aligned. CASXA and CASA cause a privileged_action exception if PSTATE.PRIV = 0 and
bit 7 of the ASI is zero. CASXA and CASA also cause the CPU to sync.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation-dependent (impl. dep #120).

Implementation Note:
An implementation might cause an exception due to an error during the store memory access, even
though there was no error during the load memory access.

Programming Note:
Compare and Swap (CAS) and Compare and Swap Extended (CASX) synthetic instructions are
available for “big endian” memory accesses. Compare and Swap Little (CASL) and Compare and
Swap Extended Little (CASXL) synthetic instructions are available for “little endian” memory
accesses. See G.3, “Synthetic Instructions”, for these synthetic instructions’ syntax.

The compare-and-swap instructions do not affect the condition codes.

Exceptions:
privileged_action
mem_address_not_aligned
data_access_exception
data_access_error
32i_data_access_MMU_miss
32i_data_access_protection

A.10 Divide (64-bit / 32-bit) 235

A.10 Divide (64-bit / 32-bit)

Format (3):

Description:
The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If
i = 0, they compute “(Y lower 32 bits of r[rs1]) ÷ lower 32 bits of r[rs2].” Otherwise
(that is, if i = 1), the divide instructions compute “(Y lower 32 bits of r[rs1]) ÷ lower 32
bits of sign_ext(simm13).” In either case, if overflow does not occur, the less significant 32
bits of the integer quotient are sign-or zero-extended to 64 bits and are written into r[rd].
The contents of the Y register are undefined after any 64-bit by 32-bit integer divide oper-
ation.

Unsigned Divide:
Unsigned divide (UDIV, UDIVcc) assumes an unsigned integer doubleword dividend
(Y lower 32 bits of r[rs1]) and an unsigned integer word divisor (lower 32 bits of r[rs2]
or lower 32 bits of sign_ext(simm13)) and computes an unsigned integer word quotient
(r[rd]). Immediate values in simm13 are in the ranges 0..212 – 1 and 232 – 212..232 – 1 for
unsigned divide instructions.
Unsigned division rounds an inexact rational quotient toward zero.

Opcode op3 Operation
UDIVD 00 1110 Unsigned Integer Divide
SDIVD 00 1111 Signed Integer Divide
UDIVccD 01 1110 Unsigned Integer Divide and modify cc’s
SDIVccD 01 1111 Signed Integer Divide and modify cc’s

Assembly Language Syntax
udiv regrs1, reg_or_imm, regrd
sdiv regrs1, reg_or_imm, regrd
udivcc regrs1, reg_or_imm, regrd
sdivcc regrs1, reg_or_imm, regrd

The UDIV, UDIVcc, SDIV, and SDIVcc instructions are deprecated; they are pro-
vided only for compatibility with previous versions of the architecture. They should
not be used in new SPARC-V9 software. It is recommended that the UDIVX and
SDIVX instructions be used in their place.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

236 A Instruction Definitions

Programming Note:
The rational quotient is the infinitely precise result quotient. It includes both the integer part and
the fractional part of the result. For example, the rational quotient of 11/4 = 2.75 (Integer part = 2,
fractional part = .75).

The result of an unsigned divide instruction can overflow the low-order 32 bits of the des-
tination register r[rd] under certain conditions. When overflow occurs the largest appropri-
ate unsigned integer is returned as the quotient in r[rd]. The condition under which
overflow occurs and the value returned in r[rd] under this condition is specified in Table
51.

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written into reg-
ister r[rd].

UDIV does not affect the condition code bits. UDIVcc writes the integer condition code
bits as shown in Table 52. Note: Negative (N) and zero (Z) are set according to the value
of r[rd] after it has been set to reflect overflow, if any.

Signed Divide:
Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividend (Y lower
32 bits of r[rs1]) and a signed integer word divisor (lower 32 bits of r[rs2] or lower 32 bits
of sign_ext(simm13)) and computes a signed integer word quotient (r[rd]).
Signed division rounds an inexact quotient toward zero. For example, –7 ÷ 4 equals the
rational quotient of –1.75, which rounds to –1 (not –2) when rounding toward zero.
The result of a signed divide can overflow the low-order 32 bits of the destination register
r[rd] under certain conditions. When overflow occurs the largest appropriate signed inte-
ger is returned as the quotient in r[rd]. The conditions under which overflow occurs and
the value returned in r[rd] under those conditions are specified in Table 53.

Table 51: UDIV / UDIVcc Overflow Detection and Value Returned (V9=23)

Condition under Which Overflow Occurs Value Returned in r[rd]

Rational quotient * 232 232<1
(0000 0000 FFFF FFFF16)

Table 52: Integer Condition Code Bits for UDIVcc

Bit UDIVcc
icc.N Set if r[rd]<31> = 1
icc.Z Set if r[rd]<31:0> = 0
icc.V Set if overflow (per Table 51)
icc.C Zero
xcc.N Set if r[rd]<63> = 1
xcc.Z Set if r[rd]<63:0> = 0
xcc.V Zero
xcc.C Zero

A.10 Divide (64-bit / 32-bit) 237

When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written into reg-
ister r[rd].
SDIV does not affect the condition code bits. SDIVcc writes the integer condition code
bits as shown in Table 54. Note: Negative (N) and zero (Z) are set according to the value
of r[rd] after it has been set to reflect overflow, if any.

Exceptions:
division_by_zero

Table 53: SDIV / SDIVcc Overflow Detection and Value Returned (V9=24)

Condition under Which Overflow Occurs Value Returned in r[rd]

Rational quotient * 231 231<1
(0000 0000 7FFF FFFF16)

Rational quotient) -231<1 <231

(FFFF FFFF 8000 000016)

Table 54: Integer Condition Code Bits for SDIVcc

Bit SDIVcc
icc.N Set if r[rd]<31> = 1
icc.Z Set if r[rd]<31:0> = 0
icc.V Set if overflow (per Table 53)
icc.C Zero
xcc.N Set if r[rd]<63]> = 1
xcc.Z Set if r[rd]<63:0> = 0
xcc.V Zero
xcc.C Zero

238 A Instruction Definitions

A.11 DONE and RETRY

Format (3):

Description:

The DONE and RETRY instructions restore the saved state from TSTATE (CWP, ASI,
CCR, and PSTATE), set PC and nPC, and decrement TL.

The RETRY instruction resumes execution with the trapped instruction by setting
PC@TPC[TL] (the saved value of PC on trap) and nPC@TNPC[TL] (the saved value of
nPC on trap).

The DONE instruction skips the trapped instruction by setting PC@TNPC[TL] and
nPC@TNPC[TL]+4.

Execution of a DONE or RETRY instruction in the delay slot of a control-transfer instruc-
tion produces undefined results.

Programming Note:
The DONE and RETRY instructions should be used to return from privileged trap handlers.

Exceptions:
privileged_opcode
illegal_instruction (if TL = 0 or fcn = 2..31)

Opcode op3 fcn Operation
DONEP 11 1110 0 Return from Trap (skip trapped instruction)
RETRYP 11 1110 1 Return from Trap (retry trapped instruction)

— 11 1110 2..31 Reserved

Assembly Language Syntax
done

retry

10 op3fcn —

31 1924 18 02530 29

A.12 Floating-point Add and Subtract 239

A.12 Floating-point Add and Subtract

Format (3):

Description:

The floating-point add instructions add the floating-point register(s) specified by the rs1
field and the floating-point register(s) specified by the rs2 field, and they write the sum
into the floating-point register(s) specified by the rd field.

The floating-point subtract instructions subtract the floating-point register(s) specified by
the rs2 field from the floating-point register(s) specified by the rs1 field, and write the dif-
ference into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by the FSR.RD field.

Note: SPARC64-III does not implement in hardware the instructions that specify a quad
floating-point register; it traps them with fp_exception_other (with
ftt = unimplemented_FPop). Supervisor software then emulates these instructions.

Exceptions:
fp_disabled
fp_exception_ieee_754 (OF, UF, NX, NV)
fp_exception_other (ftt = unimplemented_FPop (FADDQ and FSUBQ only))

Opcode op3 opf Operation
FADDs 11 0100 0 0100 0001 Add Single
FADDd 11 0100 0 0100 0010 Add Double
FADDq 11 0100 0 0100 0011 Add Quad
FSUBs 11 0100 0 0100 0101 Subtract Single
FSUBd 11 0100 0 0100 0110 Subtract Double
FSUBq 11 0100 0 0100 0111 Subtract Quad

Assembly Language Syntax
fadds fregrs1, fregrs2, fregrd
faddd fregrs1, fregrs2, fregrd
faddq fregrs1, fregrs2, fregrd
fsubs fregrs1, fregrs2, fregrd
fsubd fregrs1, fregrs2, fregrd
fsubq fregrs1, fregrs2, fregrd

10 op3 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

240 A Instruction Definitions

A.13 Floating-point Compare

Format (3):

Description:

These instructions compare the floating-point register(s) specified by the rs1 field with the
floating-point register(s) specified by the rs2 field, and set the selected floating-point con-
dition code (fccn) according to Table 55:

The “?” in the above table indicates that the comparison is unordered. The unordered con-
dition occurs when one or both of the operands to the compare is a signaling or quiet NaN.

Opcode op3 opf Operation
FCMPs 11 0101 0 0101 0001 Compare Single
FCMPd 11 0101 0 0101 0010 Compare Double
FCMPq 11 0101 0 0101 0011 Compare Quad
FCMPEs 11 0101 0 0101 0101 Compare Single and Exception if Unordered
FCMPEd 11 0101 0 0101 0110 Compare Double and Exception if Unordered
FCMPEq 11 0101 0 0101 0111 Compare Quad and Exception if Unordered

Assembly Language Syntax
fcmps %fccn, fregrs1, fregrs2
fcmpd %fccn, fregrs1, fregrs2
fcmpq %fccn, fregrs1, fregrs2
fcmpes %fccn, fregrs1, fregrs2
fcmped %fccn, fregrs1, fregrs2
fcmpeq %fccn, fregrs1, fregrs2

cc1 cc0 Condition Code
00 fcc0
01 fcc1
10 fcc2
11 fcc3

Table 55: Floating-point Condition Code Values

fcc value Relation
0 fregrs1 = fregrs2
1 fregrs1 < fregrs2
2 fregrs1 > fregrs2
3 fregrs1 ? fregrs2 (unordered)

10 op3 rs2000 rs1

31 141924 18 13 02530 29 4

opf

52627

cc1 cc0

A.13 Floating-point Compare 241

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPEq)
instructions cause an invalid (NV) exception if either operand is a NaN.

FCMP causes an invalid (NV) exception if either operand is a signaling NaN.

Compatibility Note:
Unlike SPARC-V8, SPARC-V9 does not require an instruction between a floating-point compare
operation and a floating-point branch (FBfcc, FBPfcc).

Compatibility Note:
SPARC-V8 floating-point compare instructions are required to have a zero in the r[rd] field. In
SPARC-V9, bits 26 and 25 of the r[rd] field are used to specify the floating-point condition code to
be set. Legal SPARC-V8 code will work on SPARC-V9 because the zeroes in the r[rd] field are
interpreted as fcc0, and the FBfcc instruction branches based on fcc0.

Note: SPARC64-III does not implement in hardware the instructions that specify a quad
floating-point register; it traps them with fp_exception_other (with
ftt = unimplemented_FPop). Supervisor software then emulates these instructions.

Exceptions:
fp_disabled
fp_exception_ieee_754 (NV)
fp_exception_other (ftt = unimplemented_FPop (FCMPq, FCMPEq only))

242 A Instruction Definitions

A.14 Convert Floating-point to Integer

Format (3):

Description:

FsTOx, FdTOx, and FqTOx convert the floating-point operand in the floating-point regis-
ter(s) specified by rs2 to a 64-bit integer in the floating-point register(s) specified by rd.

FsTOi, FdTOi, and FqTOi convert the floating-point operand in the floating-point regis-
ter(s) specified by rs2 to a 32-bit integer in the floating-point register specified by rd.

The result is always rounded toward zero; that is, the rounding direction (RD) field of the
FSR register is ignored.

If the floating-point operand’s value is too large to be converted to an integer of the speci-
fied size, or is a NaN or infinity, an invalid (NV) exception occurs. The value written into
the floating-point register(s) specified by rd in these cases is defined in B.5, “Integer Over-
flow Definition”.

Note:
SPARC64-III does not implement in hardware the instructions that specify a quad floating-point
register; it traps them with fp_exception_other (with ftt = unimplemented_FPop). Supervisor
software then emulates these instructions.

Exceptions:
fp_disabled
fp_exception_ieee_754 (NV, NX)
fp_exception_other (ftt = unimplemented_FPop (FqTOi, FqTOx only))

Opcode op3 opf Operation
FsTOx 11 0100 0 1000 0001 Convert Single to 64-bit Integer
FdTOx 11 0100 0 1000 0010 Convert Double to 64-bit Integer
FqTOx 11 0100 0 1000 0011 Convert Quad to 64-bit Integer
FsTOi 11 0100 0 1101 0001 Convert Single to 32-bit Integer
FdTOi 11 0100 0 1101 0010 Convert Double to 32-bit Integer
FqTOi 11 0100 0 1101 0011 Convert Quad to 32-bit Integer

Assembly Language Syntax
fstox fregrs2, fregrd
fdtox fregrs2, fregrd
fqtox fregrs2, fregrd
fstoi fregrs2, fregrd
fdtoi fregrs2, fregrd
fqtoi fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

A.15 Convert between Floating-point Formats 243

A.15 Convert between Floating-point Formats

Format (3):

Description:

These instructions convert the floating-point operand in the floating-point register(s) spec-
ified by rs2 to a floating-point number in the destination format. They write the result into
the floating-point register(s) specified by rd.

Rounding is performed as specified by the FSR.RD field.

FqTOd, FqTOs, and FdTOs (the “narrowing” conversion instructions) can raise OF, UF,
and NX exceptions. FdTOq, FsTOq, and FsTOd (the “widening” conversion instructions)
cannot.

Any of these six instructions can trigger an NV exception if the source operand is a signal-
ing NaN.

B.2.1, “Untrapped Result in Different Format from Operands”, defines the rules for con-
verting NaNs from one floating-point format to another.

Note:
SPARC64-III does not implement in hardware the instructions that specify a quad floating-point
register; it traps them with fp_exception_other (with ftt = unimplemented_FPop). Supervisor
software then emulates these instructions.

Opcode op3 opf Operation
FsTOd 11 0100 0 1100 1001 Convert Single to Double
FsTOq 11 0100 0 1100 1101 Convert Single to Quad
FdTOs 11 0100 0 1100 0110 Convert Double to Single
FdTOq 11 0100 0 1100 1110 Convert Double to Quad
FqTOs 11 0100 0 1100 0111 Convert Quad to Single
FqTOd 11 0100 0 1100 1011 Convert Quad to Double

Assembly Language Syntax
fstod fregrs2, fregrd
fstoq fregrs2, fregrd
fdtos fregrs2, fregrd
fdtoq fregrs2, fregrd
fqtos fregrs2, fregrd
fqtod fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

244 A Instruction Definitions

Exceptions:
fp_disabled
fp_exception_ieee_754 (OF, UF, NV, NX)
fp_exception_other (ftt = unimplemented_FPop (FsTOq, FdTOq, FqTOs, FqTOd

only))

A.16 Convert Integer to Floating-point 245

A.16 Convert Integer to Floating-point

Format (3):

Description:

FxTOs, FxTOd, and FxTOq convert the 64-bit signed integer operand in the floating-point
register(s) specified by rs2 into a floating-point number in the destination format. The
source register, floating-point register(s) specified by rs2, must be an even-numbered (that
is, double-precision) floating-point register.

FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-point reg-
ister(s) specified by rs2 into a floating-point number in the destination format. All write
their result into the floating-point register(s) specified by rd.

FiTOs, FxTOs, and FxTOd round as specified by the FSR.RD field.

Note: SPARC64-III does not implement in hardware the instructions that specify a quad
floating-point register; it traps them with fp_exception_other (with
ftt = unimplemented_FPop). Supervisor software then emulates these instructions.

Exceptions:
fp_disabled
fp_exception_ieee_754 (NX (FiTOs, FxTOs, FxTOd only))
fp_exception_other (ftt = unimplemented_FPop (FiTOq, FxTOq only))

Opcode op3 opf Operation
FxTOs 11 0100 0 1000 0100 Convert 64-bit Integer to Single
FxTOd 11 0100 0 1000 1000 Convert 64-bit Integer to Double
FxTOq 11 0100 0 1000 1100 Convert 64-bit Integer to Quad
FiTOs 11 0100 0 1100 0100 Convert 32-bit Integer to Single
FiTOd 11 0100 0 1100 1000 Convert 32-bit Integer to Double
FiTOq 11 0100 0 1100 1100 Convert 32-bit Integer to Quad

Assembly Language Syntax
fxtos fregrs2, fregrd
fxtod fregrs2, fregrd
fxtoq fregrs2, fregrd
fitos fregrs2, fregrd
fitod fregrs2, fregrd
fitoq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

246 A Instruction Definitions

A.17 Floating-point Move

Format (3):

Description:

The single-precision versions of these instructions copy the contents of a single-precision
floating-point register to the destination. The double-precision forms copy the contents of
a double-precision floating-point register to the destination. The quad-precision versions
copy a quad-precision value in floating-point registers to the destination.

FMOV copies the source to the destination unaltered.

FNEG copies the source to the destination with the sign bit complemented.

FABS copies the source to the destination with the sign bit cleared.

These instructions do not round.

Note:
SPARC64-III does not implement in hardware the instructions that specify a quad floating-point
register; it traps them with fp_exception_other (with ftt = unimplemented_FPop). Supervisor
software then emulates these instructions.

Opcode op3 opf Operation
FMOVs 11 0100 0 0000 0001 Move Single
FMOVd 11 0100 0 0000 0010 Move Double
FMOVq 11 0100 0 0000 0011 Move Quad
FNEGs 11 0100 0 0000 0101 Negate Single
FNEGd 11 0100 0 0000 0110 Negate Double
FNEGq 11 0100 0 0000 0111 Negate Quad
FABSs 11 0100 0 0000 1001 Absolute Value Single
FABSd 11 0100 0 0000 1010 Absolute Value Double
FABSq 11 0100 0 0000 1011 Absolute Value Quad

Assembly Language Syntax
fmovs fregrs2, fregrd
fmovd fregrs2, fregrd
fmovq fregrs2, fregrd
fnegs fregrs2, fregrd
fnegd fregrs2, fregrd
fnegq fregrs2, fregrd
fabss fregrs2, fregrd
fabsd fregrs2, fregrd
fabsq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

A.17 Floating-point Move 247

Exceptions:
fp_disabled
fp_exception_other (ftt = unimplemented_FPop (FMOVq, FNEGq, FABSq only))

248 A Instruction Definitions

A.18 Floating-point Multiply and Divide

Format (3):

Description:
The floating-point multiply instructions multiply the contents of the floating-point regis-
ter(s) specified by the rs1 field by the contents of the floating-point register(s) specified by
the rs2 field, and they write the product into the floating-point register(s) specified by the
rd field.
The FsMULd instruction provides the exact double-precision product of two single-preci-
sion operands, without underflow, overflow, or rounding error. Similarly, FdMULq pro-
vides the exact quad-precision product of two double-precision operands.
The floating-point divide instructions divide the contents of the floating-point register(s)
specified by the rs1 field by the contents of the floating-point register(s) specified by the
rs2 field, and write the quotient into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by the FSR.RD field.

Note:
SPARC64-III does not implement in hardware the instructions that specify a quad floating-point
register; it traps them with fp_exception_other (with ftt = unimplemented_FPop). Supervisor
software then emulates these instructions.

Opcode op3 opf Operation
FMULs 11 0100 0 0100 1001 Multiply Single
FMULd 11 0100 0 0100 1010 Multiply Double
FMULq 11 0100 0 0100 1011 Multiply Quad
FsMULd 11 0100 0 0110 1001 Multiply Single to Double
FdMULq 11 0100 0 0110 1110 Multiply Double to Quad
FDIVs 11 0100 0 0100 1101 Divide Single
FDIVd 11 0100 0 0100 1110 Divide Double
FDIVq 11 0100 0 0100 1111 Divide Quad

Assembly Language Syntax
fmuls fregrs1, fregrs2, fregrd
fmuld fregrs1, fregrs2, fregrd
fmulq fregrs1, fregrs2, fregrd
fsmuld fregrs1, fregrs2, fregrd
fdmulq fregrs1, fregrs2, fregrd
fdivs fregrs1, fregrs2, fregrd
fdivd fregrs1, fregrs2, fregrd
fdivq fregrs1, fregrs2, fregrd

10 op3 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

A.18 Floating-point Multiply and Divide 249

Note:
For FDIVs and FDIVd, an fp_exception_other with ftt = unfinished_FPop can occur if the
divide unit detects certain unusual conditions. See 5.1.7.6, “FSR_floating-point_trap_type (ftt)”,
for details.

Exceptions:
fp_disabled
fp_exception_ieee_754 (OF, UF, DZ (FDIV only), NV, NX)
fp_exception_other (ftt = unimplemented_FPop (FMULq, FdMULq, FDIVq)
fp_exception_other (ftt = unifinished_FPop (FDIVs and FDIVd only))

250 A Instruction Definitions

A.19 Floating-point Square Root

Format (3):

Description:

These SPARC-V9 instructions generate the square root of the floating-point operand in the
floating-point register(s) specified by the rs2 field, and place the result in the destination
floating-point register(s) specified by the rd field. In SPARC-V9 rounding is performed as
specified by the FSR.RD field.

Note:
SPARC64-III does not implement in hardware the instructions that specify a quad floating-point
register; it traps them with fp_exception_other (with ftt = unimplemented_FPop). Supervisor
software then emulates these instructions.

For FSQRTs and FSQRTd a fp_exception_other (with .ftt = unfinished_FPop) can occur if
the operand to the square root is possitive denormalized. See 5.1.7.6, “FSR_floating-
point_trap_type (ftt)” for additional details.

Exceptions:
fp_disabled
fp_exception_ieee_754 (IEEE_754_exception (NV,NX))
fp_exception_other (unimplemented_FPop) (Quad forms)
fp_exception_other (unfinished_FPop)

Opcode op3 opf Operation
FSQRTs 11 0100 0 0010 1001 Square Root Single
FSQRTd 11 0100 0 0010 1010 Square Root Double
FSQRTq 11 0100 0 0010 1011 Square Root Quad

Assembly Language Syntax
fsqrts fregrs2, fregrd
fsqrtd fregrs2, fregrd
fsqrtq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

A.20 Flush Instruction Memory 251

A.20 Flush Instruction Memory

Format (3):

Description:

FLUSH ensures that the doubleword specified as the effective address is consistent across
any local caches and, in a multiprocessor system, will eventually become consistent every-
where.

In the following discussion PFLUSH refers to the processor that executed the FLUSH
instruction. FLUSH ensures that instruction fetches from the specified effective address by
PFLUSH appear to execute after any loads, stores, and atomic load-stores to that address
issued by PFLUSH prior to the FLUSH. In a multiprocessor system, FLUSH also ensures
that these values will eventually become visible to the instruction fetches of all other pro-
cessors. FLUSH behaves as if it were a store with respect to MEMBAR-induced order-
ings. See A.32, “Memory Barrier”.

The effective address operand for the FLUSH instruction is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1. The least significant two address bits of the effective
address are unused and should be supplied as zeros by software. Bit 2 of the address is
ignored, because FLUSH operates on at least a doubleword.

On SPARC64-III FLUSH operates on the full cache line (64 bytes) containing the
addressed location.

Programming Notes:
1. Typically, FLUSH is used in self-modifying code. See H.1.6, “Self-Modifying Code” in V9 for informa-

tion about use of the FLUSH instruction in portable self-modifying code. The use of self-modifying
code is discouraged.

2. The order in which memory is modified can be controlled by using FLUSH and MEMBAR instructions
interspersed appropriately between stores and atomic load-stores. FLUSH is needed only between a
store and a subsequent instruction fetch from the modified location. When multiple processes may con-
currently modify live (that is, potentially executing) code, care must be taken to ensure that the order of
update maintains the program in a semantically correct form at all times.

3. The memory model guarantees in a uniprocessor that data loads observe the results of the most recent
store, even if there is no intervening FLUSH.

Opcode op3 Operation
FLUSH 11 1011 Flush Instruction Memory

Assembly Language Syntax
flush address

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—

252 A Instruction Definitions

4. FLUSH may be time-consuming.

5. In a multiprocessor system, the time it takes for a FLUSH to take effect is implementation-dependent.
No mechanism is provided to ensure or test completion.

6. Because FLUSH is designed to act on a doubleword, and because, on some implementations, FLUSH
may trap to system software, it is recommended that system software provide a user-callable service
routine for flushing arbitrarily sized regions of memory. On some implementations, this routine would
issue a series of FLUSH instructions; on others, it might issue a single trap to system software that
would then flush the entire region.

Implementation Notes:
The effect of a FLUSH instruction as observed from PFLUSH is immediate. Other processors in a
multiprocessor system eventually will see the effect of the FLUSH, but the latency is implementa-
tion-dependent.

Exceptions:

Since the FLUSH instruction accesses the TLB’s in SPARC64-III, the traps listed below
can occur on a FLUSH. However, it is expected that the kernel trap handlers will make the
FLUSH appear to have not trapped to a non privileged programmer. Therefore, to the non
privileged programmer the FLUSH appears to conform with the SPARC V9 definition of
not trapping.

data_access_exception
data_access_error
32i_data_access_MMU_miss
32i_data_access_protection

A.21 Flush Register Windows 253

A.21 Flush Register Windows

Format (3):

Description:

FLUSHW causes all active register windows except the current window to be flushed to
memory at locations determined by privileged software. FLUSHW behaves as a NOP if
there are no active windows other than the current window. At the completion of the
FLUSHW instruction, the only active register window is the current one.

Programming Note:
The FLUSHW instruction can be used by application software to switch memory stacks or examine
register contents for previous stack frames.

FLUSHW acts as a NOP if CANSAVE = NWINDOWS – 2. Otherwise, there is more than
one active window, so FLUSHW causes a spill exception. The trap vector for the spill
exception is based on the contents of OTHERWIN and WSTATE. The spill trap handler is
invoked with the CWP set to the window to be spilled (that is, (CWP + CANSAVE + 2)
mod NWINDOWS). See 6.3.6, “Register Window Management Instructions”.

Programming Note:
Typically, the spill handler saves a window on a memory stack and returns to reexecute the
FLUSHW instruction. Thus, FLUSHW traps and reexecutes until all active windows other than the
current window have been spilled.

Exceptions:
spill_n_normal
spill_n_other

Opcode op3 Operation
FLUSHW 10 1011 Flush Register Windows

Assembly Language Syntax
flushw

31 24 02530 29 19 18

—10 op3 —

14 13 12

— i=0

254 A Instruction Definitions

A.22 Illegal Instruction Trap

Format (2):

Description:

The ILLTRAP instruction causes an illegal_instruction exception. The const22 value is
ignored by the hardware; specifically, this field is not reserved by the architecture for any
future use.

Compatibility Note:
Except for its name, this instruction is identical to the SPARC-V8 UNIMP instruction.

Exceptions:
illegal_instruction

Opcode op op2 Operation
ILLTRAP 00 000 illegal_instruction trap

Assembly Language Syntax
illtrap const22

00 000 const22—

31 2124 02530 29 22

A.23 Implementation-dependent Instructions 255

A.23 Implementation-dependent Instructions

Format (3):

Description:

The IMPDEP1 and IMPDEP2 instructions are completely implementation-dependent.
Implementation-dependent aspects include their operation, the interpretation of bits
29..25 and 18..0 in their encodings, and which (if any) exceptions they may cause.

See I.1.2, “Implementation-Dependent and Reserved Opcodes” in V9 for information
about extending the SPARC-V9 instruction set using the implementation-dependent
instructions.

Compatibility Note:
These instructions replace the CPopn instructions in SPARC-V8.

Note: SPARC64-III uses IMPDEP2 to encode the Floating-point Multiply Add/Subtract
instructions. See A.23.1, “IMPDEP2 (Floating-point Multiply-Add/Subtract)”, for details.

SPARC64-III does not use IMPDEP1; attempts to execute an IMPDEP1 opcode cause an
illegal_instruction exception.

Exceptions:
illegal_instruction (IMPDEP1)
implementation-dependent (IMPDEP2)

A.23.1 IMPDEP2 (Floating-point Multiply-Add/Subtract)

† 11 is reserved for quad.

Opcode op3 Operation
IMPDEP1 11 0110 Implementation-Dependent Instruction 1
IMPDEP2 11 0111 Implementation-Dependent Instruction 2

Opcode Variation Size† Operation
FMADDs 00 01 Multiply-Add Single
FMADDd 00 10 Multiply-Add Double
FMSUBs 01 01 Multiply-Subtract Single
FMSUBd 01 10 Multiply-Subtract Double
FNMADDs 11 01 Negative Multiply-Add Single
FNMADDd 11 10 Negative Multiply-Add Double
FNMSUBs 10 01 Negative Multiply-Subtract Single
FNMSUBd 10 10 Negative Multiply-Subtract Double

10 op3 impl-depimpl-dep

31 1824 02530 29 19

V9

256 A Instruction Definitions

Format (5):

Description:

The floating-point multiply-add instructions multiply the registers specified by the rs1
field by the registers specified by the rs2 field, then add that product to the registers speci-
fied by the rs3 field and write the result into the registers specified by the rd field.

The floating-point multiply-subtract instructions multiply the registers specified by the rs1
field by the registers specified by the rs2 field, then subtract from that product the registers
specified by the rs3 field and write the result into the registers specified by the rd field.

The floating-point negative multiply-add instructions multiply the registers specified by
the rs1 field by the registers specified by the rs2 field, then add that product to the registers
specified by the rs3 field and write the negation of the result into the registers specified by
the rd field.

The floating-point negative multiply-subtract instructions multiply the registers specified
by the rs1 field by the registers specified by the rs2 field, then subtract from that product
the registers specified by the rs3 field and write the negation of the result into the registers
specified by the rd field.

All of the operations above can incur at most one rounding error.

Programming Note:
The Multiply Add/Subtract instructions use the SPARC-V9 IMPDEP2 opcode, and they are spe-
cific to the SPARC64-III implementation. They cannot be used in any programs that will be exe-

Operation Implementation
Multiply-Add rs1 × rs2 + rs3 A rd
Multiply-Subtract rs1 × rs2 < rs3 A rd
Negative Multiply-Subtract <(rs1 × rs2 < rs3) A rd
Negative Multiple-Add <(rs1 × rs2 + rs3) A rd

Assembly Language Syntax
fmadds fregrs1, fregrs2, fregrs3, fregrd
fmaddd fregrs1, fregrs2, fregrs3, fregrd
fmsubs fregrs1, fregrs2, fregrs3, fregrd
fmsubd fregrs1, fregrs2, fregrs3, fregrd
fnmadds fregrs1, fregrs2, fregrs3, fregrd
fnmaddd fregrs1, fregrs2, fregrs3, fregrd
fnmsubs fregrs1, fregrs2, fregrs3, fregrd
fnmsubd fregrs1, fregrs2, fregrs3, fregrd

10 110111 rs2rd

31 1824 02530 29 19 4567891314

sizevarrs3rs1

A.23.1 IMPDEP2 (Floating-point Multiply-Add/Subtract) 257

cuted on any other SPARC-V9 processor, unless that implementation exactly matches the
SPARC64-III for the IMPDEP2 opcode.

Traps:
fp_disabled
fp_exception_ieee_754 (NV,NX,OF,UF)
illegal_instruction (size = 002 or 112) (fp_disabled is not checked for these encodings)

258 A Instruction Definitions

A.24 Jump and Link

Format (3):

Description:

The JMPL instruction causes a register-indirect delayed control transfer to the address
given by “r[rs1] + r[rs2]” if i field = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

The JMPL instruction copies the PC, which contains the address of the JMPL instruction,
into register r[rd]. All 64 bits of the PC are stored into r[rd] regardless of the state of
PSTATE.AM. The value written into r[rd] is visible to the instruction in the delay slot.

If either of the low-order two bits of the jump address is nonzero, a
mem_address_not_aligned exception occurs.

If the JMPL instruction has r[rd] = 15, SPARC64-III stores PC + 8 in a hardware table.
When a ret (jmpl %i7+8, %g0) or retl (jmpl %o7+8, %g0) is executed, the value in the
table is used to predict the return address. See 6.3.4.3, “CALL and JMPL Instructions”, for
details of how this hardware table works.

Programming Note:
A JMPL instruction with rd = 15 functions as a register-indirect call using the standard link regis-
ter.

JMPL with rd = 0 can be used to return from a subroutine. The typical return address is
“r[31] + 8,” if a nonleaf routine (one that uses the SAVE instruction) is entered by a CALL instruc-
tion, or “r[15] + 8” if a leaf routine (one that does not use the SAVE instruction) is entered by a
CALL instruction or by a JMPL instruction with rd = 15.

Exceptions:
mem_address_not_aligned

Opcode op3 Operation
JMPL 11 1000 Jump and Link

Assembly Language Syntax
jmpl address, reg rd

31 24 02530 29 19 18

rd10 op3

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

—

A.25 Load Floating-point 259

A.25 Load Floating-point

† Encoded floating-point register value, as described in 5.1.4.1

Format (3):

Description:

The load single floating-point instruction (LDF) copies a word from memory into f[rd].

The load doubleword floating-point instruction (LDDF) copies a word-aligned double-
word from memory into a double-precision floating-point register.

The load quad floating-point instruction (LDQF) copies a word-aligned quadword from
memory into a quad-precision floating-point register.

Note:
SPARC64-III does not implement in hardware the instructions that specify a quad floating-point
register; an attempt to execute this instruction causes an illegal instruction exception. Supervisor
software then emulates these instructions.

Opcode op3 rd Operation
LDF 10 0000 0..31 Load Floating-point Register
LDDF 10 0011 † Load Double Floating-point Register
LDQF 10 0010 † Load Quad Floating-point Register
LDFSRD 10 0001 0 Load Floating-point State Register Lower
LDXFSR 10 0001 1 Load Floating-point State Register

— 10 0001 2..31 Reserved

Assembly Language Syntax
ld [address], fregrd
ldd [address], fregrd
ldq [address], fregrd
ld [address], %fsr
ldx [address], %fsr

The LDFSR instruction is deprecated; it is provided only for compatibility with
previous versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the LDXFSR instruction be used in its place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

260

The load floating-point state register lower instruction (LDFSR) waits for all FPop instruc-
tions that have not finished execution to complete, and then loads a word from memory
into the lower 32 bits of the FSR. The upper 32 bits of FSR are unaffected by LDFSR.

The load floating-point state register instruction (LDXFSR) waits for all FPop instructions
that have not finished execution to complete, and then loads a doubleword from memory
into the FSR.

Compatibility Note:
SPARC-V9 supports two different instructions to load the FSR; the SPARC-V8 LDFSR instruction
is defined to load only the lower 32 bits into the FSR, whereas LDXFSR allows SPARC-V9 pro-
grams to load all 64 bits of the FSR.

Load floating-point instructions access the primary address space (ASI = 8016). The effec-
tive address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

LDF and LDFSR cause a mem_address_not_aligned exception if the effective memory
address is not word-aligned; LDDF causes an LDDF_mem_address_not_aligned exception if
the effective memory address is not doubleword-aligned; LDXFSR causes a
mem_address_not_aligned exception if the address is not doubleword-aligned. If the float-
ing-point unit is not enabled (per FPRS.FEF and PSTATE.PEF), or if no FPU is present, a
load floating-point instruction causes an fp_disabled exception. Note: This check is not
made for LDQF.

Programming Note:
In SPARC-V8, some compilers issued sequences of single-precision loads when they could not
determine that double- or quadword operands were properly aligned. For SPARC-V9, since emula-
tion of misaligned loads is expected to be fast, it is recommended that compilers issue sets of sin-
gle-precision loads only when they can determine that double- or quadword operands are not
properly aligned.

Implementation Note:
If a load floating-point instruction traps with any type of access error, the contents of the destination
floating-point register(s) remain unchanged.

Exceptions:
illegal_instruction (op3=2116 and rd = 2..31 or LDQF)
fp_disabled
LDDF_mem_address_not_aligned (LDDF only)
mem_address_not_aligned
data_access_exception
data_access_error
32i_data_access_MMU_miss
32i_data_access_protection

A.26 Load Floating-point from Alternate Space 261

A.26 Load Floating-point from Alternate Space

† Encoded floating-point register value, as described in 5.1.4.1

Format (3):

Description:

The load single floating-point from alternate space instruction (LDFA) copies a word from
memory into f[rd].

The load doubleword floating-point from alternate space instruction (LDDFA) copies a
word-aligned doubleword from memory into a double-precision floating-point register.

The load quad floating-point from alternate space instruction (LDQFA) copies a word-
aligned quadword from memory into a quad-precision floating-point register.

Implementation Note:
SPARC64-III does not implement the LDQFA instruction in hardware; an attempt to execute this
instruction causes an illegal_instruction exception. Supervisor software will then emulate the
LDQFA.

Load floating-point from alternate space instructions contain the address space identifier
(ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI register if i = 1. The
access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged. The effective
address for these instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if
i = 1.

LDFA causes a mem_address_not_aligned exception if the effective memory address is not
word-aligned; LDDFA causes an LDDF_mem_address_not_aligned exception if the effec-
tive memory address is not doubleword-aligned. If the floating-point unit is not enabled

Opcode op3 rd Operation
LDFAPASI 11 0000 0..31 Load Floating-Point Register from Alternate space
LDDFAPASI 11 0011 † Load Double Floating-Point Register from Alternate space
LDQFAPASI 11 0010 † Load QuadFloating-Point Register from Alternate space

Assembly Language Syntax
lda [regaddr] imm_asi, fregrd
lda [reg_plus_imm] %asi, fregrd
ldda [regaddr] imm_asi, fregrd
ldda [reg_plus_imm] %asi, fregrd
ldqa [regaddr] imm_asi, fregrd
ldqa [reg_plus_imm] %asi, fregrd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13

262

(per FPRS.FEF and PSTATE.PEF), or if no FPU is present, load floating-point from alter-
nate space instructions cause an fp_disabled exception.

Implementation Note:
This check is not made for LDQFA. LDFA, and LDDFA cause a privileged_action exception if
PSTATE.PRIV = 0 and bit 7 of the ASI is zero.

Programming Note:
In SPARC-V8, some compilers issued sequences of single-precision loads when they could not
determine that double- or quadword operands were properly aligned. For SPARC-V9, since emula-
tion of misaligned loads is expected to be fast, it is recommended that compilers issue sets of sin-
gle-precision loads only when they can determine that double- or quadword operands are not
properly aligned.

Implementation Note:
If a load floating-point instruction traps with any type of access error, the destination floating-point
register(s) remain unchanged.

Exceptions:
Illegal_instruction (LDQFA only)
fp_disabled
LDDF_mem_address_not_aligned (LDDFA only)
mem_address_not_aligned
privileged_action
data_access_exception
data_access_error
32i_data_access_MMU_miss
32i_data_access_protection

A.27 Load Integer 263

A.27 Load Integer

Format (3):

Description:
The load integer instructions copy a byte, a halfword, a word, an extended word, or a dou-
bleword from memory. All except LDD copy the fetched value into r[rd]. A fetched byte,
halfword, or word is right-justified in the destination register r[rd]; it is either sign-
extended or zero-filled on the left, depending on whether the opcode specifies a signed or
unsigned operation, respectively.
The load doubleword integer instructions (LDD) copy a doubleword from memory into an
r-register pair. The word at the effective memory address is copied into the even r register.

Opcode op3 Operation
LDSB 00 1001 Load Signed Byte
LDSH 00 1010 Load Signed Halfword
LDSW 00 1000 Load Signed Word
LDUB 00 0001 Load Unsigned Byte
LDUH 00 0010 Load Unsigned Halfword
LDUW 00 0000 Load Unsigned Word
LDX 00 1011 Load Extended Word
LDDD 00 0011 Load Doubleword

Assembly Language Syntax
ldsb [address], regrd
ldsh [address], regrd
ldsw [address], regrd
ldub [address], regrd
lduh [address], regrd
lduw [address], regrd (synonym: ld)
ldx [address], regrd
ldd [address], regrd

The LDD instruction is deprecated; it is provided only for compatibility with previ-
ous versions of the architecture. It should not be used in new SPARC-V9 software.
It is recommended that the LDX instruction be used in its place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

264

The word at the effective memory address + 4 is copied into the following odd-numbered r
register. The upper 32 bits of both the even-numbered and odd-numbered r registers are
zero-filled. Note: A load doubleword with rd = 0 modifies only r[1]. The least significant
bit of the rd field in an LDD instruction is unused and should be set to zero by software.
An attempt to execute a load doubleword instruction that refers to a misaligned (odd-num-
bered) destination register causes an illegal_instruction exception.

Load integer instructions access the primary address space (ASI = 8016). The effective
address is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended and load doubleword) instruction operates
atomically.

LDUH and LDSH cause a mem_address_not_aligned exception if the address is not half-
word-aligned. LDUW and LDSW cause a mem_address_not_aligned exception if the effec-
tive address is not word-aligned. LDX and LDD cause a mem_address_not_aligned
exception if the address is not doubleword-aligned.

Programming Note:
LDD is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9
machines because of data path and register-access difficulties.

Compatibility Note:
The SPARC-V8 LD instruction has been renamed LDUW in SPARC-V9. The LDSW instruction is
new in SPARC-V9.

Exceptions:
illegal_instruction (LDD with odd rd)
mem_address_not_aligned (all except LDSB, LDUB)
data_access_exception
data_access_error
32i_data_access_MMU_miss
32i_data_access_protection

A.28 Load Integer from Alternate Space 265

A.28 Load Integer from Alternate Space

Format (3):

Description:
The load integer from alternate space instructions copy a byte, a halfword, a word, an
extended word, or a doubleword from memory. All except LDDA copy the fetched value

Opcode op3 Operation
LDSBAPASI 01 1001 Load Signed Byte from Alternate space
LDSHAPASI 01 1010 Load Signed Halfword from Alternate space
LDSWAPASI 01 1000 Load Signed Word from Alternate space
LDUBAPASI 01 0001 Load Unsigned Byte from Alternate space
LDUHAPASI 01 0010 Load Unsigned Halfword from Alternate space
LDUWAPASI 01 0000 Load Unsigned Word from Alternate space
LDXAPASI 01 1011 Load Extended Word from Alternate space
LDDAD, PASI 01 0011 Load Doubleword from Alternate space

Assembly Language Syntax
ldsba [regaddr] imm_asi, reg rd
ldsha [regaddr] imm_asi, reg rd
ldswa [regaddr] imm_asi, reg rd
lduba [regaddr] imm_asi, reg rd
lduha [regaddr] imm_asi, reg rd
lduwa [regaddr] imm_asi, reg rd (synonym: lda)
ldxa [regaddr] imm_asi, reg rd
ldda [regaddr] imm_asi, reg rd
ldsba [reg_plus_imm] %asi, reg rd
ldsha [reg_plus_imm] %asi, reg rd
ldswa [reg_plus_imm] %asi, reg rd
lduba [reg_plus_imm] %asi, reg rd
lduha [reg_plus_imm] %asi, reg rd
lduwa [reg_plus_imm] %asi, reg rd (synonym: lda)
ldxa [reg_plus_imm] %asi, reg rd
ldda [reg_plus_imm] %asi, reg rd

The LDDA instruction is deprecated; it is provided only for compatibility with pre-
vious versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the LDXA instruction be used in its place.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13

266

into r[rd]. A fetched byte, halfword, or word is right-justified in the destination register
r[rd]; it is either sign-extended or zero-filled on the left, depending on whether the opcode
specifies a signed or unsigned operation, respectively.
The load doubleword integer from alternate space instruction (LDDA) copies a double-
word from memory into an r-register pair. The word at the effective memory address is
copied into the even r register. The word at the effective memory address + 4 is copied into
the following odd-numbered r register. The upper 32 bits of both the even-numbered and
odd-numbered r registers are zero-filled. Note: A load doubleword with rd = 0 modifies
only r[1]. The least significant bit of the rd field in an LDDA instruction is unused and
should be set to zero by software. An attempt to execute a load doubleword instruction that
refers to a misaligned (odd-numbered) destination register causes an illegal_instruction
exception.
The load integer from alternate space instructions contain the address space identifier
(ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI register if i = 1. The
access is privileged if bit seven of the ASI is zero; otherwise, it is not privileged. The
effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.
A successful load (notably, load extended and load doubleword) instruction operates
atomically.
LDUHA and LDSHA cause a mem_address_not_aligned exception if the address is not
halfword-aligned. LDUWA and LDSWA cause a mem_address_not_aligned exception if
the effective address is not word-aligned; LDXA and LDDA cause a
mem_address_not_aligned exception if the address is not doubleword-aligned.
These instructions cause a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the
ASI is zero.
LDDA with ASI=2416 or 2C16 has a special feature. See A.28.1, “Atomic Quad Load” for
details.
Programming Note:

LDDA is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9
machines because of data path and register-access difficulties.
If LDDA is emulated in software, an LDXA instruction should be used for the memory access in
order to preserve atomicity.

Compatibility Note:
The SPARC-V8 instruction LDA has been renamed LDUWA in SPARC-V9. The LDSWA instruc-
tion is new in SPARC-V9.

Exceptions:
privileged_action
illegal_instruction (LDDA with odd rd)
mem_address_not_aligned (all except LDSBA and LDUBA)
data_access_exception
data_access_error

A.28.1 Atomic Quad Load 267

A.28.1 Atomic Quad Load

Description:

SPARC64-III treats an LDDA with an ASI value of 0x24 or 0x2c differently from other
LDDA’s. An LDDA made with an ASI of 0x24 or 0x2c will do a cacheable, 128-bit,
atomic load from memory and store the result in an even/odd 64-bit integer register pair.

ASI 0x24 causes the 128-bit access to be made in big endian mode using the nucleus con-
text. The doubleword at the effective memory address is copied into the even r register in
big endian mode. The doubleword at the effective memory address + 8 is copied into the
following odd-numbered r register in big endian mode.

ASI 0x2c causes the 128-bit access to be made in little endian mode using the nucleus
context. The doubleword at the effective memory address is copied into the even r register
in little endian mode. The doubleword at the effective memory address + 8 is copied into
the following odd-numbered r register in little endian mode.

These privileged ASIs will cause a privileged_action trap if executed when PSTATE.PRIV
= 0.

Accesses to non cacheable locations will cause a data_access_exception trap with
ftype=E16 (illegal access to Noncacheable Page). Accesses to addresses that are not 128-
bit aligned will cause a mem_address_not_aligned trap.

Programming Note:
If ASI’s 0x24 or 0x2c are used with any instruction other than an LDDA, a data_access_exception
trap with ftype=F16 (invalid ASI) will be taken.

The quadword litlle endian address convention in LDDA with ASI 0x2c differs from the one which
SPARC V9 (page 70) specifies.

Exceptions:
privileged_action
mem_address_not_aligned
data_access_exception
data_access_error
32i_data_access_MMU_miss
32i_data_access_protection
data_access_exception (128-bit atomic loads only: non cacheable access)
mem_address_not_aligned (128-bit atomic loads only: address not 128 bit aligned.)

opcode ASI operation

LDDA 0x24 Cacheable, 128-bit atomic load
LDDA 0x2c Cacheable, 128-bit atomic load, little endian

268

A.29 Load-store Unsigned Byte

Format (3):

Description:

The load-store unsigned byte instruction copies a byte from memory into r[rd], and then
rewrites the addressed byte in memory to all ones. The fetched byte is right-justified in the
destination register r[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or
deferred traps. In a multiprocessor system, two or more processors executing LDSTUB,
LDSTUBA, CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the
same doubleword simultaneously are guaranteed to execute them in an undefined but
serial order.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation-dependent (impl. dep #120).

Exceptions:
data_access_exception
data_access_error
32i_data_access_MMU_miss
32i_data_access_protection

Opcode op3 Operation
LDSTUB 00 1101 Load-Store Unsigned Byte

Assembly Language Syntax
ldstub [address], regrd

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

A.30 Load-store Unsigned Byte to Alternate Space 269

A.30 Load-store Unsigned Byte to Alternate Space

Format (3):

Description:

The load-store unsigned byte into alternate space instruction copies a byte from memory
into r[rd], then rewrites the addressed byte in memory to all ones. The fetched byte is
right-justified in the destination register r[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or
deferred traps. In a multiprocessor system, two or more processors executing LDSTUB,
LDSTUBA, CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the
same doubleword simultaneously are guaranteed to execute them in an undefined, but
serial order.

LDSTUBA contains the address space identifier (ASI) to be used for the load in the
imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7 of the
ASI is zero; otherwise, it is not privileged. The effective address is “r[rs1] + r[rs2]” if
i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

LDSTUBA causes a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASI
is zero.

For information about the coherence and atomicity of memory operations between proces-
sors and I/O DMA memory accesses, see HaL-specific documents described in the Bibli-
ography.

Exceptions:
privileged_action
data_access_exception
data_access_error
32i_data_access_MMU_miss
32i_data_access_protection

Opcode op3 Operation
LDSTUBAPASI 01 1101 Load-Store Unsigned Byte into Alternate space

Assembly Language Syntax
ldstuba [regaddr] imm_asi, regrd
ldstuba [reg_plus_imm] %asi, regrd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13

270

A.31 Logical Operations

Format (3):

Description:

These instructions implement bitwise logical operations. They compute “r[rs1] op r[rs2]”
if i = 0, or “r[rs1] op sign_ext(simm13)” if i = 1, and write the result into r[rd].

ANDcc, ANDNcc, ORcc, ORNcc, XORcc, and XNORcc modify the integer condition
codes (icc and xcc). They set icc.v, icc.c, xcc.v, and xcc.c to zero, icc.n to bit 31 of the

Opcode op3 Operation
AND 00 0001 And
ANDcc 01 0001 And and modify cc’s
ANDN 00 0101 And Not
ANDNcc 01 0101 And Not and modify cc’s
OR 00 0010 Inclusive Or
ORcc 01 0010 Inclusive Or and modify cc’s
ORN 00 0110 Inclusive Or Not
ORNcc 01 0110 Inclusive Or Not and modify cc’s
XOR 00 0011 Exclusive Or
XORcc 01 0011 Exclusive Or and modify cc’s
XNOR 00 0111 Exclusive Nor
XNORcc 01 0111 Exclusive Nor and modify cc’s

Assembly Language Syntax
and regrs1, reg_or_imm, regrd
andcc regrs1, reg_or_imm, regrd
andn regrs1, reg_or_imm, regrd
andncc regrs1, reg_or_imm, regrd
or regrs1, reg_or_imm, regrd
orcc regrs1, reg_or_imm, regrd
orn regrs1, reg_or_imm, regrd
orncc regrs1, reg_or_imm, regrd
xor regrs1, reg_or_imm, regrd
xorcc regrs1, reg_or_imm, regrd
xnor regrs1, reg_or_imm, regrd
xnorcc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

A.31 Logical Operations 271

result, xcc.n to bit 63 of the result, icc.z to 1 if bits 31:0 of the result are zero (otherwise to
0), and xcc.z to 1 if all 64 bits of the result are zero (otherwise to 0).

ANDN, ANDNcc, ORN, and ORNcc logically negate their second operand before apply-
ing the main (AND or OR) operation.

Programming Note:
XNOR and XNORcc are identical to the XOR-Not and XOR-Not-cc logical operations, respec-
tively.

Exceptions:
(none)

272

A.32 Memory Barrier

Format (3):

Description:

The memory barrier instruction, MEMBAR, has two complementary functions: to express
order constraints between memory references and to provide explicit control of memory-
reference completion. The membar_mask field in the suggested assembly language is the
bitwise OR of the cmask and mmask instruction fields.

MEMBAR introduces an order constraint between classes of memory references appear-
ing before the MEMBAR and memory references following it in a program. The particular
classes of memory references are specified by the mmask field. Memory references are
classified as loads (including load instructions, LDSTUB(A), SWAP(A), CASA, and
CASXA) and stores (including store instructions, LDSTUB(A), SWAP(A), CASA,
CASXA, and FLUSH). The mmask field specifies the classes of memory references sub-
ject to ordering, as described below. MEMBAR applies to all memory operations in all
address spaces referenced by the issuing processor, but it has no effect on memory refer-
ences by other processors. When the cmask field is nonzero, completion as well as order
constraints are imposed, and the order imposed can be more stringent than that specifiable
by the mmask field alone.

A load has been performed when the value loaded has been transmitted from memory and
cannot be modified by another processor. A store has been performed when the value
stored has become visible, that is, when the previous value can no longer be read by any
processor. In specifying the effect of MEMBAR, instructions are considered to be exe-
cuted as if they were processed in a strictly sequential fashion, with each instruction com-
pleted before the next has begun.

The mmask field is encoded in bits 3 through 0 of the instruction. Table 56 specifies the
order constraint that each bit of mmask (selected when set to 1) imposes on memory refer-

Opcode op3 Operation
MEMBAR 10 1000 Memory Barrier

Assembly Language Syntax
membar membar_mask

31 141924 18 13 12 02530 29

10 0 op3 0 1111 i=1 —

4 3

mmask

6
4

7

cmask

A.32 Memory Barrier 273

ences appearing before and after the MEMBAR. From zero to four mask bits may be
selected in the mmask field

The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask field,
illustrated in Table 57, specify additional constraints on the order of memory references
and the processing of instructions. If cmask is zero, then MEMBAR enforces the partial
ordering specified by the mmask field; if cmask is nonzero, then completion as well as par-
tial order constraints are applied.

For information on the use of MEMBAR, see 8.4.3, “MEMBAR Instruction” in V9, and
Appendix J, “Programming With the Memory Models” in V9. Chapter 8, “Memory Mod-
els” contains additional information about the memory models themselves.

The encoding of MEMBAR is identical to that of the RDASR instruction, except that
rs1 = 15, rd = 0, and i = 1.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation-dependent.

Note:
MEMBAR#Lookaside, MEMBAR#StoreStore, and MEMBAR#LoadStore are treated as NOPs in
SPARC64-III since the hardware memory models always enforce the semantics of these MEM-
BAR’s for all memory accesses. MEMBAR#StoreLoad and MEMBAR#LoadLoad enforce the
ordering specified by the instruction. MEMBAR#Sync and MEMBAR#MemIssue cause the pro-

Table 56: MEMBAR mmask Encodings (V9=25)

Mask Bit Name Description
mmask<3> #StoreStore The effects of all stores appearing prior to the MEMBAR instruction

must be visible to all processors before the effect of any stores following
the MEMBAR. Equivalent to the deprecated STBAR instruction

mmask<2> #LoadStore All loads appearing prior to the MEMBAR instruction must have been
performed before the effects of any stores following the MEMBAR are
visible to any other processor.

mmask<1> #StoreLoad The effects of all stores appearing prior to the MEMBAR instruction
must be visible to all processors before loads following the MEMBAR
may be performed.

mmask<0> #LoadLoad All loads appearing prior to the MEMBAR instruction must have been
performed before any loads following the MEMBAR may be performed.

Table 57: MEMBAR cmask Encodings (V9=26)

Mask Bit Function Name Description
cmask<2> Synchronization

barrier
#Sync All operations (including nonmemory reference operations)

appearing prior to the MEMBAR must have been performed
and the effects of any exceptions become visible before any
instruction after the MEMBAR may be initiated.

cmask<1> Memory issue
barrier

#MemIssue All memory reference operations appearing prior to the
MEMBAR must have been performed before any memory
operation after the MEMBAR may be initiated.

cmask<0> Lookaside
barrier

#Lookaside A store appearing prior to the MEMBAR must complete
before any load following the MEMBAR referencing the
same address can be initiated.

V9

274

cessor to sync and cause the effects of all cacheable and noncacheable memory accesses made
before the MEMBAR to be visible from the other processors in the system.

Compatibility Note:
MEMBAR with mmask = 816 and cmask = 016 (“membar #StoreStore”) is identical in func-
tion to the SPARC-V8 STBAR instruction, which is deprecated.

Exceptions:
(none)

A.33 Move Floating-point Register on Condition (FMOVcc) 275

A.33 Move Floating-point Register on Condition (FMOVcc)
For Integer Condition Codes:

For Floating-point Condition Codes:

Opcode op3 cond Operation icc/xcc test
FMOVA 11 0101 1000 Move Always 1
FMOVN 11 0101 0000 Move Never 0
FMOVNE 11 0101 1001 Move if Not Equal not Z
FMOVE 11 0101 0001 Move if Equal Z
FMOVG 11 0101 1010 Move if Greater not (Z or (N xor V))
FMOVLE 11 0101 0010 Move if Less or Equal Z or (N xor V)
FMOVGE 11 0101 1011 Move if Greater or Equal not (N xor V)
FMOVL 11 0101 0011 Move if Less N xor V
FMOVGU 11 0101 1100 Move if Greater Unsigned not (C or Z)
FMOVLEU 11 0101 0100 Move if Less or Equal Unsigned (C or Z)
FMOVCC 11 0101 1101 Move if Carry Clear (Greater or Equal, Unsigned) not C
FMOVCS 11 0101 0101 Move if Carry Set (Less than, Unsigned) C
FMOVPOS 11 0101 1110 Move if Positive not N
FMOVNEG 11 0101 0110 Move if Negative N
FMOVVC 11 0101 1111 Move if Overflow Clear not V
FMOVVS 11 0101 0111 Move if Overflow Set V

Opcode op3 cond Operation fcc test
FMOVFA 11 0101 1000 Move Always 1
FMOVFN 11 0101 0000 Move Never 0
FMOVFU 11 0101 0111 Move if Unordered U
FMOVFG 11 0101 0110 Move if Greater G
FMOVFUG 11 0101 0101 Move if Unordered or Greater G or U
FMOVFL 11 0101 0100 Move if Less L
FMOVFUL 11 0101 0011 Move if Unordered or Less L or U
FMOVFLG 11 0101 0010 Move if Less or Greater L or G
FMOVFNE 11 0101 0001 Move if Not Equal L or G or U
FMOVFE 11 0101 1001 Move if Equal E
FMOVFUE 11 0101 1010 Move if Unordered or Equal E or U
FMOVFGE 11 0101 1011 Move if Greater or Equal E or G
FMOVFUGE 11 0101 1100 Move if Unordered or Greater or Equal E or G or U
FMOVFLE 11 0101 1101 Move if Less or Equal E or L
FMOVFULE 11 0101 1110 Move if Unordered or Less or Equal E or L or U
FMOVFO 11 0101 1111 Move if Ordered E or L or G

276

Format (4):

Encoding of the opf_cc field (also see Table 77 on page 365):

Encoding of opf field (opf_cc opf_low):

Table 58: Floating-point Move on Condition opf_cc Field

opf_cc Condition Code
000 fcc0
001 fcc1
010 fcc2
011 fcc3
100 icc
101 —
110 xcc
111 —

Table 59: Floating-point Move on Condition opf Field

Instruction Variation opf_cc opf_low opf
FMOVScc %fccn,rs2,rd 0nn 00 0001 0 nn00 0001
FMOVDcc %fccn,rs2,rd 0nn 00 0010 0 nn00 0010
FMOVQcc %fccn,rs2,rd 0nn 00 0011 0 nn00 0011
FMOVScc %icc, rs2,rd 100 00 0001 1 0000 0001
FMOVDcc %icc, rs2,rd 100 00 0010 1 0000 0010
FMOVQcc %icc, rs2,rd 100 00 0011 1 0000 0011
FMOVScc %xcc, rs2,rd 110 00 0001 1 1000 0001
FMOVDcc %xcc, rs2,rd 110 00 0010 1 1000 0010
FMOVQcc %xcc, rs2,rd 110 00 0011 1 1000 0011

31 1924 18 1314 11 5 4 010172530 29

10 rd op3 cond opf_cc opf_low rs20

A.33 Move Floating-point Register on Condition (FMOVcc) 277

For Integer Condition Codes:

Programming Note:
To select the appropriate condition code, include “%icc” or “%xcc” before the registers.

For Floating-point Condition Codes:

Assembly Language Syntax
fmov{s,d,q}a i_or_x_cc, fregrs2, fregrd
fmov{s,d,q}n i_or_x_cc, fregrs2, fregrd
fmov{s,d,q}ne i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}nz)
fmov{s,d,q}e i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}z)
fmov{s,d,q}g i_or_x_cc, fregrs2, fregrd
fmov{s,d,q}le i_or_x_cc, fregrs2, fregrd
fmov{s,d,q}ge i_or_x_cc, fregrs2, fregrd
fmov{s,d,q}l i_or_x_cc, fregrs2, fregrd
fmov{s,d,q}gu i_or_x_cc, fregrs2, fregrd
fmov{s,d,q}leu i_or_x_cc, fregrs2, fregrd
fmov{s,d,q}cc i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}geu)
fmov{s,d,q}cs i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}lu)
fmov{s,d,q}pos i_or_x_cc, fregrs2, fregrd
fmov{s,d,q}neg i_or_x_cc, fregrs2, fregrd
fmov{s,d,q}vc i_or_x_cc, fregrs2, fregrd
fmov{s,d,q}vs i_or_x_cc, fregrs2, fregrd

Assembly Language Syntax
fmov{s,d,q}a %fccn, fregrs2, fregrd
fmov{s,d,q}n %fccn, fregrs2, fregrd
fmov{s,d,q}u %fccn, fregrs2, fregrd
fmov{s,d,q}g %fccn, fregrs2, fregrd
fmov{s,d,q}ug %fccn, fregrs2, fregrd
fmov{s,d,q}l %fccn, fregrs2, fregrd
fmov{s,d,q}ul %fccn, fregrs2, fregrd
fmov{s,d,q}lg %fccn, fregrs2, fregrd
fmov{s,d,q}ne %fccn, fregrs2, fregrd (synonyms: fmov{s,d,q}nz)
fmov{s,d,q}e %fccn, fregrs2, fregrd (synonyms: fmov{s,d,q}z)
fmov{s,d,q}ue %fccn, fregrs2, fregrd
fmov{s,d,q}ge %fccn, fregrs2, fregrd
fmov{s,d,q}uge %fccn, fregrs2, fregrd
fmov{s,d,q}le %fccn, fregrs2, fregrd
fmov{s,d,q}ule %fccn, fregrs2, fregrd
fmov{s,d,q}o %fccn, fregrs2, fregrd

278

Description:

These instructions copy the floating-point register(s) specified by rs2 to the floating-point
register(s) specified by rd if the condition indicated by the cond field is satisfied by the
selected condition code. The condition code used is specified by the opf_cc field of the
instruction. If the condition is FALSE, then the destination register(s) are not changed.

These instructions do not modify any condition codes.

Note: SPARC64-III does not implement in hardware any instructions that specify a quad
floating-point register; it traps them with fp_exception_other (with
ftt = unimplemented_FPop). Supervisor software then emulates the FMOVQcc.

Programming Note:
Branches cause most implementations’ performance to degrade significantly. Frequently, the
MOVcc and FMOVcc instructions can be used to avoid branches. For example, the following C
language segment:

double A, B, X;
if (A > B) then X = 1.03; else X = 0.0;

can be coded as

! assume A is in %f0; B is in %f2; %xx points to constant area
ldd [%xx+C_1.03],%f4 ! X = 1.03
fcmpd %fcc3,%f0,%f2 ! A > B
fble ,a %fcc3,label
! following only executed if the branch is taken
fsubd %f4,%f4,%f4 ! X = 0.0

label:...

This takes four instructions including a branch.

Using FMOVcc, this could be coded as

ldd [%xx+C_1.03],%f4 ! X = 1.03
fsubd %f4,%f4,%f6 ! X’ = 0.0
fcmpd %fcc3,%f0,%f2 ! A > B
fmovdle %fcc3,%f6,%f4 ! X = 0.0

This also takes four instructions but requires no branches and may boost performance significantly.
It is suggested that MOVcc and FMOVcc be used instead of branches wherever they would
improve performance.

Exceptions:
fp_disabled
fp_exception_other (ftt = unimplemented_FPop (opf_cc = 1012 or 1112 and quad

forms))

A.34 Move F-P Register on Integer Register Condition (FMOVr) 279

A.34 Move F-P Register on Integer Register Condition (FMOVr)

Format (4):

Encoding of opf_low field:

Description:

If the contents of integer register r[rs1] satisfy the condition specified in the rcond field,
these instructions copy the contents of the floating-point register(s) specified by the rs2
field to the floating-point register(s) specified by the rd field. If the contents of r[rs1] do
not satisfy the condition, the floating-point register(s) specified by the rd field are not
modified.

These instructions treat the integer register contents as a signed integer value; they do not
modify any condition codes.

Opcode op3 rcond Operation Test
— 11 0101 000 Reserved —

FMOVRZ 11 0101 001 Move if Register Zero r[rs1] = 0
FMOVRLEZ 11 0101 010 Move if Register Less Than or Equal to Zero r[rs1]) 0
FMOVRLZ 11 0101 011 Move if Register Less Than Zero r[rs1] < 0

— 11 0101 100 Reserved —
FMOVRNZ 11 0101 101 Move if Register Not Zero r[rs1] & 0
FMOVRGZ 11 0101 110 Move if Register Greater Than Zero r[rs1] > 0
FMOVRGEZ 11 0101 111 Move if Register Greater Than or Equal to Zero r[rs1] * 0

Table 60: Floating-point Move on Integer Register Condition opf_low Field

Instruction variation opf_low
FMOVSrcond rs1, rs2, rd 0 0101
FMOVDrcond rs1, rs2, rd 0 0110
FMOVQrcond rs1, rs2, rd 0 0111

Assembly Language Syntax
fmovr{s,d,q}e regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}z)
fmovr{s,d,q}lez regrs1, fregrs2, fregrd
fmovr{s,d,q}lz regrs1, fregrs2, fregrd
fmovr{s,d,q}ne regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}nz)
fmovr{s,d,q}gz regrs1, fregrs2, fregrd
fmovr{s,d,q}gez regrs1, fregrs2, fregrd

31 141924 18 13 12 9 5 4 0102530 29

10 rd op3 0 rcond opf_low rs2rs1

280

Note: SPARC64-III does not implement in hardware the instructions that specify a quad
floating-point register; it traps them with fp_exception_other (with
ftt = unimplemented_FPop). Supervisor software then emulates the FMOVQrcond.

Implementation Note:
If this instruction is implemented by tagging each register value with an N (negative) and a Z (zero)
bit, use the following table to determine whether rcond is TRUE:

Exceptions:
fp_disabled
fp_exception_other (unimplemented_FPop (rcond = 0002 or 1002 and quad forms))

Branch Test
FMOVRNZ not Z
FMOVRZ Z
FMOVGEZ not N
FMOVRLZ N
FMOVRLEZ N or Z
FMOVRGZ N nor Z

A.35 Move Integer Register on Condition (MOVcc) 281

A.35 Move Integer Register on Condition (MOVcc)
For Integer Condition Codes:

For Floating-point Condition Codes:

Opcode op3 cond Operation icc/xcc test
MOVA 10 1100 1000 Move Always 1
MOVN 10 1100 0000 Move Never 0
MOVNE 10 1100 1001 Move if Not Equal not Z
MOVE 10 1100 0001 Move if Equal Z
MOVG 10 1100 1010 Move if Greater not (Z or (N xor V))
MOVLE 10 1100 0010 Move if Less or Equal Z or (N xor V)
MOVGE 10 1100 1011 Move if Greater or Equal not (N xor V)
MOVL 10 1100 0011 Move if Less N xor V
MOVGU 10 1100 1100 Move if Greater Unsigned not (C or Z)
MOVLEU 10 1100 0100 Move if Less or Equal Unsigned (C or Z)
MOVCC 10 1100 1101 Move if Carry Clear (Greater or Equal, Unsigned) not C
MOVCS 10 1100 0101 Move if Carry Set (Less than, Unsigned) C
MOVPOS 10 1100 1110 Move if Positive not N
MOVNEG 10 1100 0110 Move if Negative N
MOVVC 10 1100 1111 Move if Overflow Clear not V
MOVVS 10 1100 0111 Move if Overflow Set V

Opcode op3 cond Operation fcc test
MOVFA 10 1100 1000 Move Always 1
MOVFN 10 1100 0000 Move Never 0
MOVFU 10 1100 0111 Move if Unordered U
MOVFG 10 1100 0110 Move if Greater G
MOVFUG 10 1100 0101 Move if Unordered or Greater G or U
MOVFL 10 1100 0100 Move if Less L
MOVFUL 10 1100 0011 Move if Unordered or Less L or U
MOVFLG 10 1100 0010 Move if Less or Greater L or G
MOVFNE 10 1100 0001 Move if Not Equal L or G or U
MOVFE 10 1100 1001 Move if Equal E
MOVFUE 10 1100 1010 Move if Unordered or Equal E or U
MOVFGE 10 1100 1011 Move if Greater or Equal E or G
MOVFUGE 10 1100 1100 Move if Unordered or Greater or Equal E or G or U
MOVFLE 10 1100 1101 Move if Less or Equal E or L
MOVFULE 10 1100 1110 Move if Unordered or Less or Equal E or L or U
MOVFO 10 1100 1111 Move if Ordered E or L or G

282

Format (4):

For Integer Condition Codes:

Programming Note:
To select the appropriate condition code, include “%icc” or “%xcc” before the register or immedi-
ate field.

Table 61: Move Integer Register on Condition ccn Encodings

cc2 cc1 cc0 Condition code
000 fcc0
001 fcc1
010 fcc2
011 fcc3
100 icc
101 Reserved
110 xcc
111 Reserved

Assembly Language Syntax
mova i_or_x_cc, reg_or_imm11, regrd
movn i_or_x_cc, reg_or_imm11, regrd
movne i_or_x_cc, reg_or_imm11, regrd (synonym: movnz)
move i_or_x_cc, reg_or_imm11, regrd (synonym: movz)
movg i_or_x_cc, reg_or_imm11, regrd
movle i_or_x_cc, reg_or_imm11, regrd
movge i_or_x_cc, reg_or_imm11, regrd
movl i_or_x_cc, reg_or_imm11, regrd
movgu i_or_x_cc, reg_or_imm11, regrd
movleu i_or_x_cc, reg_or_imm11, regrd
movcc i_or_x_cc, reg_or_imm11, regrd (synonym: movgeu)
movcs i_or_x_cc, reg_or_imm11, regrd (synonym: movlu)
movpos i_or_x_cc, reg_or_imm11, regrd
movneg i_or_x_cc, reg_or_imm11, regrd
movvc i_or_x_cc, reg_or_imm11, regrd
movvs i_or_x_cc, reg_or_imm11, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

cond rs2i=0

rd10 op3 cond simm11i=1

17

cc2

cc2

11

cc1

cc1

10

cc0

cc0

A.35 Move Integer Register on Condition (MOVcc) 283

For Floating-point Condition Codes:

Programming Note:
To select the appropriate condition code, include “%fcc0,” “%fcc1,” “%fcc2,” or “%fcc3”
before the register or immediate field.

Description:
These instructions test to see if cond is TRUE for the selected condition codes. If so, they
copy the value in r[rs2] if i field = 0, or “sign_ext(simm11)” if i = 1 into r[rd]. The condi-
tion code used is specified by the cc2, cc1, and cc0 fields of the instruction. If the condi-
tion is FALSE, then r[rd] is not changed.

These instructions copy an integer register to another integer register if the condition is
TRUE. The condition code that is used to determine whether the move will occur can be
either integer condition code (icc or xcc) or any floating-point condition code (fcc0, fcc1,
fcc2, or fcc3).

These instructions do not modify any condition codes.

Programming Note:
Branches cause many implementations’ performance to degrade significantly. Frequently, the
MOVcc and FMOVcc instructions can be used to avoid branches. For example, the C language if-
then-else statement

if (A > B) then X = 1; else X = 0;

can be coded as

cmp %i0,%i2
bg,a %xcc,label
or %g0,1,%i3 ! X = 1
or %g0,0,%i3 ! X = 0

Assembly Language Syntax
mova %fccn, reg_or_imm11, regrd
movn %fccn, reg_or_imm11, regrd
movu %fccn, reg_or_imm11, regrd
movg %fccn, reg_or_imm11, regrd
movug %fccn, reg_or_imm11, regrd
movl %fccn, reg_or_imm11, regrd
movul %fccn, reg_or_imm11, regrd
movlg %fccn, reg_or_imm11, regrd
movne %fccn, reg_or_imm11, regrd (synonym: movnz)
move %fccn, reg_or_imm11, regrd (synonym: movz)
movue %fccn, reg_or_imm11, regrd
movge %fccn, reg_or_imm11, regrd
movuge %fccn, reg_or_imm11, regrd
movle %fccn, reg_or_imm11, regrd
movule %fccn, reg_or_imm11, regrd
movo %fccn, reg_or_imm11, regrd

284

label:...

This takes four instructions including a branch. Using MOVcc this could be coded as

cmp %i0,%i2
or %g0,1,%i3 ! assume X = 1
movle %xcc,0,%i3 ! overwrite with X = 0

This takes only three instructions and no branches and may boost performance significantly. It is
suggested that MOVcc and FMOVcc be used instead of branches wherever they would increase
performance.

Exceptions:
illegal_instruction (cc2 cc1 cc0 = 1012 or 1112)
fp_disabled (cc2 cc1 cc0 = 0002, 0012, 0102, or 0112 and the FPU is dis-

abled)

A.36 Move Integer Register on Register Condition (MOVR) 285

A.36 Move Integer Register on Register Condition (MOVR)

Format (3):

Description:
If the contents of integer register r[rs1] satisfies the condition specified in the rcond field,
these instructions copy r[rs2] (if i = 0) or sign_ext(simm10) (if i = 1) into r[rd]. If the con-
tents of r[rs1] does not satisfy the condition then r[rd] is not modified. These instructions
treat the register contents as a signed integer value; they do not modify any condition
codes.

Opcode op3 rcond Operation Test
— 10 1111 000 Reserved —

MOVRZ 10 1111 001 Move if Register Zero r[rs1] = 0
MOVRLEZ 10 1111 010 Move if Register Less Than or Equal to Zero r[rs1]) 0
MOVRLZ 10 1111 011 Move if Register Less Than Zero r[rs1] < 0

— 10 1111 100 Reserved —
MOVRNZ 10 1111 101 Move if Register Not Zero r[rs1] & 0
MOVRGZ 10 1111 110 Move if Register Greater Than Zero r[rs1] > 0
MOVRGEZ 10 1111 111 Move if Register Greater Than or Equal to Zero r[rs1] * 0

Assembly Language Syntax
movrz regrs1, reg_or_imm10, regrd (synonym: movre)
movrlez regrs1, reg_or_imm10, regrd
movrlz regrs1, reg_or_imm10, regrd
movrnz regrs1, reg_or_imm10, regrd (synonym: movrne)
movrgz regrs1, reg_or_imm10, regrd
movrgez regrs1, reg_or_imm10, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm10i=1

rcond

rcond

10 9

286

Implementation Note:
If this instruction is implemented by tagging each register value with an N (negative) and a Z (zero)
bit, use the table below to determine if rcond is TRUE:

Exceptions:
illegal_instruction (rcond = 0002 or 1002)

 Move Test
MOVRNZ not Z
MOVRZ Z
MOVRGEZ not N
MOVRLZ N
MOVRLEZ N or Z
MOVRGZ N nor Z

A.37 Multiply and Divide (64-bit) 287

A.37 Multiply and Divide (64-bit)

Format (3):

Description:

MULX computes “r[rs1] × r[rs2]” if i = 0 or “r[rs1] × sign_ext(simm13)” if i = 1, and
writes the 64-bit product into r[rd]. MULX can be used to calculate the 64-bit product for
signed or unsigned operands (the product is the same).

SDIVX and UDIVX compute “r[rs1] ÷ r[rs2]” if i = 0 or “r[rs1] ÷ sign_ext(simm13)” if
i = 1, and write the 64-bit result into r[rd]. SDIVX operates on the operands as signed
integers and produces a corresponding signed result. UDIVX operates on the operands as
unsigned integers and produces a corresponding unsigned result.

For SDIVX, if the largest negative number is divided by –1, the result should be the largest
negative number. That is:

8000 0000 0000 000016 ÷ FFFF FFFF FFFF FFFF16 = 8000 0000 0000 000016.

These instructions do not modify any condition codes.

Exceptions:
division_by_zero

Opcode op3 Operation
MULX 00 1001 Multiply (signed or unsigned)
SDIVX 10 1101 Signed Divide
UDIVX 00 1101 Unsigned Divide

Assembly Language Syntax
mulx regrs1, reg_or_imm, regrd
sdivx regrs1, reg_or_imm, regrd
udivx regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

288

A.38 Multiply (32-bit)

Format (3):

Description:

The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit
results. They compute “r[rs1]<31:0> × r[rs2]<31:0>” if i = 0, or “r[rs1]<31:0> ×
sign_ext(simm13)<31:0>” if i = 1. They write the 32 most significant bits of the product
into the Y register and all 64 bits of the product into r[rd].

Unsigned multiply (UMUL, UMULcc) operates on unsigned integer word operands and
computes an unsigned integer doubleword product. Signed multiply (SMUL, SMULcc)
operates on signed integer word operands and computes a signed integer doubleword
product.

UMUL and SMUL do not affect the condition code bits. UMULcc and SMULcc write the
integer condition code bits, icc and xcc, as shown in Table 62. Note: 32-bit negative
(icc.N) and zero (icc.Z) condition codes are set according to the less significant word of
the product, and not according to the full 64-bit result.

Opcode op3 Operation
UMULD 00 1010 Unsigned Integer Multiply
SMULD 00 1011 Signed Integer Multiply
UMULccD 01 1010 Unsigned Integer Multiply and modify cc’s
SMULccD 01 1011 Signed Integer Multiply and modify cc’s

Assembly Language Syntax
umul regrs1, reg_or_imm, regrd
smul regrs1, reg_or_imm, regrd
umulcc regrs1, reg_or_imm, regrd
smulcc regrs1, reg_or_imm, regrd

The UMUL, UMULcc, SMUL, and SMULcc instructions are deprecated; they are
provided only for compatibility with previous versions of the architecture. They
should not be used in new SPARC-V9 software. It is recommended that the MULX
instruction be used in their place.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

A.38 Multiply (32-bit) 289

Programming Note:
32-bit overflow after UMUL / UMULcc is indicated by Y & 0.

32-bit overflow after SMUL / SMULcc is indicated by Y & (r[rd] >> 31), where “>>” indicates 32-
bit arithmetic right shift.

Implementation Notes:
An implementation may assume that the smaller operand typically will be r[rs2] or simm13.

These instructions are executed in hardware in the SPARC64-III; however, they sync the CPU
before executing. It is recommended that software use 64-bit multiplies if possible.

Exceptions:
(none)

Table 62: UMULcc / SMULcc Condition Code Settings

Bit UMULcc / SMULcc
icc.N Set if product[31] = 1
icc.Z Set if product[31:0] = 0
icc.V Zero
icc.C Zero
xcc.N Set if product[63] = 1
xcc.Z Set if product[63:0] = 0
xcc.V Zero
xcc.C Zero

290

A.39 Multiply Step

Format (3):

Description:

MULScc treats the lower 32 bits of both r[rs1] and the Y register as a single 64-bit, right-
shiftable doubleword register. The least significant bit of r[rs1] is treated as if it were adja-
cent to bit 31 of the Y register. The MULScc instruction adds, based on the least signifi-
cant bit of Y.

Multiplication assumes that the Y register initially contains the multiplier, r[rs1] contains
the most significant bits of the product, and r[rs2] contains the multiplicand. Upon com-
pletion of the multiplication, the Y register contains the least significant bits of the prod-
uct.

Note: A standard MULScc instruction has rs1 = rd.

MULScc operates as follows:

1. The multiplicand is r[rs2] if i = 0, or sign_ext(simm13) if i = 1.

2. A 32-bit value is computed by shifting r[rs1] right by one bit with
“CCR.icc.n xor CCR.icc.v” replacing bit 31 of r[rs1]. (This is the proper sign for the
previous partial product.)

3. If the least significant bit of Y = 1, the shifted value from step (2) and the multiplicand
are added. If the least significant bit of the Y = 0, then 0 is added to the shifted value
from step (2).

Opcode op3 Operation
MULSccD 10 0100 Multiply Step and modify cc’s

Assembly Language Syntax
mulscc regrs1, reg_or_imm, regrd

The MULScc instruction is deprecated; it is provided only for compatibility with
previous versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the MULX instruction be used in its place.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

A.39 Multiply Step 291

4. The sum from step (3) is written into r[rd]. The upper 32-bits of r[rd] are undefined.
The integer condition codes are updated according to the addition performed in step
(3). The values of the extended condition codes are undefined.

5. The Y register is shifted right by one bit, with the least significant bit of the unshifted
r[rs1] replacing bit 31of Y.

Note: These instructions sync the CPU before executing; therefore, it is recommend that
software use 64-bit multiplies if possible.

Exceptions:
(none)

292

A.40 No Operation

Format (2):

Description:

The NOP instruction changes no program-visible state (except the PC and nPC).

Note: NOP is a special case of the SETHI instruction, with imm22 = 0 and rd = 0.

Exceptions:
(none)

Opcode op op2 Operation
NOP 00 100 No Operation

Assembly Language Syntax
nop

31 24 02530 29 22 21

00 op op2 0

A.41 Population Count 293

A.41 Population Count

Format (3):

Description:

POPC counts the number of one bits in r[rs2] if i = 0, or the number of one bits in
sign_ext(simm13) if i = 1, and stores the count in r[rd]. This instruction does not modify
the condition codes. Note: SPARC64-III does not implement this instruction; instead it
generates an illegal_instruction exception. The instruction is emulated in supervisor soft-
ware.

Implementation Note:
Instruction bits 18 through 14 must be zero for POPC. Other encodings of this field (rs1) may be
used in future versions of the SPARC architecture for other instructions.

Programming Note:
POPC can be used to “find first bit set” in a register. A C program illustrating how POPC can be
used for this purpose follows:

int ffs(zz) /* finds first 1 bit, counting from the LSB */
unsigned zz;
{

return popc (zz ^ (¾ (–zz))); /* for nonzero zz */
}

Inline assembly language code for ffs() is

neg %IN, %M_IN ! –zz(2’s complement)
xnor %IN, %M_IN, %TEMP ! ^ ¾ –zz (exclusive nor)
popc %TEMP,%RESULT ! result = popc(zz ^ ¾ –zz)
movrz %IN,%g0,%RESULT ! %RESULT should be 0 for %IN=0

where IN, M_IN, TEMP, and RESULT are integer registers.

Opcode op3 Operation
POPC 10 1110 Population Count

Assembly Language Syntax
popc reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

0 0000 rs2i=0

rd10 op3 0 0000 simm13i=1

294

Example:

IN = ...00101000! 1st 1 bit from rt is 4th bit
–IN = ...11011000
¾ –IN = ...00100111
IN ^ ¾ –IN = ...00001111
popc(IN ^ ¾ –IN) = 4

Exceptions:
illegal_instruction

A.42 Prefetch Data 295

A.42 Prefetch Data

Format (3) PREFETCH:

Format (3) PREFETCHA:

Description:

In nonprivileged code, a prefetch instruction has the same observable effect as a NOP; its
execution is nonblocking and cannot cause an observable trap. In particular, a prefetch
instruction shall not trap if it is applied to an illegal or nonexistent memory address.

Opcode op3 Operation
PREFETCH 10 1101 Prefetch Data
PREFETCHAPASI 11 1101 Prefetch Data from Alternate Space

Table 63: SPARC-V9 and SPARC64-III Prefetch Functions

fcn SPARC-V9 Prefetch Function SPARC64-III Prefetch
Function

0 Prefetch for several reads Prefetch for several reads
1 Prefetch for one read Prefetch for several reads
2 Prefetch for several writes Prefetch for several writes
3 Prefetch for one write Prefetch for several writes
4 Prefetch page Prefetch for several reads

5–15 Reserved illegal_instruction trap
16–31 Implementation-dependent NOP

Assembly Language Syntax
prefetch [address], prefetch_fcn
prefetcha [regaddr] imm_asi, prefetch_fcn
prefetcha [reg_plus_imm] %asi, prefetch_fcn

31 24 02530 29 19 18 14 13 12 5 4

fcn11 op3 rs1 simm13i=1

fcn11 op3 rs1 i=0 — rs2

31 24 02530 29 19 18

fcn11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

fcn11 op3 rs1 simm13i=1

296

Implementation Note:
Any effects of prefetch in privileged code should be reasonable (for example, handling ECC errors,
no page prefetching allowed within code that handles page faults). The benefits of prefetching
should be available to most privileged code.

Execution of a prefetch instruction initiates data movement (or preparation for future data
movement or address mapping) to reduce the latency of subsequent loads and stores to the
specified address range.

A successful prefetch initiates movement of a block of data containing the addressed byte
from memory toward the processor. In SPARC64-III the block of data is one 64-byte
cache line.

Programming Note:
Software may prefetch 64 bytes beginning at an arbitrary address address by issuing the instruc-
tions

prefetch [address], prefetch_fcn
prefetch [address + 63], prefetch_fcn

Implementation Note:
Prefetching may be used to help manage memory cache(s). A prefetch from a nonprefetchable
location has no effect. It is up to memory management hardware to determine how locations are
identified as not prefetchable.

Prefetch instructions that do not load from an alternate address space access the primary
address space (ASI_PRIMARY{_LITTLE}). Prefetch instructions that do load from an
alternate address space contain the address space identifier (ASI) to be used for the load in
the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7 of
the ASI is zero; otherwise, it is not privileged. The effective address for these instructions
is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

Variants of the prefetch instruction can be used to prepare the memory system for different
types of accesses.

Note: Even though SPARC64-III does not distinguish among prefetches for one or several
reads or writes and does not distinguish prefetch page, programmers should choose the
correct variation; future revisions of the CPU will distinguish some or all of the variants.
For that reason, all of the SPARC-V9 variants are documented in the following subsec-
tions. For SPARC64-III behavior, see A.42.3, “SPARC64-III PREFETCH Behavior” for
details.

A.42.1 SPARC-V9 Prefetch Variants

The prefetch variant is selected by the fcn field of the instruction. fcn values 5..15 are
reserved for future extensions of the architecture.

PREFETCH fcn values of 16..31 are implementation-dependent; they are treated as NOPs
on SPARC64-III.

Each prefetch variant reflects an intent on the part of the compiler or programmer. This is
different from other instructions in SPARC-V9 (except BPN), all of which specify specific

A.42.1 SPARC-V9 Prefetch Variants 297

actions. An implementation may implement a prefetch variant by any technique, as long as
the intent of the variant is achieved.
The prefetch instruction is designed to treat the common cases well. The variants are
intended to provide scalability for future improvements in both hardware and compilers. If
a variant is implemented, then it should have the effects described below. In case some of
the variants listed below are implemented and some are not, there is a recommended over-
loading of the unimplemented variants (see the Implementation Note labeled “Recom-
mended Overloadings” in A.42.2).

A.42.1.1 Prefetch for Several Reads (fcn = 0)
The intent of this variant is to cause movement of data into the data cache nearest the pro-
cessor, with “reasonable” efforts made to obtain the data.

Implementation Note:
If, for example, some TLB misses are handled in hardware, then they should be handled. On the
other hand, a multiple ECC error is reasonable cause for cancellation of a prefetch.

If the addressed data is already present (and owned, if necessary) in the cache, then this
variant has no effect.

A.42.1.2 Prefetch for One Read (fcn = 1)

This variant indicates that, if possible, the data cache should be minimally disturbed by the
data read from the given address, because that data is expected to be read once and not
reused (read or written) soon after that.

If the data is already present in the cache, then this variant has no effect.

Programming Note:
The intended use of this variant is in streaming large amounts of data into the processor without
overwriting data in cache memory.

A.42.1.3 Prefetch for Several Writes (and Possibly Reads) (fcn = 2)

The intent of this variant is to cause movement of data in preparation for writing.

If the addressed data is already present in the data cache, then this variant has no effect.

Programming Note:
An example use of this variant is to initialize a cache line in preparation for a partial write.

Implementation Note:
On a multiprocessor, this variant indicates that exclusive ownership of the addressed data is needed,
so it may have the additional effect of obtaining exclusive ownership of the addressed cache line.

A.42.1.4 Prefetch for One Write (fcn = 3)

This variant indicates that, if possible, the data cache should be minimally disturbed by the
data written to this address, because that data is not expected to be reused (read or written)
soon after it has been written once.

298

A.42.1.5 Prefetch Page (fcn = 4)

In a virtual-memory system, the intended action of this variant is for the supervisor soft-
ware or hardware to initiate asynchronous mapping of the referenced virtual address,
assuming that it is legal to do so.

Programming Note:
The desire is to avoid a later page fault for the given address, or at least to shorten the latency of a
page fault.

In a nonvirtual-memory system, or if the addressed page is already mapped, this variant
has no effect.

The referenced page need not be mapped when the instruction completes. Loads and
stores issued before the page is mapped should block just as they would if the prefetch had
never been issued. When the activity associated with the mapping has completed, the
loads and stores may proceed.

Implementation Note:
An example of mapping activity is DMA from secondary storage.

Implementation Note:
Use of this variant may be disabled or restricted in privileged code that is not permitted to cause
page faults.

A.42.1.6 Implementation-dependent Prefetch (fcn = 16..31)

These values are available for implementations to use. An implementation shall treat any
unimplemented prefetch fcn values as NOPs (impl. dep. #103).

A.42.2 General Comments

There is no variant of PREFETCH for instruction prefetching. Instruction prefetching
should be encoded using the Branch Never (BPN) form of the BPcc instruction (see A.7,
“Branch on Integer Condition Codes with Prediction (BPcc)”l.

One error to avoid in thinking about prefetch instructions is that they should have “no cost
to execute.” As long as the cost of executing a prefetch instruction is well less than one-
third the cost of a cache miss, use of prefetching is a net win. It does not appear that
prefetching causes a significant number of useless fetches from memory, though it may
increase the rate of useful fetches (and hence the bandwidth), because it more efficiently
overlaps computing with fetching.

Implementation Note:
Recommended Overloadings. There are four recommended sets of overloadings for the prefetch
variants, based on a simplistic classification of SPARC-V9 systems into cost (low-cost vs. high-
cost) and processor multiplicity (uniprocessor vs. multiprocessor) categories. These overloadings
are chosen to help ensure efficient portability of software across a range of implementations.

In a uniprocessor, there is no need to support multiprocessor cache protocols; hence, Prefetch for
Several Reads and Prefetch for Several Writes may behave identically. In a low-cost implementa-
tion, Prefetch for One Read and Prefetch for One Write may be identical to Prefetch for Several

A.42.3 SPARC64-III PREFETCH Behavior 299

Reads and Prefetch for Several Writes, respectively. The following table shows potential Prefetch
overloadings.

Programming Note:
A SPARC-V9 compiler that generates PREFETCH instructions should generate each of the four
variants where it is most appropriate. The overloadings suggested in the previous Implementation
Note ensure that such code will be portable and reasonably efficient across a range of hardware
configurations.

Implementation Note:
The Prefetch for One Read and Prefetch for One Write variants assume the existence of a “bypass
cache,” so that the bulk of the “real cache” remains undisturbed. If such a bypass cache is used, it
should be large enough to properly shield the processor from memory latency. Such a cache should
probably be small, highly associative, and use a FIFO replacement policy.

A.42.3 SPARC64-III PREFETCH Behavior

Prefetch types 0..4 are mapped into two cases: Prefetch for read, Prefetch for Write.

A prefetch will try to load the cache line that contains the effective address of the
PREFETCH into the D1-Cache. Below is a description of what will actually happen in the
CPU for prefetches:

1. The prefetch address is sent to the µDTLB for translation. If a miss occurs in the
µDTLB then the address is sent to the Main TLB (MTLB) for translation. If the
MTLB misses then the prefetch will be dropped.

2. If any protection violation occurs in the µDTLB or MTLB the access will be dropped.

Multiplicity Cost Prefetch for ..
Could Be Overloaded
to Mean the Same as

 Prefetch for ..

Uniprocessor Low

One read Several reads
Several reads Several reads
One write Several writes
Several writes —

Uniprocessor High

One read —
Several reads Several reads
One write —
Several writes —

Multiprocessor Low

One read Several reads
Several reads —
One write Several writes
Several writes —

Multiprocessor High

One read —
Several reads —
One write —
Several writes —

300

3. If translation succeeds and if the requested cache line is already in the D1 cache, the
D1 cache will complete the PREFETCH.

4. If the requested cache line is not in the D1 cache and there are no free reload buffers,
the D1 cache will retry the PREFETCH until a reload buffer is available.

5. If the requested cache line is not in the D1 cache and there is a free reload buffer then
the cache will send the prefetch to the unified second level cache (UC). If the UC is
busy or unable to receive a cacheable command at that time, the D1 cache will retry
the prefetch.

6. If the UC accepts the request and hits, the requested cache line is sent to the D1 cache.

7. If the UC cache does not have the cache line it will send the request on to the UPA bus
which will supply the data from memory. When the data is returned from the UPA it
will be sent to the UC and D1 caches.

If a Prefetch for Write hits in the D1 cache but the D1 cache doesn’t have ownership of the
line, the UC may give the ownership to the D1 cache instead of sending the data.

Prefetches will work if the ASI is ASI_PRIMARY, ASI_SECONDARY, or
ASI_NUCLEUS.

Exceptions:
illegal_instruction (fcn=5..15)
data_access_error

A.43 Read Privileged Register 301

A.43 Read Privileged Register

Format (3):

Note: SPARC64-III does not need or have a floating-point deferred trap queue (FQ). An
attempt to read from the FQ causes an illegal_instruction exception.

Opcode op3 Operation
RDPRP 10 1010 Read Privileged Register

rs1 Privileged Register
0 TPC
1 TNPC
2 TSTATE
3 TT
4 TICK
5 TBA
6 PSTATE
7 TL
8 PIL
9 CWP
10 CANSAVE
11 CANRESTORE
12 CLEANWIN
13 OTHERWIN
14 WSTATE
15 FQ

16..30 —
31 VER

31 141924 18 13 02530 29

10 rd op3 rs1 —

302

Description:
The rs1 field in the instruction determines the privileged register that is read. There are
MAXTL copies of the TPC, TNPC, TT, and TSTATE registers. A read from one of these
registers returns the value in the register indexed by the current value in the trap level reg-
ister (TL). A read of TPC, TNPC, TT, or TSTATE when the trap level is zero (TL = 0)
causes an illegal_instruction exception.
RDPR instructions with rs1 in the range 16..30 are reserved; executing a RDPR instruc-
tion with rs1 in that range causes an illegal_instruction exception.

Programming Note:
On an implementation with precise floating-point traps, the address of a trapping instruction will be
in the TPC[TL] register when the trap code begins execution. On an implementation with deferred
floating-point traps, the address of the trapping instruction might be a value obtained from the FQ.

Exceptions:
privileged_opcode
illegal_instruction ((rs1 = 16..30) or ((rs1)3) and (TL = 0)))
illegal_instruction (RDPR of FQ)

Assembly Language Syntax
rdpr %tpc, regrd
rdpr %tnpc, regrd
rdpr %tstate, regrd
rdpr %tt, regrd
rdpr %tick, regrd
rdpr %tba, regrd
rdpr %pstate, regrd
rdpr %tl, regrd
rdpr %pil, regrd
rdpr %cwp, regrd
rdpr %cansave, regrd
rdpr %canrestore, regrd
rdpr %cleanwin, regrd
rdpr %otherwin, regrd
rdpr %wstate, regrd
rdpr %fq, regrd
rdpr %ver, regrd

A.44 Read State Register 303

A.44 Read State Register

RDPM (ASR30) please refer to Appendix Q, “Performance Monitoring”

Opcode op3 rs1 [12:8] Operation
RDYD 10 1000 0 --- Read Y Register

— 10 1000 1 --- reserved
RDCCR 10 1000 2 --- Read Condition Codes Register
RDASI 10 1000 3 --- Read ASI Register
RDTICKPNPT 10 1000 4 --- Read Tick Register
RDPC 10 1000 5 --- Read Program Counter
RDFPRS 10 1000 6 --- Read Floating-Point Registers Status Register

— 10 1000 7<14 --- reserved
See text 10 1000 15 --- See text

— 10 1000 16<17 --- reserved
RHDW_MODE 10 1000 18 --- Read Hardware Mode Register

RGSR 10 1000 19 --- Read Graphic Status Register
— 10 1000 20<21 reserved

RSCHED_INT 10 1000 22 --- Read SCHED_INT Register.
RTICK_MATCH 10 1000 23 --- Read Tick Match Register

RIFTYPE 10 1000 24 --- Read Instruction Fault Type Register
RSCRATCH 10 1000 25 0-3 Read CPU Scratch Registers

RBRKPT_ADDR 10 1000 26 0 Read Data Breakpoint Address Reg.
RBRKPT_MASK 10 1000 26 1 Read Data Breakpoint Mask Reg.

— 10 1000 27 reserved
RDFAULT_ADDR 10 1000 28 --- Read Data Fault Address Register

RDFTYPE 10 1000 29 --- Read Data Fault Type Register
RD_PM_VN 10 1000 30 0 Read Perf Monitor View Number

RD_PM_REG0 10 1000 30 1 Read Perf Monitor Reg. #0
RD_PM_REG1 10 1000 30 2 Read Perf Monitor Reg. #1
RD_PM_REG2 10 1000 30 3 Read Perf Monitor Reg. #2
RD_PM_REG3 10 1000 30 4 Read Perf Monitor Reg. #3
RD_PM_REG4 10 1000 30 5 Read Perf Monitor Reg. #4
RD_PM_REG5 10 1000 30 6 Read Perf Monitor Reg. #5

RDSCR 10 1000 31 --- Read State Control Register

The RDY instruction is deprecated; it is provided only for compatibility with previ-
ous versions of the architecture. It should not be used in new SPARC-V9 software.
It is recommended that all instructions which reference the Y register be avoided.

304

Format (3):

Format 3 (rd %asr25 (SCRATCH) only):

Format 3 (rd %asr26 only (Data Breakpoint Registers)):

Format 3 (rd %asr30 only (Performance Monitors)):

10 rd 101000 rs1=11001 i=0 register # [7:0]=00000000
31 29 24 18 13 12 7

10 rd 101000 rs1=11010 i=0 register # [7:0]=00000000
31 29 24 18 13 12 7

10 rd 101000 rs1=11110 i=0 pm reg. # [7:0]=00000000
31 29 24 18 13 12 7

Assembly Language Syntax
rd %y, regrd
rd %ccr, regrd
rd %asi, regrd
rd %tick, regrd
rd %pc, regrd
rd %fprs, regrd
rd %hardware_mode,regrd
rd %graphic_status,regrd
rd %sched_int,regrd
rd %tick_match,regrd
rd %iftype,regrd
rd %scratch[0-3],regrd
rd %dbreak_addr,regrd
rd %dbreak_mask,regrd
rd %dfaddr,regrd
rd %dftype,regrd
rd %pm[0-6],regrd
rd %scr,regrd

31 141924 18 13 02530 29

10 rd op3 rs1 —

12

i=0

A.44 Read State Register 305

Description:

These instructions read the specified state register into r[rd].

Note: RDY, RDCCR, RDASI, RDPC, RDTICK, RDFPRS, RDASR, RHDW_MODE,
RGSR, RSCHED_INT, RTICK_MATCH, RIFTYPE, RSCRATCH, RBRKPT_ADDR,
RBRKPT_MASK, DRFAULT_ADDR, RDFYPE, RD_PMs, and RDSCR are distin-
guished only by the value in the rs1 field.

If rs1 * 7, an ancillary state register is read. The following values of rs1 are reserved for
future versions of the architecture: 7..14, and 16..17. An RDASR instruction with
rs1 = 15, rd = 0, and i = 0 is defined to be a STBAR instruction (see A.51). An RDASR
instruction with rs1 = 15, rd = 0, and i = 1 is defined to be a MEMBAR instruction (see
A.32). RDASR with rs1 = 15 and rd&0 is reserved for future versions of the architecture;
it causes an illegal_instruction exception.

RDTICK causes a privileged_action exception if PSTATE.PRIV = 0 and TICK.NPT = 1.

For RDPC, all 64 bits of the PC value are stored in r[rd], regardless of the setting of
PSTATE.AM.

RDFPRS waits for all pending FPops and loads of floating-point registers to complete
before reading the FPRS register.

SPARC64-III implements these additional ASRs: RHDW_MODE, RGSR,
RSCHED_INT, RTICK_MATCH, RIFTYPE, RSCRATCH, RBRKPT_ADDR,
RBRKPT_MASK, DRFAULT_ADDR, RDFYPE, RD_PMs, and RDSCR. All of these
registers are privileged; an attempt to read any of these registers in nonprivileged mode
causes a privileged_opcode exception.

A rd %pm[0-6], rd %dbreak_addr, rd %dbreak_mask, or rd %scratch[0-3] which uses a
reserved or undocumented value for bits [12:8] or does not contain all zeroes in bits [7:0]
will cause an illegal_ instruction trap.

See I.1.1, “Read/Write Ancillary State Registers (ASRs)” in V9 for a discussion of extend-
ing the SPARC-V9 instruction set using read/write ASR instructions.

Implementation Note:
Ancillary state registers may include (for example) timer, counter, diagnostic, self-test, and trap-
control registers. See Implementation Characteristics of Current SPARC-V9-based Products, Revi-
sion 9.x, a document available from SPARC International, for information on implemented ancil-
lary state registers.

Compatibility Note:
The SPARC-V8 RDPSR, RDWIM, and RDTBR instructions do not exist in SPARC-V9 since the
PSR, WIM, and TBR registers do not exist in SPARC-V9.

Exceptions:
privileged_opcode (RDASR with rs1 = 15, 18, 22..26, 28..30)
illegal_instruction (RDASR with rs1 = 1 or 7..14; RDASR with rs1 = 15 and rd&0;

RDASR with rs1 = 16..17, 20..21, 27)
privileged_action (RDTICK only)

V9

306

A.45 RETURN

Format (3):

Description:
The RETURN instruction causes a delayed transfer of control to the target address and has
the window semantics of a RESTORE instruction; that is, it restores the register window
prior to the last SAVE instruction. The target address is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1. Registers r[rs1] and r[rs2] come from the old win-
dow.
The RETURN instruction may cause an exception. It may cause a window_fill exception as
part of its RESTORE semantics or it may cause a mem_address_not_aligned exception if
either of the two low-order bits of the target address are nonzero.

Programming Note:
To reexecute the trapped instruction when returning from a user trap handler, use the RETURN
instruction in the delay slot of a JMPL instruction, for example:

jmpl %l6,%g0 ! Trapped PC supplied to user trap handler
return %l7 ! Trapped nPC supplied to user trap handler

Programming Note:
A routine that uses a register window may be structured either as

save %sp,-framesize, %sp
. . .
ret ! Same as jmpl %i7 + 8, %g0
restore ! Something useful like “restore %o2,%l2,%o0”

or as

save %sp,-framesize, %sp
. . .
return %i7 + 8
nop ! Could do some useful work in the caller’s

! window e.g. “or %o1, %o2,%o0”

Exceptions:
mem_address_not_aligned
fill_n_normal (n = 0..7)
fill_n_other (n = 0..7)

Opcode op3 Operation
RETURN 11 1001 RETURN

Assembly Language Syntax
return address

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—

A.46 SAVE and RESTORE 307

A.46 SAVE and RESTORE

Format (3):

Description (Effect on Nonprivileged State):

The SAVE instruction provides the routine executing it with a new register window. The
out registers from the old window become the in registers of the new window. The con-
tents of the out and the local registers in the new window are zero or contain values from
the executing process; that is, the process sees a clean window.

The RESTORE instruction restores the register window saved by the last SAVE instruc-
tion executed by the current process. The in registers of the old window become the out
registers of the new window. The in and local registers in the new window contain the pre-
vious values.

Furthermore, if and only if a spill or fill trap is not generated, SAVE and RESTORE
behave like normal ADD instructions, except that the source operands r[rs1] and/or r[rs2]
are read from the old window (that is, the window addressed by the original CWP) and the
sum is written into r[rd] of the new window (that is, the window addressed by the new
CWP).

Note: CWP arithmetic is performed modulo the number of implemented windows, NWIN-
DOWS.

Programming Note:
Typically, if a SAVE (RESTORE) instruction traps, the spill (fill) trap handler returns to the trapped
instruction to reexecute it. So, although the ADD operation is not performed the first time (when
the instruction traps), it is performed the second time the instruction executes. The same applies to
changing the CWP.

Programming Note:
The SAVE instruction can be used to atomically allocate a new window in the register file and a
new software stack frame in memory. See H.1.2, “Leaf-Procedure Optimization” in V9 for details.

Programming Note:
There is a performance trade-off to consider between using SAVE/RESTORE and saving and
restoring selected registers explicitly.

Opcode op3 Operation
SAVE 11 1100 Save caller’s window
RESTORE 11 1101 Restore caller’s window

Assembly Language Syntax
save regrs1, reg_or_imm, regrd
restore regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1rd

V9

308

Description (effect on privileged state):
If the SAVE instruction does not trap, it increments the CWP (mod NWINDOWS) to pro-
vide a new register window and updates the state of the register windows by decrementing
CANSAVE and incrementing CANRESTORE.
If the new register window is occupied (that is, CANSAVE = 0), a spill trap is generated.
The trap vector for the spill trap is based on the value of OTHERWIN and WSTATE. The
spill trap handler is invoked with the CWP set to point to the window to be spilled (that is,
old CWP + 2).
If CANSAVE & 0, the SAVE instruction checks whether the new window needs to be
cleaned. It causes a clean_window trap if the number of unused clean windows is zero, that
is, (CLEANWIN – CANRESTORE) = 0. The clean_window trap handler is invoked with
the CWP set to point to the window to be cleaned (that is, old CWP + 1).
If the RESTORE instruction does not trap, it decrements the CWP (mod NWINDOWS) to
restore the register window that was in use prior to the last SAVE instruction executed by
the current process. It also updates the state of the register windows by decrementing
CANRESTORE and incrementing CANSAVE.
If the register window to be restored has been spilled (CANRESTORE = 0), a fill trap is
generated. The trap vector for the fill trap is based on the values of OTHERWIN and
WSTATE, as described in 7.5.2.1, “Trap Type for Spill/Fill Traps”. The fill trap handler is
invoked with CWP set to point to the window to be filled, that is, old CWP – 1.

Programming Note:
The vectoring of spill and fill traps can be controlled by setting the value of the OTHERWIN and
WSTATE registers appropriately. For details, see the unnumbered subsection titled “Splitting the
Register Windows” in H.2.3, “Client-Server Model” in V9.

Programming Note:
The spill (fill) handler normally will end with a SAVED (RESTORED) instruction followed by a
RETRY instruction.

Exceptions:
clean_window (SAVE only)
fill_n_normal (RESTORE only, n =0..7)
fill_n_other (RESTORE only, n = 0..7)
spill_n_normal (SAVE only, n = 0..7)
spill_n_other (SAVE only, n = 0..7)

V9

A.47 SAVED and RESTORED 309

A.47 SAVED and RESTORED

Format (3):

Description:

SAVED and RESTORED adjust the state of the register-windows control registers.

SAVED increments CANSAVE. If OTHERWIN = 0, it decrements CANRESTORE.
If OTHERWIN&0, it decrements OTHERWIN.

RESTORED increments CANRESTORE. If CLEANWIN < (NWINDOWS<1),
RESTORED increments CLEANWIN. If OTHERWIN = 0, it decrements CANSAVE.
If OTHERWIN & 0, it decrements OTHERWIN.

Programming Note:
The spill (fill) handlers use the SAVED (RESTORED) instruction to indicate that a window has
been spilled (filled) successfully. See H.2.2, “Example Code for Spill Handler” in V9 for details.

Programming Note:
Normal privileged software would probably not do a SAVED or RESTORED from trap level zero
(TL = 0). However, it is not illegal to do so, and does not cause a trap.

Programming Note:
Executing a SAVED (RESTORED) instruction outside of a window spill (fill) trap handler is likely
to create an inconsistent window state. Hardware will not signal an exception, however, since main-
taining a consistent window state is the responsibility of privileged software.

Exceptions:
privileged_opcode
illegal_instruction (fcn=2..31)

Opcode op3 fcn Operation
SAVEDP 11 0001 0 Window has been Saved
RESTOREDP 11 0001 1 Window has been Restored

— 11 0001 2..31 Reserved

Assembly Language Syntax
saved

restored

31 1924 18 02530 29

10 fcn op3 —

V9

310

A.48 SETHI

Format (2):

Description:

SETHI zeroes the least significant 10 bits and the most significant 32 bits of r[rd], and
replaces bits 31 through 10 of r[rd] with the value from its imm22 field.

SETHI does not affect the condition codes.

A SETHI instruction with rd = 0 and imm22 = 0 is defined to be a NOP instruction, which
is defined in A.40.

Programming Note:
The most common form of 64-bit constant generation is creating stack offsets whose magnitude is
less than 232. The code below can be used to create the constant 0000 0000 ABCD 123416:

sethi %hi(0xabcd1234),%o0
or %o0, 0x234, %o0

The following code shows how to create a negative constant. Note: The immediate field of the xor
instruction is sign extended and can be used to get 1s in all of the upper 32 bits. For example, to set
the negative constant FFFF FFFF ABCD 123416:

sethi %hi(0x5432edcb),%o0! note 0x5432EDCB, not 0xABCD1234
xor %o0, 0x1e34, %o0 ! part of imm. overlaps upper bits

Exceptions:
(none)

Opcode op op2 Operation
SETHI 00 100 Set High 22 Bits of Low Word

Assembly Language Syntax
sethi const22, regrd
sethi %hi (value), regrd

31 2224 21 02530 29

00 rd 100 imm22

A.49 Shift 311

A.49 Shift

Format (3):

Description:

When i = 0 and x = 0, the shift count is the least significant five bits of r[rs2]. When i = 0
and x = 1, the shift count is the least significant six bits of r[rs2]. When i = 1 and x = 0, the
shift count is the immediate value specified in bits 0 through 4 of the instruction. When
i = 1 and x = 1, the shift count is the immediate value specified in bits 0 through 5 of the
instruction. Table 64 shows the shift count encodings for all values of i and x.

SLL and SLLX shift all 64 bits of the value in r[rs1] left by the number of bits specified by
the shift count, replacing the vacated positions with zeroes, and write the shifted result to
r[rd].

Opcode op3 x Operation
SLL 10 0101 0 Shift Left Logical - 32 Bits
SRL 10 0110 0 Shift Right Logical - 32 Bits
SRA 10 0111 0 Shift Right Arithmetic - 32 Bits
SLLX 10 0101 1 Shift Left Logical - 64 Bits
SRLX 10 0110 1 Shift Right Logical - 64 Bits
SRAX 10 0111 1 Shift Right Arithmetic - 64 Bits

Assembly Language Syntax
sll regrs1, reg_or_shcnt, regrd
srl regrs1, reg_or_shcnt, regrd
sra regrs1, reg_or_shcnt, regrd
sllx regrs1, reg_or_shcnt, regrd
srlx regrs1, reg_or_shcnt, regrd
srax regrs1, reg_or_shcnt, regrd

Table 64: Shift Count Encodings

i x Shift Count
0 0 bits 4 .. 0 of r[rs2]
0 1 bits 5 .. 0 of r[rs2]
1 0 bits 4..0 of instruction
1 1 bits 5..0 of instruction

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0 x

rd10 op3 —rs1 shcnt32i=1 x=0

rd10 op3 —rs1 shcnt64i=1 x=1

6

312

SRL shifts the low 32 bits of the value in r[rs1] right by the number of bits specified by the
shift count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero, and the result is
written to r[rd].

SRLX shifts all 64 bits of the value in r[rs1] right by the number of bits specified by the
shift count. Zeroes are shifted into the vacated high-order bit positions, and the shifted
result is written to r[rd].

SRA shifts the low 32 bits of the value in r[rs1] right by the number of bits specified by
the shift count, and replaces the vacated positions with bit 31 of r[rs1]. The high order 32
bits of the result are all set with bit 31 of r[rs1], and the result is written to r[rd].

SRAX shifts all 64 bits of the value in r[rs1] right by the number of bits specified by the
shift count, and replaces the vacated positions with bit 63 of r[rs1]. The shifted result is
written to r[rd].

No shift occurs when the shift count is zero, but the high-order bits are affected by the 32-
bit shifts as noted above.

These instructions do not modify the condition codes.

Programming Note:
“Arithmetic left shift by 1 (and calculate overflow)” can be effected with the ADDcc instruction.

Programming Note:
The instruction “sra rs1,0,rd” can be used to convert a 32-bit value to 64 bits, with sign exten-
sion into the upper word. “srl rs1,0,rd” can be used to clear the upper 32 bits of r[rd].

Exceptions:
software_initiated_reset

A.50 Software-initiated Reset 313

A.50 Software-initiated Reset

Format (3):

Description:

On SPARC-V9 systems, SIR is used to generate a software-initiated reset (SIR). As with
other traps, a software-initiated reset performs different actions when TL = MAXTL than
it does when TL < MAXTL.

See 7.6.2.5, “Software-initiated Reset (SIR) Traps”, for more information about software-
initiated resets.

When executed in user mode, the action of SIR is conditional on the SIR_enable control
flag.

The location of the SIR_enable control flag and the means of accessing the SIR_enable
control flag are implementation-dependent. In SPARC64-III it is permanently zero, there-
fore an SIR executes without effect (as a NOP) in user mode.

A privileged WRSIR instruction can be used to cause a software initiated reset (SIR) on
SPARC64-III. The SIR instruction is actually a WRASR with rd = 15, rs1 = 0, and i = 1.
See A.63, “Write State Register”, for more information.

Exceptions:
(none)

Opcode op3 rd Operation
SIR 11 0000 15 Software-initiated reset

Assembly Language Syntax
sir simm13

31 1924 18 02530 29

10 0 1111 op3

14 13

0 0000 simm13

12

i=1

314

A.51 Store Barrier

Format (3):

Description:

The store barrier instruction (STBAR) forces all store and atomic load-store operations
issued by a processor prior to the STBAR to complete their effects on memory before any
store or atomic load-store operations issued by that processor subsequent to the STBAR
are executed by memory.

Note: The encoding of STBAR is identical to that of the RDASR instruction except that
rs1 = 15 and rd = 0, and it is identical to that of the MEMBAR instruction except that bit
13 (i) = 0.

Compatibility Note:
In SPARC64-III, STBAR behaves as NOP since the hardware memory models always enforce the
semantics of these MEMBARs for all memory accesses.

STBAR is identical in function to a MEMBAR instruction with mmask = 816. STBAR is retained
for compatibility with SPARC-V8.

Implementation Note:
For correctness, it is sufficient for a processor to stop issuing new store and atomic load-store oper-
ations when an STBAR is encountered and to resume after all stores have completed and are
observed in memory by all processors. More efficient implementations may take advantage of the
fact that the processor is allowed to issue store and load-store operations after the STBAR, as long
as those operations are guaranteed not to become visible before all the earlier stores and atomic
load-stores have become visible to all processors.

Exceptions:
(none)

Opcode op3 Operation
STBARD 10 1000 Store Barrier

Assembly Language Syntax
stbar

The STBAR instruction is deprecated; it is provided only for compatibility with
previous versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the MEMBAR instruction be used in its place.

31 141924 18 13 02530 29

10 0 op3 0 1111 —

12

0

A.52 Store Floating-point 315

A.52 Store Floating-point

† Encoded floating-point register value, as described in 5.1.4.1

Format (3):

Description:
The store single floating-point instruction (STF) copies f [rd] into memory.
The store double floating-point instruction (STDF) copies a doubleword from a double
floating-point register into a word-aligned doubleword in memory.

The store quad floating-point instruction (STQF) copies the contents of a quad floating-
point register into a word-aligned quadword in memory. Note: SPARC64-III does not
implement in hardware the instructions that specify a quad floating-point register; an
attempt to execute this instruction causes an illegal_instruction exception. Supervisor soft-
ware then emulates these instructions.

The store floating-point state register lower instruction (STFSR) waits for any currently
executing FPop instructions to complete, and then it writes the lower 32 bits of the FSR
into memory.

Opcode op3 rd Operation
STF 10 0100 0..31 Store Floating-point Register

STDF 10 0111 † Store Double Floating-point Register

STQF 10 0110 † Store Quad Floating-point Register
STFSRD 10 0101 0 Store Floating-point State Register Lower
STXFSR 10 0101 1 Store Floating-point State Register

— 10 0101 2..31 Reserved

Assembly Language Syntax
st fregrd, [address]
std fregrd, [address]
stq fregrd, [address]
st %fsr, [address]
stx %fsr, [address]

The STFSR instruction is deprecated; it is provided only for compatibility with pre-
vious versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the STXFSR instruction be used in its place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

316

The store floating-point state register instruction (STXFSR) waits for any currently exe-
cuting FPop instructions to complete, and then it writes all 64 bits of the FSR into mem-
ory.
Compatibility Note:

SPARC-V9 needs two store-FSR instructions, since the SPARC-V8 STFSR instruction is defined to
store only 32 bits of the FSR into memory. STXFSR allows SPARC-V9 programs to store all 64
bits of the FSR.

STFSR and STXFSR zero FSR.ftt after writing the FSR to memory.

Implementation Note:
FSR.ftt should not be zeroed until it is known that the store will not cause a precise trap.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

STF and STFSR cause a mem_address_not_aligned exception if the effective memory
address is not word-aligned; STDF causes an STDF_mem_address_not_aligned exception if
the effective address is not doubleword-aligned;STXFSR causes a
mem_address_not_aligned exception if the address is not doubleword-aligned. If the float-
ing-point unit is not enabled for the source register rd (per FPRS.FEF and PSTATE.PEF),
or if the FPU is not present, a store floating-point instruction causes an fp_disabled excep-
tion.

Programming Note:
In SPARC-V8, some compilers issued sets of single-precision stores when they could not deter-
mine that double- or quadword operands were properly aligned. For SPARC-V9, since emulation of
misaligned stores is expected to be fast, it is recommended that compilers issue sets of single-preci-
sion stores only when they can determine that double- or quadword operands are not properly
aligned.

Exceptions:
fp_disabled
mem_address_not_aligned
STDF_mem_address_not_aligned (STDF only)
data_access_exception
data_access_error
illegal_instruction (op3 = 2516 and rd = 2..31)
illegal_instruction (STQF)
32i_data_access_MMU_miss
32i_data_access_protection

A.53 Store Floating-point into Alternate Space 317

A.53 Store Floating-point into Alternate Space

† Encoded floating-point register value, as described in 5.1.4.1

Format (3):

Description:
The store single floating-point into alternate space instruction (STFA) copies f[rd] into
memory.
The store double floating-point into alternate space instruction (STDFA) copies a double-
word from a double floating-point register into a word-aligned doubleword in memory.

The store quad floating-point into alternate space instruction (STQFA) copies the contents
of a quad floating-point register into a word-aligned quadword in memory. Note:
SPARC64-III does not implement in hardware the instructions that specify a quad float-
ing-point register; an attempt to execute this instruction causes an illegal_intruction excep-
tion. Supervisor software then emulates these instructions.

Store floating-point into alternate space instructions contain the address space identifier
(ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI register if i = 1. The
access is privileged if bit seven of the ASI is zero; otherwise, it is not privileged. The
effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

STFA causes a mem_address_not_aligned exception if the effective memory address is not
word-aligned; STDFA causes an STDF_mem_address_not_aligned exception if the effective
address is not doubleword-aligned. If the floating-point unit is not enabled for the source
register rd (per FPRS.FEF and PSTATE.PEF), or if the FPU is not present, store floating-
point into alternate space instructions cause an fp_disabled exception.

Opcode op3 rd Operation
STFAPASI 11 0100 0..31 Store Floating-point Register to Alternate Space

STDFAPASI 11 0111 † Store Double Floating-point Register to Alternate Space

STQFAPASI 11 0110 † Store Quad Floating-point Register to Alternate Space

Assembly Language Syntax
sta fregrd, [regaddr] imm_asi
sta fregrd, [reg_plus_imm] %asi

stda fregrd, [regaddr] imm_asi
stda fregrd, [reg_plus_imm] %asi

stqa fregrd, [regaddr] imm_asi
stqa fregrd, [reg_plus_imm] %asi

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1

318

STFA, STDFA, and STQFA cause a privileged_action exception if PSTATE.PRIV = 0 and
bit 7 of the ASI is zero.

Programming Note:
In SPARC-V8, some compilers issued sets of single-precision stores when they could not deter-
mine that double- or quadword operands were properly aligned. For SPARC-V9, since emulation of
misaligned stores is expected to be fast, it is recommended that compilers issue sets of single-preci-
sion stores only when they can determine that double- or quadword operands are not properly
aligned.

Exceptions:
fp_disabled
mem_address_not_aligned
STDF_mem_address_not_aligned (STDFA only)
privileged_action
data_access_exception
data_access_error
illegal_instruction (STQFA)
32i_data_access_MMU_miss
32i_data_access_protection

A.54 Store Integer 319

A.54 Store Integer

Format (3):

Description:
The store integer instructions (except store doubleword) copy the whole extended (64-bit)
integer, the less-significant word, the least significant halfword, or the least significant
byte of r[rd] into memory.
The store doubleword integer instruction (STD) copies two words from an r register pair
into memory. The least significant 32 bits of the even-numbered r register are written into
memory at the effective address, and the least significant 32 bits of the following odd-
numbered r register are written into memory at the “effective address + 4.” The least sig-
nificant bit of the rd field of a store doubleword instruction is unused and should always be
set to zero by software. An attempt to execute a store doubleword instruction that refers to
a misaligned (odd-numbered) rd causes an illegal_instruction exception.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.
A successful store (notably, store extended and store doubleword) instruction operates
atomically.

Opcode op3 Operation
STB 00 0101 Store Byte
STH 00 0110 Store Halfword
STW 00 0100 Store Word
STX 00 1110 Store Extended Word
STDD 00 0111 Store Doubleword

Assembly Language Syntax
stb regrd, [address] (synonyms: stub, stsb)
sth regrd, [address] (synonyms: stuh, stsh)
stw regrd, [address] (synonyms: st, stuw, stsw)
stx regrd, [address]
std regrd, [address]

The STD instruction is deprecated; it is provided only for compatibility with previ-
ous versions of the architecture. It should not be used in new SPARC-V9 software.
It is recommended that the STX instruction be used in its place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

320

STH causes a mem_address_not_aligned exception if the effective address is not halfword-
aligned. STW causes a mem_address_not_aligned exception if the effective address is not
word-aligned. STX and STD causes a mem_address_not_aligned exception if the effective
address is not doubleword-aligned.

Programming Notes:
STD is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9 machines
because of data path and register-access difficulties. Therefore, STD should be avoided.

If STD is emulated in software, STX should be used in order to preserve atomicity.

Exceptions:
illegal_instruction (STD with odd rd)
mem_address_not_aligned (all except STB)
data_access_exception
data_access_error
32i_data_access_MMU_miss
32i_data_access_protection

A.55 Store Integer into Alternate Space 321

A.55 Store Integer into Alternate Space

Format (3):

Description:
The store integer into alternate space instructions (except store doubleword) copy the
whole extended (64-bit) integer, the less-significant word, the least-significant halfword,
or the least-significant byte of r[rd] into memory.
The store doubleword integer instruction (STDA) copies two words from an r register pair
into memory. The least-significant 32 bits of the even-numbered r register are written into
memory at the effective address, and the least-significant 32 bits of the following odd-
numbered r register are written into memory at the “effective address + 4.” The least sig-
nificant bit of the rd field of a store doubleword instruction is unused and should always be
set to zero by software. An attempt to execute a store doubleword instruction that refers to
a misaligned (odd-numbered) rd causes an illegal_instruction exception.

Opcode op3 Operation
STBAPASI 01 0101 Store Byte into Alternate space
STHAPASI 01 0110 Store Halfword into Alternate space
STWAPASI 01 0100 Store Word into Alternate space
STXAPASI 01 1110 Store Extended Word into Alternate space
STDAD, PASI 01 0111 Store Doubleword into Alternate space

Assembly Language Syntax
stba regrd, [regaddr] imm_asi (synonyms: stuba, stsba)
stha regrd, [regaddr] imm_asi (synonyms: stuha, stsha)
stwa regrd, [regaddr] imm_asi (synonyms: sta, stuwa, stswa)
stxa regrd, [regaddr] imm_asi
stda regrd, [regaddr] imm_asi
stba regrd, [reg_plus_imm] %asi (synonyms: stuba, stsba)
stha regrd, [reg_plus_imm] %asi (synonyms: stuha, stsha)
stwa regrd, [reg_plus_imm] %asi (synonyms: sta, stuwa, stswa)
stxa regrd, [reg_plus_imm] %asi

stda regrd, [reg_plus_imm] %asi

The STDA instruction is deprecated; it is provided only for compatibility with pre-
vious versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the STXA instruction be used in its place.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1

322

Store integer to alternate space instructions contain the address space identifier (ASI) to be
used for the store in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is
privileged if bit 7 of the ASI is zero; otherwise, it is not privileged. The effective address
for these instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1]+sign_ext(simm13)” if i = 1.
A successful store (notably, store extended and store doubleword) instruction operates
atomically.
STHA causes a mem_address_not_aligned exception if the effective address is not half-
word-aligned. STWA causes a mem_address_not_aligned exception if the effective address
is not word-aligned. STXA and STDA cause a mem_address_not_aligned exception if the
effective address is not doubleword-aligned.
A store integer into alternate space instruction causes a privileged_action exception if
PSTATE.PRIV = 0 and bit 7 of the ASI is zero.

Programming Notes:
STDA is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9
machines because of data path and register-access difficulties. Therefore, STDA should be avoided.

Compatibility Note:
The SPARC-V8 STA instruction is renamed STWA in SPARC-V9.

Exceptions:
unimplemented_STD (STDA only)
illegal_instruction (STDA with odd rd)
privileged_action
mem_address_not_aligned (all except STBA)
data_access_exception
data_access_error
32i_data_access_MMU_miss
32i_data_access_protection

A.56 Subtract 323

A.56 Subtract

Format (3):

Description:
These instructions compute “r[rs1] – r[rs2]” if i = 0, or “r[rs1] – sign_ext(simm13)” if
i = 1, and write the difference into r[rd].

SUBC and SUBCcc (“SUBtract with carry”) also subtract the CCR register’s 32-bit carry
(icc.c) bit; that is, they compute “r[rs1] – r[rs2] – icc.c” or “r[rs1] – sign_ext(simm13) –
icc.c,” and write the difference into r[rd].

SUBcc and SUBCcc modify the integer condition codes (CCR.icc and CCR.xcc). 32-bit
overflow (CCR.icc.v) occurs on subtraction if bit 31 (the sign) of the operands differ and
bit 31 (the sign) of the difference differs from r[rs1]<31>. 64-bit overflow (CCR.xcc.v)
occurs on subtraction if bit 63 (the sign) of the operands differ and bit 63 (the sign) of the
difference differs from r[rs1]<63>.
Programming Note:

A SUBcc with rd = 0 can be used to effect a signed or unsigned integer comparison. See the CMP
synthetic instruction in Appendix G, “Assembly Language Syntax”.

Programming Note:
SUBC and SUBCcc read the 32-bit condition codes’ carry bit (CCR.icc.c), not the 64-bit condition
codes’ carry bit (CCR.xcc.c).

Compatibility Note:
SUBC and SUBCcc were named SUBX and SUBXcc, respectively, in SPARC-V8.

Exceptions:
(none)

Opcode op3 Operation
SUB 00 0100 Subtract
SUBcc 01 0100 Subtract and modify cc’s
SUBC 00 1100 Subtract with Carry
SUBCcc 01 1100 Subtract with Carry and modify cc’s

Assembly Language Syntax
sub regrs1, reg_or_imm, regrd
subcc regrs1, reg_or_imm, regrd
subc regrs1, reg_or_imm, regrd
subccc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

324

A.57 Swap Register with Memory

Format (3):

Description:
SWAP exchanges the lower 32 bits of r[rd] with the contents of the word at the addressed
memory location. The upper 32 bits of r[rd] are set to zero. The operation is performed
atomically, that is, without allowing intervening interrupts or deferred traps. In a multipro-
cessor system, two or more processors executing CASA, CASXA, SWAP, SWAPA,
LDSTUB, or LDSTUBA instructions addressing any or all of the same doubleword simul-
taneously are guaranteed to execute them in an undefined but serial order.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1. This instruction causes a mem_address_not_aligned
exception if the effective address is not word-aligned.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation-dependent (impl. dep #120).

Implementation Note:
See Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a docu-
ment available from SPARC International, for information on the presence of hardware support for
these instructions in the various SPARC-V9 implementations.

Exceptions:
mem_address_not_aligned
data_access_exception
data_access_error
32i_data_access_MMU_miss
32i_data_access_protection

Opcode op3 Operation
SWAPD 00 1111 SWAP register with memory

Assembly Language Syntax
swap [address], regrd

The SWAP instruction is deprecated; it is provided only for compatibility with pre-
vious versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the CASA or CASXA instruction be used in its place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

A.58 Swap Register with Alternate Space Memory 325

A.58 Swap Register with Alternate Space Memory

Format (3):

Description:

SWAPA exchanges the lower 32 bits of r[rd] with the contents of the word at the
addressed memory location. The upper 32 bits of r[rd] are set to zero. The operation is
performed atomically, that is, without allowing intervening interrupts or deferred traps. In
a multiprocessor system, two or more processors executing CASA, CASXA, SWAP,
SWAPA, LDSTUB, or LDSTUBA instructions addressing any or all of the same double-
word simultaneously are guaranteed to execute them in an undefined, but serial order.

The SWAPA instruction contains the address space identifier (ASI) to be used for the load
in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7
of the ASI is zero; otherwise, it is not privileged. The effective address for this instruction
is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

This instruction causes a mem_address_not_aligned exception if the effective address is not
word-aligned. It causes a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the
ASI is zero.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation-dependent (impl. dep #120).

Opcode op3 Operation
SWAPAD, PASI 01 1111 SWAP register with Alternate space memory

Assembly Language Syntax
swapa [regaddr] imm_asi, regrd
swapa [reg_plus_imm] %asi, regrd

The SWAPA instruction is deprecated; it is provided only for compatibility with
previous versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the CASXA instruction be used in its place.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1

326

Implementation Note:
See Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a docu-
ment available from SPARC International, for information on the presence of hardware support for
this instruction in the various SPARC-V9 implementations.

Exceptions:
mem_address_not_aligned
privileged_action
data_access_exception
data_access_error
32i_data_access_MMU_miss
32i_data_access_protection

A.59 Tagged Add 327

A.59 Tagged Add

Format (3):

Description:
These instructions compute a sum that is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.
TADDcc modifies the integer condition codes (icc and xcc), and TADDccTV does so also,
if it does not trap.
A tag_overflow exception occurs if bit 1 or bit 0 of either operand is nonzero, or if the addi-
tion generates 32-bit arithmetic overflow (that is, both operands have the same value in bit
31, and bit 31 of the sum is different).
If TADDccTV causes a tag overflow, a tag_overflow exception is generated, and r[rd] and
the integer condition codes remain unchanged. If a TADDccTV does not cause a tag over-
flow, the sum is written into r[rd], and the integer condition codes are updated. CCR.icc.v
is set to 0 to indicate no 32-bit overflow. If a TADDcc causes a tag overflow, the 32-bit
overflow bit (CCR.icc.v) is set to 1; if it does not cause a tag overflow, CCR.icc.v is
cleared.
In either case, the remaining integer condition codes (both the other CCR.icc bits and all
the CCR.xcc bits) are also updated as they would be for a normal ADD instruction. In par-
ticular, the setting of the CCR.xcc.v bit is not determined by the tag overflow condition
(tag overflow is used only to set the 32-bit overflow bit). CCR.xcc.v is set only based on
the normal 64-bit arithmetic overflow condition, like a normal 64-bit add.

Opcode op3 Operation
TADDcc 10 0000 Tagged Add and modify cc’s
TADDccTVD 10 0010 Tagged Add and modify cc’s, or Trap on Overflow

Assembly Language Syntax
taddcc regrs1, reg_or_imm, regrd
taddcctv regrs1, reg_or_imm, regrd

The TADDccTV instruction is deprecated; it is provided only for compatibility
with previous versions of the architecture. It should not be used in new SPARC-V9
software. It is recommended that TADDcc followed by BPVS be used in its place
(with instructions to save the pre-TADDcc integer condition codes, if necessary).

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

328

Compatibility Note:
TADDccTV traps based on the 32-bit overflow condition, just as in SPARC-V8. Although the
tagged-add instructions set the 64-bit condition codes CCR.xcc, there is no form of the instruction
that traps the 64-bit overflow condition.

Exceptions:
tag_overflow (TADDccTV only)

A.60 Tagged Subtract 329

A.60 Tagged Subtract

Format (3):

Description:

These instructions compute “r[rs1] – r[rs2]” if i = 0, or “r[rs1] – sign_ext(simm13)” if
i = 1.

TSUBcc modifies the integer condition codes (icc and xcc); TSUBccTV also modifies the
integer condition codes, if it does not trap.

A tag overflow occurs if bit 1 or bit 0 of either operand is nonzero, or if the subtraction
generates 32-bit arithmetic overflow; that is, the operands have different values in bit 31
(the 32-bit sign bit) and the sign of the 32-bit difference in bit 31 differs from bit 31 of
r[rs1].

If TSUBccTV causes a tag overflow, a tag_overflow exception is generated and r[rd] and
the integer condition codes remain unchanged. If a TSUBccTV does not cause a tag over-
flow condition, the difference is written into r[rd], and the integer condition codes are
updated. CCR.icc.v is set to 0 to indicate no 32-bit overflow. If a TSUBcc causes a tag
overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if it does not cause a tag overflow,
CCR.icc.v is cleared.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all
the CCR.xcc bits) are also updated as they would be for a normal subtract instruction. In
particular, the setting of the CCR.xcc.v bit is not determined by the tag overflow condition

Opcode op3 Operation
TSUBcc 10 0001 Tagged Subtract and modify cc’s
TSUBccTVD 10 0011 Tagged Subtract and modify cc’s, or Trap on Overflow

Assembly Language Syntax
tsubcc regrs1, reg_or_imm, regrd
tsubcctv regrs1, reg_or_imm, regrd

The TSUBccTV instruction is deprecated; it is provided only for compatibility with
previous versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that TSUBcc followed by BPVS be used in its place (with
instructions to save the pre-TSUBcc integer condition codes, if necessary).

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

330

(tag overflow is used only to set the 32-bit overflow bit). CCR.xcc.v is set based only on
the normal 64-bit arithmetic overflow condition, like a normal 64-bit subtract.
Compatibility Note:

TSUBccTV traps are based on the 32-bit overflow condition, just as in SPARC-V8. Although the
tagged-subtract instructions set the 64-bit condition codes CCR.xcc, there is no form of the instruc-
tion that traps on 64-bit overflow.

Exceptions:
tag_overflow (TSUBccTV only)

A.61 Trap on Integer Condition Codes (Tcc) 331

A.61 Trap on Integer Condition Codes (Tcc)

Format (4):

Opcode op3 cond Operation icc test
TA 11 1010 1000 Trap Always 1
TN 11 1010 0000 Trap Never 0
TNE 11 1010 1001 Trap on Not Equal not Z
TE 11 1010 0001 Trap on Equal Z
TG 11 1010 1010 Trap on Greater not (Z or (N xor V))
TLE 11 1010 0010 Trap on Less or Equal Z or (N xor V)
TGE 11 1010 1011 Trap on Greater or Equal not (N xor V)
TL 11 1010 0011 Trap on Less N xor V
TGU 11 1010 1100 Trap on Greater Unsigned not (C or Z)
TLEU 11 1010 0100 Trap on Less or Equal Unsigned (C or Z)
TCC 11 1010 1101 Trap on Carry Clear (Greater than or Equal, Unsigned) not C
TCS 11 1010 0101 Trap on Carry Set (Less Than, Unsigned) C
TPOS 11 1010 1110 Trap on Positive or zero not N
TNEG 11 1010 0110 Trap on Negative N
TVC 11 1010 1111 Trap on Overflow Clear not V
TVS 11 1010 0111 Trap on Overflow Set V

Table 65: Tcc Encodings for ccn

cc1 cc0 Condition Codes
00 icc
01 —
10 xcc
11 —

5 4

10 cond op3 rs1 i=0 — rs2

31 141924 18 13 12 02530 29

—

28 7 6

cc1cc0

11 10

10 cond op3 rs1 i=1 —— cc1cc0 sw_trap_#

332

Description:
The Tcc instruction evaluates the selected integer condition codes (icc or xcc) according to
the cond field of the instruction, producing either a TRUE or FALSE result. If TRUE and
no higher-priority exceptions or interrupt requests are pending, then a trap_instruction
exception is generated. If FALSE, a trap_instruction exception does not occur, and the
instruction behaves like a NOP.
The software trap number is specified by the least significant seven bits of
“r[rs1] + r[rs2]” if i = 0, or the least significant seven bits of “r[rs1] + sw_trap_#” if i = 1.
When i = 1, bits 7 through 10 are reserved and should be supplied as zeros by software.
When i = 0, bits 5 through 10 are reserved, and the most significant 57 bits of
“r[rs1] + r[rs2]” are unused, and both should be supplied as zeros by software.

Description (Effect on Privileged State):
If a trap_instruction traps, 256 plus the software trap number is written into TT[TL]. Then
the trap is taken, and the processor performs the normal trap entry procedure, as described
in Chapter 7, “Traps”.

Programming Note:
Tcc can be used to implement breakpointing, tracing, and calls to supervisor software. It can also
be used for run-time checks, such as out-of-range array indexes, integer overflow, and so on.

Compatibility Note:
Tcc is upward compatible with the SPARC-V8 Ticc instruction, with one qualification: a Ticc with
i = 1 and simm13 < 0 may execute differently on a SPARC-V9 processor. Use of the i = 1 form of
Ticc is believed to be rare in SPARC-V8 software, and simm13 < 0 is probably not used at all, so it
is believed that, in practice, full software compatibility will be achieved.

Note: In SPARC64-III all Tcc instructions except TA with “%g0 + software_trap#”
addressing, serialize the CPU.

Assembly Language Syntax
ta i_or_x_cc, software_trap_number
tn i_or_x_cc, software_trap_number
tne i_or_x_cc, software_trap_number (synonym: tnz)
te i_or_x_cc, software_trap_number (synonym: tz)
tg i_or_x_cc, software_trap_number
tle i_or_x_cc, software_trap_number
tge i_or_x_cc, software_trap_number
tl i_or_x_cc, software_trap_number
tgu i_or_x_cc, software_trap_number
tleu i_or_x_cc, software_trap_number
tcc i_or_x_cc, software_trap_number (synonym: tgeu)
tcs i_or_x_cc, software_trap_number (synonym: tlu)
tpos i_or_x_cc, software_trap_number
tneg i_or_x_cc, software_trap_number
tvc i_or_x_cc, software_trap_number
tvs i_or_x_cc, software_trap_number

A.61 Trap on Integer Condition Codes (Tcc) 333

Programming Note:
Using a TN (trap never) instruction is the preferred way to synchronize (serialize) the SPARC64-III
CPU. Software should use TN to synchronize the machine. Future versions of HAL’s CPU will syn-
chronize the CPU when a TN is executed; however, future versions may not serialize the machine
for other Tcc instructions.

Exceptions:
trap_instruction
illegal_instruction (cc1 cc0 = 012 or 112)

334

A.62 Write Privileged Register

Format (3):

Opcode op3 Operation
WRPRP 11 0010 Write Privileged Register

rd Privileged Register
0 TPC
1 TNPC
2 TSTATE
3 TT
4 TICK
5 TBA
6 PSTATE
7 TL
8 PIL
9 CWP
10 CANSAVE
11 CANRESTORE
12 CLEANWIN
13 OTHERWIN
14 WSTATE

15..31 Reserved

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

V9

A.62 Write Privileged Register 335

Description:

This instruction stores the value “r[rs1] xor r[rs2]” if i = 0, or “r[rs1] xor
sign_ext(simm13)” if i = 1 to the writable fields of the specified privileged state register.
Note: The operation is exclusive-or.

The rd field in the instruction determines the privileged register that is written. There are at
least four copies of the TPC, TNPC, TT, and TSTATE registers, one for each trap level. A
write to one of these registers sets the register indexed by the current value in the trap level
register (TL). A write to TPC, TNPC, TT, or TSTATE when the trap level is zero (TL = 0)
causes an illegal_instruction exception.

A WRPR of TL does not cause a trap or return from trap; it does not alter any other
machine state.
Programming Note:

A WRPR of TL can be used to read the values of TPC, TNPC, and TSTATE for any trap level; how-
ever, care must be taken that traps do not occur while the TL register is modified.

The WRPR instruction is a nondelayed-write instruction. The instruction immediately fol-
lowing the WRPR observes any changes made to processor state made by the WRPR.

WRPR instructions with rd in the range 15..31 are reserved for future versions of the
architecture; executing a WRPR instruction with rd in that range causes an
illegal_instruction exception.
Programming Note:

SPARC64-III does not have or need a floating-point deferred-trap queue. PSTATE.PEF can be
changed from 0 to 1 at any time.

On SPARC64-III the TL register is 3 bits wide, however, the maximum value that can be
stored in the TL register is 4 (to coincide with MAXTL). A write to the TL register with
values 5, 6, or 7 will result in the value 4 being stored in TL.

Assembly Language Syntax
wrpr regrs1, reg_or_imm, %tpc
wrpr regrs1, reg_or_imm, %tnpc
wrpr regrs1, reg_or_imm, %tstate
wrpr regrs1, reg_or_imm, %tt
wrpr regrs1, reg_or_imm, %tick
wrpr regrs1, reg_or_imm, %tba
wrpr regrs1, reg_or_imm, %pstate
wrpr regrs1, reg_or_imm, %tl
wrpr regrs1, reg_or_imm, %pil
wrpr regrs1, reg_or_imm, %cwp
wrpr regrs1, reg_or_imm, %cansave
wrpr regrs1, reg_or_imm, %canrestore
wrpr regrs1, reg_or_imm, %cleanwin
wrpr regrs1, reg_or_imm, %otherwin
wrpr regrs1, reg_or_imm, %wstate

336

Implementation Note:
Some WRPR instructions serialize the CPU or have other issue restrictions. See 6.1.3, “Serializing
Instructions”, and 6.1.4, “Issue Stalling Instructions”, for details.

Exceptions:
privileged_opcode
illegal_instruction ((rd = 15..31) or ((rd) 3) and (TL = 0)))

A.63 Write State Register 337

A.63 Write State Register

Format (3):

Opcode op3 rd [12:8] Operation
WRYD 11 0000 0 --- Write Y register

— 11 0000 1 --- Reserved
WRCCR 11 0000 2 --- Write Condition Codes Register
WRASI 11 0000 3 --- Write ASI register

— 11 0000 4, 5 --- Reserved
WRFPRS 11 0000 6 --- Write Floating-Point Registers Status register

— 11 0000 7..14 --- Reserved
See text 11 0000 15 --- See text

— 11 0000 16 .. 17 --- Reserved
WR_HDW_MODEPASR 11 0000 18 --- Write Hardware Mode reg.
WRGSR 11 0000 19 --- Write Graphic Status Register
SET_SCHED_INTPASR 11 0000 20 --- Set bits in SCHED_INT Reg.
CLEAR_SCHED_INTPASR 11 0000 21 --- Clear bits in SCHED_INT Reg.
WR_SCHED_INTPASR 11 0000 22 --- Write SCHED_INT register.
WR_TICK_MATCHPASR 11 0000 23 --- Write Tick Match Register

— 11 0000 24 Reserved
WR_SCRATCHPASR 11 0000 25 0-3 Write CPU Scratch Register N
WR_BRK_ADDRPASR 11 0000 26 0 Write Data Brkpt. Address Reg.
WR_BRK_MASKPASR 11 0000 26 1 Write Data Breakpt. Mask Reg.

— 11 0000 27..29 Reserved
WR_PM_DISPASR 11 0000 30 0 Disable all performance ctrs.
WR_PM_CLR_DISPASR 11 0000 30 1 Clear and disable all perf. ctrs.
WR_PM_ENPASR 11 0000 30 2 Enable all perf, ctrs.
WR_PM_CLR_ENPASR 11 0000 30 3 Clear and enable all perf. ctrs.
WR_PM_VNPASR 11 0000 30 4 Write PM View Number
WRSCRPASR 11 0000 31 --- Write State Control Register

The WRY instruction is deprecated; it is provided only for compatibility with previ-
ous versions of the architecture. It should not be used in new SPARC-V9 software.
It is recommended that all instructions which reference the Y register be avoided.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

338

Format 3 (wr %asr25 (SCRATCH) only):

Format (3) (wr %asr26 only (Breakpoint registers)):

Format (3) (wr %asr30 only (Performance monitors)):

Description:

These instructions store the value “r[rs1] xor r[rs2]” if i = 0, or “r[rs1] xor
sign_ext(simm13)” if i = 1, to the writable fields of the specified state register. Note: The
operation is exclusive-or.

WRASR writes a value to the ancillary state register (ASR) indicated by rd. The operation
performed to generate the value written may be rd-dependent or implementation-depen-

10 rd=11001 op3 rs1 i=0 register # [7:5]=000 rs2
31 29 24 18 13 12 7 4

10 rd=11010 op3 rs1 i=0 register # [7:5]=000 rs2
31 29 24 18 13 12 7 4

10 rd=11110 op3 rs1 i=0 operation [7:5]=000 rs2
31 29 24 18 13 12 7 4

Assembly Language Syntax
wr regrs1, reg_or_imm, %y
wr regrs1, reg_or_imm, %ccr
wr regrs1, reg_or_imm, %asi
wr regrs1, reg_or_imm, %fprs
wr regrs1, reg_or_imm, %hardware_mode
wr regrs1, reg_or_imm, %graphic_status
wr regrs1, reg_or_imm, %set_sched_int
wr regrs1, reg_or_imm, %clear_sched_int
wr regrs1, reg_or_imm, %sched_int
wr regrs1, reg_or_imm, %tick_match
wr regrs1, regrs2, %scratch[0-3]

wr regrs1, regrs2, %brk_addr

wr %pm_dis

wr %pm_clr_dis

wr %pm_en

wr %pm_clr_en

wr regrs1, regrs2, %pm_vn

wr regrsl, reg_or_imm, %scr

A.63 Write State Register 339

dent (see below). A WRASR instruction is indicated by op = 216, rd = 4, 5, or * 7 and
op3 = 3016.

See I.1.1, “Read/Write Ancillary State Registers (ASRs)” in V9 for a discussion of extend-
ing the SPARC-V9 instruction set using read/write ASR instructions.

The WRY, WRCCR, WRFPRS, WRASI, WRSIR, and WRSCR instructions are not
delayed-write instructions. The instruction immediately following a WRY, WRCCR,
WRFPRS, or WRASI, WRSIR, and WRSCR observes the new value of the Y, CCR,
FPRS, ASI, SIR, and or SCR register.

WRFPRS waits for any pending floating-point operations to complete before writing the
FPRS register.

See section 5.2.11, “Ancillary State Registers (ASRs)” for details of the ASR registers.

The wr &scratch[0..3], wr %brk_addr, wr %brk_mask, and wr pm instructions may not be
used with the immediate addressing mode, since the top 5 bits of the simm13 field are used
to select a register number or operation.

Implementation Note:
Ancillary state registers may include (for example) timer, counter, diagnostic, self-test, and trap-
control registers. See Implementation Characteristics of Current SPARC-V9-based Products, Revi-
sion 9.x, a document available from SPARC International, for information on ancillary state regis-
ters provided by specific implementations.

Compatibility Note:
The SPARC-V8 WRIER, WRPSR, WRWIM, and WRTBR instructions do not exist in SPARC-V9,
since the IER, PSR, TBR, and WIM registers do not exist in SPARC-V9.

Implementation Note:
Some WRASR instructions serialize the CPU or have other issue restrictions. See 6.1.3, “Serializ-
ing Instructions”, for details.

Exceptions:
privileged_opcode (WRASR with rd = 18, 20..23, 25, 26, 30, 31)
illegal_instruction (WRASR with rd = 1, 4, 5, 7..14, 16, 17, 24, 27..29, WRASR

with rd = 15 and rs1&0 or i&1, WR_SCRATCH, WR_BRK_ADDR,
WR_BRK_MASK, and WR_PM instructions if bits [13:5] do not specify a
legal value for the instruction.)

software_initiated_reset (WRSIR only)

340

B IEEE Std 754-1985 Requirements for SPARC-V9
The IEEE Std 754-1985 floating-point standard contains a number of implementation-
dependencies. This appendix specifies choices for these implementation-dependencies, to
ensure that SPARC-V9 implementations are as consistent as possible.

B.1 Traps Inhibit Results
As described in 5.1.7, “Floating-point State Register (FSR)”, and elsewhere, when a float-
ing-point trap occurs:

� The destination floating-point register(s) (the f registers) are unchanged.

� The floating-point condition codes (fcc0, fcc1, fcc2, and fcc3) are unchanged.

� The FSR.aexc (accrued exceptions) field is unchanged.

� The FSR.cexc (current exceptions) field is unchanged except for IEEE_754_exceptions;
in that case, cexc contains a bit set to “1” corresponding to the exception that caused
the trap. Only one bit shall be set in cexc.

Instructions causing an fp_exception_other trap due to unfinished or unimplemented FPops
execute as if by hardware; that is, a trap is undetectable by user software, except that tim-
ing may be affected. A user-mode trap handler invoked for an IEEE_754_exception,
whether as a direct result of a hardware fp_exception_ieee_754 trap or as an indirect result
of supervisor handling of an unfinished_FPop or unimplemented_FPop, can rely on the fol-
lowing:

� The address of the instruction that caused the exception will be available.

� The destination floating-point register(s) are unchanged from their state prior to that
instruction’s execution.

� The floating-point condition codes (fcc0, fcc1, fcc2, and fcc3) are unchanged.

� The FSR aexc field is unchanged.

� The FSR cexc field contains exactly one bit set to 1, corresponding to the exception
that caused the trap.

� The FSR ftt, qne, and reserved fields are zero.

342 B IEEE Std 754-1985 Requirements for

The SPARC64-III hardware in conjunction with kernel fixup or emulation code produces
the results required in this section.

B.2 NaN Operand and Result Definitions
An untrapped floating-point result can be in a format that is either the same as, or different
from, the format of the source operands. These two cases are described separately below.

B.2.1 Untrapped Result in Different Format from Operands

F[sdq]TO[sdq] with a quiet NaN operand:
No exception caused; result is a quiet NaN. The operand is transformed as follows:

NaN transformation: The most significant bits of the operand fraction are copied to
the most significant bits of the result fraction. When converting to a narrower format,
excess low-order bits of the operand fraction are discarded. When converting to a
wider format, excess low-order bits of the result fraction are set to 0. The quiet bit (the
most significant bit of the result fraction) is always set to 1, so the NaN transformation
always produces a quiet NaN. The sign bit is copied from the operand to the result
without modification.

F[sdq]TO[sdq] with a signaling NaN operand:
Invalid exception; result is the signaling NaN operand processed by the NaN
transformation above to produce a quiet NaN.

FCMPE[sdq] with any NaN operand:
Invalid exception; the selected floating-point condition code is set to unordered.

FCMP[sdq] with any signaling NaN operand:
Invalid exception; the selected floating-point condition code is set to unordered.

FCMP[sdq] with any quiet NaN operand but no signaling NaN operand:
No exception; the selected floating-point condition code is set to unordered.

B.2.2 Untrapped Result in Same Format as Operands

No NaN operand:
For an invalid operation such as sqrt(–1.0) or 0.0 ÷ 0.0, the result is the quiet NaN
with sign = zero, exponent = all ones, and fraction = all ones. The sign is zero to
distinguish such results from storage initialized to all ones.

One operand, a quiet NaN:
No exception; result is the quiet NaN operand.

One operand, a signaling NaN:
Invalid exception; result is the signaling NaN with its quiet bit (most significant bit
of fraction field) set to 1.

Two operands, both quiet NaNs:
No exception; result is the rs2 (second source) operand.

B.3 Trapped Underflow Definition (UFM = 1) 343

Two operands, both signaling NaNs:
Invalid exception; result is the rs2 operand with the quiet bit set to 1.

Two operands, only one a signaling NaN:
Invalid exception; result is the signaling NaN operand with the quiet bit set to 1.

Two operands, neither a signaling NaN, only one a quiet NaN:
No exception; result is the quiet NaN operand.

In Table 66 NaNn means that the NaN is in rsn, Q means quiet, S signaling.

QSNaNn means a quiet NaN produced by the NaN transformation on a signaling NaN
from rsn; the invalid exception is always indicated. The QNaNn results in the table never
generate an exception, but IEEE 754 specifies several cases of invalid exceptions, and
QNaN results from operands that are both numbers.

B.3 Trapped Underflow Definition (UFM = 1)
Underflow occurs if the exact unrounded result has magnitude between zero and the small-
est normalized number in the destination format.
In the SPARC64-III CPU, tininess is always detected before rounding. See 5.1.7.6,
“FSR_floating-point_trap_type (ftt)”, for details on how the divider handles trapped
underflows.

Note:
The wrapped exponent results intended to be delivered on trapped underflows and overflows in
IEEE 754 are irrelevant to SPARC-V9 at the hardware and supervisor software levels; if they are
created at all, it would be by user software in a user-mode trap handler.

B.4 Untrapped Underflow Definition (UFM = 0)
Underflow occurs if the exact unrounded result has magnitude between zero and the small-
est normalized number in the destination format, and the correctly rounded result in the
destination format is inexact.

Table 67 summarizes what happens when an exact unrounded value u satisfying

0) |u|) smallest normalized number

would round, if no trap intervened, to a rounded value r which might be zero, subnormal,
or the smallest normalized value. “UF” means underflow trap (with ufc set in cexc), “NX”

Table 66: Untrapped Floating-point Results (V9=27)

rs2 Operand
Number QNaN2 SNaN2

rs1
Operand

None IEEE 754 QNaN2 QSNaN2
Number IEEE 754 QNaN2 QSNaN2
QNaN1 QNaN1 QNaN2 QSNaN2
SNaN1 QSNaN1 QSNaN1 QSNaN2

344 B IEEE Std 754-1985 Requirements for

means inexact trap (with nxc set in cexc), “uf” means untrapped underflow exception (with
ufc set in cexc and ufa in aexc), and “nx” means untrapped inexact exception (with nxc set
in cexc and nxa in aexc).

See 5.1.7.6.2, “ftt = unfinished_FPop”, for details on how the divider handles untrapped
underflows.

B.5 Integer Overflow Definition
F[sdq]TOi:

When a NaN, infinity, large positive argument * 2147483648.0, or large negative
argument) –2147483649.0 is converted to an integer, the invalid_current (nvc) bit
of FSR.cexc should be set and fp_exception_IEEE_754 should be raised. If the float-
ing-point invalid trap is disabled (FSR.TEM.NVM = 0), no trap occurs and a
numerical result is generated: if the sign bit of the operand is 0, the result is
2147483647; if the sign bit of the operand is 1, the result is –2147483648.

F[sdq]TOx:
When a NaN, infinity, large positive argument * 263, or large negative argument) –
(263 + 1), is converted to an extended integer, the invalid_current (nvc) bit of
FSR.cexc should be set and fp_exception_IEEE_754 should be raised. If the floating-
point invalid trap is disabled (FSR.TEM.NVM = 0), no trap occurs and a numeri-
cal result is generated: if the sign bit of the operand is 0, the result is 263 – 1; if the
sign bit of the operand is 1, the result is –263.

B.6 Floating-Point Nonstandard Mode
SPARC64-III does not implement any nonstandard IEEE operations and, thus, does not
support a nonstandard mode.

Table 67: Untrapped Floating-Point Underflow (V9=28)

Underflow trap:
Inexact trap:

UFM = 1
NXM = ?

UFM = 0
NXM = 1

UFM = 0
NXM = 0

u = r
r is minimum normal None None None
r is subnormal UF None None
r is zero None None None

u & r
r is minimum normal UF NX uf nx
r is subnormal UF NX uf nx
r is zero UF NX uf nx

C SPARC-V9 Implementation Dependencies
This appendix provides a summary of all implementation dependencies in the SPARC-V9
standard. In SPARC-V9 the notation “IMPL. DEP. #nn:” is used to identify the definition of
an implementation dependency; the notation “(impl. dep. #nn)” is used to identify a refer-
ence to an implementation dependency. These dependencies are described by their number
nn in Table 68 on page 347. These numbers have been removed from the body of this doc-
ument for SPARC64-III to make the document more readable. Table 68 has been modified
to include a description of the manner in which SPARC64-III has resolved each imple-
mentation dependency.

SPARC International maintains a document, Implementation Characteristics of Current
SPARC-V9-based Products, Revision 9.x, which describes the implementation-dependent
design features of all SPARC-V9-compliant implementations. Contact SPARC Interna-
tional for this document at

SPARC International, Inc.
535 Middlefield Rd, Suite 210

Menlo Park, CA 94025
(415) 321-8692

C.1 Definition of an Implementation Dependency
The SPARC-V9 architecture is a model that specifies unambiguously the behavior
observed by software on SPARC-V9 systems. Therefore, it does not necessarily describe
the operation of the hardware of any actual implementation.

An implementation is not required to execute every instruction in hardware. An attempt to
execute a SPARC-V9 instruction that is not implemented in hardware generates a trap.
Whether an instruction is implemented directly by hardware, simulated by software, or
emulated by firmware is implementation-dependent.

The two levels of SPARC-V9 compliance are described in 1.2.6, “SPARC-V9 Compli-
ance” in V9.

Some elements of the architecture are defined to be implementation-dependent. These ele-
ments include certain registers and operations that may vary from implementation to
implementation, and are explicitly identified as such in this appendix.

V9

346 C SPARC-V9 Implementation Dependencies

Implementation elements (such as instructions or registers) that appear in an implementa-
tion but are not defined in this document (or its updates) are not considered to be
SPARC-V9 elements of that implementation.

C.2 Hardware Characteristics
Hardware characteristics that do not affect the behavior observed by software on
SPARC-V9 systems are not considered architectural implementation dependencies. A
hardware characteristic may be relevant to the user system design (for example, the speed
of execution of an instruction) or may be transparent to the user (for example, the method
used for achieving cache consistency). The SPARC International document, Implementa-
tion Characteristics of Current SPARC-V9-based Products, Revision 9.x, provides a useful
list of these hardware characteristics, along with the list of implementation-dependent
design features of SPARC-V9-compliant implementations.

In general, hardware characteristics deal with

� Instruction execution speed

� Whether instructions are implemented in hardware

� The nature and degree of concurrency of the various hardware units comprising a
SPARC-V9 implementation.

C.3 Implementation Dependency Categories
Many of the implementation dependencies can be grouped into four categories, abbrevi-
ated by their first letters throughout this appendix:

Value (v):
The semantics of an architectural feature are well-defined, except that a value asso-
ciated with it may differ across implementations. A typical example is the number
of implemented register windows (Implementation dependency #2).

Assigned Value (a):
The semantics of an architectural feature are well-defined, except that a value asso-
ciated with it may differ across implementations and the actual value is assigned
by SPARC International. Typical examples are the impl field of Version register
(VER) (Implementation dependency #13) and the FSR.ver field (Implementation
dependency #19).

Functional Choice (f):
The SPARC-V9 architecture allows implementors to choose among several possi-
ble semantics related to an architectural function. A typical example is the treat-
ment of a catastrophic error exception, which may cause either a deferred or a
disrupting trap (Implementation dependency #31).

Total Unit (t):
The existence of the architectural unit or function is recognized, but details are left
to each implementation. Examples include the handling of I/O registers (Imple-

C.4 List of Implementation Dependencies 347

mentation dependency #7) and some alternate address spaces (Implementation
dependency #29).

C.4 List of Implementation Dependencies
Table 68 provides a complete list of the implementation dependencies in the architecture,
the definition of each, and references to the page numbers in the standard where each is
defined or referenced. Most implementation dependencies occur because of the address
spaces, I/O registers, registers (including ASRs), the type of trapping used for an excep-
tion, the handling of errors, or miscellaneous non-SPARC-V9-architectural units such as
the MMU or caches (which affect the FLUSH instruction).

Table 68: SPARC64-III Implementation Dependencies (V9=29)

Nbr Description SPARC64-III Implementation Notes
1 Software emulation of instructions

Whether an instruction is implemented directly
by hardware, simulated by software, or emu-
lated by firmware is implementation-dependent.

See 6.3.12, “Summary of Unimplemented
Instructions”, for details of unimplemented
instructions. The operating system emulates all
instructions that generate illegal_instruction or
unimplemented_FPop exceptions.

2 Number of IU registers
An implementation of the IU may contain from
64 to 528 general-purpose 64-bit r registers.
This corresponds to a grouping of the registers
into two sets of eight global r registers, plus a
circular stack of from three to 32 sets of 16 reg-
isters each, known as register windows. Since
the number of register windows present
(NWINDOWS) is implementation-dependent,
the total number of registers is also implementa-
tion-dependent.

The CPU has 5 register windows
(NWINDOWS = 5) for a total of 96 integer regis-
ters.

3 Incorrect IEEE Std 754-1985 results
An implementation may indicate that a floating-
point instruction did not produce a correct IEEE
Std 754-1985 result by generating a special
floating-point unfinished or unimplemented
exception. In this case, privileged mode soft-
ware shall emulate any functionality not present
in the hardware.

FDIV and FSQRT generate unfinished_FPop an
exception under certain conditions. See 5.1.7.6.2,
“ftt = unfinished_FPop” for details.
All of the quad floating -point instructions are not
implemented, and they generate an unimple-
mented exception.

4-5 Reserved —
6 I/O registers privileged status

Whether I/O registers can be accessed by non-
privileged code is implementation-dependent.

This is beyond the scope of this publication. It
should be defined in a system which uses
SPARC64-III.

7 I/O register definitions
The contents and addresses of I/O registers are
implementation-dependent.

This is beyond the scope of this publication. It
should be defined in a system which uses
SPARC64-III.

348 C SPARC-V9 Implementation Dependencies

8 RDASR/WRASR target registers
Software can use read/write ancillary state reg-
ister instructions to read/write implementation-
dependent processor registers (ASRs 16-31).

See A.44, “Read State Register”, and A.63,
“Write State Register”, for details of implementa-
tion-dependent RDASR/WRASR instructions.

9 RDASR/WRASR privileged status
Whether each of the implementation-depen-
dent read/write ancillary state register instruc-
tions (for ASRs 16-31) is privileged is
implementation-dependent.

See A.44, “Read State Register”, and A.63,
“Write State Register”, for details of implementa-
tion-dependent RDASR/WRASR instructions.

10-12 Reserved —
13 VER.impl

VER.impl uniquely identifies an implementa-
tion or class of software-compatible implemen-
tations of the architecture. Values
FFF016..FFFF16 are reserved and are not avail-
able for assignment.

VER.impl = 3 for the SPARC64-III CPU.

14-15 Reserved —
16 IU deferred-trap queue

The existence, contents, and operation of an IU
deferred-trap queue are implementation-depen-
dent; it is not visible to user application pro-
grams under normal operating conditions.

SPARC64-III does not have or need an IU
deferred-trap queue.

17 Reserved —
18 Nonstandard IEEE 754-1985 results

Bit 22 of the FSR, FSR_nonstandard_fp (NS),
when set to 1, causes the FPU to produce imple-
mentation-defined results that may not corre-
spond to IEEE Standard 754-1985.

SPARC64-III always produces correct ANSI/
IEEE-754 results; thus, writes to the NS bit are
ignored and reads from it always return zero.

19 FPU version, FSR.ver
Bits 19:17 of the FSR, FSR.ver, identify one or
more implementations of the FPU architecture.

FSR.ver = 0 for SPARC64-III.

20-21 Reserved —
22 FPU TEM, cexc, and aexc

An implementation may choose to implement
the TEM, cexc, and aexc fields in hardware in
either of two ways (see 5.1.7.1 for details).

SPARC64-III implements all bits in the TEM,
cexc, and aexc fields in hardware

23 Floating-point traps
Floating-point traps may be precise or deferred.
If deferred, a floating-point deferred-trap queue
(FQ) must be present.

In SPARC64-III floating-point traps are always
precise; no FQ is needed.

24 FPU deferred-trap queue (FQ)
The presence, contents of, and operations on the
floating-point deferred-trap queue (FQ) are
implementation-dependent.

SPARC64-III does not have or need a floating-
point deferred-trap queue.

Table 68: SPARC64-III Implementation Dependencies (V9=29) (Continued)

Nbr Description SPARC64-III Implementation Notes

C.4 List of Implementation Dependencies 349

25 RDPR of FQ with nonexistent FQ
On implementations without a floating-point
queue, an attempt to read the FQ with an RDPR
instruction shall cause either an
illegal_instruction exception or an
fp_exception_other exception with FSR.ftt set
to 4 (sequence_error).

Attempting to execute an RDPR of the FQ causes
an illegal_instruction exception.

26-28 Reserved —
29 Address space identifier (ASI) definitions

The following ASI assignments are implemen-
tation-dependent: restricted ASIs 0016..0316,
0516..0B16, 0D16..0F16, 1216..1716, and
1A16..7F16; and unrestricted ASIs C016 .. FF16.

The ASIs that are supported by SPARC64-III are
defined in Appendix L, “ASI Assignments”.

30 ASI address decoding
An implementation may choose to decode only
a subset of the 8-bit ASI specifier; however, it
shall decode at least enough of the ASI to dis-
tinguish ASI_PRIMARY,
ASI_PRIMARY_LITTLE,
ASI_AS_IF_USER_PRIMARY,
ASI_AS_IF_USER_PRIMARY_LITTLE,
ASI_PRIMARY_NOFAULT,
ASI_PRIMARY_NOFAULT_LITTLE,
ASI_SECONDARY, ASI_SECONDARY_LITTLE,
ASI_AS_IF_USER_SECONDARY,
ASI_AS_IF_USER_SECONDARY_LITTLE,
ASI_SECONDARY_NOFAULT, and
ASI_SECONDARY_NOFAULT_LITTLE. If
ASI_NUCLEUS and ASI_NUCLEUS_LITTLE are
supported (impl. dep. #124), they must be
decoded also. Finally, an implementation must
always decode ASI bit<7> while
PSTATE.PRIV = 0, so that an attempt by non-
privileged software to access a restricted ASI
will always cause a privileged_action excep-
tion.

SPARC64-III supports all of the listed ASIs.

31 Catastrophic error exceptions
The causes and effects of catastrophic error
exceptions are implementation-dependent. They
may cause precise, deferred, or disrupting traps.

SPARC64-III contains a watchdog timer that
times out after no instruction has been committed
for the number of cycles required to count down a
31-bit register. If the timer times out, the CPU
enters error_state and outputs P_FERR to the
UPA bus.

32 Deferred traps
Whether any deferred traps (and associated
deferred-trap queues) are present is implemen-
tation-dependent.

See 7.3.2, “Deferred Traps”. SPARC64-III does
not contain a deferred trap queue.

Table 68: SPARC64-III Implementation Dependencies (V9=29) (Continued)

Nbr Description SPARC64-III Implementation Notes

350 C SPARC-V9 Implementation Dependencies

33 Trap precision
Exceptions that occur as the result of program
execution may be precise or deferred, although
it is recommended that such exceptions be pre-
cise. Examples include
mem_address_not_aligned and
division_by_zero.

The only deferred trap in SPARC64-III is the
data_breakpoint trap. All other traps that occur
as the result of program execution are precise

34 Interrupt clearing
How quickly a processor responds to an inter-
rupt request and the method by which an inter-
rupt request is removed are implementation-
dependent.

For details of interrupt handling see Appendix N,
“Interrupt Handling”.

35 Implementation-dependent traps
Trap type (TT) values 06016..07F16 are
reserved for implementation-dependent excep-
tions. The existence of
implementation_dependent_n traps and
whether any that do exist are precise, deferred,
or disrupting is implementation-dependent.

SPARC64-III supports the following implemen-
tation-dependent traps:
– interrupt_vector (tt = 06016)
– data_breakpoint (tt = 06116)
– programmed_emulation_trap (tt = 06216)
– async_error (tt = 06316)
– 32i_instruction_access_MMU_miss

(tt = 06416 through 06716)
– 32i_data_access_MMU_miss

(tt = 06816 through 06B16)
– 32i_data_access_protection

(tt = 06C16 through 06F16)
– watchdog (tt = 07F16)

36 Trap priorities
The priorities of particular traps are relative and
are implementation-dependent, because a future
version of the architecture may define new
traps, and implementations may define imple-
mentation-dependent traps that establish new
relative priorities.

SPARC64-III’s implementation-dependent traps
have the following priorities:
– interrupt_vector (priority=16)
– data_breakpoint (priority=14)
– programmed_emulation_trap (priority=6)
– async_error (priority=2)
– 32i_instruction_access_MMU_miss

(priority=2)
– 32i_data_access_MMU_miss

(priority=12)
– 32i_data_access_protection

(priority=12)
– watchdog (priority=1)

37 Reset trap
Some of a processor’s behavior during a reset
trap is implementation-dependent.

SPARC64-III implements Power On Reset
(POR) through SCAN. Watchdog Reset (WDR)
is not implemented. Externally Initiated Reset
(XIR) with TL=MAXTL causes the CPU to
enter error_state.

38 Effect of reset trap on implementation-
dependent registers
Implementation-dependent registers may or
may not be affected by the various reset traps.

See O.3, “Processor State after Reset and in
RED_state”.

Table 68: SPARC64-III Implementation Dependencies (V9=29) (Continued)

Nbr Description SPARC64-III Implementation Notes

C.4 List of Implementation Dependencies 351

39 Entering error_state on implementation-
dependent errors
The processor may enter error_state when an
implementation-dependent error condition
occurs.

A CPU watchdog timeout or any trap with
TL=MAXTL cause entry to error_state.

40 Error_state processor state
What occurs after error_state is entered is
implementation-dependent, but it is recom-
mended that as much processor state as possible
be preserved upon entry to error_state.

SPARC64-III outputs P_FERR on entry to
error_state. Most error logging register state will
be preserved and can be read after a Power On
Reset.

41 Reserved —
42 FLUSH instruction

If FLUSH is not implemented in hardware, it
causes an illegal_instruction exception, and its
function is performed by system software.
Whether FLUSH traps is implementation-
dependent.

SPARC64-III implements the FLUSH instruction
in hardware.

43 Reserved —
44 Data access FPU trap

If a load floating-point instruction traps with
any type of access error exception, the contents
of the destination floating-point register(s)
either remain unchanged or are undefined.

The destination register(s) are unchanged if an
access error occurs.

45 - 46 Reserved —
47 RDASR

RDASR instructions with rd in the range 16..31
are available for implementation-dependent
uses (impl. dep. #8). For an RDASR instruc-
tion with rs1 in the range 16..31, the following
are implementation-dependent: the interpreta-
tion of bits 13:0 and 29:25 in the instruction,
whether the instruction is privileged (impl. dep.
#9), and whether it causes an
illegal_instruction trap.

See A.44, “Read State Register”, for details.

48 WRASR
WRASR instructions with rd in the range
16..31 are available for implementation-depen-
dent uses (impl. dep. #8). For a WRASR
instruction with rd in the range 16..31, the fol-
lowing are implementation-dependent: the
interpretation of bits 18:0 in the instruction, the
operation(s) performed (for example, xor) to
generate the value written to the ASR, whether
the instruction is privileged (impl. dep. #9), and
whether it causes an illegal_instruction trap.

See A.63, “Write State Register”, for details.

49-54 Reserved —

Table 68: SPARC64-III Implementation Dependencies (V9=29) (Continued)

Nbr Description SPARC64-III Implementation Notes

352 C SPARC-V9 Implementation Dependencies

55 Floating-point underflow detection
Whether "tininess" (in IEEE 754 terms) is
detected before or after rounding is implemen-
tation-dependent. It is recommended that tini-
ness be detected before rounding.

SPARC64-III detects “tininess” before rounding.

56-100 Reserved —
101 Maximum trap level

It is implementation-dependent how many addi-
tional levels, if any, past level 4 are supported.

MAXTL = 4.

102 Clean windows trap
An implementation may choose either to imple-
ment automatic “cleaning” of register windows
in hardware, or generate a clean_window trap,
when needed, for window(s) to be cleaned by
software.

SPARC64-III generates a clean_window trap.

103 Prefetch instructions
The following aspects of the PREFETCH and
PREFETCHA instructions are implementation-
dependent: (1) whether they have an observable
effect in privileged code; (2) whether they can
cause a data_access_MMU_miss exception;
(3) the attributes of the block of memory
prefetched: its size (minimum = 64 bytes) and
its alignment (minimum = 64-byte alignment);
(4) whether each variant is implemented as a
NOP, with its full semantics, or with common-
case prefetching semantics; (5) whether and
how variants 16..31 are implemented.

SPARC64-III implements PREFETCH variations
0 thru 4 with the following implementation-
dependent characteristics:
– The prefetches have observable affects in priv-

ileged code.
– A prefetch does not cause a

data_access_MMU_miss trap, because the
prefetch is dropped when a
data_access_MMU_miss condition hap-
pens.

– All prefetches are for 64-byte cache lines,
which are aligned on a 64-byte boundary.

– See A.42, “Prefetch Data”, for implemented
variations and their characteristics.

– Variants 16..31 are treated as NOPs.
Prefetches will work normally if the ASI is
ASI_PRIMARY, ASI_SECONDARY, or
ASI_NUCLEUS.

104 VER.manuf
VER.manuf contains a 16-bit semiconductor
manufacturer code. This field is optional, and if
not present reads as zero. VER.manuf may indi-
cate the original supplier of a second-sourced
chip in cases involving mask-level second-
sourcing. It is intended that the contents of
VER.manuf track the JEDEC semiconductor
manufacturer code as closely as possible. If the
manufacturer does not have a JEDEC semicon-
ductor manufacturer code, SPARC International
will assign a VER.manuf value.

VER.manuf = 000416. The lower 8 bits are
Fujitsu’s JEDEC manufacturing code.

Table 68: SPARC64-III Implementation Dependencies (V9=29) (Continued)

Nbr Description SPARC64-III Implementation Notes

C.4 List of Implementation Dependencies 353

105 TICK register
The difference between the values read from the
TICK register on two reads should reflect the
number of processor cycles executed between
the reads. If an accurate count cannot always be
returned, any inaccuracy should be small,
bounded, and documented. An implementation
may implement fewer than 63 bits in
TICK.counter; however, the counter as imple-
mented must be able to count for at least 10
years without overflowing. Any upper bits not
implemented must read as zero.

SPARC64-III implements 63 bits of the TICK
register; it increments on every clock cycle.

106 IMPDEPn instructions
The IMPDEP1 and IMPDEP2 instructions are
completely implementation-dependent. Imple-
mentation-dependent aspects include their oper-
ation, the interpretation of bits 29:25 and 18:0
in their encodings, and which (if any) excep-
tions they may cause.

SPARC64-III uses the IMPDEP2 opcode for the
Multiply Add/Subtract instructions.

107 Unimplemented LDD trap
It is implementation-dependent whether LDD
and LDDA are implemented in hardware. If not,
an attempt to execute either will cause an
unimplemented_LDD trap.

SPARC64-III implements LDD in hardware.

108 Unimplemented STD trap
It is implementation-dependent whether STD
and STDA are implemented in hardware. If not,
an attempt to execute either will cause an
unimplemented_STD trap.

SPARC64-III implements STD in hardware.

109 LDDF_mem_address_not_aligned
LDDF and LDDFA require only word align-
ment. However, if the effective address is word-
aligned but not doubleword-aligned, either may
cause an LDDF_mem_address_not_aligned
trap, in which case the trap handler software
shall emulate the LDDF (or LDDFA) instruc-
tion and return.

If the address is word-aligned but not double-
word aligned, SPARC64-III generates the
LDDF_mem_address_not_aligned excep-
tion. The trap handler software emulates the
instruction.

110 STDF_mem_address_not_aligned
STDF and STDFA require only word alignment
in memory. However, if the effective address is
word-aligned but not doubleword-aligned,
either may cause an
STDF_mem_address_not_aligned trap, in
which case the trap handler software shall emu-
late the STDF or STDFA instruction and return.

If the address is word-aligned but not double-
word aligned, SPARC64-III generates the
STDF_mem_address_not_aligned excep-
tion. The trap handler software emulates the
instruction.

Table 68: SPARC64-III Implementation Dependencies (V9=29) (Continued)

Nbr Description SPARC64-III Implementation Notes

354 C SPARC-V9 Implementation Dependencies

111 LDQF_mem_address_not_aligned
LDQF and LDQFA require only word align-
ment. However, if the effective address is word-
aligned but not quadword-aligned, either may
cause an LDQF_mem_address_not_aligned
trap, in which case the trap handler software
shall emulate the LDQF (or LDQFA) instruc-
tion and return.

SPARC64-III generates an illegal_instruction
exception for all LDQFs. The CPU does not per-
form the check for fp_disabled. The trap handler
software emulates the instruction.

112 STQF_mem_address_not_aligned
STQF and STQFA require only word alignment
in memory. However, if the effective address is
word-aligned but not quadword-aligned, either
may cause an
STQF_mem_address_not_aligned trap, in
which case the trap handler software shall emu-
late the STQF or STQFA instruction and return.

SPARC64-III generates an illegal_instruction
exception for all STQFs. The CPU does not per-
form the check for fp_disabled. The trap handler
software emulates the instruction.

113 Implemented memory models
Whether the Partial Store Order (PSO) or
Relaxed Memory Order (RMO) models are sup-
ported is implementation-dependent.

SPARC64-III implements PSO with Total Store
Order (TSO) or Load/Store Order (LSO), which
are stronger models. See Chapter 8, “Memory
Models”, for details.

114 RED_state trap vector address (RSTVaddr)
The RED_state trap vector is located at an
implementation-dependent address referred to
as RSTVaddr.

RSTVaddr is a constant, where:
VA=FFFF FFFF F000 000016 and
PA=1FF F000 000016

115 RED_state processor state
What occurs after the processor enters
RED_state is implementation-dependent.

See 7.2.1, “RED_state”, for details of implemen-
tation-specific actions in RED_state.

116 SIR_enable control flag
The location of the SIR_enable control flag and
the means of accessing the SIR_enable control
flag are implementation-dependent. In some
implementations, it may be permanently zero.

In SPARC64-III the SIR_enable control flag is
hard-wired to 0; thus it always treats the SIR
instruction as a NOP if PSTATE.PRIV=0.

117 MMU disabled prefetch behavior
Whether Prefetch and Non-faulting Load
always succeed when the MMU is disabled is
implementation-dependent.

Prefetch and Non-faulting Load always succeed
when the MMU is disabled.

118 Identifying I/O locations
The manner in which I/O locations are identi-
fied is implementation-dependent.

This is beyond the scope of this publication. It
should be defined in a system which uses
SPARC64-III.

119 Unimplemented values for PSTATE.MM
The effect of writing an unimplemented mem-
ory-mode designation into PSTATE.MM is
implementation-dependent.

Writing 112 into PSTATE.MM causes the
machine to use the STO memory model. How-
ever, the encoding 112 should not be used, since
future versions of SPARC64-III may use this
encoding for a new memory model.

Table 68: SPARC64-III Implementation Dependencies (V9=29) (Continued)

Nbr Description SPARC64-III Implementation Notes

C.4 List of Implementation Dependencies 355

120 Coherence and atomicity of memory opera-
tions
The coherence and atomicity of memory opera-
tions between processors and I/O DMA mem-
ory accesses are implementation-dependent.

This is beyond the scope of this publication. It
should be defined in a system which uses
SPARC64-III.

121 Implementation-dependent memory model
An implementation may choose to identify cer-
tain addresses and use an implementation-
dependent memory model for references to
them.

SPARC64-III implements Load/Store Order
(LSO), Total Store Order (TSO), and Store Order
(STO) memory models. See Chapter 8, “Memory
Models”, for details.
Accesses to pages with the SO (Strongly
Ordered) bit of their MMU page table entry set
are also made in Program Order.

122 FLUSH latency
The latency between the execution of FLUSH
on one processor and the point at which the
modified instructions have replaced outdated
instructions in a multiprocessor is implementa-
tion-dependent.

This is beyond the scope of this publication. It
should be defined in a system which uses
SPARC64-III.

123 Input/output (I/O) semantics
The semantic effect of accessing input/output
(I/O) registers is implementation-dependent.

This is beyond the scope of this publication. It
should be defined in a system which uses
SPARC64-III.

124 Implicit ASI when TL > 0
When TL > 0, the implicit ASI for instruction
fetches, loads, and stores is implementation-
dependent. See F.4.4, “Contexts” in V9 for more
information.

SPARC64-III uses ASI_NUCLEUS for instruc-
tion fetches and ASI_NUCLEUS{_LITTLE} for
data fetches as the implicit ASI when TL > 0.

125 Address masking
When PSTATE.AM = 1, the value of the high-
order 32-bits of the PC transmitted to the speci-
fied destination register(s) by CALL, JMPL,
RDPC, and on a trap is implementation-depen-
dent.

When PSTATE.AM=1, SPARC64-III does not
mask out the high-order 32 bits of the PC when
transmitting it to the destination register; all 64-
bits of the PC are transmitted.

126 Register Windows State Registers Width
Privileged registers CWP, CANSAVE, CAN-
RESTORE, OTHERWIN, and CLEANWIN
contain values in the range 0..NWINDOWS<1.
The effect of writing a value greater than
NWINDOWS-1 to any of these registers is
undefined.Although the width of each of these
five registers is nominally 5 bits, the width is
implementation-dependent and shall be
between �log2(NWINDOWS)� and 5 bits, inclu-
sive. If fewer than 5 bits are implemented, the
unimplemented upper bits shall read as 0 and
writes to them shall have no effect. All five
registers should have the same width.

NWINDOWS for SPARC64-III is 5, therefore
only 3 bits are implemented for the following
registers: CWP, CANSAVE, CANRESTORE,
OTHERWIN. If an attempt is made to write a
value greater than NWINDOWS<1 to any of
these registers, the extraneous upper bits are dis-
carded. The CLEANWIN register contains 3 bits,
but software must not write the values 5, 6, or 7
to the register. Setting CLEANWIN > 4 violates
the register window state definition in 6.4.1,
“Register Window State Definition”, Note: Hard-
ware does not enforce this restriction; system
software must keep the window state consistent.

Table 68: SPARC64-III Implementation Dependencies (V9=29) (Continued)

Nbr Description SPARC64-III Implementation Notes

356 C SPARC-V9 Implementation Dependencies

D Formal Specification of the Memory Models
Consult V9 for the text of this appendix.V9

358

E Opcode Maps

E.1 Overview
This appendix contains the SPARC64-III instruction opcode maps.

Opcodes marked with a dash ‘—’ are reserved; an attempt to execute a reserved opcode
shall cause a trap, unless it is an implementation-specific extension to the instruction set.
See 6.3.11, “Reserved Opcodes and Instruction Fields”, for more information.

In this appendix and in Appendix A, “Instruction Definitions”, certain opcodes are marked
with mnemonic superscripts. These superscripts and their meanings are defined in
Table 49 on page 214. For deprecated opcodes, see the appropriate instruction pages in
Appendix A for preferred substitute instructions.

E.2 Tables
In the tables in this appendix, reserved (—) and shaded entries indicate opcodes that are
not implemented in SPARC64-III.

†rd = 0, imm22 = 0

The ILLTRAP and reserved (—) encodings generate an illegal_instruction trap.

Table 69: op[1:0] (V9=30)

op [1:0]
0 1 2 3

Branches & SETHI
See Table 70

CALL Arithmetic & Misc.
See Table 71

Loads/Stores
See Table 72

Table 70: op2[2:0] (op = 0) (V9=31)

op2 [2:0]
0 1 2 3 4 5 6 7

ILLTRAP BPcc
See Table 75

BiccD

See Table 75
BPr

See Table 76
SETHI
NOP†

FBPfcc
See Table 75

FBfccD

See Table 75 —

360 E Opcode Maps

POPC and the reserved (—) opcodes cause an illegal_instruction trap.

Table 71: op3[5:0] (op = 2) (V9=32)

op3 [5:4]
0 1 2 3

op3
[3:0]

0 ADD ADDcc TADDcc

WRYD (rd = 0)
— (rd= 1)

WRCCR (rd=2)
WRASI (rd=3)
— (rd= 4, 5)

WRFPRS (rd=6)
WRASRPASR (7)rd)14)
SIR (rd=15, rs1=0, i=1)

1 AND ANDcc TSUBcc SAVEDP (fcn = 0),
RESTOREDP (fcn = 1)

2 OR ORcc TADDccTVD WRPRP

3 XOR XORcc TSUBccTVD —

4 SUB SUBcc MULSccD FPop1
See Table 73

5 ANDN ANDNcc SLL (x = 0), SLLX (x = 1) FPop2
See Table 74

6 ORN ORNcc SRL (x = 0), SRLX (x = 1) IMPDEP1

7 XNOR XNORcc SRA (x = 0), SRAX (x = 1) IMPDEP2
(FMADD / FMSUB)

8 ADDC ADDCcc

RDYD (rs1 = 0)
— (rs1= 1)

RDCCR (rs1= 2)
RDASI (rs1= 3)

RDTICKPNPT (rs1= 4)
RDPC (rs1= 5)

RDFPRS (rs1=6)
RDASRPASR (7)rd)14)

MEMBAR (rs1 = 15,rd=0,i = 1)
STBARD (rs1 = 15,rd=0,i = 0)

JMPL

9 MULX — — RETURN

A UMULD UMULccD RDPRP Tcc
See Table 75

B SMULD SMULccD FLUSHW FLUSH
C SUBC SUBCcc MOVcc SAVE
D UDIVX — SDIVX RESTORE

E UDIVD UDIVccD POPC (rs1 = 0)
— (rs1>0)

DONEP (fcn = 0)
RETRYP (fcn = 1)

F SDIVD SDIVccD MOVr
See Table 76 —

E.2 Tables 361

LDQF, LDQFA, STQF, STQFA, and the reserved (—) opcodes cause an illegal_instruction
trap.

Table 72: op3[5:0] (op = 3) (V9=33)

op3 [5:4]
0 1 2 3

op3
[3:0]

0 LDUW LDUWAPASI LDF LDFAPASI

1 LDUB LDUBAPASI LDFSRD, LDXFSR —
2 LDUH LDUHAPASI LDQF LDQFAPASI

3 LDDD LDDAD, PASI LDDF LDDFAPASI

4 STW STWAPASI STF STFAPASI

5 STB STBAPASI STFSRD, STXFSR —
6 STH STHAPASI STQF STQFAPASI

7 STDD STDAPASI STDF STDFAPASI

8 LDSW LDSWAPASI — —
9 LDSB LDSBAPASI — —
A LDSH LDSHAPASI — —
B LDX LDXAPASI — —
C — — — CASAPASI

D LDSTUB LDSTUBAPASI PREFETCH PREFETCHAPASI

E STX STXAPASI — CASXAPASI

F SWAPD SWAPAD, PASI — —

362 E Opcode Maps

Shaded boxes and reserved (—) opcodes cause an fp_exception_other trap with
ftt = unimplemented_FPop.

Table 73: opf[8:3] (op = 2,op3 = 3416 = FPop1) (V9=34)

opf[3:0]
opf[8:3] 0 1 2 3 4 5 6 7

0016 — FMOVs FMOVd FMOVq — FNEGs FNEGd FNEGq

0116 — FABSs FABSd FABSq — — — —
0216 — — — — — — — —
0316 — — — — — — — —
0416 — — — — — — — —
0516 — FSQRTs FSQRTd FSQRTq — — — —
0616 — — — — — — — —
0716 — — — — — — — —
0816 — FADDs FADDd FADDq — FSUBs FSUBd FSUBq

0916 — FMULs FMULd FMULq — FDIVs FDIVd FDIVq

0A16 — — — — — — — —
0B16 — — — — — — — —
0C16 — — — — — — — —
0D16 — FsMULd — — — — FdMULq —
0E16 — — — — — — — —
0F16 — — — — — — — —
1016 — FsTOx FdTOx FqTOx FxTOs — — —
1116 FxTOd — — — FxTOq — — —
1216 — — — — — — — —
1316 — — — — — — — —
1416 — — — — — — — —
1516 — — — — — — — —
1616 — — — — — — — —
1716 — — — — — — — —
1816 — — — — FiTOs — FdTOs FqTOs

1916 FiTOd FsTOd — FqTOd FiTOq FsTOq FdTOq —
1A16 — FsTOi FdTOi FqTOi — — — —

1B16..3F16 — — — — — — — —

† U
nd

efi
ne

d
va

ria
tio

n
of

 F
M

OV
R

Sh
ad

ed
 b

ox
es

 a
nd

re
se

rv
ed

 (—
) o

pc
od

es
 c

au
se

 a
n

fp
_e

xc
ep

tio
n_

ot
he

r t
ra

p
w

ith
ftt

=
un

im
pl

em
en

te
d_

FP
op

.

Ta
bl

e
74

:o
pf

[8
:0

](
op

=
2,

op
3

=
35

16
=

FP
op

2)
(V

9=
35

)

op
f[3

:0
]

op
f[8

:4
]

0
1

2
3

4
5

6
7

8.
.F

00
—

FM
OV

s (
fc

c0
)

FM
OV

d
(fc

c0
)

FM
OV

q
(fc

c0
)

—
†

†
†

—
01

—
—

—
—

—
—

—
—

—
02

—
—

—
—

—
FM

OV
sZ

FM
OV

dZ
FM

OV
qZ

—
03

—
—

—
—

—
—

—
—

—
04

—
FM

OV
s (

fc
c1

)
FM

OV
d

(fc
c1

)
FM

OV
q

(fc
c1

)
—

FM
OV

sL
EZ

FM
OV

dL
EZ

FM
OV

qL
EZ

—
05

—
FC

M
Ps

FC
M

Pd
FC

M
Pq

—
FC

M
PE

s
FC

M
PE

d
FC

M
PE

q
—

06
—

—
—

—
—

FM
OV

sL
Z

FM
OV

dL
Z

FM
OV

qL
Z

—
07

—
—

—
—

—
—

—
—

—
08

—
FM

OV
s (

fc
c2

)
FM

OV
d

(fc
c2

)
FM

OV
q

(fc
c2

)
—

†
†

†
—

09
—

—
—

—
—

—
—

—
—

0A
—

—
—

—
—

FM
OV

sN
Z

FM
OV

dN
Z

FM
OV

qN
Z

—
0B

—
—

—
—

—
—

—
—

—
0C

—
FM

OV
s (

fc
c3

)
FM

OV
d

(fc
c3

)
FM

OV
q

(fc
c3

)
—

FM
OV

sG
Z

FM
OV

dG
Z

FM
OV

qG
Z

—
0D

—
—

—
—

—
—

—
—

—
0E

—
—

—
—

—
FM

OV
sG

EZ
FM

OV
dG

EZ
FM

OV
qG

EZ
—

0F
—

—
—

—
—

—
—

—
—

10
—

FM
OV

s (
ic

c)
FM

OV
d

(ic
c)

FM
OV

q
(ic

c)
—

—
—

—
—

11
..1

7
—

—
—

—
—

—
—

—
—

18
—

FM
OV

s (
xc

c)
FM

OV
d

(x
cc

)
FM

OV
q

(x
cc

)
—

—
—

—
—

19
..1

F
—

—
—

—
—

—
—

—
—

364 E Opcode Maps

Table 75: cond[3:0] (V9=36)

BPcc BiccD FBPfcc FBfccD Tcc
op = 0

op2 = 1
op = 0

op2 = 2
op = 0

op2 = 5
op = 0

op2 = 6
op = 2

op3 = 3A16

cond
[3:0]

0 BPN BND FBPN FBND TN
1 BPE BED FBPNE FBNED TE
2 BPLE BLED FBPLG FBLGD TLE
3 BPL BLD FBPUL FBULD TL
4 BPLEU BLEUD FBPL FBLD TLEU
5 BPCS BCSD FBPUG FBUGD TCS
6 BPNEG BNEGD FBPG FBGD TNEG
7 BPVS BVSD FBPU FBUD TVS
8 BPA BAD FBPA FBAD TA
9 BPNE BNED FBPE FBED TNE
A BPG BGD FBPUE FBUED TG
B BPGE BGED FBPGE FBGED TGE
C BPGU BGUD FBPUGE FBUGED TGU
D BPCC BCCD FBPLE FBLED TCC
E BPPOS BPOSD FBPULE FBULED TPOS
F BPVC BVCD FBPO FBOD TVC

Table 76: Encoding of rcond[2:0] Instruction Field (V9=37)

BPr MOVr FMOVr
op = 0
op2 = 3

op = 2
op3 = 2F16

op = 2
op3 = 3516

rcond
[2:0]

0 — — —
1 BRZ MOVRZ FMOVRZ
2 BRLEZ MOVRLEZ FMOVRLEZ
3 BRLZ MOVRLZ FMOVRLZ
4 — — —
5 BRNZ MOVRNZ FMOVRNZ
6 BRGZ MOVRGZ FMOVRGZ
7 BRGEZ MOVRGEZ FMOVRGEZ

E.2 Tables 365

Table 77: cc / opf_cc Fields (MOVcc and FMOVcc) (V9=38)

opf_cc Condition Code
Selectedcc2 cc1 cc0

0 0 0 fcc0
0 0 1 fcc1
0 1 0 fcc2
0 1 1 fcc3
1 0 0 icc
1 0 1 —
1 1 0 xcc
1 1 1 —

Table 78: cc Fields (FBPfcc, FCMP and FCMPE) (V9=39)

cc1 cc0 Condition Code
Selected

0 0 fcc0
0 1 fcc1
1 0 fcc2
1 1 fcc3

Table 79: cc Fields (BPcc and Tcc) (V9=40)

cc1 cc0 Condition Code
Selected

0 0 icc
0 1 —
1 0 xcc
1 1 —

366 E Opcode Maps

F MMU Architecture

F.1 Introduction
Appendix F, “SPARC-V9 MMU Requirements” in V9, describes the boundary conditions
that all SPARC-V9 MMUs must satisfy. This version of the appendix describes the archi-
tecture of HAL’s SPARC64-III memory management unit. It is intended to provide the
information needed to port the Solaris O/S to the SPARC64-III.

You should read and understand the concepts introduced in Appendix F, “SPARC-V9
MMU Requirements” in V9 before proceeding.

F.1.1 Abbreviations and Acronyms

The following abbreviations and acronyms are used extensively throughout this appendix.

µITLB
Instruction Micro Translation Look-aside Buffer. A 32-entry fully-associative TLB
used to translate virtual instruction addresses to physical instruction addresses.

µDTLB:
Data Micro Translation Look-aside Buffer. A 32-entry fully-associative TLB used
to translate virtual operand addresses to physical operand addresses.

MTLB:
Main Translation Look-aside Buffer. A 256 entry fully-associative TLB that holds
the address translations for both instruction and operand references. MTLB is
accessed on µITLB or µDTLB misses.

VA:
Virtual Address.

PA:
Physical Address.

PTE:
Page Table Entry.

TR:
Translation region. A Portion of the MMU containing the MTLB hardware.

V9

368 F MMU Architecture

F.2 MMU and TLB Overview
The SPARC64-III MMU comprises:

� An instruction micro-TLB (µITLB)

� A data micro-TLB (µDTLB) and

� A main TLB (MTLB).

The µTLBs are small (32 entry), fully associative TLBs; they perform translation in paral-
lel with cache access. If an access cannot be translated by the µTLB, the hardware refer-
ences the MTLB. The MTLB is a relatively large (256 entries), fully associative TLB. If
the MTLB contains the PTE for an access, MMU hardware copies it into the appropriate
µTLB. The µTLBs are invisible to software, except for instructions that invalidate the
entire µITLB and µDTLB. Both the µITLB and µDTLB should be invalidated before
enabling virtual address translation. The software operates on the MTLB and the hardware
takes care of reflecting changes in µTLBs due to operations performed on the MTLB. The
hardware ensures that all entries in the µTLBs (both µITLB and µDTLB) are also present
in the MTLB.

This appendix concentrates on MTLB operations.

Figure 80 illustrates the MMU hardware. The µITLB, µDTLB and D1 Cache are con-
nected to the MTLB. Activities related to translation are carried over the interfaces
between the µTLBs and the MTLB. The MTLB receives its instructions via the D1 Cache
interface and sends back its responses to the D1 Cache interface. The D1 Cache interface
exists simply to provide a physical path to execute MMU related load and stores.

Figure 80: SPARC64-III MMU Organization

The following are the main features of the MMU:

� Full 64-bit virtual address (VA) support. All virtual addresses are qualified by a 12-bit
context. Taken together, these two items make up a complete reference of “con-
text:VA”.

� Primary, Secondary and Nucleus contexts are supported. A context is represented by a
12-bit number.

µITLB
(32 entries)

Translation

µDTLB
(32 entries)

D1
Cache

MTLB

Translation Instructions and
Responses

(256 entries)

F.3 MTLB Organization 369

� 2 terabytes of physical memory may be addressed through the supported 41 bit physi-
cal address. SPARC64-III-based multi-processor systems will be based upon a shared
main memory.

� The MTLB is a unified, 256 entry, fully associative TLB. It has translation entries for
both instruction and data accesses. Each entry translates a page, which may be of 15
different sizes.

� Software tablewalk is used to update the MTLB with a new PTE on an MTLB miss.

F.3 MTLB Organization
The MTLB caches mappings of context:VA to PA. It is organized as a 256 entry fully
associative structure. Comparison is performed as follows:

If the Universal (U) bit is not set (=0) for a page:
Translate context:VA � PA

If the Universal (U) bit is set (=1) for a page:
Translate VA � PA

In simple terms, the Universal bit means that the translation is valid for all contexts in the
system.

The MTLB supports variable sized pages and has a facility to lock entries. The contiguous
block of lockable entries always starts at entry 0. Entries can be locked or unlocked by
privileged software only. Locked entries are excluded from the normal insertion algorithm.
Privileged software has the capability of reading, writing or invalidating the MTLB
entries, including the locked entries.

Figure 81 illustrates the MTLB internal organization.

Figure 81: 256 Entry Fully Associative Main TLB (MTLB) Organization

context:VA 0

CAM Valid

context:VA 1

context:VA 2

context:VA 255

256
Entries

Entry 0

RAM

Entry 1

Entry 2

Entry 255

370 F MMU Architecture

F.3.1 Contexts

Contexts provide a set of 64-bit address spaces and have the following properties:

� Contexts are 12-bit values in SPARC64-III; that is, there are 4,096 distinct contexts.

� Context:VA is the fully qualified virtual address for translation.

� The MMU supports three context types:

A. Primary Context

B. Secondary Context

C. Nucleus Context

Each of the contexts is stored in a register. Only one of these contexts is used for a given
translation operation. A context switch—that is, a write into the context register—does not
cause invalidation of the MTLB or uTLBs. When a context number is reused—that is,.
when the context rolls over from its maximum value of 212 to 0—the software takes the
responsibility of invalidating the MTLB. The hardware is responsible for invalidating the
corresponding entry in either the µITLB or the µDTLB. The hardware makes sure that all
entries present in the µITLB and µDTLB are also present in the MTLB. There is no mech-
anism to invalidate the entire MTLB using a single instruction; if the entire MTLB must
be invalidated, software invalidates it one entry at a time. An entry is invalidated by first
writing a 0 into the tlb_data register and then issuing a write_data_mtlb_specified_entry or
write_data_mtlb_fifo_counter instruction.

Figure 82 illustrates the MTLB access mechanism.

Figure 82: MTLB Access

F.3.2 Page Table Entry (PTE) Format

The SPARC64-III processor hardware does not assume any particular data structure in
memory for the MMU to work correctly. To speed up the TLB miss handler, however,
SPARC64-III does provide the hardware calculation of pointers. Operating system soft-
ware can either use the hardware support or ignore it. If system software uses the TLB
miss hardware support, the following data structure should be used in memory:

VA
Context Selection

MTLB
Secondary

Context
Nucleus
Context

Primary
Context

Context

Context VA
Context VA
Context VA

Context VA

F.3.2 Page Table Entry (PTE) Format 371

On an MTLB miss, the miss trap handler is invoked. This accesses the Translation Mem-
ory Buffer (TMB), which is resident in memory.

� TMB is organized as a direct mapped cache. The index consists of the lower bits of the
miss VA. The tag consists of the remaining upper bits of the miss VA.

� The TMB contains between 512 and 64K Page Table Entries (PTEs).

� The TMB can have a mixture of 8Kb and 64Kb pages, or it can be split into 8Kb
(lower half) and 64Kb (upper half) pages. A split TMB is more efficient.

� Accesses to the TMB are optimized for 8Kb and 64Kb page sizes.

� Each PTE is 16 bytes long. These 16 bytes can be accessed atomically using the quad
load (LDDA) instruction.

� If a PTE is not found in the TMB, a slow, but detailed, trap handler is invoked. There is
no restriction for the data structure accessed by the slow handler.

F.3.2.1 PTE Format (within TMB)

Figure 83 illustrates the Page Table Entry (PTE) as it is stored in the TMB. The following
subsections describe each PTE field in detail.

Figure 83: PTE Format Within the TMB

V
V=1 indicates that the PTE is valid. This bit is present in both TAG and DATA por-
tions of the PTE to speed up the TLB miss handler.

U
Universal bit. If U=1, the context is ignored; that is, this associated VA is valid for
all contexts, and is thus, universal. The U bit is present in both TAG and DATA
portions of the PTE to speed up the TLB miss handler.

CONTEXT<11:0>
Context number.

VA<63:22>
Tag portion of the VA. These bits of the VA are used to determine if an address
matches the TMB entry.

TAG

DATA

6 59101211404648 414749525456 53556263 0

V — — U SIZE IESO — PA<40:12> N
F
O

C
H — PROT

4248 41475960626163 0

—V U CONTEXT<11:0> — VA<63:22>

372 F MMU Architecture

SIZE<3:0>
Encodes the page size associated with this PTE, as specified in Table 80.

IE
Invert Endianness. IE=1 means that the endianness of data accessed through this
PTE is to be inverted. This does not imply that the associated data is little-endian.

SO
Strongly ordered. SO=1 means that the accesses through this PTE are strongly
ordered.

PA<40:12>
Physical Address.

NFO
Non-Faulting-Only bit, used for loads. If NFO=1, protection violations do not gen-
erate exceptions. The only side effect they have is that they cause the data returned
to be zero.

CH
Cacheable. When CH=1, the information at the associated address is cacheable;
when CH=0, it is not cacheable. Since the SPARC64-III follows the Sun Microsys-
tems’ UPA protocol, when CH=0, not only are the accesses non cacheable, but
they must also come from the I/O space. In other words, it is not possible to access
information from memory when CH=0.

Table 80: Page Size Encoding in PTE.SIZE

SIZE Page Size Page Size (2n)
00002 4Kb 212

00012 8Kb 213

00102 16 Kb 214

00112 32 Kb 215

01002 64 Kb 216

01012 128 Kb 217

01102 256 Kb 218

01112 512 Kb 219

10002 1 Mb 220

10012 4 Mb 222

10102 16 Mb 224

10112 64 Mb 226

11002 256 Mb 228

11012 1 Gb 230

11102 4 Gb 232

11112 4 Gb 232

F.3.3 Translation Lookaside Buffer (TLB) Entry Format (within MTLB) 373

PROT<5:0>
Protection bits. The table below shows the bit definition. When a protection bit is
zero, the access is denied. When a protection bit is set (=1), the associated access
is allowed. Table 81 enumerates the encodings for the PTE.PROT field.

All fields marked with a ‘—’ are reserved. The software should write zero to these fields.

F.3.3 Translation Lookaside Buffer (TLB) Entry Format (within MTLB)

Figure 84 illustrates the TLB entry format.

Figure 84: TLB Entry Format

The Translation Lookaside Buffer Entry has almost exactly the same format as the Page
Table Entry. Because of this, the TLB Entry fields are not documented here; refer to the
PTE fields above for their definitions.

All fields marked with a ‘—’ are reserved. They are read as zero and writes to them are
ignored.

This format is used in the following instruction:

� Write Instruction Main TLB Into Specified Entry (ASI=33, W)

� Write Instruction Main TLB Into FIFO Entry (ASI=34, W)

� Write Data Main TLB Into Specified Entry (ASI=35, W)

� Write Data Main TLB Into FIFO Entry (ASI=36, W)

� Read Main TLB Context and VA X (ASI=37, R)

Table 81: PTE.PROT Field Encoding

PROT Meaning
Bit 5 Supervisor Read Permission
Bit 4 Supervisor Write Permission
Bit 3 Supervisor Execute Permission
Bit 2 User Read Permission
Bit 1 User Write Permission
Bit 0 User Execute Permission

DATA

6 59101211404648 414749525456 53556263 0

V — — U SIZE IESO — PA<40:12> N
F
O

C
H — PROT

52 5163 0

VA<63:12>CONTEXT<11:0>

TAG

374 F MMU Architecture

� Read Main TLB Context and VA Y (ASI=41, R)

F.4 MMU Registers
The table below lists the MMU-related registers accessed using special ASIs. A write to
these registers should take place using appropriate memory barriers or using syncing or
serializing instructions.

F.5 MMU Instructions
The table below lists the instructions associated with MMU processing. STXA/STDFA
must be used to send these instructions to MMU and LDXA/LDDFA must be used to read

Table 82: MMU Registers

Register Name ASI/
asr

Addr
hex

VA
hex Function

primary_context ASI 40(r/w) 10 12-bit primary context register
secondary_context ASI 40(r/w) 20 12-bit secondary context register.
nucleus_context ASI 40(r/w) 30 12-bit nucleus context register.
inst_tmb_base ASI 3F(r/w) 30 Base address (VA) of the instruction TMB
data_tmb_base ASI 3F(r/w) 40 Base address (VA) of the data TMB
inst_tlb_match_data ASI 3F(r/w) 10 Instruction context:va for an MTLB miss
data_tlb_match_data ASI 3F(r/w) 20 Data context:va for an MTLB miss
tlb_lock_entries ASI 40(r/w) 50 Entries 0 to (tlb_lock_entries - 1) are locked
tlb_fifo_counter ASI 40(r/w) 60 MTLB entry number to be written into.
inst_tmb_tag ASI 39(r) 0 inst_tlb_match_data reformatted for comparison
data_tmb_tag ASI 3A(r) 0 data_tlb_match_data reformatted for comparison
inst_8KB_tmb_pointer ASI 3B(r) 0 inst TMB pointer (VA) for 8KB page size
data_8KB_tmb_pointer ASI 3D(r) 0 data TMB pointer (VA) for 8KB page size
inst_64KB_tmb_pointer ASI 3C(r) 0 inst TMB pointer (VA) for 64KB page size
data_64KB_tmb_pointer ASI 3E(r) 0 data TMB pointer (VA) for 64KB page size
asi_scratch_reg ASI 44 (r/w) 5:3 8 Scratch registers for software use. address [5:3]

F.5 MMU Instructions 375

the information from the MMU. Care should be taken that appropriate memory barriers
are inserted or instructions are syncing or serializing when these instructions are issued.

Table 83: MMU Instructions

Instruction
Addr
ASI

(hex)
VA

(hex) Description

match_and_invalidate_tlb_entry 30(w) 0 Match the context:VA with all entries of the MTLB
and invalidate the matched entry. This includes both
locked and unlocked entries. All matched entries are
invalidated. The context:VA against which match is
to be performed is sent as the data portion of the
instruction.

invalidate_udtlb 31(w) 0 Invalidates all entries of the µDTLB. Data is unde-
fined.

invalidate_uitlb 32(w) 0 Invalidates all entries of the µITLB. Data is unde-
fined.

write_instr_mtlb_specified_entry 33(w) 11:4 Contents of instr_tlb_match_data register and data
specified in the instruction are written into the
MTLB entry specified in the VA[11:4].

write_instr_mtlb_fifo_counter 34(w) 0 Contents of instr_tlb_match_data register and data
specified in the instruction are written into the
MTLB entry specified in the tlb_fifo_counter regis-
ter.

write_data_mtlb_specified_entry 35(w) 11:4 Contents of data_tlb_match_data register and data
specified in the instruction are written into the
MTLB entry specified in the VA[11:4].

write_data_mtlb_fifo_counter 36(w) 0 Contents of data_tlb_match_data register and data
specified in the instruction are written into the
MTLB entry specified in the tlb_fifo_counter regis-
ter.

read_mtlb_context_va_x 37(r) 11:4 The x-field of the context:va part of the MTLB entry
specified in the VA[11:4] is read.a

a. The information about context:va is stored in the MTLB in a format different than the
one specified by the programmer. This is transparent to the software except when read-
ing the contents of the context:va portion of an entry. Each bit of context:va is encoded
by 2 bits as follows:

read_mtlb_context_va_y 41(r) 11:4 For diagnostics only. Read the y-field of the MTLB
CAM entry specified in the VA[11:4].

read_mtlb_pa_attributes 38(r) 11:4 The PA and attributes part of the MTLB entry speci-
fied in the VA[11:4] is read.

Table 84: x and y fields of CAM

x field y field Value to be stored in
0 1 0
1 0 1
0 0 Don’t-care (matches or 1)
1 1 Neither 0 nor 1 (testing only)

376 F MMU Architecture

Example: For 8KB page, we need context[11:0] and VA[40:13], but the context:va field
holds context[11:0] and VA[40:12]; VA[12] is a don’t care. The don’t care state is repre-
sented by setting bits in both x and y fields to be 0.

F.6 MMU Exceptions
Table 85 lists the MMU exceptions:

F.7 Disable Main and Micro TLB Function

F.7.1 Disable TLB Bits in SCR (ASR31)

The following Disable TLB bits are defined in SCR.
Bit 29: Disable Main Instruction TLB (D_MITLB)

Bit 27: Disable Micro Instruction TLB (D_UITLB)

Bit 30: Disable Main Data TLB (D_MDTLB)

Bit 28: Disable Micro Data TLB (D_UDTLB)

The table below describes the modes which are specified by the bit. (The table is common
to the D_MITLB and D_UITLB bit pair and the D_MDTLB andD_UDTLB bit pair.)

Table 85: MMU Exceptions

Exception Mnemonic Trap Type Description
32i_data_access_mmu_miss 0x68-0x6B PTE is not cached in the MMU.
32i_instruction_access_mmu_miss 0x64-0x67 PTE is not cached in the MMU.
fast_data_access_protection 0x6C-0x6F Access rights violation. It includes write to clean page
data_access_exception 0x30 ASR 29 specifies the cause of exception.
instruction_access_exception 0x08 PTE cached in MMU. Execute permission is denied.
data_access_error 0x32 Data Fault Access Type Register (ASR 29) specifies the

cause of error.
instruction_access_error 0x0A Instruction Fault Type Register (ASR 24) specifies the

cause of error.

D_MTLB D_UTLB Function
0 0 Translation is on, Micro TLB is enabled.
0 1 Translation is on, Micro TLB is disabled.

(For bringup use only)
1 0 Translation is off, Micro TLB is enabled.

(For bringup use only)
1 1 Translation is off, Micro TLB is disabled.

F.7.2 Translation Off Mode 377

The pattern “01” and “10” in the above table should not be used in normal operations.
They are provided only for bringup just in case where Main/Micro TLB’s have problems
in hardware.

F.7.2 Translation Off Mode

When the translation is off, the following things are done by the hardware.

� VA[40:0] is passed to PA[40:0], and VA[63:41] and CONTEXT values are disre-
garded.

� Memory accesses by instruction fetch and data load/store behave as follows:

CH (Cacheable) = ‘0’

SO (Strong Order) = ‘1’

IE (Invert Endianness) = ‘0’

NFO (Nonfaulting Only) = ‘0’

PROT (SR/SW/SX/UR/UW/UX) = ‘111111’

in the page table entry.

F.7.3 Notes

The micro TLB’s are invisible from the software.

When D_MITLB value is going to be changed, the hardware invalidates all of instructions
from I0-Cache and Instruction-Buffer.

On the entry of RED_state, D_MITLB, D_UITLB, D_MDTLB, and D_UDTLB bits in
SCR are set to “1” by the hardware.

In RED_state, regardless of D_MITLB, D_UITLB values in SCR, the hardware behaves
as if these bits are “1”. Therefore the software can’t turn on the translation for instruction
fetch in RED_state by any means.

It’s the software’s responsibility of resetting D_MITLB, D_UITLB, D_MDTLB, and
D_UDTLB bits in SCR on the exit of or during RED_state if the translation needs to be
turned on again.

Any operations other than translations by instruction fetch and data access are not disabled
by Main/Micro TLB disable bits. For example, Main TLB write operations or Micro TLB
invalidation operations by STXA/STDFA are still operational when Main or Micro TLB
are disabled.

F.8 Locking Entries
A mechanism (illustrated in Figure 85) has been provided to lock a set of entries in the
MTLB. When the tlb_lock_entries_reg is programmed with a value i (0<= i <= 255), 0 to

378 F MMU Architecture

(i-1) entries are locked. If tlb_lock_entries_reg is 0, no entry is locked. Note that there
should be at least one entry that remains unlocked.

The tlb_fifo_counter_reg that takes care of the MTLB entry replacement should be pro-
grammed such that it does not match an entry that has been locked. When entries are
replaced the tlb_fifo_counter_reg is incremented till it reaches the max_tlb_entry_count
(255 in this case). For the next replacement, the tlb_fifo_counter_reg acquires the value
programmed in tlb_lock_entries_reg.

Figure 85: Locking Entries

0
1
2

254
255

tlb_lock_entries_reg

tlb_fifo_counter_reg

LOCKED ENTRIES

Replaceable Entries

F.9 Data MTLB Miss 379

F.9 Data MTLB Miss
This section gives an overview of the Data MTLB Miss operation. The data MTLB miss
causes the 32i_data_access_mmu_miss exception. The trap handler consists of the steps
shown in Figure 86:

Figure 86: Data MMU Miss Trap Handler

We assume in the above example that we are operating in trap level 0 and have enough
ASR/ASI scratch registers available so that a save and restore of registers is not required.

The first step is to load the TMB pointer into an integer register using an MMU ASI
instruction. The pointer gives a 16-byte aligned virtual address. For a direct mapped TMB,
if the desired PTE is resident in the TMB, it is present in the 16-byte memory space
pointed to by this tmb_pointer. Depending on whether the page size is 8KB or 64KB, this
pointer is referred to as data_8KB_tmb_pointer or data_64KB_tmb_pointer respectively
in this document.

Load the TMB Pointer

Load the

load the PTE from memory
using the TMB pointer

tag for miss ctx:va

from MMU

from MMU

TAG
MATCH?

Insert the PTE

FLUSH

RETRY

Execute the slow handler

NO

YES

380 F MMU Architecture

Formation of the TMB Pointer

When the processor enters the 32i_data_mmu_access_miss trap handler, the MMU hard-
ware stores the context and the virtual operand address that caused the MMU miss in the
data_tlb_match_data register. Software has already initialized the data_tmb_base register
before the first MMU miss is detected. The data_tmb_base register contains information
about the base address of the TMB (BASE[63:13]), size (N, where N = 0,1..,7) of the
TMB and whether it is split or not. The pointer is formed as follows:

If (split == 0)

� data_8KB_tmb_pointer = BASE[63:13+N] [] VA[21+N:13][]0000

� data_64KB_tmb_pointer = BASE[63:13+N][] VA[24+N:16][]0000

If (split == 1)

� data_8KB_tmb_pointer = BASE[63:14+N][] 0 [] VA[21+N:13][]0000

� data_64KB_tmb_pointer = BASE[63:14+N][] 1 [] VA[24+N:16][]0000

The second step is to load the tag associated with the miss VA into an integer register
using the MMU ASI instruction to read the data_tmb_tag register.

In the third step, the TMB pointer is used to fetch 16-byte information from memory
atomically. The first 8 bytes provide the TAG of the VA and the next 8 bytes the physical
address and attributes associated with the VA.

The next step is to compare the tag of the miss VA with the one loaded from memory. The
figure below illustrates the formats of the data_tmb_tag register and the tag loaded from
memory. The valid bit for the data_tmb_tag_register is always a ‘1’. To ensure a tag
match:

� The valid bit of the TAG read from memory should be a ‘1’; that is, the PTE should be
valid.

� The U-bit of the TAG read from memory should be a ‘0’; that is, the match is per-
formed against both context and VA. This is required as we do not know whether or
not the page has the U-bit set when we got a data_MMU_miss exception. Since the
U-bit is not set more often than it is set, the TLB handler is optimized for U=0 case.

� Context and VA should match.

F.10 Instruction MTLB Miss 381

Table 86: Tag Comparison

If the TAG matches the PTE is inserted in the MTLB using the write_data_mtlb_specified
entry or write_data_mtlb_fifo_counter instruction. In the former instruction, the entry to
be written into is specified in the instruction itself. In the latter instruction, fifo counter
value is used to insert the PTE. The fifo counter is incremented after insertion. The MTLB
entries are replaced in FIFO fashion. Therefore, there is no need for software to keep track
of the replacement policy.

It should be noted that the miss VA is also present in the ASR28 and context number in
ASR29. To assist the software in tablewalk, 4 ASR and 8 ASI registers have been pro-
vided.

F.10 Instruction MTLB Miss
The description for handling the instruction MTLB miss is similar to the one for data
MTLB miss except that:

1. The word “data” is replaced by “instruction” for instruction and register names.

2. Miss VA can be read out from the TPC. The program was executing in primary context
if the trap level is 0 (TL = 0) and in nucleus context if the trap level is greater than 0
(TL > 0). The context number can be read using the read_primary_context_register
instruction if the program was executing with TL=0 or read_nucleus_context_register
instruction if the program was executing with TL>0.

F.11 Programming Notes
The software should not alter the Primary Context Register when the instruction MTLB is
enabled and the trap level is “0”. In other words, the software should not alter the Primary
Context Register when the register is being used to fetch instructions. If it is altered in this
condition, an unpredictable result is produced.

0414247485960616263

VA[63:22]0CONTEXT[11:0]00V

data_tmb_tag_register

0414247485960616263

VA[63:22]0CONTEXT[11:0]0UV

TAG

382 F MMU Architecture

The software should not alter the Nucleus Context Register when the instruction MTLB is
enabled and the trap level is not “0”. In other words, the software should not alter the
Nucleus Context Register when the register is being used to fetch instructions. If it is
altered in this condition, an unpredictable result is produced.

When the software is writing a context register using the following instructions,
STXA ASI=40 VA=0x10 (Write Primary Context Register)
STXA ASI=40 VA=0x20 (Write Secondary Context Register)
STXA ASI=40 VA=0x30 (Write Nucleus Context Register)

each has to be followed by
A pair of TN and DONE instructions, OR
A pair of TN and RETRY instructions, OR
FLUSH instruction, OR
MEMBAR#Sync instruction, OR
WR %ASR31<1> = 1 (Invalidate I0)

(<- normally not recommended due to performance reason.)

to make the effects visible to the following instruction fetch, and has to be followed by TN
instruction or any other syncing instruction to make the effects visible to the following
data access.

When the software is writing a new MTLB entry into MTLB using the following instruc-
tions:

STXA ASI=33 (Write Instruction Main TLB Into Specified Entry)
STXA ASI=34 (Write Instruction Main TLB Into FIFO Entry)
STXA ASI=35 (Write Data Main TLB Into Specified Entry)
STXA ASI=36 (Write Data Main TLB Into FIFO Entry)

each has to be followed by:
A pair of TN and DONE instructions, OR
A pair of TN and RETRY instructions, OR
FLUSH instruction, OR
MEMBAR#Sync instruction, OR
WR %ASR31<1> = 1 (Invalidate I0)

(<- normally not recommended due to performance reason.)

to make the effects visible to the following instruction fetch, and has to be followed by a
TN instruction or any other syncing instruction to make the effects visible to the following
data access.

When the software is invalidating or modifying a MTLB entry which already exists in
MTLB using the following instructions,

 STXA ASI=30 (Match And Invalidate TLB Entry)

 STXA ASI=33 (Write Instruction Main TLB Into Specified Entry)

 STXA ASI=34 (Write Instruction Main TLB Into FIFO Entry)

 STXA ASI=35 (Write Data Main TLB Into Specified Entry)

 STXA ASI=36 (Write Data Main TLB Into FIFO Entry)

the software should do the following steps.

F.12 MMU Reference 383

 1) Invalidate or modify TMB in the memory

 2) Invalidate or modify MTLB

 3) WRASR %31 with bit-1 = 1 (Invalidate I0)

to make the effects visible to the following instruction fetch and data access.

F.12 MMU Reference

F.12.1 ASI MMU Registers

F.12.1.1 PRIMARY_CONTEXT Register
Address ASI = 4016, VA = 1016
Access Modes: Supervisor read/write.
Function: CONTEXT[11:0].
Data Format: Reserved bits ignored on write, read as ‘0’.

F.12.1.2 SECONDARY_CONTEXT Register
Address: ASI = 4016, VA = 2016
Access Modes: Supervisor read/write.
Function: CONTEXT[11:0].
Data Format: Reserved bits ignored on write, read as ‘0’.

F.12.1.3 NUCLEUS_CONTEXT Register
Address: ASI = 4016, VA = 3016
Access Modes: Supervisor read/write.
Function: CONTEXT[11:0].
Data Format: Reserved bits ignored on write, read as ‘0’..

CONTEXT

0111263

Reserved

CONTEXT

0111263

Reserved

CONTEXT

0111263

Reserved

384 F MMU Architecture

F.12.1.4 INST_TMB_BASE Register
Address: ASI = 3F16, VA = 3016
Access Modes: Supervisor read/write.
Function: Contains information about an instruction Translation Memory Buffer

(TMB) entry.
Data Format: Reserved bits ignored on write, read as ‘0’. If SPLIT = 1, the lower half of

the TMB is 8K pages, and the upper half is 64K pages. TMB_BASE
points to the base of the TMB structure in memory..

F.12.1.5 DATA_TMB_BASE Register
Address ASI = 3F16, VA = 4016
Access Modes: Supervisor read/write.
Function: Contains information about a data TMB entry.
Data Format: Reserved bits ignored on write, read as ‘0’. If SPLIT = 1, the lower half of

the TMB is 8K pages, and the upper half is 64K pages. TMB_BASE
points to the base of the TMB structure in memory.

SIZE # of TMB Entries
000 512
001 1024
010 2K
011 4K
100 8K
101 16K
110 32K
111 64K

Table 87: TMB Sizes

063 13 12 2311

SIZERESERVEDSPLITTMB_BASE

063 13 12 2311

SIZERESERVEDSPLITTMB_BASE

F.12.1 ASI MMU Registers 385

F.12.1.6 INST_TLB_MATCH_DATA Register
Address: ASI = 3F16, VA = 1016
Access Modes: Supervisor read/write. Also loaded by hardware when a trap for instruc-

tion MTLB miss is taken
Function: Data used for matching an entry in the TLB.
Data Format:

F.12.1.7 DATA_TLB_MATCH_DATA Register
Address: ASI = 3F16, VA = 2016
Access Modes: Supervisor read/write. Also loaded by hardware when a trap for data

MTLB miss is taken.
Function: Data used for matching an entry in the TLB.
Data Format:

F.12.1.8 TLB_LOCK_ENTRIES Register
Address: ASI = 4016, VA = 5016
Access Modes: Supervisor read/write
Function: Number of TLB entries to lock.(e.g. ‘8’ means entries 0-7 are “locked”).

This register is initialized by hardware to the value of 0xFF. See also
TLB_FIFO_COUNTER_REG below.

Data Format: Reserved bits ignored on write, read as ‘0’.

Table 88: TMB Sizes

SIZE # of TMB ENTRIES
000 512
001 1024
010 2K
011 4K
100 8K
101 16K
110 32K
111 64K

063 52 51

CONTEXT[11:0] VA[63:12]

063 52 51

CONTEXT[11:0] VA[63:12]

063

Reserved

78

Number_of_entries

386 F MMU Architecture

F.12.1.9 TLB_FIFO_COUNTER Register
Address: ASI = 4016, VA = 6016
Access Modes: Supervisor read/write
Function: This register is initialized to 0xff by hardware. It increments by one when

the WRITE_TLB_ENTRY register is written to with the V bit set to 1,
except when wrapping from 0xff. Instead of wrapping to 0x0, it loads the
value from the TLB_LOCK_ENTRIES Register. Software should make
sure that this TLB_FIFO_COUNTER Register is greater than the
TLB_LOCK_ENTRIES Register when changing the
TLB_LOCK_ENTRIES value.

Data Format: Reserved bits ignored on write, read as ‘0’.

F.12.1.10 INST_TMB_TAG Register (Not A Real Register)
Address: ASI = 3916, VA = 0
Access Modes: Supervisor read
Function: Used to assist in indexing instruction TMB.
Data Format:

F.12.1.11 DATA_TMB_TAG Register (Not A Real Register)
Address: ASI = 3A16, VA = 0
Access Modes: Supervisor read
Function: Used to assist in indexing data TMB.
Data Format:

063

Reserved

78

TLB Address

063 59 48 4142476062

VALID 0 CONTEXT VATAG0

063 59 48 4142476062

VALID 0 CONTEXT VATAG0

F.12.1 ASI MMU Registers 387

F.12.1.12 INST_8KB_TMB_POINTER Register (Not A Real Register)
Address: ASI = 3B16, VA = 0
Access Modes: Supervisor read
Function: Pointer to the entry in TMB that may contain the translation for 8KB

pages for an instruction MTLB miss.
Data Format:

F.12.1.13 DATA_8KB_TMB_POINTER Register (Not A Real Register)
Address: ASI = 3D16, VA=0
Access Modes: Supervisor read
Function: Pointer to the entry in TMB that may contain the translation for 8KB

pages for a data MTLB miss.
Data Format:

F.12.1.14 INST_64KB_TMB_POINTER Register (Not A Real Register)
Address: ASI = 3C16, VA = 0
Access Modes: Supervisor read
Function: Pointer to the entry in TMB that may contain the translation for 64KB

pages for an instruction MTLB miss.
Data Format: Reserved bits ignored on write, read as ‘0’.

F.12.1.15 DATA_64KB_TMB_POINTER Register (Not A Real Register)
Address: ASI = 3E16, VA = 0
Access Modes: Supervisor read
Function: Pointer to the entry in TMB that may contain the translation for 64KB

pages for a data MTLB miss.
Data Format:

063
VA

063
VA

063
VA

063
VA

388 F MMU Architecture

F.12.1.16 ASI Scratch Registers 0-7
Address: ASI = 4416, VA[5:3] = ASI Scratch Register Number (0-7). Other VA bits

have to be zero.
Access Modes: Supervisor read/write
Function: Scratch registers.
Data Format:

F.12.2 ASI MMU Instructions

These instructions are mapped into the ASI_MMU address space. They are executed for
their “side-effects” rather than loading/storing a specific register in the TR.

F.12.2.1 MATCH_AND_INVALIDATE_TLB_ENTRY Instruction
Address: ASI = 3016, VA = 0
Access Modes: Supervisor write only.
Function: Match the context:va with all the entries of MTLB and invalidate the

matched entries. This includes both locked and unlocked entries. If more
than one entries match, it is a hardware or software bug.

Data Format:

F.12.2.2 INVALIDATE_UDTLB Instruction
Address: ASI = 3116, VA = 0
Access Modes: Supervisor write only.
Function: Invalidate all the data micro TLB entries.
Data Format:

063
DATA

063

VA[63:12]

5152

Context[11:0]

063

undefined

F.12.2 ASI MMU Instructions 389

F.12.2.3 INVALIDATE_UITLB Instruction
Address: ASI = 3216, VA = 0
Access Modes: Supervisor write only.
Function: Invalidate all the instruction micro TLB entries.
Data Format:

F.12.2.4 WRITE_INSTR_MTLB_SPECIFIED_ENTRY Instruction
Address: ASI = 3316, VA = [11:4]
Access Modes: Supervisor write only.
Function: Inserts the TLB entry specified in the VA[11:4]. Contents of the

instr_tlb_match_data register specify the context:va. The data field of the
instruction specifies the PA and attributes associated with it.

Data Format:

F.12.2.5 WRITE_INSTR_MTLB_FIFO_COUNTER Instruction
Address: ASI = 3416, VA = 0
Access Modes: Supervisor write only.
Function: Inserts the TLB entry specified in the fifo_counter_register. Contents of

the instr_tlb_match_data register specify the context:va. The data field of
the instruction specifies the PA and attributes associated with it.

Data Format:

F.12.2.6 WRITE_DATA_MTLB_SPECIFIED_ENTRY Instruction
Address: ASI = 3516, VA = [11:4]
Access Modes: Supervisor write only.
Function: Inserts the TLB entry specified in the VA[11:4]. Contents of the

data_tlb_match_data register specify the context:va. The data field of the
instruction specifies the PA and attributes associated with it.

Data Format:

063

undefined

063

see TLB entry format

063

see TLB entry format

063

see TLB entry format

390 F MMU Architecture

F.12.2.7 WRITE_DATA_MTLB_FIFO_COUNTER Instruction
Address: ASI = 3616, VA = 0
Access Modes: Supervisor write only.
Function: Inserts the TLB entry specified in the fifo_counter_register. Contents of

the data_tlb_match_data register specify the context:va. The data field of
the instruction specifies the PA and attributes associated with it.

Data Format:

F.12.2.8 READ_MTLB_CONTEXT_VA_X Instruction
Address: ASI = 3716, VA = [11:4]
Access Modes: Supervisor read only.
Function: Read the x-field of the context:va portion of the MTLB entry specified in

the VA[11:4].
Data Format:

F.12.2.9 READ_MTLB_CONTEXT_VA_Y Instruction
Address: ASI = 4116, VA = [11:4]
Access Modes: Supervisor read only.
Function: Read the y-field of the context:va portion of the MTLB entry specified in

the VA[11:4].
Data Format:

063

see TLB entry format

063

VA[63:12]

5152

Context[11:0]

063

VA[63:12]

5152

Context[11:0]

F.12.2 ASI MMU Instructions 391

F.12.2.10 READ_MTLB_PA_ATRIBUTES Instruction
Address: ASI = 3816, VA = [11:4]
Access Modes: Supervisor read only.
Function: Read the PA and attributes of the MTLB entry specified in the VA[11:4].
Data Format:

04147485763

PROT[5:0]CHNFOPA[40:12]SOIESIZE[3:0]URPRTYCPRTY

5691011124649525354 40

DATA

———

56 55

V1 V0

62 61 58

V1: valid bit in Main TLB
V0: valid bit copy in Main TLB
CPRTY[3]: odd parity bit for CONTEXT_X[11:0] and VA_X[63:44] in Main TLB
CPRTY[2]: odd parity bit for VA_X[43:12] in Main TLB
CPRTY[1]: odd parity bit for CONTEXT_Y[11:0] and VA_Y[63:44] in Main TLB
CPRTY[0]: odd parity bit for VA_Y[43:12] in Main TLB
RPRTY[1]: odd parity bit for RSV[1:0], U, SIZE[3:0], IE, SO, PA[40:36] in Main TLB
RPRTY[0]: odd parity bit for PA[35:12], NFO, CH, PROT[5:0] in Main TLB
Other fields: see TLB entry format

392 F MMU Architecture

G Assembly Language Syntax
This appendix supports Appendix A, “Instruction Definitions”. Each instruction descrip-
tion in Appendix A includes a table that describes the suggested assembly language for-
mat for that instruction. This appendix describes the notation used in those assembly
language syntax descriptions and lists some synthetic instructions provided by the
SPARC64-III assembler for the convenience of assembly language programmers.

G.1 Notation Used
The notations defined here are also used in the syntax descriptions in Appendix A.

Items in typewriter font are literals to be written exactly as they appear. Items in
italic font are metasymbols that are to be replaced by numeric or symbolic values in actual
SPARC64-III assembly language code. For example, “imm_asi” would be replaced by a
number in the range 0 to 255 (the value of the imm_asi bits in the binary instruction), or by
a symbol bound to such a number.

Subscripts on metasymbols further identify the placement of the operand in the generated
binary instruction. For example, regrs2 is a reg (register name) whose binary value will be
placed in the rs2 field of the resulting instruction.

G.1.1 Register Names

reg:
A reg is an integer register name. It may have any of the following values:1

%r0 ..%r31
%g0 ..%g7 (global registers; same as %r0 ..%r7)
%o0 ..%o7 (out registers; same as %r8 ..%r15)
%l0 ..%l7 (local registers; same as %r16 ..%r23)
%i0 ..%i7 (in registers; same as %r24 ..%r31)
%fp (frame pointer; conventionally same as %i6)
%sp (stack pointer; conventionally same as %o6)

1. In actual usage, the %sp, %fp, %gn, %on, %ln, and %in forms are preferred over %rn.

394 G Assembly Language Syntax

Subscripts identify the placement of the operand in the binary instruction as one of
the following:

regrs1 (rs1 field)
regrs2 (rs2 field)
regrd (rd field)

freg:
An freg is a floating-point register name. It may have the following values:

%f0, %f1, %f2 .. %f63 See 5.1.4, “Floating-point Registers”
Subscripts further identify the placement of the operand in the binary instruction as
one of the following:

fregrs1 (rs1 field)
fregrs2 (rs2 field)
fregrs3 (rs3 field)
fregrd (rd field)

asr_reg:
An asr_reg is an Ancillary State Register name. It may have one of the following
values:

%asr16 ..%asr31

Subscripts further identify the placement of the operand in the binary instruction as
one of the following:

asr_regrs1 (rs1 field)
asr_regrd (rd field)

i_or_x_cc:
An i_or_x_cc specifies a set of integer condition codes, those based on either the
32-bit result of an operation (icc) or on the full 64-bit result (xcc). It may have
either of the following values:

%icc
%xcc

fccn:
An fccn specifies a set of floating-point condition codes. It may have any of the fol-
lowing values:

%fcc0
%fcc1
%fcc2
%fcc3

G.1.2 Special Symbol Names

Certain special symbols appear in the syntax table in typewriter font. They must be
written exactly as they are shown, including the leading percent sign (%).

The symbol names and the registers or operators to which they refer are as follows:

G.1.2 Special Symbol Names 395

%asi Address Space Identifier register
%canrestore Restorable Windows register
%cansave Savable Windows register
%cleanwin Clean Windows register
%cwp Current Window Pointer register
%fsr Floating-point State Register
%otherwin Other Windows register
%pc Program Counter register
%pil Processor Interrupt Level register
%pstate Processor State register
%tba Trap Base Address register
%tick Tick (cycle count) register
%tl Trap Level register
%tnpc Trap Next Program Counter register
%tpc Trap Program Counter register
%tstate Trap State register
%tt Trap Type register
%ccr Condition Codes Register
%fprs Floating-point Registers State register
%ver Version register
%wstate Window State register
%y Y register

The following special symbol names are unary operators that perform the functions
described:

%uhi Extracts bits 63..42 (high 22 bits of upper word) of its operand
%ulo Extracts bits 41..32 (low-order 10 bits of upper word) of its

operand
%hi Extracts bits 31..10 (high-order 22 bits of low-order word) of

its operand
%lo Extracts bits 9..0 (low-order 10 bits) of its operand

Certain predefined value names appear in the syntax table in typewriter font. They
must be written exactly as they are shown, including the leading sharp sign (#).

The value names and the values to which they refer are as follows:
#n_reads 0 (for PREFETCH instruction)
#one_read 1 (for PREFETCH instruction)
#n_writes 2 (for PREFETCH instruction)
#one_write 3 (for PREFETCH instruction)
#page 4 (for PREFETCH instruction)
#Sync 4016 (for MEMBAR instruction cmask field)
#MemIssue 2016 (for MEMBAR instruction cmask field)
#Lookaside 1016 (for MEMBAR instruction cmask field)

396 G Assembly Language Syntax

#StoreStore 0816 (for MEMBAR instruction mmask field)
#LoadStore 0416 (for MEMBAR instruction mmask field)
#StoreLoad 0216 (for MEMBAR instruction mmask field)
#LoadLoad 0116 (for MEMBAR instruction mmask field)
#ASI_AIUP 1016 ASI_AS_IF_USER_PRIMARY
#ASI_AIUS 1116 ASI_AS_IF_USER_SECONDARY
#ASI_AIUP_L 1816 ASI_AS_IF_USER_PRIMARY_LITTLE
#ASI_AIUS_L 1916 ASI_AS_IF_USER_SECONDARY_LITTLE
#ASI_P 8016 ASI_PRIMARY
#ASI_S 8116 ASI_SECONDARY
#ASI_PNF 8216 ASI_PRIMARY_NOFAULT
#ASI_SNF 8316 ASI_SECONDARY_NOFAULT
#ASI_P_L 8816 ASI_PRIMARY_LITTLE
#ASI_S_L 8916 ASI_SECONDARY_LITTLE
#ASI_PNF_L 8A16 ASI_PRIMARY_NOFAULT_LITTLE
#ASI_SNF_L 8B16 ASI_SECONDARY_NOFAULT_LITTLE

The full names of the ASIs may also be defined:
#ASI_AS_IF_USER_PRIMARY 1016
#ASI_AS_IF_USER_SECONDARY 1116
#ASI_AS_IF_USER_PRIMARY_LITTLE 1816
#ASI_AS_IF_USER_SECONDARY_LITTLE 1916
#ASI_PRIMARY 8016
#ASI_SECONDARY 8116
#ASI_PRIMARY_NOFAULT 8216
#ASI_SECONDARY_NOFAULT 8316
#ASI_PRIMARY_LITTLE 8816
#ASI_SECONDARY_LITTLE 8916
#ASI_PRIMARY_NOFAULT_LITTLE 8A16
#ASI_SECONDARY_NOFAULT_LITTLE 8B16

G.1.3 Values
Some instructions use operand values as follows:

const4 A constant that can be represented in 4 bits
const22 A constant that can be represented in 22 bits
imm_asi An alternate address space identifier (0..255)
simm7 A signed immediate constant that can be represented in 7 bits
simm10 A signed immediate constant that can be represented in 10 bits
simm11 A signed immediate constant that can be represented in 11 bits
simm13 A signed immediate constant that can be represented in 13 bits
value Any 64-bit value
shcnt32 A shift count from 0..31

G.1.4 Labels 397

shcnt64 A shift count from 0..63

G.1.4 Labels

A label is a sequence of characters that comprises alphabetic letters (a–z, A–Z [with upper
and lower case distinct]), underscores (_), dollar signs ($), periods (.), and decimal digits
(0-9). A label may contain decimal digits, but it may not begin with one. A local label con-
tains digits only.

G.1.5 Other Operand Syntax

Some instructions allow several operand syntaxes, as follows:

reg_plus_imm may be any of the following:
regrs1 (equivalent to regrs1 + %g0)
regrs1 + simm13
regrs1 – simm13
simm13 (equivalent to %g0 + simm13)
simm13 + regrs1 (equivalent to regrs1 + simm13)

address may be any of the following:
regrs1 (equivalent to regrs1 + %g0)
regrs1 + simm13
regrs1 – simm13
simm13 (equivalent to %g0 + simm13)
simm13 + regrs1 (equivalent to regrs1 + simm13)
regrs1 + regrs2

membar_mask is the following:
const7 A constant that can be represented in 7 bits. Typically, this is an

expression involving the logical or of some combination of
#Lookaside, #MemIssue, #Sync, #StoreStore,
#LoadStore, #StoreLoad, and #LoadLoad.

prefetch_fcn (prefetch function) may be any of the following:
#n_reads
#one_read
#n_writes
#one_write
#page
0..31

regaddr (register-only address) may be any of the following:
regrs1 (equivalent to regrs1 + %g0)
regrs1 + regrs2

398 G Assembly Language Syntax

reg_or_imm (register or immediate value) may be either of:
regrs2
simm13

reg_or_imm10 (register or immediate value) may be either of:
regrs2
simm10

reg_or_imm11 (register or immediate value) may be either of:
regrs2
simm11

reg_or_shcnt (register or shift count value) may be any of:
regrs2
shcnt32
shcnt64

software_trap_number may be any of the following:
regrs1 (equivalent to regrs1 + %g0)
regrs1 + simm7
regrs1 – simm7
simm7 (equivalent to %g0 + simm7)
simm7 + regrs1 (equivalent to regrs1 + simm7)
regrs1 + regrs2

The resulting operand value (software trap number) must be in the range 0..127,
inclusive.

G.1.6 Comments

Two types of comments are accepted by the SPARC64-III assembler: C-style “/*...*/”
comments, which may span multiple lines, and “!...” comments, which extend from the
“!” to the end of the line.

G.2 Syntax Design
The SPARC64-III assembly language syntax is designed so that

� The destination operand (if any) is consistently specified as the last (rightmost) oper-
and in an assembly language instruction.

� A reference to the contents of a memory location (in a Load, Store, CASA, CASXA,
LDSTUB(A), or SWAP(A) instruction) is always indicated by square brackets ([]); a
reference to the address of a memory location (such as in a JMPL, CALL, or SETHI)
is specified directly, without square brackets.

G.3 Synthetic Instructions 399

G.3 Synthetic Instructions
Table 89 describes the mapping of a set of synthetic (or “pseudo”) instructions to actual
instructions. These synthetic instructions are provided by the SPARC64-III assembler for
the convenience of assembly language programmers.

Note: Synthetic instructions should not be confused with “pseudo-ops,” which typically
provide information to the assembler but do not generate instructions. Synthetic instruc-
tions always generate instructions; they provide more mnemonic syntax for standard
SPARC64-III instructions.

Table 89: Mapping Synthetic to SPARC64-III Instructions (V9=43)

Synthetic Instruction SPARC64-III Instruction(s) Comment
cmp regrs1, reg_or_imm subcc regrs1, reg_or_imm, %g0 compare
jmp address jmpl address, %g0
call address jmpl address, %o7
iprefetch label bn,a,pt %xcc,label instruction prefetch
tst regrs1 orcc %g0, regrs1, %g0 test
ret jmpl %i7+8, %g0 return from subroutine
retl jmpl %o7+8, %g0 return from leaf subroutine
restore restore %g0, %g0, %g0 trivial restore
save save %g0, %g0, %g0 trivial save

(Warning: trivial save
should only be used in kernel
code!)

setuw value,regrd sethi %hi(value), regrd (when ((value&3FF16) = = 0))
— or —

or %g0, value, regrd (when 0)value)4095)
— or —

sethi %hi(value), regrd; (otherwise)
or regrd, %lo(value), regrd Warning: do not use setuw in

the delay slot of a DCTI.
set value,regrd synonym for setuw
setsw value,regrd sethi %hi(value), regrd (when (value> = 0) and

((value & 3FF16) = = 0))
— or —

or %g0, value, regrd (when -4096)value)4095)
— or —

sethi %hi(value), regrd (otherwise, if (value < 0) and
((value & 3FF16) = = 0))

sra regrd, %g0, regrd
— or —

sethi %hi(value), regrd; (otherwise, if value> = 0)
or regrd, %lo(value), regrd

— or —
sethi %hi(value), regrd; (otherwise, if value<0)
or regrd, %lo(value), regrd
sra regrd, %g0, regrd Warning: do not use setsw in

the delay slot of a CTI.
setx value, reg, regrd sethi %uhi(value), reg create 64-bit constant

or reg, %ulo(value), reg (“reg” is used as a temporary
register)sllx reg,32,reg

400 G Assembly Language Syntax

sethi %hi(value), regrd Note: setx optimizations are
possible, but not enumer-
ated here. The worst-case is
shown.Warning: do not use
setx in the delay slot of a
CTI.

or regrd, reg, regrd
or regrd, %lo(value), regrd

signx regrs1, regrd sra regrs1, %g0, regrd sign-extend 32-bit value to
64 bitssignx regrd sra regrd, %g0, regrd

not regrs1, regrd xnor regrs1, %g0, regrd one’s complement
not regrd xnor regrd, %g0, regrd one’s complement
neg regrs2, regrd sub %g0, regrs2, regrd two’s complement
neg regrd sub %g0, regrd, regrd two’s complement
cas [regrs1], regrs2, regrd casa [regrs1]#ASI_P, regrs2, regrd compare and swap
casl [regrs1], regrs2, regrd casa [regrs1]#ASI_P_L, regrs2, regrd compare and swap, little-endian
casx [regrs1], regrs2, regrd casxa [regrs1]#ASI_P, regrs2, regrd compare and swap extended
casxl [regrs1], regrs2, regrd casxa [regrs1]#ASI_P_L, regrs2, regrd compare and swap extended,

little-endian
inc regrd add regrd, 1, regrd increment by 1
inc const13,regrd add regrd, const13, regrd increment by const13
inccc regrd addcc regrd, 1, regrd incr by 1; set icc & xcc
inccc const13,regrd addcc regrd, const13, regrd incr by const13; set icc & xcc
dec regrd sub regrd, 1, regrd decrement by 1
dec const13, regrd sub regrd, const13, regrd decrement by const13
deccc regrd subcc regrd, 1, regrd decr by 1; set icc & xcc
deccc const13, regrd subcc regrd, const13, regrd decr by const13; set icc & xcc
btst reg_or_imm, regrs1 andcc regrs1, reg_or_imm, %g0 bit test
bset reg_or_imm, regrd or regrd, reg_or_imm, regrd bit set
bclr reg_or_imm, regrd andn regrd, reg_or_imm, regrd bit clear
btog reg_or_imm, regrd xor regrd, reg_or_imm, regrd bit toggle
clr regrd or %g0, %g0, regrd clear (zero) register
clrb [address] stb %g0, [address] clear byte
clrh [address] sth %g0, [address] clear halfword
clr [address] stw %g0, [address] clear word
clrx [address] stx %g0, [address] clear extended word
clruw regrs1, regrd srl regrs1, %g0, regrd copy and clear upper word
clruw regrd srl regrd, %g0, regrd clear upper word
mov reg_or_imm, regrd or %g0, reg_or_imm, regrd
mov %y, regrd rd %y, regrd
mov %asrn, regrd rd %asrn, regrd
mov reg_or_imm, %y wr %g0, reg_or_imm, %y
mov reg_or_imm, %asrn wr %g0, reg_or_imm, %asrn

Table 89: Mapping Synthetic to SPARC64-III Instructions (Continued)(V9=43)

Synthetic Instruction SPARC64-III Instruction(s) Comment

H Software Considerations
Consult V9 for the text of this appendix.V9

402

I Extending the SPARC-V9 Architecture
Consult V9 for the text of this appendix.V9

404

J Programming With the Memory Models
Consult V9 for the text of this appendix.V9

406

K Changes From SPARC-V8 to SPARC-V9
Consult V9 for the text of this appendix.V9

408

L ASI Assignments

L.1 Introduction
Every load or store address in a SPARC V9 processor has an 8-bit Address Space Identi-
fier (ASI) appended to the VA. The VA plus the ASI fully specify the address. For instruc-
tion loads and for data loads or stores that do not use the load or store alternate
instructions, the ASI is an implicit ASI generated by the hardware. If a load alternate or
store alternate instruction is used, the value of the ASI can be specified in the %asi register
or as an immediate value in the instruction. In practice, ASIs are not only used to differen-
tiate address spaces but are used for other functions like referencing registers in the MMU
unit.

L.2 ASI Assignments
For SPARC64-III all accesses made with ASI values in the range 0016..7F16 when
PSTATE.PRIV = 0 will cause a privileged_action exception.

Warning:
The software should follow the ASI assignments and VA assignments in the following
SPARC64-III ASI assignments. Some illegal ASI or VA accesses will cause the machine to enter
unknown states.

Table 90: SPARC64-III ASI Assignments

ASI16 R/W VA16 Description Reference
00..03 — — — —

04 R/W — ASI_NUCLEUS 8.3
05..0B — — — —

0C R/W — ASI_NUCLEUS_LITTLE 8.3
0D..0F — — — —

10 R/W — ASI_PRIMARY_AS_IF_USER 8.3
11 R/W — ASI_SECONDARY_AS_IF_USER 8.3

12..13 — — — —
14 R/W — ASI_PHYSICAL_CACHEABLE L.3.1
15 R/W — ASI_PHYSICAL_NONCACHEABLE_STRONG_ORDER L.3.2

16..17 — — — —
18 R/W — ASI_PRIMARY_LITTLE_AS_IF_USER 8.3

410 L ASI Assignments

19 R/W — ASI_SECONDARY_LITTLE_AS_IF_USER 8.3
1A..1B — — — —

1C R/W — ASI_PHYSICAL_CACHEABLE_LITTLE L.3.3
1D R/W — ASI_PHYSICAL_NONCACHEABLE_LITTLE_STRONG_ORDER L.3.4

1E..23 — — — —
24 R — ASI_NUCLEUS_ATOMIC_QUAD A.28.1

25..2B — — — —
2C R — ASI_NUCLEUS_ATOMIC_QUAD_LITTLE A.28.1

2D..2F — — — —
30 W — ASI_MATCH_AND_INVALIDATE_TLB_ENTRY F.12.2.1
31 W — ASI_INVALIDATE_MICRO_DATA_TLB F.12.2.2
32 W — ASI_INVALIDATE_MICRO_INSTRUCTION_TLB F.12.2.3
33 W — ASI_INSTRUCTION_MAIN_TLB_INTO_SPECIFIED_ENTRY F.12.2.4
34 W — ASI_INSTRUCTION_MAIN_TLB_INTO_FIFO_ENTRY F.12.2.5
35 W — ASI_DATA_MAIN_TLB_INTO_SPECIFIED_ENTRY F.12.2.6
36 W — ASI_DATA_MAIN_TLB_INTO_FIFO_ENTRY F.12.2.7
37 R — ASI_MAIN_TLB_CONTEXT_AND_VA_X F.12.2.8
38 R — ASI_MAIN_TLB_PA_AND_ATTRIBUTES F.12.2.10
39 R — ASI_INSTRUCTION_TMB_TAG_REGISTER F.12.1.10
3A R — ASI_DATA_TMB_TAG_REGISTER F.12.1.11
3B R — ASI_INSTRUCTION_8KB_TMB_POINTER F.12.1.12
3C R — ASI_INSTRUCTION_64KB_TMB_POINTER F.12.1.14
3D R — ASI_DATA_8KB_TMB_POINTER F.12.1.13
3E R — ASI_DATA_64KB_TMB_POINTER F.12.1.15

3F R/W

10 ASI_INSTRUCTION_TLB_MATCH_DATA_REGISTER F.12.1.6
20 ASI_DATA_TLB_MATCH_DATA_REGISTER F.12.1.7
30 ASI_INSTRUCTION_TMB_BASE_REGISTER F.12.1.4
40 ASI_DATA_TMB_BASE_REGISTER F.12.1.5

40 R/W

10 ASI_PRIMARY_CONTEXT_REGISTER F.12.1.1
20 ASI_SECONDARY_CONTEXT_REGISTER F.12.1.2
30 ASI_NUCLEUS_CONTEXT_REGISTER F.12.1.3
50 ASI_TLB_LOCK_ENTRY_REGISTER F.12.1.8
60 ASI_TLB_FIFO_COUNTER F.12.1.9

41 R — ASI_MAIN_TLB_CONTEXT_AND_VA_Y F.12.1.9
42..43 — — — —

44 R/W — ASI_SCRATCH_REGISTER F.12.1.16
45..47 — — — —

48 R — ASI_INTERRUPT_VECTOR_DISPATCH_STATUS_REGISTER N.4.2
49 R/W — ASI_INTERRUPT_VECTOR_RECEIVE_STATUS_REGISTER N.4.3, N.4.4
4A R/W — ASI_UPA_CONFIGURATION_REGISTER R.4.1

4B..5F — — — —

Table 90: SPARC64-III ASI Assignments (Continued)

ASI16 R/W VA16 Description Reference

L.2 ASI Assignments 411

Note:
In the ASI 3F16, 4016, 7716, 7F16 definitions, there are sub definitions which are specified by
VA[63:0] values.

60 R/W — ASI_PRIMARY_STRONG_ORDER_RESTRICTED L.3.5
61..67 — — — —

68

R/W
0* ASI_U2_CACHE_TAG M.7.1
1* ASI_U2_CACHE_DATA M.7.2

W
2* ASI_FLUSH_U2_CACHE_TO_MEMORY_USING_U2_CACHE_INDEX M.7.3
3* ASI_INVALIDATE_I1_CACHE_USING_I1_CACHE_INDEX_AND_WAY M.7.4
4* ASI_INVALDATE_D1_CACHE_USING_D1_CACHE_INDEX_AND_WAY M.7.5

R/W
6* ASI_U2_CACHE_BUFFER_REGISTER_0 M.7.7
7* ASI_U2_CACHE_BUFFER_REGISTER_1 M.7.8

69 W — ASI_FLUSH_U2_CACHE_TO_MEMORY_USING_PA M.7.9
6a W — ASI_FLUSH_L1_CACHE_TO_U2_CACHE_USING_U2_CACHE_INDEX M.7.10
6b R — ASI_SRAM_CONFIGURATION_REGISTER M.7.11
6c R/W — ASI_TDU_ERROR_LOG_REGISTER P.7.1
6d R/W — ASI_ICU_ERROR_LOG_REGISTER P.7.2
6e R/W — ASI_DC_ERROR_LOG_REGISTER P.7.3
6f R/W — ASI_UC_ECC_ERROR_INJECTION_REGISTER P.7.4

70 - 76 — — — —

77 W

40 ASI_OUTGOING_INTERRUPT_VECTOR_DATA_REGISTER_0

N.4.550 ASI_OUTGOING_INTERRUPT_VECTOR_DATA_REGISTER_1

60 ASI_OUTGOING_INTERRUPT_VECTOR_DATA_REGISTER_2

70 ASI_DISPATCH_INTERRUPT_VECTOR N.4.1
78-7e — — — —

7F R
40 ASI_INCOMING_INTERRUPT_VECTOR_DATA_REGISTER_0

N.4.650 ASI_INCOMING_INTERRUPT_VECTOR_DATA_REGISTER_1

60 ASI_INCOMING_INTERRUPT_VECTOR_DATA_REGISTER_2

80 R/W — ASI_PRIMARY

8.3
81 R/W — ASI_SECONDARY

82 R — ASI_PRIMARY_NO_FAULT

83 R — ASI_SECONDARY_NO_FAULT

84-87 — — — —

88 R/W — ASI_PRIMARY_LITTLE

8.3
89 R/W — ASI_SECONDARY_LITTLE

8A R — ASI_PRIMARY_NO_FAULT_LITTLE

8B R — ASI_SECONDARY_NO_FAULT_LITTLE

8C-E1 — — — —
E2 R/W — ASI_PRIMARY_STRONG_ORDER L.3.6

E3-FF — — — —

Table 90: SPARC64-III ASI Assignments (Continued)

ASI16 R/W VA16 Description Reference

412 L ASI Assignments

Note:
In the ASI 6816 definitions, there are sub definitions which are specified by VA[30:28] values.

Note:
“Flush U2 Cache To Memory Using U2 Cache Index” (ASI=6816, VA[30:28]=216) and “Flush U2
Cache To Memory Using PA” (ASI=6916) operations may corrupt system memory coherency if
issued during other memory activities, or overlapped with other requests. These operations shall not
be used in the system programs. They are only for bringup/diagnostic purposes.

L.3 Special Memory Access ASI’s
This section describes special memory access ASI’s which are not specified in
SPARC-V9.

L.3.1 ASI 1416 (ASI_PHYSICAL_CACHEABLE)

When this ASI is specified in any memory access instructions, the following things are
done by the hardware.

� VA[40:0] is passed to PA[40:0], and VA[63:41] and CONTEXT values are disre-
garded.

� Memory access behaves as if:

� CH (Cacheable) = “1”

� SO (Strong Order) = “0”

� NFO (Nonfaulting Only) = “0”

� PROT (SR/SW/SX/UR/UW/UX) = “111111”

� Big Endian

Even if D_MDTLB (Disable Main Data TLB) bit in SCR is set, the access with this ASI is
still a cacheable access.

L.3.2 ASI 1516 (ASI_PHYSICAL_NONCACHEABLE_STRONG_ORDER)

When this ASI is specified in any memory access instructions, the following things are
done by the hardware.

� VA[40:0] is passed to PA[40:0], and VA[63:41] and CONTEXT values are disre-
garded.

� Memory access behaves as if:

� CH (Cacheable) = “0”

� SO (Strong Order) = “1”

� NFO (Nonfaulting Only) = “0”

L.3.3 ASI 1C16 (ASI_PHYSICAL_CACHEABLE_LITTLE) 413

� PROT (SR/SW/SX/UR/UW/UX) = “111111”

� Big Endian

L.3.3 ASI 1C16 (ASI_PHYSICAL_CACHEABLE_LITTLE)

When this ASI is specified in any memory access instructions, the following things are
done by the hardware.

� VA[40:0] is passed to PA[40:0], and VA[63:41] and CONTEXT values are disre-
garded.

� Memory access behaves as if:

� CH (Cacheable) = “1”

� SO (Strong Order) = “0”

� NFO (Nonfaulting Only) = “0”

� PROT (SR/SW/SX/UR/UW/UX) = “111111”

� Little Endian

L.3.4 ASI 1D16 (ASI_PHYSICAL_NONCACHEABLE_LITTLE_STRONG_ORDER)

When this ASI is specified in any memory access instructions, the following things are
done by the hardware.

� VA[40:0] is passed to PA[40:0], and VA[63:41] and CONTEXT values are disre-
garded.

� Memory access behaves as if:

� CH (Cacheable) = “0”

� SO (Strong Order) = “1”

� NFO (Nonfaulting Only) = “0”

� PROT (SR/SW/SX/UR/UW/UX) = “111111”

� Little Endian

L.3.5 ASI 6016 (ASI_PRIMARY_STRONG_ORDER_RESTRICTED)

When this ASI is specified in any memory access instructions, the following things are
done by the hardware.

� Primary Context is used for the address translation.

� The access is strongly ordered regardless of load or store, and the memory model.

414 L ASI Assignments

L.3.6 ASI E216 (ASI_PRIMARY_STRONG_ORDER)

When this ASI is specified in any memory access instructions, the following things are
done by the hardware.

� Primary Context is used for the address translation.

� The access is strongly ordered regardless of load or store, and the memory model.

M Cache Organization

M.1 Introduction
All caches in the CPU keep one cache line size, that is, 64 bytes. All caches in the CPU
keep inclusive relations by hardware, that is, if a cache line resides in Level-0, it must
reside in Level-1 and Level-2. Once a cache line is evicted from Level-2 Cache, the hard-
ware is responsible for flush-and-invalidating Level-1 and Level-0 Caches.

M.2 Level-0 Instruction Cache (I0 Cache)
The I0 Cache is virtually-indexed virtually-tagged (VIVT), 16 KBytes direct-mapped
cache. An I0 cache tag contains virtual address and context-ID. An I0 Cache hit occurs
when both virtual address and context match.

The I0 Cache can not be bypassed. When the Invalidate_I0 bit in ASR31 is set, the whole
I0 cache is invalidated.

I0 Cache Tag and I0 Cache Data are parity-protected.

M.3 Level-1 Instruction Cache (I1 Cache)
The I1 Cache is a virtually-indexed physically-tagged (VIPT), 64 KBytes 4-way set-asso-
ciative cache.

Instruction fetches bypass the I1 Cache when they are noncacheable accesses. Noncache-
able accesses are specified under the conditions A OR B OR C, where:

A. The processor is in RED_state.

B. D_MITLB bit in SCR(ASR31) is set.

C. The page table entry for the address specifies noncacheable memory.

The I1 Cache Tag is parity-protected and the I1 Cache Data is ECC-protected.

M.4 Level-1 Data Cache (D1 Cache)
The D1 Cache is a virtually-indexed physically-tagged (VIPT), write-back, allocating-on-
write-miss, 64 KBytes 4-way set-associative cache.

416 M Cache Organization

Data accesses bypass the D1 Cache when they are noncacheable accesses. Noncacheable
accesses are specified under the conditions A AND (B OR C OR D), where:

A. The ASI used for the access is neither ASI_PHYSICAL_CACHEABLE (ASI 1416) nor
ASI_PHYSICAL_CACHEABLE_LITTLE (ASI 1C16).

B. The ASI used for the access is either ASI_PHYSICAL_NONCACHEABLE_STRONG_ORDER
(1516) or ASI_PHYSICAL_NONCACHEABLE_LITTLE_STRONG_ORDER (ASI 1D16).

C. D_MDTLB bit in the SCR (ASR31) is set.

D. The page table entry for the address specifies a noncacheable memory location.

The D1 Cache Tag is parity-protected and the D1 Cache Data is ECC-protected.

M.5 Level-2 External Unified Cache (U2 Cache)
The CPU’s level-2 External Cache is a physically-indexed physically-tagged (PIPT), uni-
fied, write-back, allocating, direct-mapped cache of variable size (1M, 2M, 4M, 8M,
16M). The U2 Cache has no references to virtual address and context information.

When the access is noncacheable, the U2 Cache is bypassed. The U2 Cache Tag is parity-
protected and U2 Cache Data is ECC-protected.

M.6 Cache Coherency Protocols
The CPU uses the UPA MOESI Cache coherence protocol; these letters are acronyms for
cache line states as follows:

A subset of the MOESI protocol is used in the I1-Cache, the D1-Cache, and D-Tag in the
system controller. The table below shows the relations between the protocols.

M Exclusive Modified
O Shared Modified (owned)
E Exclusive clean
S Shared clean
I Invalid

U2-Cache D-Tag in SC D1-Cache I1-Cache
Invalid (I) Invalid (I) Invalid (I) Invalid (I)

Shared Clean (S)
Shared Clean (S)

Clean (C)
Clean (C)

Shared Modified (O)
Shared Modified (O) Shared Modified (O)
Exclusive Clean (E)

Exclusive Modified (M)
Exclusive Modified (M)

Clean (C)
Exclusive Modified (M)

M.7 ASI Cache Instructions 417

The table below shows the encoding of the MOESI states in the U2 Cache.

M.7 ASI Cache Instructions
Several ASI instructions are defined to manipulate the I1, D1, and U2 Caches

The following are common to all of the ASI instructions defined in this section:

1. The opcode of the instructions should be either ldx(a), lddf(a), stx(a), or
stdf(a). Otherwise, a data_access_exception with FTYPE=F16 (Invalid ASI) is taken.

2. No address translation is performed for these instructions.

3. VA[3:0] of all of the instructions should be 0. Otherwise, a mem_not_aligned trap is
taken.

4. The don’t-care bits (described as ‘—’ in the format) in VA can be of any value. But it
is recommended that the software use zero for these bits.

5. The don’t-care bits (described as ‘—’ in the format) in DATA are read as zero and
ignored on write.

6. The instruction operations are not affected by PSTATE.CLE. They are always treated
as in a big endian mode.

7. The instructions do not cause the processor to sync.

8. The instructions are all strongly ordered regardless of load or store, and the memory
model. Therefore, no speculative executions are performed.

9. In the following cases, some of the U2 Cache INDEX bits are ignored and treated as
zero by the hardware depending on U2 Cache size.

� Read/Write U2 Cache Tag (ASI=6816, VA[30:28]=0)

� Read/Write U2 Cache Data To/From U2 Cache Buffer Registers (ASI=6816,
VA[30:28]=0012)

� Flush U2 Cache To Memory Using U2 Cache Index (ASI=6816, VA[30:28]=0102)

� Flush L1 Cache To U2 Cache Using U2 Cache Index (ASI=6A16)

When U2 Cache is configured as 1Mb, INDEX[23:20] is ignored and treated as
zero.

Bit 2 (Valid) Bit 1 (Exclusive) Bit 0 (Modified) State
0 — — Invalid (I)
1 0 0 Shared Clean (S)
1 1 0 Exclusive Clean (E)
1 0 1 Shared Modified (O)
1 1 1 Exclusive Modified (M)

418 M Cache Organization

When U2 Cache is configured as 2Mb, INDEX[23:21] is ignored and treated as
zero.

When U2 Cache is configured as 4Mb, INDEX[23:22] is ignored and treated as
zero.

When U2 Cache is configured as 8Mb, INDEX[23:23] is ignored and treated as
zero.

When U2 Cache is configured as 16Mb, all bits of INDEX[23:6] are used.

The following subsections describe each ASI Cache instruction in detail.

M.7.1 READ/WRITE_U2_CACHE_TAG
Function: Read/ Write from/to the specified line of U2 Cache Tag

ASI: 6816
RW: Supervisor Read, Supervisor Write
VA: See below for details.

INDEX[23:6]
U2-Cache line index (physical address).

DATA: Below is the format of the U2 Cache Tag:

PRTY[1:0]
Parity bits. Bit-1 is the parity for bits 33-17, and bit-0 is the parity
for bits 16-0.

DVA[13:12]
D1 Cache VA bits 13-12.

IVA[13:12]
I1 Cache VA bits 13-12.

PA[40:20]
Physical address bits 40-20.

DWY[1:0]
D1 Cache way number.

IWY[1:0]
I1 Cache way number.

DIN
D1 Cache inclusion bit.

63 031 30 28 27 24 23 6 5 4 3

000 INDEX 0000—— —

63 032 31 30 29 9 8 4 2

MOESI— PRTY DVA IVA PA DWY IWY DIN IIN

36 35 34 33 7 6 5 3

M.7.2 Read/Write U2 Cache Data to/from U2 Cache Buffer Registers 419

IIN
I1 Cache inclusion bit.

MOESI[2:0]
MOESI state of the cache line in U2 Cache. See M.6, “Cache
Coherency Protocols” for the encoding.

Note:
During this read operation, the read data of U2 Cache Tag is not parity-checked.

Before executing this instruction, U2-Cache Data ECC check should be disabled (ASR31
bit 50 should be ‘1’). Otherwise, an asynchronous_error trap may be taken, especially if the
U2-Cache Data has not been initialized.

M.7.2 Read/Write U2 Cache Data to/from U2 Cache Buffer Registers
Function: Read the specified 16 byte U2 Cache data to U2 Cache Buffer Registers 0 and 1.

Write the specified 16 byte U2 Cache data from U2 Cache Buffer Registers 0 and
1. U2 Cache Buffer Register 0 corresponds to the upper 8 bytes (bit 127-64), and
U2 Cache Buffer Register 1 corresponds to the lower 8 bytes (bit 63-0).

ASI: 6816
RW: Supervisor Read, Supervisor Write.
VA: See below.

INDEX[23:6]
U2 Cache line index (physical address).

OFFSET[1:0]
Offset in the cache line (equal to PA[5:4]).

DATA: The data in load and store instructions are not used in this operation.

Note:
During the read operation, the read data of U2 Cache Data is not ECC-checked.

63 031 30 28 27 24 23 6 5 4 3

001 INDEX 0000OFF— — SET

420 M Cache Organization

M.7.3 Flush U2 Cache To Memory Using U2 Cache Index
Function: Flush the specified U2 Cache data to memory.

ASI: 6816
RW: Supervisor Read (in the read case, it simply behaves as a nop), Supervisor Write.
VA: See below.

INDEX[23:6]
U2 Cache line index (physical address).

DATA: The data in load and store instructions are not used in this operation.

Note:
This operation may corrupt system memory coherency if issued during other memory
activities, or overlapped with other requests. It shall not be used in the system program; it
is intended for bringup/diagnostic purposes only.

M.7.4 Invalidate I1 Cache Using I1 Cache Index and Way
Function: Invalidate an I1 Cache line specified by its way number and index. The U2 Cache

is not updated by this operation.
ASI: 6816
RW: Supervisor Read (in read case, it simply behaves as a nop), Supervisor Write.
VA: See below.

WAY[1:0]
I1 Cache way number.

INDEX[13:6]
I1 Cache line index. (virtual address)

DATA: The data in load and store instructions are not used in this operation.

Note:
This operation corrupts system memory coherency if used in the normal OS environment.
This is only for I1 and D1 Cache initialization by the OBP software.

63 031 30 28 27 24 23 6 5 4 3
010 INDEX 0000— — —

63 031 30 28 27 16 15 6 5 4 3

011 INDEX 0000— — —

18 17 14 13

—WAY

M.7.5 Invalidate D1 Cache Using D1 Cache Index and Way 421

M.7.5 Invalidate D1 Cache Using D1 Cache Index and Way
Function: Invalidate a D1 Cache line specified by its way number and index. U2 Cache is not

updated by this operation.
ASI: 6816
RW: Supervisor Read (in read case, it simply behaves as a nop), Supervisor Write.
VA: See below.

WAY[1:0]
D1 Cache way number.

INDEX[13:6]
D1 Cache line index. (virtual address)

DATA: The data in load and store instructions are not used in this operation.

Note:
This operation corrupts system memory coherency if used in the normal OS environment.
This is only for I1 and D1 Cache initialization by the OBP software.

63 031 30 28 27 16 15 6 5 4 3

100 INDEX 0000— — —

18 17 14 13

—WAY

422 M Cache Organization

M.7.6 Nop
Function: No operation.

RW: Supervisor Read, Supervisor Write.
ASI: 6816
VA: See below.

DATA: The data in load and store instructions are not used in this operation.

M.7.7 Read/Write U2 Cache Buffer Register 0
Function: Read/Write U2 Cache Buffer Register 0. Read from U2 Cache Buffer Register 0.

Write into U2 Cache Buffer Register 0.
ASI: 6816
RW: Supervisor Read, Supervisor Write.
VA: See below.

DATA: See below.

DATA
Bits[63:0] are the data to be read or written by this operation.

63 031 30 28 27 4 3

101 0000— —

63 031 30 28 27 4 3
110 0000— —

63 0

DATA

M.7.8 Read/Write U2 Cache Buffer Register 1 423

M.7.8 Read/Write U2 Cache Buffer Register 1
Function: Read U2 Cache Buffer Register 1. Write U2 Cache Buffer Register 1.

ASI: 6816
RW: Supervisor Read, Supervisor Write.
VA: See below.

DATA: See below.

DATA
Bits [63:0] contain the data to be read or written in this operation.

M.7.9 Flush U2 Cache To Memory Using PA
Function: Flush the specified PA U2 Cache data to the memory.

ASI: 6916
RW: Supervisor Write.
VA: See below.

PA[40:6]
Cache line physical address to be flushed

DATA: The data in load and store instruction is not used in this operation.

Note:
This operation may corrupt system memory coherency if issued during other memory
activities, or overlapped with other requests. These operations shall not be used in the sys-
tem program. It’s only for bringup/diagnostic purposes.

63 031 30 28 27 4 3
111 0000— —

63 0

DATA

63 041 40 6 5 4 3
PA 0000— —

424 M Cache Organization

M.7.10 Flush L1 Cache to U2 Cache Using U2 Cache Index
Function: Flush the specified I1 and D1 Cache line to U2 Cache.

ASI: 6A16
RW: Supervisor Write.
VA: See below.

INDEX[23:6]
U2 Cache line index. (physical address)

DATA: The data in load and store instruction is not used in this operation.

M.7.11 Read SRAM Configuration Register
Function: Read SRAM Configuration Register. This register holds the configuration

information for U2 Cache Data SRAM and Tag SRAM. The register is read only;
values are scanned into the register during initialization.

ASI: 6B16
RW: Supervisor Read.
VA: See below.

DATA: See below.

L2_2BANKS
Bank Select.

0: One SRAM data bank.
1: Two SRAM data banks.

NEEDS_DEAD_CYC
Dead Cycle Select.

0: SRAM does not need dead cycle.
1: SRAM needs dead cycle.

UC_DATA_DLY_SEL[7:0]
Max. 8 SRAM’s. Each 2 SRAM’s are defined below.

UC_DATA_DLY_SEL12[1:0]
UC_DATA_DLY_SEL34[3:2]
UC_DATA_DLY_SEL56[5:3]
UC_DATA_DLY_SEL78[7:6]

00: No data address delay
01: 0.25ns data address delay

63 024 23 6 5 4 3
INDEX 4h0— —

63 04 3
0000—

63 0

— NEEDS_
DEAD_CYC

UC_DATA_
DLY_SEL

UC_ADDR_
DLY_SEL

SRAM_K_
FREE_RUN

SRAM_
TCYC

DATA_RDY
_LTNCY

TAG_RDY_
LTNCYL2_2BANKS

20 19 18 17 10 9 7 6 5 3 28

M.7.11 Read SRAM Configuration Register 425

10: 0.5ns data address delay
11: 0.75ns data address delay

UC_ADDR_DLY_SEL[1:0]
Address Delay Select.

00: no data address delay
01: 0.25ns data address delay
10: 0.5ns data address delay
11: 0.75ns data address delay

SRAM_K_FREE_RUN
SRAM Free Run Clock Select.

0: Start SRAM clock only for read/writes, then stop clock (logi-
cal 0).
1: Free running SRAM clock.

SRAM_TCYC
SRAM Clock Cycle.

1: SRAM Tcyc = 1x CPU Tcyc.
0: SRAM Tcyc = 2x CPU Tcyc.

TAG_RDY_LTNCY[2:0]
Tag ready latency as a multiple of CPU clock cycles.

001: (unused)
010: (unused)
011: 3 cycles
100: 4 cycles
101: 5 cycles
110: 6 cycles
111: 7 cycles
000: 8 cycles

DATA_RDY_LTNCY[2:0]
Data ready latency as a multiple of CPU clock cycles.

001: (unused)
010: (unused)
011: 3 cycles
100: 4 cycles
101: 5 cycles
110: 6 cycles
111: 7 cycles
000: 8 cycles

426 M Cache Organization

N Interrupt Handling

N.1 Interrupt Dispatch
When a processor wants to dispatch an interrupt to another UPA port it first sets up the
interrupt data registers INTR_DATA_W0, W1, and W2 using ASI instructions. It then
sends an INTR_VECTOR_DISPATCH instruction. The interrupt packet and the associ-
ated data is forwarded to the target UPA by the system controller. The processor polls the
BUSY bit in the INTR_DISPATCH_STATUS register to determine whether the interrupt
has been dispatched successfully or not. Below is an example of the interrupt dispatch
flow.

N.2 Interrupt Receive
When an interrupt packet is received, three interrupt data registers are updated with the
associated data and the BUSY bit in the INTR_RCV_STATUS is set. If interrupts are
enabled, the processor takes a trap and the interrupt data registers are read by the software

read INTR_DISPATCH_STATUS
if < Busy > Error

begin atomic sequence
PSTATE.IE <- 0
Write INTR_DATA_W0
Write INTR_DATA_W1
Write INTR_DATA_W2

read INTR_DISPATCH_STATUS
if < Busy >

end atomic sequence
PSTATE.IE <- 1

if < Nack>
else dispatch complete

INTR_VECTOR_DISPATCH
MEMBAR

428 N Interrupt Handling

to determine the appropriate trap handler. The handler may reprioritize this interrupt
packet to a lower priority. Below is an example of the interrupt receive flow.

N.3 Interrupt ASI Registers

Interrupt Receive Register

This register reports the status of incoming interrupts.

BUSY (read/write)
This bit is set when an interrupt vector is received. Software has to clear this bit by
writing zero.

MID[4:0] (read only)
Module ID of the interrupter.

Interrupt Vector Dispatch Status Register

This register reports the status of outgoing interrupts.

read INTR_RECEIVE_STATUS
if <! Busy > Error

Read INTR_DATA_R0
Read INTR_DATA_R1
Read INTR_DATA_R2

Determine Trap Handler

Handle Interrupt
or

Reprioritize : Set SCHED_INT_REG

CLEAR_INTR_RCV_STATUS

done

MID[4:0]BUSY—

63 6 5 4 0

BUSYNACK—

63 2 1 0

N.4 Interrupt Data Registers 429

NACK (read only)
Set when an interrupt dispatch has failed. This is cleared at the start of every inter-
rupt attempt.

BUSY (read only)
Set if there is an outstanding dispatch

Interrupt Data Registers

Three interrupt data write registers INTR_DATA_W0-2 and three interrupt data read reg-
isters INTR_DATA_R0-2 are maintained by the UC.

N.4 ASI Instructions for Interrupt Processing

N.4.1 INTR_VECTOR_DISPATCH Instruction
Function: Trigger an interrupt vector dispatch to the target CPU residing at slot MID along

with the contents of the three interrupt vector data registers
Address: VA<63:19>=don’t-care, VA<18:14>=Target-MID, VA<13:6>=don’t-care,

VA<5:0>=0x30 (The software should normally specify all zero for VA<63:19> and
VA<13:7> and one for VA<6> even though they are don’t-care.

ASI: 7716
Instr: STXA
Data: Not used

N.4.2 READ_INTR_DISPATCH_STATUS Instruction
Function: Read the contents of the Interrupt Vector Dispatch Status register.
Address: VA<63:4>=don’t-care, VA<3:0>=0x0 (The software should normally specify all

zero for VA<63:4> even though they are don’t-care.

ASI: 4816
Instr: LDXA
Data: See Interrupt Vector Status Register description in N.3, “Interrupt ASI Registers”.

Data

063

63 05

0x30——
6131418

Target-MID

19

63 03

0x0—

4

430 N Interrupt Handling

N.4.3 READ_INTR_RCV_STATUS Instruction
Function: Returns the contents of the Interrupt Vector Receive Status register
Address: VA<63:4>=don’t-care, VA<3:0>=0x0 (The software should normally specify all

zero for VA<63:4> even though they are don’t-care.

ASI: 4916
Instr: LDXA
Data: See Interrupt Receive Register description in N.3, “Interrupt ASI Registers”.

N.4.4 CLEAR_INTR_RCV_STATUS Instruction
Function: When bit 5 of the write data is zero, it clears the busy bit in the Interrupt Vector

Receive Status register. When bit 5 of the write data is one, it does nothing.
Address: VA<63:4>=don’t-care, VA<3:0>=0x0 (The software should normally specify all

zero for VA<63:4> even though they are don’t-care.

ASI: 4916
Instr: STXA
Data: Only bit 5 is used.

N.4.5 Instructions to Write Interrupt Data Register 0-2
Function: These instructions are used to modify the contents of the three interrupt dispatch

data registers, INTR_DATA_W0 to 2.
Address: VA<63:6>=don’t-care, VA<5:4>=0x0 for register-0, VA<5:4>=0x1 for register-1,

VA<5:4>=0x2 for register-2, VA<3:0>=0x0 (The software should normally
specify all zero for VA<63:6> even though they are don’t-care.

ASI: 7716
Instr: STXA
Data: Data[63:0] to be written to the interrupt data register.

N.4.6 Instructions to Read Interrupt Data Registers
Function: These instructions are used to read the contents of the three interrupt receive data

registers: INTR_DATA_R0,1, 2.
Address: VA<63:6>=don’t-care, VA<5:4>=0x0 for register-0, VA<5:4>=0x1 for register-1,

63 03

0x0—

4

63 03

0x0—

4

63 03

0x0—

45

0x1 for register-1

6

0x2 for register-2

0x0 for register-0

N.5 Interrupt-Related ASR registers 431

VA<5:4>=0x2 for register-2, VA<3:0>=0x0 (The software should normally
specify all zero for VA<63:6> even though they are don’t-care.

ASI: 7F16
Instr: LDXA
Data: Data <63:0> to be read from the interrupt data register.

N.5 Interrupt-Related ASR registers
There following subsections describe the ASR registers that are related to interrupt han-
dling.

N.5.1 Set SCHED_INT (ASR20)

WR ASR20 sets bits in the SCHED_INT register. See 5.2.11.3, “Set SCHED_INT Regis-
ter (ASR20)” for a complete description.

N.5.2 Clear SCHED_INT (ASR21)

WR ASR21 clears bits in SCHED_INT register. See 5.2.11.4, “Clear SCHED_INT Regis-
ter (ASR21)” for a complete description.

N.5.3 Schedule Interrupt (SCHED_INT) Register (ASR22)

The software uses this register to schedule interrupts. See 5.2.11.5, “Schedule Interrupt
(SCHED_INT) Register (ASR22)” for a complete description.

N.5.4 TICK Match Register (ASR23)

This register is compared with the TICK Register, and when they match, an interrupt can
be generated. See 5.2.11.6, “TICK Match Register (ASR23)” for a complete description.

63 03

0x0
—

45

0x1 for register-1

6
0x2 for register-2

0x0 for register-0

432 N Interrupt Handling

O Reset, RED_state, and Error_state

O.1 Reset
O.1.1 Power-on Reset (POR)

The CPU has a Power-On Reset(POR) pin named UPA_RESET_L (asserted low). This
pin must be asserted after the power supply reaches full operational voltage. When this
signal is asserted, all other resets and traps are ignored. Any pending external transactions
are cancelled.

Assertion of POR generates a trap of TT=1 and causes the processor to transfer execution
to RSTVaddr + 0x20. This signal must be asserted for at least 4 mS.

POR is supported through Scan by embedded TAP and PROM in the CPU processor mod-
ule. O.4, “Hardware Power On Reset Sequence” describes this process in detail.

O.1.2 Watchdog Reset (WDR)

Not supported.

SPARC-V9 says that WDR is optional and possibly implementation-dependent.

O.1.3 Externally Initiated Reset (XIR)

The CPU has an Externally Initiated Reset (XIR) pin named UPA_XIR_L (asserted low).
This pin must be asserted while the power supply is at full operational voltage and the
UPA clock is running.

If TL (Trap Level) < MAXTL (4), the assertion of XIR generates a trap of TT=3 and
causes the processor to transfer execution to RSTVaddr + 0x60.

If the processor receives an XIR while TL = 4, it will enter to error_state. The CPU sends
P_FERR to UPA, and eventually, the UPA system controller will RESET all processors.

O.1.4 Software Initiated Reset (SIR)

A Software-Initiated RESET is initiated by any processor with a SIR instruction.

434 O Reset, RED_state, and Error_state

If TL (Trap Level) < MAXTL (4), a SIR instruction causes a trap of TT=4 and causes the
processor to execute instructions from RSTVaddr + 0x80.

If a processor executes an SIR instruction while TL = 4, it will enter to error_state. The CPU
sends P_FERR to the UPA, and eventually, the UPA system controller will RESET all processors.

O.2 RED_state and Error_state
O.2.1 Processor State Transition Diagram

Figure 87 contains the processor state transition diagram.

Figure 87: Processor State Diagram

O.2.2 RED_state

Once the processor enters RED_state for any reason except when a power on reset (POR)
is performed, the software should not attempt to return to Execute_state; if this is done by
software, the state of the processor is unpredictable. The sequence of getting out of
RED_state after a power on reset is described in O.4, “Hardware Power On Reset
Sequence”.

When the processor processes a reset or a trap that enters RED_state, it takes a trap at an
offset relative to the RED_state_trap_vector base address (RSTVaddr); in the CPU this is
at virtual address VA=FFFF FFFF F000 000016 and physical address
PA = 0000 01FF F000 000016.

Exec Red Error**

Hang

DONE/RETRY
RED=0

TRAP@MAXTL-1
SIR@<MAXTL
XIR@<MAXTL
POR

TRAP

RED=1

POR

TRAP@MAXTL
SIR@MAXTL
XIR@MAXTL

TRAP@<MAXTL
SIR@<MAXTL
XIR@<MAXTL
POR
RED=1

Watchdog*

Watchdog* Watchdog*

TRAP@MAXTL
SIR@MAXTL
XIR@MAXTL
Watchdog*

@<MAXTL-1
Watchdog*

POR

* Behavior on Watchdog trap is dependent on ASR31.
** Error state immediately generates P_FERR and results in POR. Thus the state is transient.

O.2.3 Error_state 435

The following further describe the processor behavior on the entry of RED_state, and dur-
ing the RED_state:

� Whenever the processor enters or exits from RED_state, the I0 cache and prefetch
buffers are invalidated.

� When the processor enters RED_state due to a trap or reset, bit-0 (SM), bit-27
(D_UITLB), bit-28 (D_UDTLB), bit-29 (D_MITLB), and bit-30 (D_MDTLB) in
SCR(ASR31) are set by the hardware. It is software’s responsibility to reset these bits
when required (for example, when the processor exits from RED_state).

� When the processor enters RED_state not due to a trap or reset (that is, when the
PSTATE.RED bit has been set using WRPR), all of the SCR register bits are
unchanged unlike the case above.

� When the processor is in RED_state, it behaves as if bit-0 (SM), bit-27 (D_UITLB),
and bit-29 (D_MITLB) are set regardless of the actual these values in the SCR register.

O.2.3 Error_state

The processor enters error_state when a trap occurs and TL = MAXTL (4). The
SPARC64-III sends P_FERR to the UPA, and eventually, UPA system controller will RESET all
processors.

O.3 Processor State after Reset and in RED_state
Table 91 shows the various processor states after the resets and the entry of RED_state.

In this table, it is assumed that RED_state entry happens due to resets or traps. If
RED_state entry happens by setting the PSTATE.RED bit using WRPR instruction, no
CPU state will be changed except the PSTATE.RED bit itself; the effects of this are
described in O.2.2, “RED_state”.

Table 91: CPU State after Reset and in RED_state

Name POR XIR SIR RED_state
Integer registers Unknown Unchanged
Floating Point registers Unknown Unchanged
RSTV value VA = 0xffff ffff f000 0000

PA = 0x1ff f000 0000
PC
nPC

RSTV | 0x20
RSTV | 0x24

RSTV | 0x60
RSTV | 0x64

RSTV | 0x80
RSTV | 0x84

RSTV | 0xA0
RSTV | 0xA4

PSTATE AG
IE

 PRIV
 AM
 PEF
 RED
 MM
 TLE
 CLE

1 (Alternate Globals)
0 (Interrupt disable)
1 (Privileged mode)
0 (Full 64-bit address)
1 (FPU on)
1 (Red_state)
00 (LSO)
0 (Trap little endian)
0 (Current little endian)

TBA[63:15] Unknown Unchanged

436 O Reset, RED_state, and Error_state

Y Unknown Unchanged
PIL Unknown Unchanged
CWP Unknown Unchanged except for register window traps
TT[TL] 0x1 0x3 0x4 trap_type
CCR Unknown Unchanged
ASI Unknown Unchanged
TL MAXTL min(TL+1, MAXTL)
TPC[TL]
TNPC[TL]

Unknown
Unknown

PC
nPC

TSTATE CCR
 ASI

PSTATE
 CWP
 PC
 nPC

Unknown CCR
ASI
PSTATE
CWP
PC
nPC

TICK NPT
 Counter

1
Restart at 0

Unchanged
Restart at 0

Unchanged
Unchanged (keep counting)

CANSAVE Unknown Unchanged
CANRESTORE Unknown Unchanged
CANWIN Unknown Unchanged
CELARWIN Unknown Unchanged
WSTATE OTHER
 NORMAL

Unknown
Unknown

Unchanged
Unchanged

VER 0x0004
0x3
mask-dependent
0x4
0x4

FSR 0 Unchanged
FPRS Unknown Unchanged
HW MODE TSO
(ASR18) PSO

RMO
BRM
DPE

00 (HLSO)
00 (HLSO)
00 (HLSO)
01(2bit br- pred)
00 (Enable DPrefetch)

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

GSR (ASR19) Unknown Unchanged
SCHED_INT (ASR22) Unknown Unchanged
SW Scratch (ASR25) Unknown Unchanged
Inst Fault Type (ASR24) Unknown Unchanged
Tick Match M_DIS
(ASR23) M_VAL

1
Unknown

Unchanged
Unchanged

Data Break Point
(ASR26)

Unknown Unchanged

Data Fault Address
(ASR28)

Unknown Unchanged Unchanged
or
Address of
Data fault

Table 91: CPU State after Reset and in RED_state (Continued)

Name POR XIR SIR RED_state

O.4 Hardware Power On Reset Sequence 437

O.4 Hardware Power On Reset Sequence
When the processor detects assertion of the POR pin, the TAP controller in the processor
resets all registers in the scan ring to ‘0’ (by making both scan clock and L2 high). Then
the TAP controller reads initialization information from serial PROM and scans it into the
scan initialization ring.

Each region of the processor has ‘0’ initialized scan ring(s) called normal scan ring and
scan ring(s) which require at least one bit to be set to ‘1’ called scan-init ring. All the scan-
init rings are connected into one scan ring within the TAP controller. This is the ring which
the TAP controller scans serial PROM data into.

During the process above, all I0 Cache data are invalidated, and the Branch History Table
(BHT) and Instruction Lookaside Table (ILT) are initialized. The Micro Instruction TLB,
Micro Data TLB, Main TLB, I1-Cache, D1-Cache, and U2-Cache are not invalidated or
initialized by power on reset.

Data Fault Type
(ASR29)

Unknown Unchanged Unchanged
or
Type of Data
fault

Performance (ASR30) Unknown Unchanged
SCR SM
(ASR31) II0
 PM
 TR
 W_SEL

W_EN/RED
 PM_US
 DB_GSEL
 DB_CSEL
 E_CSE
 D_UITLB
 D_UDTLB
 D_MITLB

 D_MDTLB
D_UAE
D_ICW3:0

 D_DCW3:0
D_I0P
D_I1P
D_D1P
D_U2P
D_UITM
D_UITP
D_MTP
D_UPA
D_I1E
D_D1E
D_U2E
 D_AET
 D_ASEET

1 (Sequential Mode)
0
0
0
000
00
0
Unknown
Unknown
0
1 (Disable uITLB)
1 (Disable uDTLB)
1 (Disable MITLB)
1 (Disable MDTLB)
1
0000
0000
1
1
1
1
1
1
1
1
1
1
1
1
1

1 (Sequential Mode)
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
1 (Disable uITLB)
1 (Disable uDTLB)
1 (Disable MITLB)
1 (Disable MDTLB)
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

Table 91: CPU State after Reset and in RED_state (Continued)

Name POR XIR SIR RED_state

438 O Reset, RED_state, and Error_state

The TAP controller then generates a POR trap, depending on which pins are asserted.
Since POR has higher priority than XIR, POR trap should be raised when both pins are
asserted.

Due to the time limitation available for reset (5mS), the number of bits which can be
scanned is limited to around 16Kbits. The processor has been designed to limit the number
of bits which must be scan initialized within this limit. The processor has also been
designed to be in reset state by the above scan reset sequence.

O.5 Firmware Initialization Sequence
The firmware initialization sequence in this section should be done in the open boot pro-
gram (OBP) immediately after the hardware power on reset sequence.

When hardware reset is complete, the processor is in RED_state, which disables all
Caches (except I0 which can not be disabled) and TLBs. This means VA=RA and UPA
accesses can only go to I/O space (since memory access need to be cacheable due to UPA
limitation).

With the POR trap, the processor starts fetching instructions from RSTVaddr + 0x20
which is located I/O space and must contain the necessary initialization sequence.

With the hardware reset sequence described in the previous section, only the minimum
processor resources are initialized to make it run in RED_state. Following initialization,
the firmware should perform the following operations in the sequence shown:

1. TLB Initialization

2. Cache Initialization

3. MSU Initialization

4. Exit from RED_state

O.5.1 TLB Initialization

First both µITLB and µDTLB must be invalidated with a STXA instruction with ASI 3016
and 3116.

Next, the Main TLB must be initialized in the following way.

1. Write all 0 value to “Data TLB Match Data Register” using STXA (ASI=3F16,
VA=2016, “Write Data TLB Match Register”).

2. Write all 0 values to all of Main TLB entries (total of 256 entries) using STXA
(ASI=3516, “Write Data Main TLB Into Specified Entry). Since this instruction writes
only one entry at a time, a write loop is required to initialize all of the Main TLB
entries.

Then the minimum Main TLB entries for instruction and data access after exiting
RED_state must be written, and TLB Lock Entry Register and TLB FIFO counter register
should be properly set.

O.5.2 Cache Initialization 439

O.5.2 Cache Initialization

I1 Cache is invalidated by using “Invalidate I1 Cache Using I1 Cache Index and Way” ASI
instruction (ASI=6816, VA[30:28]=0112). Since this instruction invalidates only one cache
line entry at a time, for the whole 64KBytes I1 Cache invalidation, it needs to issue 1,024
instructions. Total time required to invalidate I1 is about 15 thousand cycles and is 61.5 uS
with 250MHz clock. Similarly, D1 cache is invalidated by using “Invalidate D1 Cache
Using D1 Cache Index and Way” ASI instructions (ASI=6816, VA[30:28]=1002).

U2 Cache is invalidated by writing its tag data with valid bit off into U2 Cache Tag with
“Write U2 Cache Tag” ASI instruction(ASI =6816, VA[30:28]=0002) instruction. Since
this instruction writes only one entry at a time (one for every 64 byte cache line), a write
loop is required to invalidate the entire U2 Cache. A 1MB U2 Cache requires 16K writes;
a 4MB cache requires 64K writes. Each write takes ~15 cycles (since instructions are
cached in I0 Cache, I-fetch to PROM occurs only once). Total time required to invalidate
all U2 Cache is about 1M cycles in case of 4MB cache and is 4 mS with 250MHz clock.

O.5.3 MSU Initalization

The MSU is initialized with a series of stores, as follows:

Set “Disable U2 Cache Data Error” (D_U2E, bit 50) and “Disable UPA Data Error”
(D_UPA, bit 47) in SCR(ASR31). Then do a series of 8-byte stores to all of memory using
STXA with ASI=1416 to initialize it to zero. Next, reset “Disable U2 Cache Data Error”
(D_U2E, bit 50) and “Disable UPA Data Error” (D_UPA, bit 47) in SCR (ASR31).

These stores calculate the correct ECC and so the memory contents are initialized to all-
zero values with correct ECC.

It is advisable to set “Enable Next Line Data Prefetch” (DPE) bit in ASR19 during the
operations above. This enables next line prefetch and improve speed of writes.

Without the prefetch, cache line (64 byte) read/write from/to MSU takes about 15 UPA
cycles (about 200nS). Since writing zeroes into a single cache line requires refill and later
write back, speed of initialization is about 64 byte/ 400nS = 160MB/S. This is about 7
Seconds/GB.

With the prefetch, it automatically fetches next cache line when the access misses. This
makes load complete in 20 cycles for every 2 lines. 128 byte/ 600nS = 210MB/S. This is
about 5 Seconds/GB.

440 O Reset, RED_state, and Error_state

O.5.4 Exit from RED_state

After the TLBs, Caches and memory are initialized, the processor can exit from
RED_state and enable TLB and Caches by the following instruction sequence.

(one of DCTI instructions) target_address ! Jump to non_RED program

wrpr %pstate ! Reset PSTATE.RED bit

The above is the only valid way to get out of RED_state.

Caution:
Be sure there are no hazards in the instruction fetch when the TLB is enabled. Right after
PSTATE.RED is reset, a new instruction address is translated through TLBs and/or the TMB in
memory.

P Error Handling

P.1 Overview
The SPARC64-III provides all error checking for all MMU translation paths and cache/
memory access paths between the CPU, 2nd level Cache, and the system bus. Errors are
reported in three categories, synchronous access errors, asynchronous access errors, and
system fatal errors.

A synchronous error is detected when the CPU can recognize a particular error associated
with a particular request (either instruction fetch or data load/store).

For asynchronous errors, it is difficult to determine which request caused the error.

When a system fatal error is reported, the system must be reset before continuing. A syn-
chronous error can be recoverable or non-recoverable. An asynchronous_access_error trap
is supported only for an error logging purpose.

Synchronous errors that can be recoverable must be logged. Non-recoverable failures
require immediate attention and logging, but not system reset. Software trap handlers
decides actions of different recoveries based on the error trap types. For system fatal
errors, CPU sends P_REPLY of type P_FERR to UPA. The system should generate a UPA
POR RESET to all processors. The error register which records a system fatal error will
not be cleared during a UPA Power-on RESET.

P.1.1 Synchronous Access Errors

The following errors could happen on instruction fetches and they belong to this category.
When these errors happen, the CPU will generate an instruction_access_error trap
(tt=0x00a, priority=3), and the fault instruction address will be set into TPC in the trap
stack. For I1 Cache Data ECC Single or Multiple Error cases, however, the trap may be
taken at a different address. But even in those cases, the instruction address that has the
error and the trap address which is designated by TPC are within the same cache line
address (the same 64 byte boundary address), and there are no problems with its error han-
dling process described later.

� µITLB Multiple Hit (ftype=0x1, priority=03, recoverable)

� MTLB Parity Error (ftype=0x2, priority=05, recoverable)

442 P Error Handling

� MTLB Multiple Hit (ftype=0x3, priority=04, recoverable)

� I1 Cache Tag Parity Error (ftype=0x4, priority=06, recoverable)

� I1 Cache Tag Multiple Hit (ftype=0x5, priority=07, recoverable)

� I1 Cache Data ECC Single Error ftype=0x6, priority=09, recoverable)

� I1 Cache Data ECC Multiple Error (ftype=0x7, priority=08, recoverable)

� UPA Bus Error (ftype=0x8, priority=10, non-recoverable)

� UPA Time-out (ftype=0x9, priority=11, non-recoverable)

� I0 Cache Tag Parity Error (ftype=0xe, priority=12, recoverable)

� I0 Cache Data Parity Error (ftype=0xf, priority=13, recoverable)

The following errors could happen on data loads/stores and they belong to this category.
When these errors happen, the CPU will generate a data_access_error trap (tt=0x032, pri-
ority=12).

� µDTLB Multiple Hit (ftype=0x1, priority=1, recoverable)

� MTLB Parity Error (ftype=0x2, priority=3, recoverable)

� MTLB Multiple Hit (ftype=0x3, priority=2, recoverable)

� D1 Cache Tag Parity Error (ftype=0x4, priority=4, recoverable)

� D1 Cache Tag Multiple Hit (ftype=0x5, priority=5, recoverable)

� D1 Cache Data ECC Single Error (ftype=0x6, priority=7, recoverable)

� D1 Cache Data ECC Multiple Error (ftype=0x7, priority=6, non-recoverable)

� UPA Bus Error (ftype=0x8, priority=8, non-recoverable)

� UPA Time-out (ftype=0x9, priority=9, non-recoverable)

In both the instruction and data access error cases, MTLB multiple hit error is not always
detected by the hardware when the condition exists in the Main TLB. Because the hard-
ware caches some of MTLB entries into the µTLB’s which are invisible from the software,
the error detection depends on the µTLB entries. The software always should avoid the
MTLB multiple hit condition and should not rely on the hardware error detection.

P.1.2 Asynchronous Access Errors

The following errors belong to this category. When these errors happen, the CPU will gen-
erate an async_access_error trap (tt=0x063, priority=2).

� D1 Cache Data ECC Multiple Error (copyback only) (logging)

� U2 Cache Data ECC Multiple Error (logging)

� U2 Cache Data ECC Single Error (logging)

P.1.3 System Fatal Errors 443

� UPA data ECC Multiple Error (logging)

� UPA data ECC Single Error (logging)

P.1.3 System Fatal Errors

� U2-Cache tag parity error

� UPA system address parity error

� Trap at MAXTL

� Watchdog Time-out

P.2 MMU Errors

P.2.1 µTLB Errors

For µITLB, the possible error is a µITLB multiple hit. For uDTLB, the possible error is a
µDTLB multiple hit.

The above errors are synchronous errors. When a µTLB error occurs, an
instruction_access_error or data_access_error trap is generated. The error handler should
issue an INVALIDATE_UITLB (or INVALIDATE_UDTLB) ASI instruction to invalidate
all µITLB (or µDTLB). When the missed request is retried, the µTLB is missed; the cor-
rect translation will be refilled from the MTLB.

P.2.2 Main TLB Errors

For MTLB, the possible errors are:

� MTLB parity error

� MTLB multiple hit

These are synchronous errors. When an MTLB error occurs, an instruction_access_error or
data_access_error trap is generated. The error handler should issue
INVALIDATE_TLB_ENTRY ASI_instruction to invalidate the erroneous entry. When the
missed request is retried, the MTLB is missed; the correct translation will be performed as
MTLB miss.

P.3 Memory Errors
All caches and memories are protected by either ODD parity or ECC. All of the ECC
codes in L1/U2/UPA are the same. The 64-bit ECC code specification can be found in Shi-
geo Kaneda’s correspondence note: “A Class of Odd-Weight-Column SEC-DED-SbED
Codes for Memory System Applications”, IEEE Trans. on Computers, August 1984.

444 P Error Handling

P.3.1 I0 Cache Parity Errors

� I0-Cache-Tag parity error

� I0-Cache-Data parity error

P.3.2 I1/D1 Caches TAG Errors

� I1-Cache-Tag parity error

� I1-Cache-Tag multiple hit

� D1-Cache-Tag parity error

� D1-Cache-Tag multiple hit

P.3.3 I1/D1 Caches Data ECC Errors

� I1-Cache-Data ECC error

� D1-Cache-Data ECC error

� D1-Cache-Data ECC multiple error

� I1-Cache-Data ECC multiple error

P.3.4 U2 Cache TAG Parity Errors

� U2-Cache tag parity error

P.3.5 U2 Caches Data ECC Errors

� U2-Cache-Data SECC error

� U2-Cache-Data MECC error

P.4 System Errors
P.4.1 System ECC Errors

� UPA SECC errors

� UPA MECC errors

P.4.2 System UPA Errors

� S_ERR that is reported to a UPA master for an error associated with a noncached read.

� S_RTO is read time out from a slave port for an access to an unimplemented address
space.

P.5 Basic Mechanism and Flow of Error Handling 445

P.5 Basic Mechanism and Flow of Error Handling
P.5.1 D1-Cache/U2-Cache/UPA ECC Multiple Error

1. When detected, the error is logged into DC/TDU/ICU Error Log Register. Then the
CPU takes an asynchronous_error trap. Software logs the error information and clears
the error log register.

� When updating the error log in the memory, software should use the lock mecha-
nism because it is used by all of processors in the system.

2. The error data is sent with DATA_ERR signal to U2-Cache, I1-Cache, D1-Cache, or
ICU.

3. When the data are stored or sent into U2-Cache, I1-Cache, D1-Cache, or UPA, the data
and ECC bits which indicates multiple ECC errors are stored or sent (ECC multiple
errors are propagated).

� To write ECC multiple error data into those Cache or UPA for the error propaga-
tion purpose, bit-63, 35, and 22 are flipped.

� The granularity of ECC error propagation is 16 byte. This means if an ECC error is
detected in one of 8 byte data, the ECC multiple error data is generated for the 8
byte data and also the other 8 byte data which is within the same 16 byte boundary.
Although the granularity is 16 byte, the software can know the exact original error
bit location by looking at ECC syndrome bits from the error log registers.

4. When the error data is being used for real instruction fetch or execution, CPU takes an
instruction_access_error or data_access_error trap (synchronous trap).

� The hardware guarantees that this synchronous error trap is taken after the asyn-
chronous error trap which was the cause of the synchronous error was taken.

5. In the synchronous error trap, the software investigates the cause of the error by look-
ing at error log information stored in memory, then kills the process or go to PANIC
and fix the error.

� Before looking at the error log to investigate the cause of the error, the software
should wait for several mS because other processors haven’t logged error logs
which may be the cause of the error.

P.5.2 How to Fix the MECC Error

This scheme can be used for any kind of ECC multiple errors which can be anywhere in
the system (i.e. memory, U2-Cache, I1-Cache, D1-Cache of any processors in the system).

1. Disable the asynchronous_error_trap (ASR31).

2. Do two 8-byte stores to the error location.

3. Do STXA, ASI=6A16 (Flush L1 Cache to U2 Cache Using U2 Cache Index)

4. Clear the error log registers.

446 P Error Handling

5. Enable asynchronous_error_trap (ASR31).

P.5.3 U2-Cache/UPA SECC Error

1. If it's detected, the error is logged into TDU/ICU Error Log Register. Then the CPU
takes an asynchronous_error trap. Software logs the error information and clears the
error log registers.

2. The error is corrected by hardware, and doesn't propagate to any other place.

3. Software corrects the original error. (The original error is not corrected by the hard-
ware.)

P.5.4 How to Fix the SECC Error

This scheme can be used for any kind of ECC single errors which can be anywhere in the
system (i.e. memory, U2-Cache, I1-Cache, D1-Cache of any processors in the system).

1. Disable the asynchronous_error_trap (ASR31).

2. Do LDXA,ASI=14. The address should use the same U2-Cache index PA address of
the error (PA[23:6]), but other address bits (PA[40:24]) should be different with those
of the error address. By doing this way, the data of the error address is corrected and
evicted from I1/D1/U2-Cache.

3. Clear the error log registers.

4. Enable the asynchronous_error_trap (ASR31).

P.5.5 Permanent or Intermittent SECC Error

This scheme can be used to check whether the ECC single error is permanent or intermit-
tent in U2-Cache or the memory. This should be done after the error is fixed by the scheme
above.

1. Disable asynchronous_error_trap (ASR31).

2. Do LDXA,ASI=14. The address should be the same error location address. By fixing
the ECC single error, the error data has been already evicted from I1/D1/U2-Cache.
Therefore to check whether permanent or intermittent, just reload the data into U2
Cache.

3. Check the error log registers.

4. If UPA ECC single error is logged, this is a memory permanent error.

5. If U2 ECC single error is logged, this is a U2 Cache permanent error.

6. If no error is logged, this is an intermittent error.

7. Clear the error log registers.

P.6 Hardware Error Trap Processing 447

8. Enable asynchronous_error_trap (ASR31).

When there is a permanent ECC single-bit error in the memory, the program can advance
because the corrected data is still in the U2-Cache after the asynchronous error handling.
When there is a permanent ECC single-bit error in U2-Cache and the access is not an
instruction fetch, the program can advance because the corrected data is still in the
D1-Cache after the asynchronous error handling. When there is a permanent ECC single-
bit error in U2-Cache and the access is an instruction fetch, the program can not advance
because the corrected data is not in the I1-Cache after the asynchronous error handling. To
deal with this problem, there are two choices for the software to avoid the loop situation:

� When a U2 Cache ECC single error is reported by an asynchronous error trap, the soft-
ware should check whether the error location has been logged as a permanent U2
Cache single error before fixing the error. If it is the case, the software should just skip
the error fix and the investigation of the error permanency, and then just clear the error
log and do RETRY. By doing this way, the corrected instruction can remain in the I1
Cache, and we can avoid the software loop.

� If the software detects an infinite synchronous ECC single error trap loop, it should set
“Disable Asynchronous ECC Single Error Trap” (D_ASEET) bit in ASR31. It might
be better for the software to check whether this bit is set at some fixed interval (per-
haps once an hour), and reset it if it’s set; the bit should not be set for a long time in
order to prevent ECC single errors from becoming ECC multiple errors.

P.6 Hardware Error Trap Processing
P.6.1 Instruction_access_error trap (tt=00a16)

� When this error condition is reported, the CPU waits for sync.

� After the sync, if it is the earliest and highest trap condition, the CPU is going to take
this trap.

� If TL=MAXTL already, the CPU logs TRAP@MAXTL occurrence into TDU Error
Log Register, and assert P_FERR to UPA bus.

� After taking the trap and before issuing trap routine instructions, all of instructions in
I0-Cache and Instruction-Buffer are invalidated.

P.6.2 Data_access_error trap (tt=03216)

� When this error condition is reported, the CPU waits for sync.

� After the sync, if it is the earliest and highest trap condition, the CPU is going to take
this trap.

� If TL=MAXTL already, the CPU logs TRAP@MAXTL occurrence into TDU Error
Log Register, and assert P_FERR to UPA bus.

448 P Error Handling

P.6.3 Asynchronous_error trap (tt=06316)

� When the error condition is detected, the error information (error type, PA, ECC syn-
drome) is logged into one of DC/TDU/ICU Error Log Registers.

� In any data ECC single error cases, the data is corrected through ECC correction logic
by the hardware and the error doesn't propagate with the data any more. But in the U2
cache single ECC error case, the error in U2 cache itself isn't corrected by the hard-
ware and still will be there.

� UC starts and keeps asserting asynchronous error signal to CPU core until the error log
register gets cleared by the software.

� The CPU waits for sync.

� After the sync, if it is the earliest and highest trap condition, the CPU is going to take
this trap.

� If TL=MAXTL already, the CPU logs TRAP@MAXTL occurrence into TDU Error
Log Register, and assert P_FERR to UPA bus.

� Immediately after taking the trap, the CPU sets the “Disable Asynchronous Error
Trap” bit in ASR31 to avoid taking the same trap again before the software clears the
error log registers. It's the software's responsibility to reset the “Disable Asynchronous
Error Trap” bit using WRASR31 instruction after the asynchronous error handling is
done. The software also can set this bit using WRASR31 instruction.

P.7 ASI Instructions for Error Handling
This section describes the ASI instructions that are designed for error handling. The fol-
lowing things are common to all of the ASI instructions defined in this section:

� The opcode of the instructions should be either ldx(a), lddf(a), stx(a), or
stdf(a). Otherwise, a data_access_exception trap with FTYPE=F16 (Invalid ASI) is
taken.

� No address translation is performed for the instructions.

� VA[3:0] of all of the instructions should be 0; otherwise a mem_not_aligned trap is
taken.

� The don’t-care bits (described as ‘—’ in the format) in VA can be any value. But it is
recommended that the software should use zero for these bits.

� The don’t-care bits (described as ‘—’ in the format) in DATA are read as zero and
ignored on write.

� The instruction operations are not affected by PSTATE.CLE. They are always treated
as in a big endian mode.

� The instructions do not cause the processor to sync.

P.7.1 Read/Write TDU Error Log Register 449

� The instructions are all strongly ordered regardless of load or store, and the memory
model. Therefore no speculative executions are performed.

The following subsections describe each operation in detail.

P.7.1 Read/Write TDU Error Log Register
Function: Read/Write TDU Error Log Register. This register is used to log U2 Cache parity/

ECC errors. It is also used to log “trap at max trap level” and “watchdog time-out”
errors.

ASI: 6C16
RW: Supervisor Read, Supervisor Write.
VA: VA:See below.

Data: See below.

SYNDROME[15:0]
ECC Error Syndrome. ECC error syndrome bits are set when U2-Cache ECC mul-
tiple or single error is detected for any kinds of U2-Cache read. Bit 15-8 are the
syndrome bits for byte 0-7 (bit 127-64) data, and bit 7-0 are the syndrome bits for
byte 8-f (bit 63-0) data. If U2-Cache ECC multiple error bit is already set and
another U2-Cache ECC multiple error is detected, this value won’t be changed
(keep the oldest value). If U2-Cache ECC single error bit is already set and another
U2-Cache ECC single error is detected, this value won’t be changed (keep the old-
est value). If U2-Cache ECC multiple error bit is not set and U2-Cache ECC single
error bit is set and U2-Cache ECC multiple error is detected, this value is updated
(ECC multiple error has a higher priority over ECC single error).

U2M:
U2-Cache ECC Multiple Error. Set when U2-Cache ECC multiple error is detected
for any kinds of U2-Cache read.

U2MM
U2-Cache ECC Multiple Error Multiple Occurrence. Set when U2-Cache ECC
Multiple Error bit is already set and another U2-Cache ECC multiple error is
detected for any kinds of U2-Cache read.

U2S
U2-Cache ECC Single Error. Set when U2-Cache ECC single error is detected for
any kinds of U2-Cache read.

63 04 3
0000—

63 046 45 44 4 3
—SYND U2M U2MM U2S U2TG TRPM WDTO PA

48 47 43 42
ROME U2SM

41 40

450 P Error Handling

U2SM
U2-Cache ECC Single Error Multiple Occurrence. Set when U2-Cache ECC Sin-
gle Error bit is already set and another U2-Cache ECC single error is detected for
any kinds of U2-Cache read.

U2TG
U2-Cache Tag Parity Error. Set when U2-Cache Tag Parity Error is detected for
any kinds of U2-Cache tag read.

TRPM
Trap At MAXTL. Set when a trap at MAXTL is detected.

WDTO
Watchdog Time-out. Set when a watchdog time-out is detected.

PA[40:4]
Error Physical address. The error PA is set when U2-Cache ECC multiple or single
error is detected for any kinds of U2-Cache read. If U2-Cache ECC multiple error
bit is already set and another U2-Cache ECC multiple error is detected, this value
won’t be changed (keep the oldest value). If U2-Cache ECC single error bit is
already set and another U2-Cache ECC single error is detected, this value won’t be
changed (keep the oldest value). If U2-Cache ECC multiple error bit is not set and
U2-Cache ECC single error bit is set and U2-Cache ECC multiple error is
detected, this value is updated (ECC multiple error has a higher priority over ECC
single error).

Note:
If both upper and lower 8 byte data within the same 16 byte data have ECC multiple or single errors
simultaneously, it is logged as only one error occurrence. In the case of single and multiple error
combinations, it is logged as an ECC multiple error. That is, U2M bit is set, U2S bit is unchanged.

This register is reset on a cold POWER_ON_RESET.

This register is not reset by UPA_POR.

The SYNDROME bits (bit 63-48) and PA bits (bit 40-4) are reset to “0” on write, regard-
less of the write data.

The U2M, U2MM, U2S, U2SM, U2TG, TRPM, WDTO bits (bit 47-41) are reset to “0”
on write when the corresponding write data is “1” (“echo reset”).

The U2M, U2MM, U2S, U2SM, U2TG, TRPM, WDTO bits (bit 47-41) are unchanged on
write when the corresponding write data is “0”.

P.7.2 Read/Write ICU Error Log Register 451

P.7.2 Read/Write ICU Error Log Register
Function: Function:Read/Write ICU Error Log Register. This register is used to log UPA bus

parity/ECC errors.
ASI: 6D16
RW: Supervisor Read, Supervisor Write.
VA: See below.

Data: DATA:See below.

SYNDROME[15:0]
ECC Error Syndrome. ECC error syndrome bits are set when UPA ECC multiple
or single error is detected. Bit 15-8 are the syndrome bits for byte 0-7 (bit 127-64)
data, and bit 7-0 are the syndrome bits for byte 8-f (bit 63-0) data. If UPA ECC
Multiple Error bit is already set and another UPA ECC multiple error is detected,
this value won’t be changed (keep the oldest value). If UPA ECC Single Error bit is
already set and another UPA ECC single error is detected, this value won’t be
changed (keep the oldest value). If UPA ECC Multiple Error bit is not set and UPA
ECC single error bit is set and UPA ECC multiple error is detected, this value is
updated (ECC multiple error has a higher priority over ECC single error).

UPM
UPA ECC Multiple Error. Set when UPA ECC multiple error is detected.

UPMM
UPA ECC Multiple Error Multiple Occurrence. Set when UPA ECC Multiple
Error bit is already set and another UPA ECC multiple error is detected.

UPS
UPA ECC Single Error. Set when UPA ECC single error is detected.

UPSM
UPA ECC Single Error Multiple Occurrence. Set when UPA ECC Single Error bit
is already set and another UPA ECC single error is detected.

UPAD
UPA Address Parity Error. Set when UPA address parity error is detected.

INTR
Interrupt Vector Data Error. Set when UPA ECC multiple or single error is
detected and the data is one of interrupt vector data. If UPA ECC multiple error bit
is already set and another UPA ECC multiple error is detected, this value won't be
changed (keep the oldest value). If UPA ECC single error bit is already set and
another UPA ECC single error is detected, this value won't be changed (keep the
oldest value). If UPA ECC multiple error bit is not set and UPA ECC single error

63 04 3
4h0—

63 046 45 44 4 3
—SYND UPM UPMM UPS UPAD — INTR PA

48 47 43 42
ROME UPSM

41 40

452 P Error Handling

bit is set and UPA ECC multiple error is detected, this value is updated (ECC mul-
tiple error has a higher priority over ECC single error).

PA[40:4]
Error Physical Address. The error PA is set when UPA ECC multiple or single
error is detected. If UPA ECC multiple error bit is already set and another UPA
ECC multiple error is detected, this value won’t be changed (keep the oldest
value). If UPA ECC single error bit is already set and another UPA ECC single
error is detected, this value won’t be changed (keep the oldest value). If UPA ECC
multiple error bit is not set and UPA ECC single error bit is set and UPA ECC mul-
tiple error is detected, this value is updated (ECC multiple error has a higher prior-
ity over ECC single error). When the error is on the interrupt vector data, PA[40:4]
is either 37h0 (Interrupt Vector Data 0), 37h1 (Interrupt Vector Data 1), or 37h2
(Interrupt Vector Data 2).

Note:
If both upper and lower 8 byte data within the same 16 byte data have ECC multiple or single errors
simultaneously, it is logged as only one error occurrence. In the case of single and multiple error
combinations, it is logged as an ECC multiple error. That is, UPM bit is set, UPS bit is unchanged.

This register is reset on the cold POWER_ON_RESET.

This register is not reset by UPA_POR.

The SYNDROME bits (bit 63-48), INTR bit (bit 41), and PA bits (bit 40-4) are reset to “0”
on write, regardless of the write data.

The UPM, UPMM, UPS, UPSM, UPAD bits (bit 47-43) are reset to “0” on write when the
corresponding write data is “1” (“echo reset”).

The UPM, UPMM, UPS, UPSM, UPAD bits (bit 47-43) are unchanged on write when the
corresponding write data is “0”.

When one of the interrupt data has an ECC error, the processor still tries to take
interrupt_vector trap regardless of the error. But in this case, the processor always takes an
asynchronous_error trap first. It’s up to the software whether to kill the interrupt request by
resetting the busy bit of interrupt data receive register when it recognized that there is an
ECC error on the interrupt data by reading ICU Error Log Register in the asynchronous
error trap routine.

P.7.3 Read/Write DC Error Log Register
Function: Read/Write DC Error Log Register. This register is used to log D1 Cache ECC

error on copyback.
ASI: 6E16
RW: Supervisor Read, Supervisor Write.
VA: See below.

63 04 3
4h0—

P.7.3 Read/Write DC Error Log Register 453

Data: See below.

D1M
D1-Cache ECC Multiple ECC Error. Set when D1-Cache ECC multiple ECC error
is detected during a copyback from D1-Cache to U2-Cache or UPA.

D1MM
D1-Cache ECC Multiple Error Multiple Occurrence. Set when D1-Cache ECC
Multiple Error bit is already set and another D1-Cache ECC multiple error is
detected during a copyback from D1-Cache to U2-Cache or UPA.

PA[40:4]
Error Physical Address. The error PA is set when D1-Cache multiple error is
detected during a copyback from D1-Cache to U2-Cache or UPA. If D1-Cache
ECC multiple error bit is already set and another D1-Cache ECC multiple error is
detected during a copyback from D1-Cache to U2-Cache or UPA, this value won’t
be changed (keep the oldest value).

Note:
If both upper and lower 8 byte data within the same 16 byte data have ECC multiple errors simulta-
neously, it is logged as only one error occurrence.

This register is reset on cold POWER_ON_RESET.

This register is not reset by UPA_POR.

The PA bits (bit 40-4) are reset to “0” on write, regardless of the write data.

The D1M, D1MM bits (bit 47-46) are reset to “0” on write when the corresponding write
data is “1” (“echo reset”).

The D1M, D1MM bits (bit 47-46) are unchanged on write when the corresponding write
data is “0”.

63 046 45 4 3
—D1M D1MM — PA

48 47 41 40

—

454 P Error Handling

P.7.4 Read/Write UC Error Injection Register
Function: Read/Write UC Error Injection Register. This register is used to inject ECC errors

into U2 Cache and UPA bus.
ASI: 6F16
RW: Supervisor Read, Supervisor Write.
VA: See below.

Data: See below.

DEI
Disable Error Injection Except U2 Flush. If this bit is “0”, any kinds of outgoing
data to UPA are error-injected by flipping ECC check bits using “UPA ECC Check
Bit Flip” value in this register. If this bit is “1”, the outgoing data to UPA caused by
the following ASI instructions are error-injected by flipping ECC check bits using
“UPA ECC Check Bit Flip” value in this register, and the outgoing data to UPA
caused by other than the following ASI instructions are not error-injected and
“UPA ECC Check Bit Flip” values in this register are ignored.

Flush U2 Cache to Memory Using U2 Cache Buffer Index (ASI=6816, VA[30:28]=0102)

Flush U2 Cache to Memory Using PA (ASI=6916)

UPA[15:0]
UPA ECC Check Bit Flip. Bit 15-8 are used to flip UPA ECC check bits of UPA
Data bit 127-64. Bit 7-0 are used to flip UPA ECC check bits of UPA Data bit 63-
0. ECC check bit flipping happens depending on these bit values and DEI bit value.

U2[15:0]
U2 Cache ECC Check Bit Flip. Bit 15-8 are used to flip U2 Cache ECC check bits
of U2 Cache Data bit 127-64. Bit 7-0 are used to flip U2 Cache ECC check bits of
U2 Cache Data bit 63-0. ECC check bit flipping happens depending on these bit
values and only when the write to U2 Cache Data is caused by the following ASI
instruction:

Write U2 Cache Data From U2 Cache Buffer Registers (ASI=6816, VA[30:28]=0012)

63 04 3
4h0—

63 031

DEI UPA U2
33 32 16 15

—

Q Performance Monitoring

Q.1 Introduction
This appendix describes and specifies performance monitors that have been implemented
in the SPARC64-III CPU. Performance monitors have been added in order to improve
software tuning and allow cursory system debug. System debug may be performed during
bring-up or at customer sites.

Because of complexity related to speculative out-of-order execution, retry and block con-
ditions between the Load Store Unit (LSU) and Cache, and instruction and data prefetch,
performance monitors are difficult to specify and implement. For example, consider
instruction prefetching. The CPU attempts to prefetch the next cache line from the level-1
instruction cache (I1). This prefetch may miss in the I1. If this cache line is later used by
the CPU, I1 miss is counted, even though it may not have resulted in an issue bubble in the
CPU. Additionally, the aggressive use of instruction speculation in the CPU complicates
performance monitoring. Should stall conditions which occur during an incorrectly exe-
cuted instruction sequence be counted? How do we measure cache pollution due to specu-
lation? Additionally, we would like to minimize the impact to the processor chip. The
CPU has limited silicon resources and additional functionality must be tested and verified.

Therefore, we have attempted to minimize complexity while still providing performance
observability. Specifically:

� No timing paths have been introduced.

� In some cases, new functionality is leveraged off existing logic in the SPARC64-II
CPU.

� In cases where speculation would complicate performance monitoring design and ver-
ification, we have chosen to simplify the monitor.

Q.2 Performance Monitor Description
Q.2.1 Overview

All performance monitors are 32-bits long in SPARC64-III CPU. The performance moni-
tors can be divided into the following groups:

1. Memory Access Latency Counters

456 Q Performance Monitoring

These counters measure the latency of certain types of memory accesses.

2. Memory Access Event Counters

These measure the frequency of certain types of memory accesses from LSU’s point of
view.

3. L1 Cache Access Event Counters

The frequency of L1 cache misses can be derived from this set of counters.

4. L2 Cache Access Event Counters

All kinds of access events to the L2 cache are recorded.

5. UPA Access Event Counters

Non-cacheable and cacheable UPA requests are counted separately.

6. Cache Coherency Event Counters

L1 cache coherency events (invalidation, retag and copyback) are counted separately.

7. MMU Event Counters

TLB misses are counted with respect to µTLB or main TLB, data or instruction side.

8. Instruction Execution Rate Counters

This set comprises the issue and commit counters which measure instruction execution
rate.

9. Issue Stall Counters

The mixture and number of various issue stall conditions are monitored.

10.Branch Prediction Counters

The branch mispredict ratio can be calculated from these counters.

11.Machine Sync Counters

The frequency and latency of machine syncing instructions are measured.

With the exception of the committed instruction counter and main TLB miss counters, all
other monitors and counters are updated speculatively. For example, issue stalls (as well as
memory accesses) which occur in mispredicted paths may be accumulated into the stall
(frequency and latency) counters respectively. Instructions which are issued speculatively
may not always modify performance monitors. Consider load/store instructions which are
issued to the LSU reservation station, but are not selected for execution due to scheduling
constraints. These instructions may later be killed before they are requested from the
cache chips.

Finally, counters are not disabled during backups and backsteps, although in some cases
(memory access event and latency counters) instructions killed by the Precise State Unit
will not update the counter. Refer to the following sections for more detail.

Q.2.2 Memory Access Latency Counters 457

Notes:
Upon saturation, all counters will remain at the maximum value. The maximum value indicates
counter overflow.

All performance monitor registers are 32-bits long in SPARC64-III CPU.

Q.2.2 Memory Access Latency Counters

Memory access latency counters measure total latency for different types of load/store
accesses which do not “HIT”. A “HIT” is defined as a request from the DFMLSU which
returns data and CACHE_HIT the third cycle after a memory access has been requested.
Hence, a “HIT” may occur on a number of different conditions:

� The data cache has asserted BLOCK, and the LSU has inhibited any memory requests.
After negation of BLOCK, any memory request which “HITs” will increment the data
cache hit counter.

� The data cache has asserted RETRY after the LSU has sent a memory request. After
one or more attempts, any memory request which “HITs” will increment the data
cache hit counter.

Latency is defined from initiation of a memory request from the LSU to completion status
from the data cache. Completion status can be successful data transfer or any error condi-
tion.

In order to implement the memory access latency counters, each potential outstanding
load/store request from the LSU (maximum of 12) has an associated counter. The counter
is 12-bits and upon saturation, will maintain its maximum value. Although the maximum
limit for memory accesses is theoretically infinite, the maximum latency which can be
measured per memory miss is 4096 cycles. Latency measurements greater than 4096
cycles will be lost. Upon completion of the memory access, the individual latency count is
added to the total latency count for the appropriate memory type.

All latency counters are updated speculatively, but load/store instructions which are killed
due to backtracks initiated by the Precise State Unit (PSU) will not be accumulated into
the latency counters.

Counter 0: Memory Total Latency Counter
Description: Total latency count of all memory access which complete but are not defined as a

“HIT”. From the memory event counter and the memory latency counter, the
average latency for memory accesses can be calculated.

Q.2.3 Memory Access Event Counters

Memory access event counters measure the number of certain types of load/store access
from LSU’s point of view. All updates to these monitors are performed speculatively.

All memory event counters are updated speculatively, but load/store instructions which are
killed due to backtracks initiated by the Precise State Unit (PSU) will not be accumulated
into the event counters.

458 Q Performance Monitoring

Counter 1: L1 Data Cache Hit Counter
Description: Incremented when a load/store request to the data cache returns with “HIT”. This

counter may be incremented a maximum of 2 every cycle.

Counter 2: Memory Access Event Counter
Description: Any memory access which completes but is not defined as a “HIT,” will result be

counted in the memory access event counter. This counter may be incremented a
maximum of 2 every cycle.

Q.2.4 L1 Cache Access Event Counters

Level-1 cache access event counters record access events which take place in the level-1
data and instruction caches.

Counter 3: L1 Data Cache Reload for Load Event Counter
Description: Incremented when UC sends reload request, which is corresponding to a load miss,

to DC. This counter also indicates the event of a L1 data cache miss for load
request, excluding µTLB miss.

Counter 4: L1 Data Cache Reload for Store Event Counter
Description: Incremented when UC sends reload request, which is corresponding to a store

miss, to DC. This counter also indicates the event of a L1 data cache miss for store
request, excluding µTLB miss.

Counter 5: L1 Data Cache Victim Copyback Counter
Description: Accumulates the number of misses that do victim copyback in level-1 data cache.

Counter 6: L1 Instruction Cache Reload Event Counter
Description: Incremented when UC sends reload requests to IC. This counter also indicates the

event of a L1 instruction cache miss, excluding µTLB miss.

Q.2.5 L2 Cache Access Event Counters

Counter 7: U2 Cache Miss From Instruction Fetch Counter
Description: Incremented when a read request from IC misses in UC.

Counter 8: U2 Cache Miss From Data Load Counter
Description: Incremented when a load request from DC misses in UC.

Counter 9: U2 Cache Miss From Data Store Counter
Description: Incremented when a store request from DC misses in UC.

Q.2.6 UPA Access Event Counters 459

Counter 10: U2 Cache Miss With Writebacks Counter
Description: Accumulates the number of events of U2 cache miss that do writeback.

Counter 11: U2 Cache Invalidate from UPA Transaction Counter
Description: Incremented when a U2 cache line is invalidated due to the following UPA

transactions: S_INV_REQ, S_CPI_REQ.

Counter 12: U2 Cache Unsolicited Copyback Counter
Description: Incremented when an unsolicited copyback occurs in U2 cache due to the

following UPA transactions: S_CPB_REQ, S_CPI_REQ, S_CPD_REQ,
S_CPB_MSI_REQ.

Counter 13: U2 Cache Hit with “Read to Own” UPA Transaction Counter
Description: Incremented when U2 cache hits that require “read to own” UPA

Counter 14: I0 Instruction Cache Miss Counter
Description: Incremented when level-0 instruction cache line is replaced.

Q.2.6 UPA Access Event Counters

Counter 15: Non-cacheable Load Counter
Description: Accumulates the number of non-cacheable load requests from UC to UPA bus.

Counter 16: Non-cacheable Store Counter
Description: Accumulates the number of non-cacheable store requests from UC to UPA bus.

Counter 17: UPA Access Counter
Description: Incremented when UC sends any kind of request to the system controller.

Q.2.7 Cache Coherency Event Counters

Cache Coherency Event Counters monitor the activities related to the coherency requests.
The events that trigger the increment of these counters are certain type of requests from
UC to DC or IC. These counters are incremented speculatively, so the event recorded may
be related to instructions on a mispredicted path.

Counter 18: L1 Data Cache Invalidate Event Counter
Description: Incremented when UC sends invalidate request to DC.

Counter 19: L1 Data Cache Retag Event Counter
Description: Incremented when UC sends retag request to DC.

460 Q Performance Monitoring

Counter 20: L1 Instruction Cache Invalidate Event Counter
Description: Incremented when UC sends invalidate request to IC.

Counter 21: L1 Data Cache Unsolicited Copyback Counter
Description: Incremented when UC sends DC an unsolicited copyback request.

Q.2.8 MMU Event Counters

Counter 22: Instruction µTLB Miss Counter
Description: Incremented when instruction µTLB miss occurs. On main TLB hit, this counter

may be updated speculatively. On main TLB miss, it is updated non-speculatively.

Counter 23: Data µTLB Miss Counter
Description: Incremented when data µTLB miss occurs. On main TLB hit, this counter may be

updated speculatively. On main TLB miss, it is updated non-speculatively.

Counter 24: Instruction Main TLB Miss Counter
Description: Incremented when instruction main TLB miss occurs. Non-speculative.

Counter 25: Data Main TLB Miss Counter
Description: Incremented when data main TLB miss occurs. Non-speculative.

Q.2.9 Instruction Execution Rate Counters

The following counters allow measurement of instruction execution rates.

Counter 26: Performance Monitoring Cycle Counter
Description: Accumulates the number of cycles the performance monitors have been enabled.

Provides a precise measurement interval. It is separate from the TICK register
accessed through the rd %tick instruction because it can be enabled and disabled
through software. At 250Mhz, 32-bits will result in a monitoring interval
exceeding 10 seconds. When monitoring User or System time separately, this
counter gives a measure of how long the processor spends with PSTATE.PRIV
either 0 (User) or 1 (System) (see Appendix Q.3.5, “Performance Counter
Enable”).

Counter 27: Instruction Issue Counter
Description: Accumulates the number of instructions issued every cycle. Assuming the machine

is running at 250MHZ at the theoretical peak of 4 IPC, a 32-bit counter will provide
a monitoring interval of 4 seconds without overflow. Generally, processor IPC will

Q.2.10 Issue Stall Counters 461

be closer to ~1.8 over long benchmarks, but the theoretical peak may be reached
for short periods. From the performance monitoring cycle counter and the
instruction issue counter, the speculative IPC can be obtained.
The instruction issue counter will be larger than the instruction commit counter.
Generally, this is due to branch misprediction effects, but can also be due to
execution traps (for example, main TLB miss traps). In the latter case, instructions
on the correctly predicted path may be killed and reissued on return from the trap.
Special considerations are needed when measuring User and System counts
separately (see Appendix Q.3.5, “Performance Counter Enable” for a discussion)

Counter 28: Instruction Commit Counter
Description: Accumulates the number of instructions committed every cycle. Due to speculative

instruction issue, the value stored in the committed instruction counter may be less
than that of the issue counter. From the performance monitoring cycle counter and
the instruction commit counter, the true IPC can be obtained.

Q.2.10 Issue Stall Counters

Issue stall counters measure the frequency of instruction stalls. On any cycle where the
machine is unable to meet its peak issue rate of 4 instructions, the first stalling instruction
is checked against a prioritized list of stall conditions. Only one out of the seven stall
counters is incremented. For example:

In the above case, the CPU was able to issue the first 2 instructions, but the third instruc-
tion (inst2) stalls. In order to decide which one of the stall monitors should be incre-
mented, the stall(s) related to inst2 are checked against the first stall counter. If the
instruction stalled due to the first stall type, the counter is incremented and no other stall
counter is incremented. Otherwise, the CPU proceeds to the second, and so on, until the
last stall monitor is reached. If the last stall monitor is reached, it will always be incre-
mented. Although inst2 may have generated multiple stalls, the prioritized list assures a
unique stall count. For example, if the primary instruction cache misses, whether the
instruction would have stalled due to lack of free registers is immaterial.

All stall counters are incremented speculatively. They correspond with events in the issue
cycle of the SPARC64-III CPU. Instructions are issued in-order, so modifications to stall
monitors will occur in program order.

A special note is required for issue_traps. Although they are logged in the last stall counter
(Counter 34), they are prioritized before Counter 29. On an issue_trap, Counter 34 will be
incremented if the instruction did not stall due to a fetch stall or instruction invalid stall.
This is because when issue_traps occur, whether the instruction would have generated
other resource stalls is immaterial.

inst3 inst2 inst0inst1

stall(s)

issued

462 Q Performance Monitoring

The sum total of all the stall counters gives a measure of cycles when less than 4 instruc-
tions were issued. Subracting this total from the performance monitoring cycle counter
gives the total number of 4-issue (speculative IPC 4) cycles. Subsequently, the average
speculative IPC for the stall cycles can be computed.

Counter 29: Fetch Stall Counter
Description: Incremented when an instructions stalls during the issue cycle due to a fetch

bubble. These cases include:
� primary instruction cache miss
� prefetch line miss
� cache-line discontinuity
� control transfer instruction
� DONE/RETRY

Counter 30: PSU_KILL Stall Counter
Description: Incremented when an instruction stalls due to an issue kill from the Precise State

Unit, and higher prioritized stalls have not occurred. The PSU kills instruction
issue due to
� exception (interrupts, execution trap) handling
� during the DO_BACKUP cycle as a result of machine backups.

Counter 31: Reservation Station Queue Stall Counter
Description: Incremented when an instruction stalls due to insufficient reservation station queue

entries, and higher prioritized stalls have not occurred. Reservation stations
comprise:
� DFMLSU - load/store instructions
� DFMFXU - fixed-point instructions
� DFMAGEN - load/store instructions and certain fixed-point instructions
� DFMFPU - floating-point instructions

Counter 32: Free Register Resource Stall Counter
Description: Incremented when an instruction stalls due to insufficient free registers for register

renaming, and higher prioritized stalls have not occurred. The following registers
are renamed:
� fixed-point registers
� floating-point registers
� condition code (icc,xcc,fcc0-4) registers

Counter 33: Checkpoint, Serial Number, or Trap Stack Resource Stall
Description: Incremented when an instruction stalls due to insufficient checkpoints, serial

numbers, or trap_stack entries, and higher prioritized stalls have not occurred. The
following instructions require checkpoints:
� BPr(a)

Q.2.10 Issue Stall Counters 463

� FBcc(a)/FBPcc(a)

� Bcc(a)/BPcc(a)

� BAa/BPAa/FBAa/FBPAa

� flushw

� integer ldd/std(a)

� saved/restored

� call

� jmpl

� ret/retl

� return

� save/restore

� done/retry

� ta [%g0+imm]

� tcc

� tn

� rd %asr

� rd %pr

� wr %asr

� wr %pr

All instructions require serial numbers for issue. Only instructions which generate
exceptions require trap_stack entries. The SPARC64-III CPU contains 16
checkpoints, 64 serial numbers, and 4 extra trap_stack entries for renaming.

Counter 34: Other Stall Counter
Description: Incremented when an instruction stalls due to all other issue stall conditions, and a

higher prioritized stalls have not occurred. These other stalls include:
� syncing stalls due to sequential mode, or instructions which must be issued at

machine sync
� %pil register stall - following a wr %pil instruction, any further read or write

of %pil register will result in a stall until the PIL register has been correctly
updated

� last_tobe_issued - certain instructions must be the last instruction in the
instruction window to be issued.

� slot0_only - certain instructions must the first instruction in the issue window.
� issue_traps

464 Q Performance Monitoring

Q.2.11 Branch Prediction Counters

Counter 35: Branch Issue Counter
Description: The number of branch instructions which have been issued, including speculative

branches. If the processor is operating in sequential mode, an accurate non-
speculative branch count can be obtained.

Counter 36: Branch Mispredict Counter
Description: Accumulates the number of branch mispredict events. By dividing the value of this

counter by the value of “Branch Issue Counter,” the branch mispredict ratio can be
obtained.

Counter 37: Instruction Lookup Table (ILT) Miss Counter
Description: Accumulates the number of ILT (next fetch PC) misses.

Q.2.12 Machine Sync Counter

Counter 38: Sync Event Counter
Description: Accumulates the number of syncing instructions. Does not include machine syncs

due to exceptions (for example, main TLB miss exception).

Counter 39: Sync Cycle Counter
Description: Counts the number of cycles when the machine is waiting for sync to complete.

From this counter and the Sync Event Counter, the average latency per syncing
instruction can be calculated.

Q.3 Software Interface
Q.3.1 Reading Performance Counters

All performance monitor registers are software visible through the rd %asr30 instruction
(see 6.2, “Instruction Formats” for details of instruction formats). Bits [12:8] of the
instruction (pm_reg_#) are used to select the register number within a particular view,
which is defined by the value in the View Number Register.

Table 92: Interpretation of bits[12:8]

pm_reg_# Operation
00000 View Number Register
00001 register #0
00010 register #1
00011 register #2
00100 register #3
00101 register #4
00110 register #5

Q.3.1 Reading Performance Counters 465

All rd %asr30 instructions are syncing instructions. On a rd %asr30, all upper bits not
specified in the counter are padded with zeroes.

The value of View Number Register can be updated by wr asr%30 with pm_op = “00100.”
The format of View Number Register is:

The pm1_view_# indicates the view number selecting the register group to be visible for
group 1, which is composed of register# 3 to 5. The pm0_view_# indicates the view num-
ber selecting the register group to be visible for group 0, which is composed of register 0
to 2. The counters to be selected according to pm1_view_# are shown in Table 93. Table
94 shows the counter selection according to pm0_view_#. When undefined pm1_view_#
or pm0_view_# is specified, the counter value is undefined.

Table 93: View Selection for Monitor Group 1

Register # Monitor Counter #
pm1_view_# = 0000

3 Memory Total Latency Counter 0
4 L1 Data Cache Hit Counter 1
5 Memory Access Event Counter 2

pm1_view_# = 0001
3 L1 Data Cache Reload for Load Event Counter 3
4 L1 Data Cache Reload for Store Event Counter 4
5 L1 Data Cache Invalidate Event Counter 18

pm1_view_# = 0010
3 L1 Data Cache Retag EventCounter 19
4 L1 Data Cache Victim Copyback Event Counter 5
5 L1 Data Cache Unsolicited Copyback Counter 21

pm1_view_# = 0011
3 Data µTLB Miss Counter 23
4 Data main TLB Miss Counter 25
5 UPA Access Counter 17

pm1_view_# = 0100
3 U2 Cache Miss from Instruction Fetch Counter 7
4 U2 Cache Miss from Data Load Counter 8
5 U2 Cache Miss from Data Store Counter 9

pm1_view_# = 0101
3 U2 Cache Miss with Writeback Counter 10
4 U2 Cache Invalidate from UPA Transaction 11
5 U2 Cache Unsolicited Copyback Counter 12

pm1_view_# = 0110
3 U2 Cache Hit with “read to own” UPA Transaction Counter 13
4 Non-cacheable Load Counter 15
5 Non-cacheable Store Counter 16

pm0_view_#pm1_view_#

3 07

466 Q Performance Monitoring

Table 94: View Selection for Monitor Group 0

Register # Monitor Counter #
pm0_view_# = 0000

0 Instruction Commit Counter 28
1 Instruction Issue Counter 27
2 Performance Monitoring Cycle Counter 26

pm0_view_# = 0001
0 Instruction Commit Counter 28
1 Instruction µTLB Miss Counter 22
2 Instruction main TLB Miss Counter 24

pm0_view_# = 0010
0 Instruction Commit Counter 28
1 Fetch Stall Counter 29
2 PSU_KILL Stall Counter 30

pm0_view_# = 0011
0 Instruction Commit Counter 28
1 Reservation Queue Stall Counter 31
2 Free Register Resource Stall Counter 32

pm0_view_# = 0100
0 Instruction Commit Counter 28
1 Checkpoint, Serial Number, or Trap Stack Resource Stall Counter 33
2 Other Stall Counter 34

pm0_view_# = 0101
0 Instruction Commit Counter 28
1 Branch Issue Counter 35
2 Branch Mispredict Counter 36

pm0_view_# = 0110
0 Instruction Commit Counter 28
1 ILT Miss Counter 37
2 I0 Instruction Cache Miss Counter 14

pm0_view_# = 0111
0 Instruction Commit Counter 28
1 L1 Instruction Cache Reload Counter 6
2 L1 Instruction Cache Invalidate Counter 20

pm0_view_# = 1000
0 Instruction Commit Counter 28
1 Sync Event Counter 38
2 Sync Cycle Counter 39

Q.3.2 Writing to Performance Registers 467

Q.3.2 Writing to Performance Registers

Performance monitors may be written by the wr %asr30 instruction in a restricted opera-
tion. See 6.2, “Instruction Formats” for a detailed description of the format. The bits[12:8]
are interpreted as the opcode or pm_op field, which is defined in Table 95.

The wr %asr30 will not modify software visible register unless the opcode field is
‘001002.’ With the PM_OP field equal to ‘001002’, the exclusive-or’ed value of rs1 and
rs2 will be written to “View Number Register.” All writes to %asr30 are syncing.

Q.3.3 Privilege Protection

In order to control access to sensitive performance values, reading and writing to %asr30
may be restricted to privileged code by setting the PM_US field (bit-13) in the State Con-
trol Register (ASR31) (see 5.2.11.12, “State Control Register (ASR 31)”).

Q.3.4 User Access to Monitors

User access to monitors is most easily accomplished via an operating system interface.
This may be done via a loadable module on the Solaris operating system. To prevent
counter overflow, the loadable module should periodically accumulate the counters into
64-bit memory locations and clear the counters as needed.

Q.3.5 Performance Counter Enable

Performance counter can be enabled either on User mode only or on Supervisor mode
only, or on both User and Supervisor mode through the PMEN_SEL field (bits 15:14) of
the State Control Register (ASR31) (see 5.2.11.12, “State Control Register (ASR 31)”).
This feature allows the separate measurement of User and Supervisor activity.

Care must be taken when interpreting the separated results. Consider the case of a mea-
surement of Supervisor activity and the switch from User to Supervisor mode occuring via
a window spill or fill trap (non-syncing). SPARC64-III can have up to 64 active instruc-
tions in the machine, issued before the trap is taken, for example. These instructions will
have been issued in User mode and so will not have incremented the Supervisor mode
issue count. The processor may stall during the spill or fill trap, due to full queues, for
example. Or a main TLB miss may be generated, which will sync the machine. In this
case, instructions which were issued in User mode will be committed in Supervisor mode.
This effect also occurs when transitioning from Supervisor mode to User mode, when

Table 95: Interpretation of op field on WR %asr30

pm_op Operation
00000 Disable all performance counters
00001 Clear and disable all performance counters
00010 Enable all performance counters
00011 Clear and enable all performance counters
00100 Update view number selecting counter group

468 Q Performance Monitoring

instructions issued in Supervisor mode will be committed in User mode. However, the
effects may not balance out due to the different nature of User and Supervisor code. Typi-
cally Supervisor code contains more syncing instructions on the average than User code
which means that the average number of active instructions in the machine in Supervisor
mode will be less than User mode. Also the amount of time spent in Supervisor mode is
typically much smaller than that spent in User mode. This can bias the Supervisor mode
counts for certain applications.

Q.4 Performance Monitor Accuracy

Q.4.1 Syncing Overhead

As specified earlier, reading and writing the performance monitors are performed through
rd/wr %asr30 instructions which sync the machine. The actual time required to sync the
CPU is not deterministic and is dependent on the number and type of outstanding instruc-
tions. Additionally, during the period from detection of a rd/wr %asr30 instruction to
when the machine is finally synced and the rd/wr %asr30 is executed, the performance
monitors will continue to log specified events.

As a result, the syncing overhead from rd/wr %asr30 instructions may affect the accuracy
of IPC measurements. We suggest a large enough monitoring interval so that the impact of
syncing rd/wr %asr30’s is negligible in these cases.

For performance counters based on execution and issue events there is no impact from
syncing rd/wr %asr30.

wr %asr30

inst0
inst1
inst2

instn-1
instn

wr %asr30

.

.

waiting for machine sync

waiting for wr %asr30 to write

high-performance
superscalar
execution

waiting for machine sync

Q.4.2 Monitoring Interval 469

Q.4.2 Monitoring Interval

All CPU performance monitors are enabled and disabled through wr %asr30 instructions.
For purposes of performance measurement, the wr %asr30 instruction marks the measure-
ment region. The wr %asr30 instruction itself is never counted. For example, the following
code sequence:

would result in 3 instructions being logged in the committed instruction counter.

When performance monitors are cleared, the value in all performance monitors will
remain at 0 until they are enabled.

Q.5 Other Notes:

Q.5.1 Out-of-Order Execution

The SPARC64-III CPU implements out-of-order execution through restricted dataflow. As
a result, performance monitors which are updated due to instruction execution (memory
event counters, memory latency counters) will be updated out-of-order. Since execution of
rd %asr30 will sync the machine, contents of performance monitors will appear to have
been updated in program order when reads are initiated.

wr %asr30

add

add

load

wr %asr30

! enable

! disable

measurement
period

470 Q Performance Monitoring

R UPA Programmer’s Model

R.1 Introduction
This chapter describes the programmers model of the UC. The different registers main-
tained by the UC are described. Instructions which are handled by the UC are explained.

R.2 UPA PortID Register
This is a standard read only register, which is accessible by a slave read from another UPA
port. This register is located at word address 0x0 in the slave physical address of the UPA
port. This register cannot be read or written by ASI instruction.

Bit[63:56]
Value=FC16.

Reserved
Reserved bits, read as 0.

ECC = ECCNotValid
Indicates that this UPA port does not support ECC. Set to zero.

ONE = ONE_READ
Indicate that this UPA port supports only one outstanding slave read P_REQ trans-
action at a time. Set to zero.

RDQ = PINT_RDQ[1:0]
Encodes the size of the PINT_RQ and PINT_DQ queues. Specifies the number of
incoming P_INT_REQ requests that the slave port can receive. Specifies the num-
ber of 64-byte interrupt datums the UPA slave port can receive. Set to one, since
only one interrupt transaction can be outstanding to UC at a time.

PREQ_DQ[5:0]
Encodes the size of PREQ_DQ queue. Specifies the number of incoming quad
words the UPA slave port can receive in its P_REQ write data queue. Set to zero,
since incoming slave data writes are not supported by UC.

63 016

ID

1521 2025 243056 55

— UPACAPPREQD _RQ
313435

FC16

33

E
C
C

PREQ
_DQ

R
Q

O
N
E

472 R UPA Programmer’s Model

PREQ_RQ[3:0]
Encodes the size of PREQ_RQ queue. Specifies the number of incoming P_REQ
transaction request packets the UPA slave can receive. Set to one, since only one
incoming P_REQ to the UC can be outstanding at a time.

UPACAP[4:0]
Indicates the UPA module capability type:

 UPACAP[4]
Set, CPU is an interrupt handler.

 UPACAP[3]
Set, CPU is an interrupter.

 UPACAP[2]
Clear, CPU does not use UPA Slave_Int_L signal.

 UPACAP[1]
Set, CPU is a cache master.

 UPACAP[0]
Set, since CPU has a master interface.

ID[15:0]
Module identification field:

ID<15:10>
Manufacturer identification. These bits are set to ‘010000’.

ID<9:4>
Module type

ID<3:0>
Module revision number

R.3 UPA Config Register
This is an implementation specific read - write register. This is only accessible to the mas-
ter and, not accessible for a slave read. The PCON field is readable and writable and the
rest of the fields are either scanned in or hard wired.

63 017

UC_CAP—

1622 2129 2839 3643 4246 45

— MIDPCONMCAPCUC
Size

R.3 UPA Config Register 473

UC_Size [2:0]
Specifies the UC size. The values are scanned in.

MCAP
The CPU module speed; its value is scanned in.

C = CLK_MODE
Read-only field; specifies the ratio between the CPU clock and the UPA clock

PCON
Processor Configuration.

SCIQ1[3:0] (UPA_CONFIG bits[28:25])
Size of the input request queue for master request class 1, implemented on
the System Controller to which this UPA port is connected.

UC_Size[2:0] Cache Size (bytes)
000 reserved
001 1 Mb
010 2 Mb
011 4 Mb
100 8 Mb
101 16 Mb
110 reserved
111 reserved

CLK_MODE Ratio

00 2:1

01 3:1

10 4:1

11 5:1

SCIQ1[3:0] Queue Size

0000 1

0001 2

0010 3

0011 4

0100 5

0101 6

0110 7

0111 8

1XXX undefined

474 R UPA Programmer’s Model

SCIQ0[2:0] (UPA_CONFIG bits[24:22])
Size of the input request queue for master request class 0, implemented on
the System Controller to which this UPA port is connected.

MID[4:0]
Module (Processor) ID register. Identifies the slot in which the module resides;
hardwired to the slot number from the connector.

UC_CAP[16:0]
Mirrors the following fields in the UPA Port ID register:

� [16:15] PINT_RDQ

� [14:9] PREQ_DQ

� [8:5] PREQ_RQ

� [4:0] UPA_CAP

R.4 ASI Instructions for UPA Related Registers
This section describes the ASI instructions defined for UPA related registers. The follow-
ing things are common to all of the ASI instructions defined in this section.

� The opcode of the instructions should be either ldx(a), lddf(a), stx(a), or
stdf(a). Otherwise, a data_access_exception trap with FTYPE=F16 (Invalid ASI) is
taken.

� No address translation is performed for the instructions.

� VA[3:0] of all of the instructions should be 4h0. Otherwise a mem_not_aligned trap is
taken.

� The don’t-care bits (described as ‘—’ in the format) in VA can be any value. But it is
recommended that the software should use zero for these bits.

� The don’t-care bits (described as ‘—’ in the format) in DATA are read as zero and
ignored on write.

� The instruction operations are not affected by PSTATE.CLE. They are always treated
as in a big endian mode.

� The instructions do not cause the processor to sync.

SCIQ0[2:0] Queue Size

000 1

001 2

010 3

011 4

1XX undefined

R.4.1 Read/Write UPA Configuration Register 475

� The instructions are all strongly ordered regardless of load or store, and the memory
model. Therefore no speculative executions are performed.

R.4.1 Read/Write UPA Configuration Register
Function: Read/Write UPA Configuration Register. See R.3, “UPA Config Register” for

details.
ASI: 4A16
RW: Supervisor Read, Supervisor Write.
VA: See below.

Data: See R.3, “UPA Config Register” for details.
63 04 3

0000—

476 R UPA Programmer’s Model

Bibliography
General References
For general information, see the following:

Boney, Joel. “SPARC Version 9 Points the Way to the Next Generation RISC,” SunWorld,
October 1992, pp. 100-105.

Chien, Chen, Yizhi Lu, Anthony Wong. “Microarchitecture of HAL’s Cache Subsystem.”
Proceedings of Compcon, 1995, p. 267.

Chih-Wei Chang, David, David Lyon, Charles Chen, Leon Peng, Mehran Massoumi, Mat-
thew Hakimi, Satish Iyengar, Ellen Li, Roque Remedios. “Microarchitecture of HAL’s
Memory Management Unit.” Proceedings of Compcon, 1995, p. 272.

Cohen, D., “On Holy Wars and a Plea for Peace.” Computer 14:10, October 1981, pp. 48-
54.

Comer, Douglas. “The Ubiquitous B-Tree.” ACM Computing Surveys, Vol. 11, No. 2, June
1979.

Gwennap, Linley. “HAL Reveals Multichip SPARC Processor.” Microprocessor Report,
March 6, 1995, p. 1.

Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x,
SPARC International, Inc.

Knuth, Donald. The Art of Computer Programming, Volume 3, Searching and Sorting.
Addison-Wesley, 1974.

Patkar, Niteen, Akira Katsuno, Simon Li, Tak Maruyama, Sunil Savkar, Mike Simone,
Gene Shen, Ravi Swami, DeForest Tovey. “Microarchitecture of HAL’s CPU.” Proceed-
ings of Compcon, 1995, p. 259.

Saxena, Nirmal, Chih-Wei Chang, David, Kevin Dawallu, Jaspal Kohli, Patrick Helland.
“Fault Tolerant Features in the HAL Memory Management Unit.” IEEE Transactions on
Computers, Vol. 44, No. 2, 1995, pp. 170-180.

Simone, Mike, Andrew Essen, Atsushi Ike, Anand Krishnamorty, Niteen Patkar, Muru-
gappan Ramaswami, Viji Thirumaliswamy. Implementation Trade-offs in Using a

478 Bibliography

Restricted Data Flow Architecture in a High Performance RISC Microprocessor. ISCA
1995, Italy.

[Weaver, David L., editor.] The SPARC Architecture Manual, Version 8, Prentice-Hall,
Inc., 1992.

Weaver, David L., and Tom Germond, eds. The SPARC Architecture Manual-Version 9,
Prentice-Hall, Inc., 1994.

Wilcke, Winfried W. “Architectural Overview of HAL Systems.” Proceedings of Comp-
con, 1995, p. 251.

HAL Publications

Hal Computer Systems, Inc. maintains an extensive collection of reference materials that
further describe the SPARC64-III and its components. Some of these documents are avail-
able to the general public, others require the execution of a non-disclosure agreement
before they are made available. Information is available in the following categories:

� High-level descriptions of SPARC64-III internal components at a conceptual level.

� Low-level descriptions of SPARC64-III internal components at an electrical and/or
mechanical level.

� Application Notes describing hardware or software techniques useful or necessary for
SPARC64-III.

In addition, the following specific documents and papers may be useful:

SPARC64™ Processor User’s Guide, HAL Computer, #840-00003

G. Shen, N. Patkar, et al., “A 64b 4-Issue Out-of-order Execution RISC processor”, ISSCC
Digest of Tech. Papers, pp. 170-171, February 1995.

C. Asato, R. Montoye, et al., “A 14-Port 3.8ns 116-Word Read-Renaming Register File”,
ISSCC Digest of Tech. Papers, pp. 104-105, February 1995.

N. R. Saxena, et. al., “Error Detection and Handling in a Superscalar, Speculative Out-of-
Order Execution Processor System”, submitted to 25th annual International Symposium
on Fault-Tolerant Computing, June 1995.

M. Simone, et. al., “Implementation Trade-offs in Using a Restricted Dataflow Algorithm
for a High Performance RISC Processor, International Symposium on Computer Architec-
ture, June 1995 (unpublished).

H. Li, et. al., TRACK VI - HAL Computer Systems, COMPCON95 Digest of Papers, pp.
251-272, March 1995

You can obtain information about the available documents using the following methods:

Bibliography 479

U. S. Mail:
HAL Computer Systems, Inc.
ATTN: SPARC64-III Product Marketing
1315 Dell Avenue
Campbell, CA 95008-6609

Voice:
(408) 379-7000
Ask for SPARC64-III Product Marketing

e-mail:
marketing@hal.com

WWW:
http://www.hal.com

480 Bibliography

A
a field of instructions 113, 219, 222, 225, 228,

229, 233
A_AssyLang 393
ABI, see SPARC-V9 Application Binary Interface

(ABI)
accrued exception (aexc) field of FSR register 77,

79, 147, 341, 348
activation record, see stack frame
ADD instruction 218, 400
ADDC instruction 218
ADDcc instruction 218, 312, 400
ADDCcc instruction 218
address 173

aliased 173
physical 173
virtual 173

address 397
address mask (AM) field of PSTATE of

register 258
address mask (AM) field of PSTATE register 84,

232, 305
address masking (AM) field of PSTATE

register 355
address space 17
address space identifier (ASI) field of fault_access_

type register (ASR29) 100
address space identifier (ASI) 21, 32, 33, 81, 107,

114, 117, 121, 173, 174, 260, 264, 296, 318,
349
architecturally specified 175
implicit 355
restricted 122, 175, 349
unrestricted 122, 175, 349

address space identifier (ASI) register 32, 37, 81,
88, 121, 137, 175, 238, 261, 266, 269, 296,
317, 322, 325, 339

addressing conventions 34, 117
addressing modes 17
ADDX instruction (SPARC-V8) 218

ADDXcc instruction (SPARC-V8) 218
aexc, see accrued exception (aexc) field of FSR reg-

ister
AG, see alternate globals enable (AG) field of

PSTATE register
aggregate data values, see data aggregates
alias

address 173
floating-point registers 67

alignaddr_offset field of Graphic Status Register
(ASR19) 95

alignment
data (load/store) 33, 117, 174
doubleword 33, 117, 174
extended-word 117
halfword 33, 117, 174
instructions 33, 117, 174
integer registers 264, 266
memory 174
quadword 33, 117, 174
word 33, 117, 174

alternate address space 296
alternate global registers 32, 60, 60
alternate globals enable (AG) field of PSTATE

register 60, 61, 85
alternate space instructions 34, 81
AM, see address mask (AM) field of PSTATE regis-

ter
ancillary state register

Clear SCHED_INT Register (ASR21) 95
Data Breakpoint Address Register

(ASR26A) 98
Data Breakpoint Mask Register (ASR26B) 99
Data Fault Access Type Register (ASR29) 100
Data Fault Address Register (ASR28) 99
Graphic Status Register (GSR) (ASR19) 94
Hardware Mode Register (ASR18) 93
Instruction Fault Type Register (ASR24) 96
Performance Monitor Registers (ASR30) 101
Schedule Interrupt (SCHED_INT) Register

(ASR22) 95

Index

482 – B Index

Set SCHED_INT Register (ASR20) 95
software-initiated reset (SIR) 99
State Control Register (ASR31) 101
state control register (SCR) 101
TICK Match Register (ASR23) 96

ancillary state registers (ASRs) 34, 65, 66, 93,
305, 338, 339, 347, 348, 394

AND instruction 270
ANDcc instruction 270, 400
ANDN instruction 270, 400
ANDNcc instruction 270
annul bit 65, 219

in conditional branches 222
annulled branches 219
application program 21, 32, 60, 81
arithmetic overflow 73
ASI register, see address space identifier (ASI) reg-

ister
ASI, see address space identifier (ASI)
ASI_AS_IF_USER_PRIMARY 175, 349
ASI_AS_IF_USER_PRIMARY_LITTLE 175,

349
ASI_AS_IF_USER_SECONDARY 175, 349
ASI_AS_IF_USER_SECONDARY_

LITTLE 175, 349
ASI_MMU_SCRATCH registers 97
ASI_NUCLEUS 349
ASI_NUCLEUS_LITTLE 349
ASI_PRIMARY 121, 175, 349, 355
ASI_PRIMARY_LITTLE 83, 175, 349, 355
ASI_PRIMARY_NOFAULT 175, 349
ASI_PRIMARY_NOFAULT_LITTLE 349
ASI_SECONDARY 175, 349
ASI_SECONDARY_LITTLE 349
ASI_SECONDARY_NOFAULT 175, 349
ASI_SECONDARY_NOFAULT_LITTLE 349
asr_reg 394
ASR27

software-initiated reset (SIR) register 99
ASR31

state control register (SCR) 101
assembler

synthetic instructions 399
assigned value

implementation-dependent 346
async_data_error exception 260, 262, 266, 267,

268
atomic 182, 319, 322

memory operations 179, 182
atomic load-store instructions 116, 233

compare and swap 146, 233
load-store unsigned byte 268, 324, 325
load-store unsigned byte to alternate space 269

swap r register with alternate space
memory 325

swap r register with memory 233, 324
atomicity 355

B
BA instruction 227, 228, 363
BCC instruction 227, 363
BCLR synthetic instruction 400
BCS instruction 227, 363
BE instruction 227, 363
Berkeley RISCs 19
BG instruction 227, 363
BGE instruction 227, 363
BGU instruction 227, 363
bibliography 477
Bicc instructions 66, 73, 227, 359, 363
big-endian byte order 21, 34, 83, 117
binary compatibility 19
bit vector concatenation 14
BL instruction 363
BLE instruction 227, 363
BLEU instruction 227, 363
BN instruction 227, 228, 298, 363, 399
BNE instruction 227, 363
BNEG instruction 227, 363
BPA instruction 229, 364
BPCC instruction 229, 364
BPcc instructions 66, 73, 113, 114, 115, 229, 298
BPCS instruction 229, 364
BPE instruction 229, 364
BPG instruction 229, 364
BPGE instruction 229, 364
BPGU instruction 229, 364
BPL instruction 229, 364
BPLE instruction 229, 364
BPLEU instruction 229, 364
BPN instruction 229, 364
BPNE instruction 229, 364
BPNEG instruction 229, 364
BPOS instruction 227, 363
BPPOS instruction 229, 364
BPr instructions 66, 114, 115, 219, 359, 364
BPVC instruction 229, 364
BPVS instruction 229, 364
branch

annulled 219
delayed 107
elimination 127, 128
fcc-conditional 222, 225
icc-conditional 228
prediction bit 219
unconditional 222, 225, 228, 230

Index C – 483

with prediction 18
Branch History Table (BHT) 190
branch if contents of integer register match condi-

tion instructions 219
branch on floating-point condition codes

instructions 221
branch on floating-point condition codes with pre-

diction instructions 224
branch on integer condition codes instructions 227
branch on integer condition codes with prediction

instructions 229
Branch Unit (BRU) 42, 43
Branch Unit Components

Fetch Unit 44
I0 Cache 43
Instruction Lookaside Table (ILT) 44
Instruction Prefetch Buffers 43

Branch Unit components
Instruction Recode Unit 43

BRGEZ instruction 219
BRGZ instruction 219
BRLEZ instruction 219
BRLZ instruction 219
BRNZ instruction 219
BRZ instruction 219
BSET synthetic instruction 400
BTOG synthetic instruction 400
BTST synthetic instruction 400
BVC instruction 227, 363
BVS instruction 227, 363
byte 21

addressing 118, 119
data format 51
order 34, 117
order, big-endian 34, 83
order, implicit 83
order, little-endian 34, 83

C
C condition code bit, see carry (C) bit of condition

fields of CCR
cache

data 177
instruction 27, 84, 177
memory 347
miss 298
non-consistent instruction cache 177
system 19

CALL instruction 36, 63, 65, 66, 232, 258
CALL synthetic instruction 399
CANRESTORE, see restorable windows (CANRE-

STORE) register
CANSAVE, see savable windows (CANSAVE) reg-

ister

carry (C) bit of condition fields of CCR 73
CAS synthetic instruction 179, 400
CASA instruction 146, 183, 233, 268, 269, 324,

325, 400
CASX synthetic instruction 179, 183, 400
CASXA instruction 146, 183, 233, 268, 269,

324, 325, 400
catastrophic_error exception 146, 163
cc0 field of instructions 113, 225, 229, 240, 282
cc1 field of instructions 113, 225, 229, 240, 282
cc2 field of instructions 113, 282
CCR, see condition codes (CCR) register
cexc, see current exception (cexc) field of FSR reg-

ister
checkpoint 26
CLE, see current_little-endian (CLE) field of

PSTATE register
clean register window 21, 64, 92, 128, 134, 135,

136, 162, 307
clean windows (CLEANWIN) register 92, 129,

134, 135, 136, 301, 334, 355
clean_window exception 92, 129, 135, 145, 148,

162, 308, 352
Clear SCHED_INT Register (ASR21) 95
clock cycle 81
clock-tick register (TICK) 81, 166, 301, 334, 353
CLR synthetic instruction 400
CMP synthetic instruction 323, 399
coherence 173, 355

unit, memory 174
committed 26
committed instruction state 39, 186
compare and swap instructions 146, 233
comparison instruction 123, 323
compatibility with SPARC-V8 35, 60, 71, 75, 86,

91, 122, 125, 132, 164, 166, 174, 223, 226,
241, 254, 255, 260, 264, 266, 274, 305, 314,
316, 320, 322, 323, 328, 330, 332, 339

compatibility with SPARC-V9 218
completed 26
completed instruction state 39, 186
compliant SPARC-V9 implementation 20
concatenation of bit vectors 14
cond field of instructions 113, 114, 222, 225, 228,

229, 276, 282
condition codes 234

floating-point 222
integer 72

condition codes (CCR) register 37, 88, 137, 218,
238, 290, 339
renamed on SPARC64 88

conditional branches 222, 225, 228
conditional move instructions 36
conforming SPARC-V9 implementation 20
const22 field of instructions 254

484 – D Index

constants
generating 310

control and status registers 65
control-transfer instructions (CTIs) 35, 238
convert between floating-point formats

instructions 243, 342
convert floating-point to integer instructions 242,

344
convert integer to floating-point instructions 245
counter field of TICK register 81
CPopn instructions (SPARC-V8) 255
CPU Components

Data Flow Unit (DFU) 46
Issue Unit (ISU) 44

CPU components
Branch Unit (BRU) 42, 43
Data Flow Unit (DFU) 43
Issue Unit (ISU) 42

CPU_HALTED output signal 104
CPU_xing exception 140
CTI, see control-transfer instructions (CTIs)
current exception (cexc) field of FSR register 75,

77, 78, 79, 79, 132, 164, 341, 348
current window 21
current window pointer (CWP) register 21, 32, 37,

63, 88, 91, 93, 128, 129, 135, 137, 238, 253,
301, 307, 308, 334, 355

current_little_endian (CLE) field of PSTATE
register 83, 83, 175

CWP, see current window pointer (CWP) register

D
d16hi field of instructions 114, 219
d16lo field of instructions 114, 219
data alignment, see alignment
Data Breakpoint Address Register (ASR26A) 98
Data Breakpoint Mask Register (ASR26B) 99
data cache 177
Data Fault Access Type Register (ASR29) 100
Data Fault Address Register (ASR28) 99
data flow order constraints

memory reference instructions 177
register reference instructions 177

Data Flow Unit 195
Data Flow Unit (DFU) 43, 46
Data Flow Unit (DFU) Components

Floating-point Register Rename Map 47
Integer Register Rename Map 46
Physical Floating-point Register File 47
Physical Integer Register File 46

Data Flow Unit (DFU) components
Fixed-point Integer Functional Unit (FXU) 47
Fixed-point Integer/Address Generation Func-

tional Unit (FX/AGEN) 47

Floating-point Functional Unit (FPU) 47
Load/Store Functional Unit (LSU) 47

data formats
byte 51
doubleword 51
extended word 51
halfword 51
quadword 51
tagged word 51
word 51

data memory 183
data types 51

floating-point 51
signed integer 51
unsigned integer 51

data_access_error 100
data_access_error exception 163, 234, 260,

262, 264, 266, 268, 269, 316, 318, 320, 322,
324, 326

data_access_exception 101
data_access_exception exception 163, 234,

260, 262, 266, 268, 269, 316, 318, 320, 322,
324, 326

data_access_MMU_miss exception 352
data_access_protection exception 264
data_breakpoint exception 143, 350
DEC synthetic instruction 400
DECcc synthetic instruction 400
deferred trap 142, 142, 143, 349

floating-point 302
deferred-trap queue 105, 143

floating-point (FQ) 301
integer unit 348

delay instruction 35, 65, 219, 222, 225, 231, 238,
306

delayed branch 107
delayed control transfer 65, 219
deprecated instructions

BA 227
BCC 227
BCS 227
BE 227
BG 227
BGE 227
BGU 227
Bicc 227
BLE 227
BLEU 227
BN 227
BNE 227
BNEG 227
BPOS 227
BVC 227
BVS 227
FBA 221

Index E – 485

FBE 221
FBfcc 221
FBG 221
FBGE 221
FBL 221
FBLE 221
FBLG 221
FBN 221
FBNE 221
FBO 221
FBU 221
FBUE 221
FBUGE 221
FBUL 221
FBULE 221
LDD 263
LDDA 265
LDFSR 259
MULScc 290
RDY 303
SDIV 235
SDIVcc 235
SMUL 288
SMULcc 288
STFSR 315
SWAP 324
SWAPA 325
TSUBccTV 327, 329
UDIV 235
UDIVcc 235
UMUL 288
UMULcc 288

destination register 25
dirty bits, see lower and upper registers dirty (DL

and DU) fields of FPRS register
disp19 field of instructions 114, 225, 229
disp22 field of instructions 114, 222, 228
disp30 field of instructions 114, 232
Dispatch 44
dispatched instruction state 186, 187
disrupting traps 142, 143, 144, 145, 146, 349
divide instructions 35, 235, 287
divide-by-zero mask (DZM) bit of TEM field of

FSR register 80
division_by_zero exception 123, 145, 164, 237,

287
division-by-zero accrued (dza) bit of aexc field of

FSR register 81
division-by-zero current (dzc) bit of cexc field of

FSR register 81
DL, see lower registers dirty (DL) field of FPRS

register
DONE instruction 36, 73, 137, 139, 238
doublet 22
doubleword 22, 33, 117, 174

addressing 118, 120
in memory 65

doubleword data format 51
DU, see upper registers dirty (DU) field of FPRS

register
dza, see division-by-zero accrued (dza) bit of aexc

field of FSR register
dzc, see division-by-zero current (dzc) bit of cexc

field of FSR register
DZM, see divide-by-zero mask (DZM) bit of TEM

field of FSR register

E
emulating multiple unsigned condition codes 128
enable floating-point (FEF) field of FPRS

register 73, 84, 132, 146, 164, 223, 226,
260, 262, 316, 317

enable floating-point (PEF) field of PSTATE
register 73, 84, 132, 146, 164, 223, 226,
260, 262, 316, 317

enable RED_state field (RED) of PSTATE
register 139

error_state 104, 138, 140, 141, 153, 154, 158,
160, 349, 351

exceptions 37, 137
async_data_error 260, 262, 266, 267, 268
catastrophic 146
catastrophic_error 163
clean_window 92, 129, 135, 145, 148, 162,

308, 352
CPU_xing 140
data_access_error 163, 234, 260, 262,

264, 266, 268, 269, 316, 318, 320, 322,
324, 326

data_access_exception 163, 234, 260,
262, 266, 268, 269, 316, 318, 320, 322,
324, 326

data_access_MMU_miss 352
data_access_protection 264
data_breakpoint 143, 350
division_by_zero 123, 145, 164, 237, 287
externally_initiated_reset (XIR) 140, 156,

158, 164
fill_n_normal 145, 164, 306, 308
fill_n_other 145, 164, 306, 308
fp_disabled 33, 73, 74, 132, 145, 164, 223,

226, 239, 241, 242, 244, 245, 247, 249,
260, 262, 278, 280, 284, 316, 317, 318

fp_exception 76
fp_exception_ieee_754 75, 79, 147, 164,

239, 241, 242, 244, 245, 249, 341
fp_exception_ieee_754 257
fp_exception_other 72, 133, 164, 239, 241,

242, 244, 245, 247, 249, 250, 280, 341
fp_exception_other 55, 349

486 – F Index

illegal_instruction 65, 87, 88, 91, 117, 132,
133, 164, 220, 231, 238, 254, 255, 257,
260, 264, 266, 284, 286, 294, 302, 305,
309, 316, 318, 319, 320, 321, 322, 333,
336, 339, 347, 349, 351, 354

implementation_dependent_n 350
instruction_access_error 145
instruction_access_exception 145, 165
invalid_exception 242
LDDF_mem_address_not_aligned 117,

145, 165, 260, 262, 353
LDQF_mem_address_not_aligned 354
mem_address_not_aligned 117, 166, 234,

258, 260, 262, 264, 266, 306, 316, 318,
320, 322, 324, 326

persistence 147
power_on_reset (POR) 156, 166, 350
privileged_action 81, 121, 145, 166, 234,

262, 266, 269, 305, 318, 322, 326, 349
privileged_instruction (SPARC-V8) 166
privileged_opcode 145, 166, 238, 302, 305,

309, 336, 339
software_initiated_reset (SIR) 145, 153,

159, 166
software_initiated_reset (SIR) 140
spill_n_normal 145, 166, 253, 308
spill_n_other 166, 253, 308
STDF_mem_address_not_aligned 117,

145, 166, 316, 318, 353
STQF_mem_address_not_aligned 354
tag_overflow 123, 166, 327, 328, 330
trap_instruction 145, 167, 332, 333
unimplemented_LDD 353
unimplemented_STD 145, 322, 353
watchdog 140, 167, 350
watchdog_reset (WDR) 156, 350
window_fill 91, 92, 129, 306
window_spill 91, 92

exceptions, also see trap types
execute unit 176
execute_state 138, 153, 154, 159
executed 27
executed instruction state 39, 186
execution

speculative 108
execution traps (Etraps) 142
extended word addressing 118, 120
extended word data format 51
externally_initiated_reset exception 138, 139,

140, 145, 156, 158, 159, 164

F
f registers 32, 66, 147, 341, 351
FABSd instruction 246, 361, 362, 363
FABSq instruction 246, 361, 362, 363

FABSs instruction 246, 361
FADDd instruction 239, 361
FADDq instruction 239, 361
FADDs instruction 239, 361
fast trap handlers 18
FBA insruction 221
FBA instruction 222, 363
FBE instruction 221, 363
FBfcc instructions 66, 75, 132, 164, 221, 223,

359, 363
FBG instruction 221, 363
FBGE instruction 221, 363
FBL instruction 221, 363
FBLE instruction 221, 363
FBLG instruction 221, 363
FBN instruction 221, 222, 363
FBNE instruction 221, 363
FBO instruction 221, 363
FBPA instruction 224, 225, 364
FBPcc instructions 114
FBPE instruction 224, 364
FBPfcc instructions 66, 75, 113, 115, 132, 223,

224, 359, 363
FBPG instruction 224, 364
FBPGE instruction 224, 364
FBPL instruction 224, 364
FBPLE instruction 224, 364
FBPLG instruction 224, 364
FBPN instruction 224, 225, 364
FBPNE instruction 224, 364
FBPO instruction 224, 364
FBPU instruction 224, 364
FBPUE instruction 224, 364
FBPUG instruction 224, 364
FBPUGE instruction 224, 364
FBPUL instruction 224, 364
FBPULE instruction 224, 364
FBU instruction 221, 363
FBUE instruction 221, 363
FBUG instruction 221, 363
FBUGE instruction 221, 363
FBUL instruction 221, 363
FBULE instruction 221, 363
fcc, see floating-point condition codes (fcc) fields of

FSR register
fcc-conditional branches 222, 225
FCMP* instructions 75, 240
FCMPd instruction 240, 342, 363
FCMPE* instructions 75, 240
FCMPEd instruction 240, 342, 363
FCMPEq instruction 240, 342, 363
FCMPEs instruction 240, 342, 363
FCMPq instruction 240, 342, 363

Index F – 487

FCMPs instruction 240, 342, 363
fcn field of instructions 238, 295
FDIVd instruction 248, 361
FDIVq instruction 248, 361
FDIVs instruction 248, 361
FdMULq instruction 248, 361
FdTOi instruction 242, 344, 361
FdTOq instruction 243, 342, 361
FdTOs instruction 243, 342, 361
FdTOx instruction 242, 361, 362, 363
FEF, see enable floating-point (FEF) field of FPRS

register
Fetch Unit 44
fetched 27
Fetched instruction state 185
fetched instruction state 39
fill register window 63, 129, 130, 134, 135, 136,

164, 307, 308, 309
fill_n_normal exception 145, 164, 306, 308
fill_n_other exception 145, 164, 306, 308
finished 27
finished instruction state 39, 186
FiTOd instruction 245, 361
FiTOq instruction 245, 361
FiTOs instruction 245, 361
Fixed-point Integer Functional Unit (FXU) 47, 49
Fixed-point Integer/Address Generation Functional

Unit (FX/AGEN) 47, 49
floating-point add and subtract instructions 239
floating-point compare instructions 75, 240, 240,

342
floating-point condition code bits 222
floating-point condition codes (fcc) fields of FSR

register 74, 77, 147, 222, 225, 240, 341, 394
floating-point data type 51
floating-point deferred-trap queue (FQ) 79, 105,

301, 302, 348
floating-point divider (FDIV) 48
Floating-point Functional Unit (FPU) 47, 48
floating-point move instructions 246
floating-point multiply and divide instructions 248
floating-point multiply-adder (FMA) 48
floating-point operate (FPop) instructions 22, 36,

67, 76, 79, 114, 131, 132, 164, 260
floating-point queue, see floating-point deferred-

trap queue (FQ)
Floating-point Register Rename Map 47
floating-point registers 71, 341, 351
floating-point registers state (FPRS) register 73,

305, 339
floating-point square root instructions 250
floating-point state (FSR) register 74, 79, 81, 260,

315, 316, 341, 348

floating-point trap type (ftt) field of FSR
register 22, 74, 76, 79, 132, 133, 164, 316,
341

floating-point trap types
fp_disabled 84, 257, 354
fp_exception_other 55
FPop_unfinished 132
FPop_unimplemented 132
hardware_error 22, 77
IEEE_754_exception 22, 77, 77, 79, 81,

147, 164, 341
invalid_fp_register 22, 72, 77, 247, 250
numeric values 77
sequence_error 77, 78, 349
unfinished_FPop 22, 77, 78, 81, 249, 341,

347
unimplemented_FPop 22, 77, 78, 81, 133,

239, 241, 242, 244, 245, 249, 278, 280,
341, 347

floating-point traps
deferred 302
precise 302

floating-point unit (FPU) 32
FLUSH instruction 184, 251, 347, 351, 355

in multiprocess environment 184
flush instruction memory instruction 251
FLUSH latency 355
flush register windows instruction 253
FLUSHW instruction 37, 130, 134, 136, 166, 253
FMADDd instruction 255
FMADDs instruction 255
FMOVA instruction 275
FMOVCC instruction 275
FMOVcc instructions 73, 75, 113, 115, 127, 132,

275, 278, 283, 284, 364
FMOVccd instruction 363
FMOVccq instruction 363
FMOVccs instruction 363
FMOVCS instruction 275
FMOVd instruction 246, 361, 362, 363
FMOVE instruction 275
FMOVFA instruction 275
FMOVFE instruction 275
FMOVFG instruction 275
FMOVFGE instruction 275
FMOVFL instruction 275
FMOVFLE instruction 275
FMOVFLG instruction 275
FMOVFN instruction 275
FMOVFNE instruction 275
FMOVFO instruction 275
FMOVFU instruction 275
FMOVFUE instruction 275
FMOVFUG instruction 275
FMOVFUGE instruction 275

488 – G Index

FMOVFUL instruction 275
FMOVFULE instruction 275
FMOVG instruction 275
FMOVGE instruction 275
FMOVGU instruction 275
FMOVL instruction 275
FMOVLE instruction 275
FMOVLEU instruction 275
FMOVN instruction 275
FMOVNE instruction 275
FMOVNEG instruction 275
FMOVPOS instruction 275
FMOVq instruction 246, 361, 362, 363
FMOVr instructions 115, 132, 279
FMOVRGEZ instruction 279
FMOVRGZ instruction 279
FMOVRLEZ instruction 279
FMOVRLZ instruction 279
FMOVRNZ instruction 279
FMOVRZ instruction 279
FMOVs instruction 246, 361
FMOVVC instruction 275
FMOVVS instruction 275
FMSUBd instruction 255
FMSUBs instruction 255
FMULd instruction 248, 361
FMULq instruction 248, 361
FMULs instruction 248, 361
FNEGd instruction 246, 361, 362, 363
FNEGq instruction 246, 361, 362, 363
FNEGs instruction 246, 361
FNMADDd instruction 255
FNMADDs instruction 255
FNMSUBd instruction 255
FNMSUBs 255
formats

instruction 111
fp_disabled floating-point trap type 33, 73, 74,

84, 132, 145, 164, 223, 226, 239, 241, 242,
244, 245, 247, 249, 257, 260, 262, 278, 280,
284, 316, 317, 318, 354

fp_exception exception 76, 79
fp_exception_ieee_754 exception 75, 79, 147,

164, 239, 241, 242, 244, 245, 249, 257, 341
fp_exception_other exception 55, 72, 133, 164,

239, 241, 242, 244, 245, 247, 249, 250, 280,
341, 349

FPop instructions, see floating-point operate (FPop)
instructions

FPop_unimplemented floating-point trap
type 132

FPRS, see floating-point register state (FPRS) reg-
ister

FPU, see floating-point unit

FQ, see floating-point deferred-trap queue (FQ)
FqTOd instruction 243, 342, 361
FqTOi instruction 242, 344, 361
FqTOs instruction 243, 342, 361
FqTOx instruction 242, 361, 362, 363
freg 394
FsMULd instruction 248, 361
FSQRTd instruction 250, 361
FSQRTq instruction 250, 361
FSQRTs instruction 250, 361
FsTOd instruction 243, 342, 361
FsTOi instruction 242, 344, 361
FsTOq instruction 243, 342, 361
FsTOx instruction 242, 361, 362, 363
FSUBd instruction 239, 361
FSUBq instruction 239, 361
FSUBs instruction 239, 361
ftt, see floating-point trap type (ftt) field of FSR reg-

ister
functional choice

implementation-dependent 346
FxTOd instruction 245, 361, 362, 363
FxTOq instruction 245, 361, 362, 363
FxTOs instruction 245, 361, 362, 363

G
generating constants 310
global registers 18, 32, 60, 60, 60
Graphic Status Register (GSR) (ASR19) 94

H
halfword 33, 117, 174

addressing 118, 119, 120
data format 51

halt 153
hardware

dependency 346
traps 148

Hardware Mode Register (ASR18) 93
hardware_error floating-point trap type 22, 77

I
i field of instructions 114, 218, 235, 251, 253,

258, 259, 261, 263, 265, 268, 269, 270, 282,
285, 287, 288, 290, 293, 295, 304, 306

I/O, see input/output (I/O)
i_or_x_cc 394
I0 cache 27, 43, 84, 109
I0 Line Break constraint 188
I1 cache 43

Index I – 489

icc field of CCR register 72, 73, 218, 228, 230,
236, 237, 270, 283, 288, 290, 291, 323, 327,
332

icc-conditional branches 228
IE, see interrupt enable (IE) field of PSTATE regis-

ter
IEEE Std 754-1985 22, 31, 75, 76, 77, 78, 80,

81, 341, 347, 348
IEEE_754_exception floating-point trap type 22,

77, 77, 79, 81, 147, 164, 341
IER register (SPARC-V8) 339
illegal_instruction exception 65, 87, 88, 91, 117,

132, 133, 164, 220, 231, 238, 254, 255, 257,
260, 264, 266, 284, 286, 294, 300, 302, 305,
309, 316, 318, 319, 320, 321, 322, 333, 336,
339, 347, 349, 351, 354

ILLTRAP instruction 164, 254, 359
I-Matrix 44
imm_asi field of instructions 114, 121, 233, 259,

261, 263, 265, 268, 269, 295
imm22 field of instructions 114
IMPDEP1 instruction 255
IMPDEP2 instruction 255, 353
IMPDEPn instructions, see implementation-depen-

dent (IMPDEPn) instructions
impl field of VER register 76
Implementation (impl) field of Version (VER)

register 185
implementation dependency 345
implementation note 17
implementation number (impl) field of VER

register 348
implementation_dependent_n exception 350
implementation-dependent

assigned value (a) 346
functional choice (c) 346
total unit (t) 346
trap 156
value (v) 346

implementation-dependent (IMPDEP2)
instruction 132

implementation-dependent (IMPDEPn)
instructions 132, 255, 353

implicit
ASI 121, 355
byte order 83

in registers 32, 60, 63, 307
INC synthetic instruction 400
INCcc synthetic instruction 400
inexact accrued (nxa) bit of aexc field of FSR

register 81, 344
inexact current (nxc) bit of cexc field of FSR

register 81, 344
inexact mask (NXM) bit of TEM field of FSR

register 80
inexact quotient 235, 236

infinity 344
initiated 23, 27
initiated instruction state 39, 186
input/output (I/O) 19, 34
input/output (I/O) locations 173, 174, 183, 347,

354, 355
order 173
value semantics 173

instructioin states
committed 186
completed 186
dispatched 186, 187
executed 186
fetched 185
finished 186
initiated 186
issued 185
reclaimed 186

instruction
alignment 33, 117, 174
cache 177
fetch 117
formats 17, 111
memory 183
reordering 176
serializing 109

instruction cache 84
level-0 109

Instruction Fault Type Register (ASR24) 96
instruction fields 23

a 113, 219, 222, 228, 229, 233
cc0 113, 225, 229, 240, 282
cc1 113, 225, 229, 240, 282
cc2 113, 282
cond 113, 114, 222, 225, 228, 229, 276, 282
const22 254
d16hi 114, 219
d16lo 114, 219
disp19 114, 225, 229
disp22 114, 222, 228
disp30 114, 232
fcn 238, 295
i 114, 218, 235, 251, 253, 258, 259, 261,

263, 265, 268, 269, 270, 282, 285, 287,
288, 290, 293, 295, 304, 306

imm_asi 114, 121, 233, 259, 261, 263, 265,
295

imm22 114
mmask 114, 314
op3 114, 218, 233, 235, 238, 251, 253, 258,

259, 261, 263, 265, 268, 269, 270, 287,
288, 290, 295, 301, 304, 306

opf 114, 239, 240, 242, 243, 245, 246, 248,
250

opf_cc 115, 276
opf_low 115, 276, 279

490 – I Index

p 115, 219, 220, 225, 229
rcond 115, 219, 279, 285
rd 115, 218, 233, 235, 239, 242, 243, 245,

246, 248, 250, 258, 259, 261, 263, 265,
268, 269, 270, 276, 279, 282, 285, 287,
288, 290, 293, 301, 304

reserved 213
rs1 115, 218, 219, 233, 235, 239, 240, 248,

251, 258, 259, 261, 263, 265, 268, 269,
270, 279, 285, 287, 288, 290, 295, 301,
304, 306

rs2 115, 218, 233, 235, 239, 240, 242, 243,
245, 246, 248, 250, 251, 258, 259, 261,
263, 265, 268, 269, 270, 276, 279, 282,
285, 287, 288, 290, 293, 295, 306

shcnt32 115
shcnt64 115
simm10 115, 285
simm11 115, 282
simm13 116, 218, 235, 251, 258, 259, 261,

263, 265, 268, 269, 270, 287, 288, 290,
293, 295, 306

size 116
sw_trap# 116
var 116
x 116

Instruction Lookaside Table (ILT) 44, 207
instruction packet (IP) 40
Instruction Packet Queue (IPQ) 47
instruction packetizing 40
Instruction Prefetch Buffers 43
Instruction Recode Unit 43
instruction recoding 40
instruction set architecture 18, 22, 23
instruction states

committed 39
completed 39
executed 39
fetched 39
finished 39
initiated 39
issued 39
reclaimed 39

instruction_access_error exception 145
instruction_access_exception exception 145,

165
instructions

atomic 233
atomic load-store 116, 146, 233, 268, 269,

324, 325
branch if contents of integer register match

condition 219
branch on floating-point condition codes 221
branch on floating-point condition codes with

prediction 224
branch on integer condition codes 227

branch on integer condition codes with
prediction 229

compare and swap 146, 233
comparison 123, 323
conditional move 36
control-transfer (CTIs) 35, 238
convert between floating-point formats 243,

342
convert floating-point to integer 242, 344
convert integer to floating-point 245
divide 35, 235, 287
floating-point add and subtract 239
floating-point compare 75, 240, 240, 342
floating-point move 246
floating-point multiply and divide 248
floating-point operate (FPop) 36, 76, 79, 260
floating-point square root 250
FLUSH 351
flush instruction memory 251
flush register windows 253
IMPDEP2 353
implementation-dependent (IMPDEP2) 132
implementation-dependent (IMPDEPn) 132,

255
issue stalling 111
jump and link 36, 258
load floating-point 116, 259
load floating-point from alternate space 261
load integer 116, 263
load integer from alternate space 265
load-store unsigned byte 146, 233, 268, 324,

325
load-store unsigned byte to alternate space 269
logical 270
move floating-point register if condition is

true 275
move floating-point register if contents of inte-

ger register satisfy condition 279
move integer register if condition is

satisfied 281
move integer register if contents of integer reg-

ister satisfies condition 285
move on condition 18
multiply 35, 287, 288, 288
multiply step 35, 290
ordering MEMBAR 122
prefetch data 295
read privileged register 301
read state register 36, 303
register window management 37
reserved 133
reserved fields 213
sequencing MEMBAR 122
shift 35, 311
SIR 354
software-initiated reset 313

Index L – 491

store floating point 116
store floating-point 315
store floating-point into alternate space 317
store integer 116, 319, 321
subtract 323
swap r register with alternate space

memory 325
swap r register with memory 324
synthetic 399
tagged add 327
tagged arithmetic 35
test-and-set 183
timing 214
trap on integer condition codes 331
unimplemented 133
write privileged register 334
write state register 337

integer condition codes, see icc field of CCR register
integer divide instructions, see divide instructions
integer multiply instructions, see multiply instruc-

tions
Integer Register Rename Map 46
integer unit (IU) 23, 31
integer unit deferred-trap queue 348
interrupt enable (IE) field of PSTATE register 85,

143, 146, 165
interrupt level 86
interrupt request 23, 37, 137
interrupts 86
invalid accrued (nva) bit of aexc field of FSR

register 80
invalid current (nvc) bit of cexc field of FSR

register 80, 344
invalid mask (NVM) bit of TEM field of FSR

register 80
invalid_exception exception 242
invalid_fp_register floating-point trap type 22,

72, 77, 247, 250
INVALIDATE_I0 (II0) field of state control regis-

ter (ASR31) 104
IP, see instruction packet
IPREFETCH synthetic instruction 399
ISA, see instruction set architecture
issue stalling instructions 111
issue traps (Itraps) 142
Issue Unit 42
issue unit 26, 176, 176
Issue Unit (ISU) 44
Issue Unit Components

Dispatch 44
I-Matrix 44
Precise State Unit (PSU) 44
Register Rename/Freelist Unit 44

issue window 27
issued 23

Issued instruction state 185
issued instruction state 39
issue-stalling instruction 27
italic font

in assembly language syntax 393
IU, see integer unit

J
JMP synthetic instruction 399
JMPL instruction 36, 63, 66, 166, 258, 306, 399
jump and link instruction 36, 258

L
LD instruction (SPARC-V8) 264
LDA instruction (SPARC-V8) 266
LDD instruction 65, 146, 263, 353
LDDA instruction 65, 146, 265, 353
LDDF instruction 117, 146, 165, 259
LDDF_mem_address_not_aligned

exception 117, 145, 165, 260, 262, 353
LDDFA instruction 117, 146, 261
LDF instruction 259
LDFA instruction 261
LDFSR instruction 74, 75, 76, 259
LDQF instruction 117, 259
LDQF_mem_address_not_aligned

exception 354
LDQFA instruction 117, 261
LDSB instruction 263
LDSBA instruction 265
LDSH instruction 263
LDSHA instruction 265
LDSTUB insruction 117
LDSTUB instruction 146, 179, 183, 268, 269
LDSTUBA instruction 146, 268, 269
LDSW instruction 263
LDSWA instruction 265
LDUB instruction 263
LDUBA instruction 265
LDUH instruction 263
LDUHA instruction 265
LDUW instruction 263
LDUWA instruction 265
LDX instruction 146, 263
LDXA instruction 146, 265
LDXFSR instruction 74, 75, 76, 259
leaf procedure 23, 129
level-0 instruction cache 109
little-endian byte order 23, 34, 83
load floating-point from alternate space

instructions 261
load floating-point instructions 259

492 – M Index

load instructions 116
load integer from alternate space instructions 265
load integer instructions 263
Load/Store Functional Unit (LSU) 47, 50
load/store order (LSO) memory model 171, 354,

355
LoadLoad MEMBAR relationship 180, 273
LoadLoad predefined constant 397
loads

non-faulting 175, 175
loads from alternate space 34, 81, 121
load-store alignment 33, 117, 174
load-store instructions 33, 146

compare and swap 146, 233
load-store unsigned byte 233, 268, 324, 325
load-store unsigned byte to alternate space 269
swap r register with alternate space

memory 325
swap r register with memory 233, 324

LoadStore MEMBAR relationship 180, 181, 273
LoadStore predefined constant 397
local registers 32, 60, 63, 307
logical instructions 270
Lookaside MEMBAR relationship 273
Lookaside predefined constant 397
lower registers dirty (DL) field of FPRS register 74

M
machine stalling 88
machine sync 27, 97, 109, 122
manual

fonts 13
manufacturer (manuf) field of VER register 352
MAXTL 85, 138, 140, 154, 313, 352

for SPARC64 85
maxtl, see maximum trap levels (maxtl) field of VER

register
may 23
mem_address_not_aligned exception 117, 166,

234, 258, 260, 262, 264, 266, 306, 316, 318,
320, 322, 324, 326

MEMBAR instruction 114, 122, 174, 177, 179–
181, 182, 184, 251, 272, 305, 314

membar_mask 397
MemIssue MEMBAR relationship 273
MemIssue predefined constant 397
memory

alignment 174
atomicity 355
coherence 173, 355
coherency unit 174
data 183
instruction 183
ordering unit 174

real 173, 174
memory access instructions 33
memory management unit (MMU) 19, 347, 393
memory model 169–184

load/store order (LSO) 171, 354, 355
mode control 182
overview 169
partial store order (PSO) 169, 181, 354
relaxed memory order (RMO) 169, 181, 354
sequential consistency 170
SPARC-V9 181
store order (STO) 171, 354, 355
strong 170
strong consistency 170
total store order (TSO) 169, 181, 182
weak 170

Memory Model (MM) field of PSTATE register 94
memory operations

atomic 182
memory order 178

program order 176
memory reference instructions

data flow order constraints 177
memory_model (MM) field of PSTATE

register 83, 177, 182, 354
MM, see memory_model (MM) field of PSTATE

register
mmask field of instructions 114, 314
MMU, see memory management unit (MMU)
mode

nonprivileged 19, 31
privileged 31, 82, 175
user 60, 81

MOV synthetic instruction 400
MOVA instruction 281
MOVCC instruction 281
MOVcc instructions 73, 75, 113, 115, 127, 278,

281, 283, 284, 364
MOVCS instruction 281
move floating-point register if condition is true 275
move floating-point register if contents of integer

register satisfy condition 279
MOVE instruction 281
move integer register if condition is satisfied

instructions 281
move integer register if contents of integer register

satisfies condition instructions 285
move on condition instructions 18
MOVFA instruction 281
MOVFE instruction 281
MOVFG instruction 281
MOVFGE instruction 281
MOVFL instruction 281
MOVFLE instruction 281
MOVFLG instruction 281

Index O – 493

MOVFN instruction 281
MOVFNE instruction 281
MOVFO instruction 281
MOVFU instruction 281
MOVFUE instruction 281
MOVFUG instruction 281
MOVFUGE instruction 281
MOVFUL instruction 281
MOVFULE instruction 281
MOVG instruction 281
MOVGE instruction 281
MOVGU instruction 281
MOVL instruction 281
MOVLE instruction 281
MOVLEU instruction 281
MOVN instruction 281
MOVNE instruction 281
MOVNEG instruction 281
MOVPOS instruction 281
MOVr instruction 115
MOVr instructions 115, 128, 285
MOVRGEZ instruction 285
MOVRGZ instruction 285
MOVRLEZ instruction 285
MOVRLZ instruction 285
MOVRNZ instruction 285
MOVRZ instruction 285
MOVVC instruction 281
MOVVS instruction 281
MULScc (multiply step) instruction 35, 290
multiple unsigned condition codes

emulating 128
multiply instructions 35, 287, 288, 288
multiply step instruction, see MULScc (multiply

step) instruction
multiply/divide register, see Y register
multiprocessor synchronization instructions 18,

233, 324, 325
multiprocessor system 18, 177, 251, 297, 298,

324, 325, 355
MULX instruction 287
must 23

N
N condition code bit, see negative (N) bit of condi-

tion fields of CCR
NaN (not-a-number) 242, 342, 344

quiet 240, 241, 342
signaling 75, 240, 241, 243, 342

NEG synthetic instruction 400
negative (N) bit of condition fields of CCR 72
negative infinity 344
nested traps 18

next program counter (nPC) 23, 37, 65, 65, 87,
107, 144, 238, 292

non-faulting load 24, 175, 175
non-leaf routine 258
nonprivileged

mode 19, 21, 31, 76
registers 60
software 73

nonprivileged trap (NPT) field of TICK
register 81, 305

nonstandard floating-point (NS) field of FSR
register 76, 348

nonstandard modes
in FPU 76

non-virtual memory 298
NOP instruction 222, 225, 228, 292, 295, 310,

332
normal traps 138, 148, 154, 154, 156
NOT synthetic instruction 400
note

implementation 17
programming 17

nPC, see next program counter (nPC)
NPT, see nonprivileged trap (NPT) field of TICK

register)
NS, see nonstandard floating-point (NS) field of

FSR register
number of windows (maxwin) field of VER

register 135
nva, see invalid accrued (nva) bit of aexc field of

FSR register
nvc, see invalid current (nvc) bit of cexc field of FSR

register
NVM, see invalid mask (NVM) bit of TEM field of

FSR register
NWINDOWS 32, 62, 63, 307, 308, 347, 355
nxa, see inexact accrued (nxa) bit of aexc field of

FSR register
nxc, see inexact current (nxc) bit of cexc field of FSR

register
NXM, see inexact mask (NXM) bit of TEM field of

FSR register

O
ofa, see overflow accrued (ofa) bit of aexc field of

FSR register
ofc, see overflow current (ofc) bit of cexc field of

FSR register
OFM, see overflow mask (OFM) bit of TEM field of

FSR register
op3 field of instructions 114, 218, 233, 235, 238,

251, 253, 258, 259, 261, 263, 265, 268, 269,
270, 287, 288, 290, 295, 301, 304, 306

opcode 24

494 – P Index

opf field of instructions 114, 239, 240, 242, 243,
245, 246, 248, 250

opf_cc field of instructions 115, 276
opf_low field of instructions 115, 276, 279
optimized leaf procedure, see leaf procedure (opti-

mized)
OR instruction 270, 400
ORcc instruction 270, 399
ordering MEMBAR instructions 122
ordering unit

memory 174
ORN instruction 270
ORNcc instruction 270
other windows (OTHERWIN) register 92, 129,

130, 134, 135, 253, 301, 308, 334, 355
out register #7 65, 232
out registers 32, 60, 63, 307
overflow 134
overflow (V) bit of condition fields of CCR 73, 123
overflow accrued (ofa) bit of aexc field of FSR

register 80
overflow current (ofc) bit of cexc field of FSR

register 80
overflow mask (OFM) bit of TEM field of FSR

register 80

P
p field of instructions 115, 219, 220, 225, 229
packetizing

instruction 40
page fault 298
partial store order (PSO) memory model 94, 169,

170, 181, 354
PC, see program counter (PC)
PDC, see page descriptor cache (PDC)
PEF, see enable floating-point (PEF) field of

PSTATE register
Performance Monitor Registers (ASR30) 101
physical address 173
Physical Floating-point Register File 47
Physical Integer Register File 46
PIL, see processor interrupt level (PIL) register
POPC instruction 293
positive infinity 344
power failure 145, 158
power_on_reset (POR) trap 156
power-on reset 82, 140, 145
power-on_reset 138
power-on_reset (POR) trap 350
precise floating-point traps 302
Precise State Unit (PSU) 44
precise trap 142, 143, 349
predefined constants

LoadLoad 397
lookaside 397
MemIssue 397
StoreLoad 397
StoreStore 397
Sync 397

predict bit 220
prefetch

for one read 297
for one write 297
for several reads 297
for several writes 297
implementation dependent 298
instruction 298
page 298

prefetch buffer 43, 84
prefetch data instruction 295
PREFETCH instruction 117, 295, 352
prefetch_fcn 397
PREFETCHA instruction 295, 352
PRIV, see privileged (PRIV) field of PSTATE regis-

ter
privileged

mode 25, 31, 82, 175
registers 82
software 19, 63, 76, 84, 121, 148, 253, 352

privileged (P) field of fault_access_type register
(ASR29) 100

privileged (PRIV) field of PSTATE register 26,
85, 166, 175, 234, 262, 269, 305, 318, 322,
325

privileged mode (PRIV) field of PSTATE
register 85

privileged_action exception 81, 121, 145, 166,
234, 262, 266, 269, 305, 318, 322, 326, 349

privileged_instruction exception (SPARC-
V8) 166

privileged_opcode exception 145, 166, 238,
302, 305, 309, 336, 339

processor 31
execute unit 176
halt 153
issue unit 176, 176
model 176
reorder unit 176
self-consistency 176
state diagram 138

processor interrupt level (PIL) register 86, 143,
146, 147, 165, 301, 334
SPARC64 pending writes 86

processor state (PSTATE) register 37, 60, 82, 83,
88, 137, 139, 238, 301, 334

processor states
error_state 104, 138, 141, 153, 154, 158,

160, 349, 351
execute_state 153, 154, 159

Index R – 495

RED_state 104, 138, 139, 140, 148, 153,
154, 156, 157, 158, 160, 182, 354

program counter (PC) 37, 65, 65, 87, 107, 137,
144, 232, 238, 258, 292

program counter (PC) register 355
program order 176, 176
programming note 17
PSO, see partial store ordering (PSO) memory mod-

el
PSR register (SPARC-V8) 339
PTD, see page table descriptor (PTD)
PTE, see page table entry (PTE)

Q
qne, see queue not empty (qne) field of FSR register
quadword 24, 33, 117, 174

addressing 118, 120
data format 51

queue not empty (qne) field of FSR register 79,
341

quiet NaN (not-a-number) 75, 240, 241, 342

R
r register

#15 65, 232
r register 60
r register

alignment 264, 266
r registers 347
rational quotient 236
rcond field of instructions 115, 219, 279, 285
rd field of instructions 115, 218, 233, 235, 239,

242, 243, 245, 246, 248, 250, 258, 259, 261,
263, 265, 268, 269, 270, 276, 279, 282, 285,
287, 288, 290, 293, 301, 304

RD, see rounding direction (RD) field of FSR regis-
ter

RDASI instruction 303
RDASR instruction 34, 93, 303, 314, 351, 400
RDCCR instruction 303
RDFPRS instruction 303
RDPC instruction 66, 303
RDPR instruction 82, 83, 90, 133, 301, 305
RDTICK instruction 303, 305
RDY instruction 66, 400
read (R) field of fault_access_type register

(ASR29) 100
read privileged register instruction 301
read state register instructions 36, 303
read-after-write memory hazard 177
real memory 173, 174
reclaimed 28
reclaimed instruction state 39, 186

recoding
instruction 40

RED, see enable RED_state (RED) field of PSTATE
register

RED_state 25, 104, 138, 139, 140, 148, 153,
154, 156, 157, 158, 160, 182, 354
restricted environment 139

RED_state (RED) field of PSTATE register 83,
138, 139

RED_state trap table 148
RED_state trap vector 139, 354
RED_state trap vector (RSTV) register 105
RED_state trap vector address (RSTVaddr) 354
reference MMU 19, 393
references 477
reg 393
reg_or_imm field of instructions 398
reg_plus_imm 397
regaddr 397
register reference instructions

data flow order constraints 177
Register Rename/Freelist Unit 44
register renaming 40
register window management instructions 37
register windows 18, 19, 32, 63

clean 21, 92, 128, 134, 135, 136, 162
fill 63, 129, 130, 134, 135, 136, 164, 308,

309
spill 63, 128, 129, 130, 134, 135, 136, 166,

308, 309
registers

address space identifier (ASI) 137, 175, 238,
261, 266, 269, 296, 317, 322, 325, 339

alternate global 32, 60, 60
ancillary state registers (ASRs) 34, 66, 93,

347
architected 41
ASI 81, 88
clean windows (CLEANWIN) 92, 129, 134,

135, 136, 301, 334, 355
clock-tick (TICK) 166, 353
condition codes register (CCR) 88, 137, 218,

238, 290, 339
control and status 59, 65
current window pointer (CWP) 32, 63, 88,

91, 93, 135, 137, 238, 253, 301, 307,
308, 334, 355

destination 25
f 66, 147, 341, 351
floating-point 32, 71, 351
floating-point deferred-trap queue (FQ) 302
floating-point registers state (FPRS) 73, 305,

339
floating-point state (FSR) 74, 79, 81, 260,

315, 341, 348
global 18, 32, 60, 60, 60

496 – R Index

IER (SPARC-V8) 339
in 32, 60, 63, 307
input/output (I/O) 347
local 32, 60, 63, 307
nonprivileged 60
other windows (OTHERWIN) 92, 129, 130,

134, 135, 253, 301, 308, 334, 355
out 32, 60, 63, 307
out #7 65, 232
physical 41
privileged 82
processor interrupt level (PIL) 86, 301, 334
processor state (PSTATE) 60, 82, 83, 88,

137, 139, 238, 301, 334
PSR (SPARC-V8) 339
r 347
r register

#15 65, 232
RED_state trap vector (RSTV) 105
renaming 41
renaming mechanism 177
restorable windows (CANRESTORE) 32, 63,

92, 93, 129, 130, 134, 135, 301, 308,
309, 334, 355

rMCurrPage1 60
savable windows (CANSAVE) 32, 63, 91,

128, 129, 130, 134, 135, 253, 301, 308,
309, 334, 355

TBR (SPARC-V8) 339
TICK 81, 301, 334
trap base address (TBA) 26, 89, 137, 147,

301, 334
trap level (TL) 85, 85, 87, 88, 89, 92, 137,

238, 301, 302, 309, 313, 334, 335
trap next program counter (TNPC) 87, 301,

334
trap program counter (TPC) 87, 143, 301,

302, 334
trap state (TSTATE) 88, 238, 301, 334
trap type (TT) 89, 89, 92, 148, 153, 159,

301, 332, 334, 350
version register (VER) 90, 301
WIM (SPARC-V8) 339
window state (WSTATE) 90, 92, 135, 253,

301, 308, 334
working 59
Y 65, 66, 235, 288, 290, 339

relaxed memory order (RMO) memory model 18,
94, 169, 181, 354

renaming
registers 40

renaming mechanism
register 177

reorder unit 176
reordering

instruction 176
reserved

fields in instructions 213
instructions 133

reset
externally initiated (XIR) 138, 139, 140, 145,

159
externally_initiated_reset (XIR) 158
power_on_reset (POR) trap 166
power-on 82, 138, 140, 145
processing 138
request 138, 166
reset

trap 82, 89, 143, 145
software_initiated_reset (SIR) 138, 145,

159, 166
software-initiated 140, 145, 153
trap 82, 142, 145, 153, 350
trap table 25
watchdog 140, 158, 159

Reset, Error, and Debug state 138
restorable windows (CANRESTORE) register 32,

63, 92, 93, 129, 130, 134, 135, 301, 308,
309, 334, 355

RESTORE instruction 19, 37, 63, 65, 91, 92,
129, 134, 164, 307

RESTORE synthetic instruction 399
RESTORED instruction 37, 130, 136, 308, 309
restricted address space identifier 121, 122, 349
RET synthetic instruction 399
RETL synthetic instruction 399
RETRY instruction 36, 73, 136, 137, 139, 144,

238, 308
return from trap (DONE) instruction, see DONE in-

struction
return from trap (RETRY) instruction, see RETRY

instruction
RETURN instruction 36, 66, 164, 166, 306
Return Prediction Stack (RPS) 192
RMO, see relaxed memory ordering (RMO) memo-

ry model
rounding

in signed division 236
rounding direction (RD) field of FSR register 75,

239, 242, 243, 245, 248, 250
routine

non-leaf 258
RPS, see Return Prediction Stack (RPS) 481
rs1 field of instructions 115, 218, 219, 233, 235,

239, 240, 248, 251, 258, 259, 261, 263, 265,
268, 269, 270, 279, 285, 287, 288, 290, 295,
301, 304, 306

rs2 field of instructions 115, 218, 233, 235, 239,
240, 242, 243, 245, 246, 248, 250, 251, 258,
259, 261, 263, 265, 270, 276, 279, 282, 285,
287, 288, 290, 293, 295

RSTVaddr 148, 354

Index S – 497

S
savable windows (CANSAVE) register 32, 63, 91,

128, 129, 130, 134, 135, 253, 301, 308, 309,
334, 355

SAVE instruction 19, 37, 63, 65, 91, 92, 93, 128,
134, 135, 162, 166, 258, 306, 307

SAVE synthetic instruction 399
SAVED instruction 37, 129, 136, 308, 309
scale_factor field of Graphic Status Register

(ASR19) 95
Schedule Interrupt (SCHED_INT) Register

(ASR22) 95
SDIV instruction 66, 235
SDIVcc instruction 66, 235
SDIVX instruction 287
self-consistency

processor 176
self-modifying code 251
sequence_error floating-point trap type 22, 77,

78, 164, 349
sequencing MEMBAR instructions 122
sequential consistency memory model 170
sequential execution mode 140
SEQUENTIAL_MODE (SM) field of state control

register (ASR31) 104, 140
Serial Number Queue (SNQ) 49
serializing instruction 109
Set SCHED_INT Register (ASR20) 95
SET synthetic instruction 399
SETHI instruction 35, 114, 123, 292, 310, 359,

399
shall (special term) 25
shared memory 169
shcnt32 field of instructions 115
shcnt64 field of instructions 115
shift instructions 35, 123, 311
side effects 108, 173

and MMU 108
and speculative execution 108

signal handler, see trap handler
signal monitor instruction 313
signaling NaN (not-a-number) 75, 240, 241, 243,

342
signed integer data type 51
sign-extended 64-bit constant 116
sign-extension 400
SIGNX synthetic instruction 400
simm10 field of instructions 115, 285
simm11 field of instructions 115, 282
simm13 field of instructions 116, 218, 235, 251,

258, 259, 261, 263, 265, 268, 269, 270, 287,
288, 290, 293, 295, 306

SIR instruction 145, 159, 166, 313, 354
SIR, see software_initiated_reset (SIR)

SIR_enable control flag 313, 354
size field of instructions 116
SLL instruction 311
SLLX instruction 311, 399
SMUL instruction 66, 288
SMULcc instruction 66, 288
Software Scratch Registers 97
software trap 148, 148, 332
software_initiated_reset (SIR) exception 138,

140, 145, 153, 156, 159, 166, 313
software_trap_number 398
software-initiated reset (SIR) register 99
SPARC-V8 compatibility 35, 60, 71, 75, 86, 91,

122, 125, 164, 166, 174, 218, 223, 226, 241,
254, 255, 260, 264, 266, 274, 305, 314, 316,
320, 322, 323, 328, 330, 332, 339

SPARC-V8 compatiblity 132
SPARC-V9 Application Binary Interface (ABI) 19
SPARC-V9 features 17
SPARC-V9 memory models 181
special terms

shall 25
special traps 138, 148
speculative execution 108
spill register window 63, 128, 129, 130, 134, 135,

136, 166, 308, 309
spill windows 307
spill_n_normal exception 145, 166, 253, 308
spill_n_other exception 166, 253, 308
SRA instruction 311, 400
SRAX instruction 311
SRL instruction 311
SRLX instruction 311
ST instruction 400
stack frame 307
State Control Register (ASR31) 101
state control register (SCR) 101
STB instruction 319, 321, 400
STBA instruction 319, 321
STBAR instruction 177, 179, 274, 305, 314
STD instruction 65, 146, 319, 321, 353
STDA instruction 65, 146, 319, 321, 353
STDF instruction 117, 166, 315
STDF_mem_address_not_aligned

exception 117, 145, 166, 316, 318, 353
STDFA instruction 117, 146, 317
STF instruction 315
STFSR instruction 74, 75, 76, 315
STH instruction 319, 321, 400
STHA instruction 319, 321
store floating-point instructions 315
store floating-point into alternate space

instructions 317
store instructions 116

498 – T Index

store integer instructions 319, 321
store order (STO) memory model 171, 354, 355
StoreLoad MEMBAR relationship 180, 273
StoreLoad predefined constant 397
stores to alternate space 34, 81, 121
StoreStore MEMBAR relationship 180, 273
StoreStore predefined constant 397
STQF instruction 117, 315
STQF_mem_address_not_aligned

exception 354
STQFA instruction 117, 317
strong consistency memory model 170
strong ordering, see strong consistency memory

model
STW instruction 319, 321
STWA instruction 319, 321
STX instruction 146, 319, 321
STXA instruction 146, 319, 321
STXFSR instruction 74, 75, 76, 315
SUB instruction 323, 400
SUBC instruction 323
SUBcc instruction 123, 323, 399
SUBCcc instruction 323
subtract instructions 323
SUBX instruction (SPARC-V8) 323
SUBXcc instruction (SPARC-V8) 323
supervisor software 34, 60, 61, 77, 78, 137, 153,

159, 343, 347
supervisor-mode trap handler 148
sw_trap# field of instructions 116
SWAP instruction 117, 179, 183, 268, 269, 324
swap r register with alternate space memory

instructions 325
swap r register with memory instructions 233, 324
SWAPA instruction 268, 269, 325
sync 28, 122
Sync MEMBAR relationship 273
Sync predefined constant 397
syncing instruction 28
synthetic instructions

BCLR 400
BSET 400
BTOG 400
BTST 400
CALL 399
CAS 400
CASX 400
CLR 400
CMP 323, 399
DEC 400
DECcc 400
INC 400
INCcc 400
IPREFETCH 399

JMP 399
MOV 400
NEG 400
NOT 400
RESTORE 399
RET 399
RETL 399
SAVE 399
SET 399
SIGNX 400
TST 399

synthetic instructions in assembler 399
system software 166, 175, 184, 252, 351

T
TA instruction 363
TADDcc instruction 123, 327
TADDccTV instruction 123, 166, 327
tag overflow 123
tag_overflow exception 123, 166, 327, 328, 330
tagged add instructions 327
tagged arithmetic 123
tagged arithmetic instructions 35
tagged word data format 51
tagged words 51
task switching, see context switching
TBR register (SPARC-V8) 339
Tcc instructions 37, 73, 113, 137, 148, 167, 331,

363, 364
TCS instruction 363
TE instruction 363
TEM, see trap enable mask (TEM) field of FSR reg-

ister
test-and-set instruction 183
TG instruction 363
TGE instruction 363
TGU instruction 363
threads, see multithreaded software
Ticc instruction (SPARC-V8) 332
TICK Match Register (ASR23) 96
TICK, see clock-tick register (TICK)
timing

instruction 214
tininess (floating-point) 80, 352
TL instruction 363
TLB, see page descriptor cache (PDC)
TLE instruction 363
TLE, see trap_little_endian (TLE) field of PSTATE

register
TLEU instruction 363
TN instruction 363
TNE instruction 363
TNEG instruction 363

Index U – 499

total order 179
total store order (TSO) memory model 94, 169,

170, 181, 182
total unit

implementation-dependent 346
TPOS instruction 363
Translation Lookaside Buffer (TLB), see page de-

scriptor cache (PDC)
Translation Memory Buffer (TMB) 384
trap 37, 37, 137
trap base address (TBA) register 26, 89, 137, 147,

301, 334
trap categories

deferred 142, 143
disrupting 143, 144, 145, 146
precise 143
reset 145

trap enable mask (TEM) field of FSR register 75,
79, 80, 146, 147, 164, 348

trap handler 238
fast 18
supervisor-mode 148
user 77, 343

trap level 85
trap level (TL) register 85, 85, 87, 88, 89, 92,

137, 238, 301, 302, 309, 313, 334, 335
trap model 145
trap next program counter (TNPC) register 87,

301, 334
trap on integer condition codes instructions 331
trap processing 138, 153
trap program counter (TPC) register 87, 143, 301,

302, 334
trap stack 18, 154
trap state (TSTATE) register 88, 238, 301, 334
trap type (TT) register 89, 89, 92, 148, 153, 159,

301, 332, 334, 350
trap types, also see exceptions
trap vector

RED_state 139
trap_instruction exception 145, 167, 332, 333
trap_little_endian (TLE) field of PSTATE

register 83, 83
traps

also see exceptions
causes 37
deferred 142, 349
disrupting 142, 349
hardware 148
implementation-dependent 156
nested 18
normal 138, 148, 154, 154, 156
precise 142, 349
precise execution (Etraps) 142
precise issue (Itraps) 142

reset 89, 142, 143, 145, 153, 350
software 148, 332
software-initiated reset (SIR) 156
special 138, 148
window fill 148
window spill 148

TSO, see total store ordering (TSO) memory model
TST synthetic instruction 399
TSUBcc instruction 123
TSUBccTV instruction 123, 166
TVC instruction 363
TVS instruction 363
typewriter font

in assembly language syntax 393

U
UDIV instruction 66, 235
UDIVcc instruction 66, 235
UDIVX instruction 287
ufa, see underflow accrued (ufa) bit of aexc field of

FSR register
ufc, see underflow current (ufc) bit of cexc field of

FSR register
UFM, see underflow mask (UFM) bit of TEM field

of FSR register
UMUL instruction 66, 288
UMULcc instruction 66, 288
unconditional branches 222, 225, 228, 230
underflow 134
underflow accrued (ufa) bit of aexc field of FSR

register 80, 344
underflow current (ufc) bit of cexc field of FSR

register 80, 343, 344
underflow mask (UFM) bit of TEM field of FSR

register 80, 80, 343
unfinished_FPop floating-point trap type 22, 77,

78, 81, 132, 249, 341, 347
UNIMP instruction (SPARC-V8) 254
unimplemented instructions 133
unimplemented_FPop floating-point trap

type 22, 55, 77, 78, 81, 133, 239, 241, 242,
244, 245, 249, 278, 280, 341, 347

unimplemented_LDD exception 353
unimplemented_STD exception 145, 322, 353
unrestricted address space identifier 122, 349
unsigned integer data type 51
upper registers dirty (DU) field of FPRS register 74
user

mode 60, 81
program 348
trap handler 77, 343

user application program, see application program

500 – V Index

V
V condition code bit, see overflow (V) bit of condi-

tion fields of CCR
value

implementation-dependent 346
value semantics of input/output (I/O) locations 173
var field of instructions 116
ver, see version (ver) field of FSR register
version (ver) field of FSR register 348
version register (VER) 90, 301
virtual address 173
virtual address (VA) 368
virtual memory 298
Visual Instruction Set (VIS) 94

W
watchdog exception 140, 167, 350
watchdog reset 140, 158, 159
watchdog_reset (WDR) exception 156, 350
WDT_SELECT (SEL) field of state control register

(ASR31) 104
WIM register (SPARC-V8) 339
window

clean 307
window fill exception 91, 92
window fill trap 148
window fill trap handler 37
window overflow 63, 134
window spill trap 148
window spill trap handler 37
window state (WSTATE) register 90, 92, 135,

253, 301, 308, 334
window underflow 63, 134
window_fill exception 129, 306
window_spill exception 91, 92
windows, see register windows
word 33, 117, 174
word data format 51
WRASI instruction 337
WRASR instruction 34, 93, 337, 351, 400
WRCCR instruction 73, 337
WRFPRS instruction 337
WRIER instruction (SPARC-V8) 339
write (W) field of fault_access_type register

(ASR29) 100
write privileged register instruction 334
write state register instructions 337
write-after-read memory hazard 177
write-after-write memory hazard 177
WRPR instruction 82, 83, 90, 133, 139, 334
WRPSR instruction (SPARC-V8) 339
WRTBR instruction (SPARC-V8) 339

WRWIM instruction (SPARC-V8) 339
WRY instruction 66, 337, 400
WTYPE subfield field of trap type field 151

X
x field of instructions 116
xcc field of CCR register 73, 218, 230, 236, 237,

270, 283, 288, 291, 323, 327
XIR, see externally_initiated_reset (XIR)
XNOR instruction 270, 400
XNORcc instruction 270
XOR instruction 270, 400
XORcc instruction 270

Y
Y register 65, 66, 235, 288, 290, 339

Z
Z condition code bit, see zero (Z) bit of condition

fields of CCR
zero (Z) bit of condition fields of CCR 72

