
SPARC COMPLIANCE DEFINITION 2.3

SCD
2.3

SPARC International

© 1990, 1991, 1992, 1993,1994, 1995 SPARC International Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of
the copyright owners.

The manual pages for socket functions are
¶ 1992, 1993 The Regents of the University of California. All rights reserved

Includes material copyrighted by UNIX System Laboratories, Inc., a subsidiary of Novell, Inc. Reprinted with permis-
sion.
The SPARC Compliance Definition 2.3 is published and printed by SPARC International.

Any comments relating to the material contained herein may be submitted to:

SPARC International Inc.

535 Middlefield Road, Suite 210

Menlo Park, California 94025

ATTN: Ghassan Abbas (abbas@sparc.com)

Trademarks

SPARC® is a registered trademark of SPARC International, Inc.

SPARCstation™ is a trademark of SPARC International, Inc.

Products bearing SPARC® trademarks are based on an architecture developed by Sun Microsystems, Inc.

ONC™ and SunOS™ are trademarks of Sun Microsystems, Inc.

NFS® is a registered trademark of Sun Microsystems, Inc.

UNIX® and OPEN LOOK® are registered trademarks of UNIX System Laboratories, Inc.

The X-Window System™ is a trademark of Massachusetts Institute of Technology.

OSF/Motif™ is a trademark of the Open Software Foundation, Inc.

All other products or services mentioned in this document are identified by the trademarks or service marks of their
respective companies or organizations. SPARC International, Inc. disclaims any responsibility for specifying which
trademarks are owned by which companies or organizations.

SPARC COMPLIANCE DEFINITION 2.3

SCD
2.3

___ Table of Contents

8/16/95 SPARC Compliance Definition 2.3 1

Preface
Audience and Purpose ... i
Organization and Content ... i
Publication Conventions .. i

Other Publication Conventions ... i

CHAPTER 1: Introduction
Overview .. 1-1
Introduction Changes ... 1-1
Definitions of Terms ... 1-1

Interface Set .. 1-1
Interface Member ... 1-1
Interface ... 1-1
Required .. 1-1
Optional ... 1-1
Deprecated .. 1-2
Rationale .. 1-2
Experimental .. 1-2

Normative References .. 1-2
Relationship to other Standards ... 1-4
Future Direction .. 1-5
Upward Compatibility ... 1-5
Summary of Changes ... 1-5
Changes between SCD 2.2 and SCD 2.3 .. 1-5
Structure of the SPARC Compliance Definition ... 1-7

System Feature Interfaces ... 1-7
Library Interfaces ... 1-7
Command Interface ... 1-8

Definition of SPARC Compliance ... 1-8
Conforming Implementations ... 1-8
Conforming Application Programs .. 1-8

Compliance Testing .. 1-9

CHAPTER 2: Software Installation
Overview .. 2-1
Software Installation Changes .. 2-1
CD-ROM Medium .. 2-1

CHAPTER 3: Low-Level System Information
Low-level System Information Changes ... 3-1

CHAPTER 4: Object Files
Object Files Changes ... 4-1
Relocation Types ... 4-1

CHAPTER 5: Program Loading and Dynamic Linking
Program Loading and Dynamic Linking Changes .. 5-1

Table of Contents ___

2 SPARC Compliance Definition 2.3 8/16/95

CHAPTER 6: Libraries
Overview .. 6-1
System Library Changes .. 6-2

System Library Changes (continued) ... 6-3
C Library Changes .. 6-4
Network Services Changes .. 6-5
System Data Interface Changes ... 6-6
Miscellaneous ABI Changes .. 6-7

Miscellaneous ABI Changes (continued) ... 6-8
The System Library ... 6-9

The libsys Interfaces .. 6-9
ABI Extensions ... 6-9
Long Long Intrinsics support ... 6-12

The C Library ... 6-13
The libc Interfaces .. 6-13
ABI Extensions ... 6-13

The Network Services Library .. 6-15
Overview ... 6-15
The libnsl Interfaces ... 6-15
ABI Extension ... 6-15

Networking Interface Set ... 6-17
Structures and Manifest Constants ... 6-17

Dynamic Object File Loading .. 6-23
Overview ... 6-23
ABI Extensions ... 6-23

Multithreading Library .. 6-24
Overview ... 6-24
Additional Interfaces in libsys/libc .. 6-24
ABI Extensions ... 6-24

Asynchronous I/O .. 6-27
Overview ... 6-27
ABI Extensions ... 6-27

The Math Library .. 6-28
Overview ... 6-28

The Large files Library ... 6-29
Overview ... 6-29

CHAPTER 7: Formats and Protocols
Formats and Protocols Changes ... 7-1
Interconnecting SCD Conforming Systems ... 7-1

Overview ... 7-1
Transport Providers ... 7-1
Additional Interfaces ... 7-1

CHAPTER 8: System Commands
Overview .. 8-1
System Commands Changes ... 8-1
System Commands Changes (continued) ... 8-2

CHAPTER 9: Execution Environment
Execution Environment Changes ... 9-1

___ Table of Contents

8/16/95 SPARC Compliance Definition 2.3 3

CHAPTER 10: Windowing and Terminal Interfaces
Windowing and Terminal Interfaces Changes ... 10-1
The X Library ... 10-1

Unsafe Macros .. 10-6
X Library Changes ... 10-9
X Library Changes (continued) .. 10-10
X Library Changes (continued) .. 10-11

The X Extension Library ... 10-20
Overview ... 10-20
The Extension Library Interfaces ... 10-20

The X Toolkit ... 10-21
Overview ... 10-21
The libXt Interfaces .. 10-21
Deprecated X Toolkit Functions .. 10-24
Subclassing Xt Widgets ... 10-37

The OPEN LOOK Widget Set ... 10-48
Overview ... 10-48
The libXol Interfaces .. 10-48

Motif 1.2 Widget Set ... 10-57
Overview ... 10-57
The Motif Interfaces ... 10-57

CHAPTER 11: Development Environments
Overview .. 11-1
Development Environments Changes ... 11-1

CHAPTER 12: Networking
Networking Changes .. 12-1

Index

Table of Contents ___

4 SPARC Compliance Definition 2.3 8/16/95

Preface

SCD
2.3

___ Preface

8/16/95 SPARC Compliance Definition 2.3 PREFACE-i

Preface

Audience and Purpose
The SPARC International SPARC Compliance Definition (SCD) is intended for use by anyone who is creating binary
compatible SPARC systems or applications.

The intended audience of the SCD documents consists of two groups: system and application developers. For system
developers, the SCD provides a reference to those interfaces and features which must be supplied by a SPARC
compliant system. For application developers, the SCD provides a reference to interfaces and features that may be relied
upon in all SPARC compliant systems.

This publication is intended to fulfill the following purposes:

• Identify areas beyond the System V Application Binary Interface (gABI) and the
System V Application Binary Interface, SPARC Processor Supplement (psABI) that
the SPARC community deems important.

• Address ambiguous and/or loose specifications in current ABI documents.

Organization and Content
The SCD 2.3 has been divided into chapters, as follows:

Chapter 1 Introduction

Chapter 2 Software Installation

Chapter 3 Low-Level System Information

Chapter 4 Object Files

Chapter 5 Program Loading and Dynamic Linking

Chapter 6 Libraries

Chapter 7 Formats and Protocols

Chapter 8 System Commands

Chapter 9 Execution Environment

Chapter 10 Windowing and Terminal Interfaces

Chapter 11 Development Environments

Chapter 12 Networking

Index

This new organization follows the organization of the System V Application Binary Interface and System V Application
Binary Interface, SPARC Processor Supplement documents. Having a parallel organization makes this document easier to
use than previous editions of the SCD.

Publication Conventions
This publication uses page format and typographic variances to highlight particular kinds of information. These con-
ventions of usage are generally consistent with publication conventions used by other UNIX publications, such as the
AT&T System V Interface Definition, Third Edition.

Other Publication Conventions
The following typographical conventions are used within the text of this publication:

• Filenames, pathnames, and system messages are shown in:
typewriter font like this.

Preface ___

ii SPARC Compliance Definition 2.3 8/16/95

• Titles of chapters in this publication are shown in plain Roman font, inside quotation marks like this:
“Introduction.”

• Document titles are shown in plain, nonbold italic font like this:
 System V Interface Definition (Third Edition).

CHAPTER 1: Introduction

SCD
2.3

__ Introduction

8/16/95 SPARC Compliance Definition 2.3 1-1

Introduction

Overview
This document is version 2.3 of the SPARC Compliance Definition.

The SPARC Compliance Definition, or SCD, defines a set of interfaces that all SPARC Compliant systems must provide
in their implementations. The SCD provides information for binary-level compatibility, encompassing both the System
V Application Binary Interface (gABI), and the System V Application Binary Interface, SPARC Processor Supplement
(psABI) documents.

Introduction Changes
The following are changes to the System V application Binary Interface as reported to SPARC International.

Facility Location Description

1 How to use the System gABI The math routines are also available as a shared resources
V ABI

Definitions of Terms

Interface Set
The term “interface set” refers to a named collection of facilities, defined in the SPARC Compliance Definition, that is
provided by a platform and can be used by an application. These collections, or “interface sets”, are listed in the section
below titled “Structure of the SPARC Compliance Definition”.

 An example is: the X11 Library Interface Set.

Interface Member
The term “interface member” is also used as a generic reference to any single facility that is provided by a platform for
use by an application program.

Examples are: the printf function; the errno global data item.

Interface
The unadorned term “interface” means either “interface set” or “interface member” depending on the immediate
context of its use. Any REQUIRED or OPTIONAL interface defined in this document will be part of the SCD for at least
three years.

Required
The term “required” in this document is a qualifier for the terms “interface set,” “interface member,” and “interface.”
When the term “REQUIRED interface set” is used in this document, SPARC conforming systems must provide the
interface set; conformant applications can rely on the designated interface set always being available on any conforming
system. The terms “REQUIRED interface member” and “REQUIRED interface” are defined similarly.

Optional
The term “optional” in this document is a qualifier for the terms “interface set,” “interface member,” and “interface.”
When the term “OPTIONAL interface set” is used in this document, SPARC conforming systems may, but need not,
supply the interface set; if a conforming system does supply the interface, the interface set must be present in its entirety,
as defined by this document; applications can not rely on the designated interface set being available on any conforming

Introduction __

1-2 SPARC Compliance Definition 2.3 8/16/95

systems, but if the interface set is available on a particular conforming system, a conforming application can rely on the
interface set being available in its entirety on that particular conforming system. The terms “OPTIONAL interface
member” and “OPTIONAL interface” are similarly defined.

Deprecated
The term “deprecated” in this document is a qualifier for the terms “interface set,” “interface member,” and “interface.”
When the term “DEPRECATED interface set” is used in this document, programmers are discouraged from using the
designated interface set in new applications because the “DEPRECATED interface set” may not be supported in future
versions of the SCD. The qualifier “deprecated” is orthogonal to the qualifiers “required” and “optional”. When an
“interface set” is designated as “deprecated” the date of deprecation will be stated by the specification. “Interface sets,”
marked as “deprecated,” will be kept in the SCD for at least three (3) years from the original deprecation date. The
“DEPRECATED interface set” will also include in its specification, the earliest date at which the designated “interface
set” may be removed from the specification. No required or optional interface will be removed from the standard
without first being deprecated. The terms “DEPRECATED interface member” and “DEPRECATED interface” are
defined similarly.

Rationale
Paragraphs labeled “rationale” in this document are non-normative and are for information only. An example of a
Rationale paragraph follows below.

Rationale

The SPARC International Compliance and Compatibility Committee agreed that it would be more useful to
intersperse rationale comments throughout the document than to confine them to an appendix.

Experimental
The term “experimental” in this document is a qualifier for the terms “interface set,” “interface member,” and
“interface.” When the term “EXPERIMENTAL interface set” is used in the document, applications programmers are
warned that 1) the designated interface set may not be available on any SPARC conforming systems, and, 2) the
specification of the designated interface may change at any time or be deleted from the SCD at the sole discretion of
SPARC International; SPARC International makes no commitment of a three-year stable period for any
“EXPERIMENTAL interface set.”

Rationale

As an example, this release of the SPARC compliance definition includes the EXPERIMENTAL Large File Support
Library. This interface set is completely new. Because the Large File Support Library is new, we have no experience
with the correctness of the interface. Field experience may require that certain portions of the interface change to
make the interface more useful or practical.

Normative References
The normative references called out in the SPARC Compliance Definition are:

• SCD 2.3 Interface Semantics
SPARC International

• System V Application Binary Interface, Third Edition
Unix Press (Prentice Hall), ISBN 0-13-100439-5

• System V Application Binary Interface SPARC Processor Supplement, Third Edition
Unix Press (Prentice Hall), ISBN 0-13-104696-9

• The SPARC Architecture Manual, Version 8
Prentice Hall, ISBN 0-13-825001-4

• System V Interface Definition, Third Edition, Volumes 1 - 5
USL/Novell Select Code 320-136 (Volume 1), 320-137 (Volume 2), 320-138 (Volume 3),

__ Introduction

8/16/95 SPARC Compliance Definition 2.3 1-3

320-139 (Volume 4),

Volume 1 Addison-Wesley ISBN 0-201-56652-0

Volume 2 Addison-Wesley ISBN 0-201-56653-0

Volume 3 Addison-Wesley ISBN 0-201-56654-0

Volume 4 Addison-Wesley ISBN 0-201-56655-0

Volume 5 Addison-Wesley ISBN 0-201-56656-7

• The X Window System (Third Edition)
by Robert W. Scheifler and James Gettys

Digital Press, ISBN 1-55558-088-2

• X Toolkit Intrinsics - C Language Interface
by Joel McCormack, Paul Asente, and Ralphe R.Swick

Distributed by the X consortium with the X Version 11, Release 5

available through FTP from export.lcs.mit.edu

• X11 Non-rectangular Window Shape Extension
by Keith Packard

Copyright X Consortium

• OSF/Motif Programmer’s Guide (Rel. 1.2- Revised)
Prentice-Hall, ISBN 0-13-643115-1

Rational:

If the old reference is not available, a new Motif Reference can be used:

Motif Reference, X/Open CAE Specification:

Motif Toolkit API, ISBN 1-85912-024-5

Currently this Motif reference is different than the old one in the following:

1) Two functions (XmCreateCommandDialog,XmDropSiteRegistered) are added

2) Dozens of functions (e.g., MrmOpenHierachy, XmStringCreateLtoR) are dropped.

3) Header files are not quite the same.

• OLIT Reference Manual
Sun Microsystems, Part No. 800-6055-10, Revision A

• ISO 9660-1988: Volume and file structure of CD-ROM for information interchange
1988-09-01

• ISO/IEC 10149: Data Interchange for read-only 120mm optical data disk (CD-ROM)
1989-09-01

• RFC 1700
URL: http://info.internet.isi.edu/1s/in-notes/rfc/files

The definition of each interface in the SPARC Compliance Definition may reference one or more of the above
documents. In those cases, the portion of the normative reference that is called out is part of this standard.

The definition of each Interface in the SPARC Compliance Definition may list errata to any of the above documents. In
each such listed erratum, the definition contained in the erratum supersedes the corresponding portion of the
normative reference.

These documents may be acquired from most technical book stores; additionally, SPARC International provides

Introduction __

1-4 SPARC Compliance Definition 2.3 8/16/95

assistance in acquiring these references. If you require assistance in acquiring these references, call SPARC International
at:

 (415) 321-8692.

ISO documents can be ordered from:

International Organization for Standardization,

1 Rue de Varembe, Case Postale 56, CH-1211 Geneva 20 Switzerland,

(Tel) +41 22 34 12 40

URL: http://www.iso.ch

or ANSI (ISO member for the US):

 ANSI, 11 W 42nd St. 13th floor, New York, NY 10036,

(Tel) 1-212-642-4900.

Prentice-Hall documents can be obtained at:

PTR Prentice Hall, Corporate Sales Department

113 Sylvan Avenue, Englewood Cliffs, New Jersey 07632

 (Tel) (201) 592-2863 (bulk copies), (Tel)(515) 284-6761 (single copies).

(Fax) (201) 592-2249

Rationale

The SCD represents a proper super-set of the required interfaces and features described in the two ABI documents.
One of the purposes of this document is to serve as the conduit through which features may migrate first into the
processor specific ABI (SPARC psABI), and finally into the generic ABI (gABI). Consequently, the SCD includes a
set of features and their associated interfaces that are beyond the ABI definitions. These features, and their
associated interfaces have been included, in some cases to correct deficiencies in the ABI specifications, and in
others to standardize functionality already in common use throughout the SPARC community.

Relationship to other Standards
As the SCD is a specification for binary level compatibility, it is important that it not conflict with already existing
standards work, either de facto or de jure. To this end, the SCD 2.x draws upon the System V Interface Definition (Third
Edition), (indirectly through references to the System V ABI) as the specification to which it will remain functionally
consistent. As a consequence, the conformance of SCD 2.x to other standards documents/agencies is minimally the
same as that of the System V Interface Definition. Examples of standards to which this pertains are:

• POSIX 1003.1-1990 (ISO 9945-1) 1990 (E) (ISO/IEC) (IEEE/ANSI Std 1003.1-1990):
Information Technology - portable operating system interface (POSIX)

Part 1: System Application Program Interface (API)[C Language]

ISBN: 1-55937-061-7

• X/Open Portability Guide, Issue 3 (XPG3)
X/Open Portability Guide 1988 X/Open Company Limited

Vol1: XSI Commands and Utilities ISBN:0-13-685835-X �

Vol2: XSI System Interface and Headers ISBN:0-13-685843-0 �

__ Introduction

8/16/95 SPARC Compliance Definition 2.3 1-5

Vol3: XSI Supplementary Definitions ISBN:0-13-685850-3

Vol4: Programming Languages ISBN:0-13-685868-6

Vol5: Data Management ISBN:0-13-685876-7

Vol6: Window Management ISBN:0-13-685884-8

Vol7: Networking Services ISBN:0-13-685892-9

set of 7 volumes ISBN:0-13-685819-8

� Referenced indirectly in the SVID.

Future Direction
1- Future direction for SCD is POSIX

2- non-POSIX is for existing implementations and, where they differ from posix, they are designated as
EXPERIMENTAL

Upward Compatibility
The interfaces in SCD 2.3 are upwardly compatible with the interfaces in SCD 2.2, which in turn are upwardly
compatible with the interfaces in SCD 2.1 and SCD 2.0. That is to say, an application written to the interfaces defined in
SCD 2.0 will run successfully without change or re-compilation on a system that implements SCD 2.1, SCD 2.2, or SCD
2.3.

Summary of Changes
Beginning with this issue, the SPARC Compliance Definition has been reorganized to parallel the System V Application
Binary Interface Edition 3 and System V Application Binary Interface, SPARC Processor Supplement Edition 3 documents from
USL (Novell).

Changes between SCD 2.2 and SCD 2.3

General Changes:

1- All specifications in addition to new specification have been moved out of the SCD 2.2 and included into a
new document called SCD 2.3 Interface semantics.

2- All references to the psABI and gABI revised Edition (2nd), have been updated to the 3rd Edition of these
documents.

3- All errata have been modified and moved to the first page of their respective chapter.

Changes by Chapter:

Chapter 1:

1- The errata section has been moved to the beginning of the chapter

2- “Normative References” and “Relationship to other Standards” sections have been updated

3- “Additional Library Interfaces” section have been merged into this new section “Changes between SCD 2.2
and SCD 2.3.

Chapter 2:

1- Table 2-1 has been added which list the software installation commands required by the SCD 2.3

Introduction __

1-6 SPARC Compliance Definition 2.3 8/16/95

Chapter 3:

1- “Self Modifying coding Practice” section has been added to this chapter.

2- New errata section (Low-Level System Information Changes” has been added to this chapter.

Chapter 4:

1- “Relocation Types” section was added to this chapter.

Chapter 5:

1- “Shared Object Dependencies” errata was added to the “Program Loading and Dynamic Linking changes”

Chapter 6:

1- New functions and exported data have been added to libc, libsys, and libnsl section: These new
functions/data are indicated in their respective tables and figures

2- Long long intrinsics section have been added to the libsys section

3- Three new libraries (libthread, libaio, and libm) were added.

4- “The Socket Library” section has been renamed “Networking Interface Set”

Chapter 7:

1- Reference changed from RFC 1340 to RFC 1700, in addition to minor corrections.

Chapter 8:

1-Nine new commands have been added to table 8-1.

Chapter 9:

1- The “Execution Environment Changes” section was updated

Chapter 10:

1- The chapter was fully re-organized

2- new “X Library Changes” errata sections has been added

3- Eight new functions has been added to libX content (Table 10-1).

4- “The LibXol Interfaces” section was updated and a new rationale was added.

5- “The Motif Interfaces” section was updated and a new rationale was added.

6- “The Windowing and Terminal Interfaces Changes” section was deleted.

Chapter 11:

1- This is a new chapter for the Development Environments

Chapter 12:

1- This is a new chapter for Networking.

__ Introduction

8/16/95 SPARC Compliance Definition 2.3 1-7

Structure of the SPARC Compliance Definition
 The Application Binary Interface defined by the SCD consists of a set of System Feature Interfaces, a set of Library
Interfaces, and a Command Interface.

Each such named Interface is designated as either Required, Optional, or Experimental.

System Feature Interfaces
 The System Feature Interfaces are:

• Object File Format

• Program Loading and Linking

• Low-level System Information

• Formats and Protocols

• Software Installation

Library Interfaces
Each Library Interface is a collection of facilities that is implemented as one or more shared objects. (Shared objects are
defined in the Object File Format.)

The Library Interfaces are:

• System Library Interface

• C Library Interface

• Network Services Interface

• Socket Services Interfaces

• Network Address Resolution Library Interface

• Threads Interface

• Async I/O Interface

• Math Library

• Dynamic Linking Library Interface

• X Library Interface

• X Extensions Interface

• X Toolkit Library Interface

• Open Look Library Interface

• Motif 1.2 Library Interface

• Large File Support

 Each Library Interface consists of

• Function entry points and their names

• Function arguments for each function entry point

• Global data and their names

• Manifest constants used in definitions of function arguments and global data

• Visible data structures used in function arguments and global data

Introduction __

1-8 SPARC Compliance Definition 2.3 8/16/95

• One or more shared objects, each having a particular name, each accessible through a particular pathname,
and each containing the function entry points, function entry point names, global data, and global data
names defined for that Library Interface.

Command Interface
The Command Interface is the set of commands available to application programs. The Command Interface is defined
in the chapter titled “Commands”.

Definition of SPARC Compliance
The terms “SPARC-compliant” and “conforming” are used interchangeably in this document. Their meaning is:

Conforming Implementations
A conforming implementation is one that provides all of the Required Interfaces, in their entirety.

A conforming implementation may provide one or more of the Optional Interfaces. Each Optional Interface that is
provided must be provided in its entirety. The product documentation must state which Optional Interfaces are
provided.

A conforming implementation, when provided with standard data formats and values at a named interface, will
provide the behavior defined for those values and data formats at that interface. However, a conforming
implementation may consist of separately packaged and/or sold components. For example, a vendor of a conforming
implementation might sell the hardware, operating system and windowing system as separately packaged items.

A conforming implementation may provide additional interfaces with different names. It may also provide additional
behavior corresponding to data values outside the standard ranges, for standard named interfaces. Such additional
interfaces, or additional inputs to standard interfaces, are called extensions to the standard. If an implementation
provides extensions to the standard, its documentation must clearly identify the extensions as such.

Conforming Application Programs
A conforming application program has the following characteristics:

Its executable files are either Bourne shell scripts or object files in the format defined for the Object File Format System
Interface.

Its object files participate in dynamic linking as defined in the Program Loading and Linking System Interface.

 It employs only the instructions, traps, and other low-level facilities defined in the Low-Level System Interface as being
for use by application programs.

 It does not require or use any interface, facility, or implementation-provided extension that is not defined in this
standard in order to be installed or to execute successfully.

 If it requires any Optional Interface defined in this standard in order to be installed or to execute successfully, the
requirement for that Optional Interface is stated in the application’s documentation.

It does not use any interface or data format that is not required to be provided by a conforming implementation; unless:

1. if any such interface or data format is used, it is generally available to anyone who wants to purchase or
acquire it; and

2. if such an interface or data format is supplied by another program through direct invocation of that program
during execution, that program is in turn a SPARC-compliant application; and

3. the use of that interface or data format, as well as its source, is identified in the documentation of the
application program.

 Rationale

A SPARC-compliant application is expected to have no dependencies on any vendor extensions to the standard. The
most common such extensions are additional function entry points and additional libraries other than the ones
defined in the SCD. If an application requires such extensions it is not portable, since other SCD-compliant
platforms may not provide those extensions.

__ Introduction

8/16/95 SPARC Compliance Definition 2.3 1-9

A SPARC-compliant application is required to use system services on the platform it’s running on, rather than
importing system routines from some other platform. Thus it must link dynamically to any routines in the platform
that perform system traps to kernel services.

It is to be expected that some programs may be companion programs to other programs. For example, a query
program may be a companion to a data base program; a pre-processor may be an adjunct to one or more compilers;
a data re-formatter may convert data from one document manager to another. In such cases, the program may or
may not be SPARC-compliant regardless of whether the other program it’s dependent on is SPARC-compliant.

If such an application merely uses data produced by another program, the application’s compliance is independent
of the other program’s compliance.

If such an application actually invokes another program during execution (as, for example, a third-party math
library), the invoking program is SPARC-compliant only if it also constitutes a SPARC-compliant application in
combination with the invoked program.

Compliance Testing
Test suites will be used in conjunction with this standard to verify the conformance of applications and platforms to this
standard. Contact SPARC International for additional test suite information at (415)321-8692.

The System Compliance Test (SCT) will be used to verify a system’s implementation of all the Interfaces defined in the
SPARC Compliance Definition.

The SPARC Application Verifier (SAV) will be used to verify an application’s adherence to the Interfaces defined in the
SPARC Compliance Definition.

Introduction __

1-10 SPARC Compliance Definition 2.3 8/16/95

CHAPTER 2: Software Installation

SCD
2.3

__ Software Installation

8/16/95 SPARC Compliance Definition 2.3 2-1

Software Installation

Overview
Most information regarding software installation may be found in Chapter 2 of the gABI and Chapter 2 of the psABI.
The commands supported are listed in table 2.1 below. This section is an addendum to Chapter 2, page 2-1, of the psABI.
This section adds support for using CD-ROM medium for physical distribution of SCD-conforming software. It is an
OPTIONAL INTERFACE. If software is distributed on CD-ROM, it must be in one of the formations specified below.
SPARC-compliant systems need support for CD-ROM, some vendors are already shipping all their software on CD-
ROM’s.

Software Installation Changes
The following are changes to the System V Application Binary Interface, and the System V Interface Definition (Third Edition)
as reported to SPARC International.

Facility Location Description

1 pkginfo(AS_CMD) SVID, Vol. II Delete “-r” from the list of supported options for pkginfo.

2 pkgadd(AS_CMD) gABI Change page 2-13 of the gABI to specify that the request script,
if provided, runs with a uid of root and that standard input is
attached to /dev/null.

3 The request script gABI The description about the execution environment is incorrect.
Procedure Scripts Only uid == root is guaranteed.

CD-ROM Medium
CD-ROM medium recorded in the format specified in ISO/IEC 10149: Data Interchange for read-only 120mm optical data
disk (CD-ROM) is added to the list of approved media on page 2-1 of the System V Application Binary Interface, SPARC
Processor Supplement.

The information on the media must be represented either

• serially as the data stream created using dd(AU_CMD) or cpio(BU_CMD) utilities; or

• as file structured data that must be represented as described in ISO 9660: 1988 - Volume and file structure of CD-
ROM for information interchange.

Rationale

The most common format for CD-ROM’s is the ISO 9660 format, which supports MS-DOS filesystem semantics
only. The ISO 9660 format is robust and stable, and has a huge installed base. That is why the ISO 9660 format has
been included in SCD2.3 as an OPTIONAL standard for SPARC-compliant systems.

Support for ISO 9660 format CD-ROM’s is already available from several other operating system vendors.

installf
pkgadd

Table 2-1. Software Installation commands

pkginfo
pkgparam

pkgask
pkgchk

pkgrm
removef

Software Installation __

2-2 SPARC Compliance Definition 2.3 8/16/95

Since the restrictions placed on a filesystem by the ISO 9660 format are too restrictive for most UNIX users, a POSIX
conforming filesystem is needed. The Rock Ridge Interchange Protocol was created to fill this gap. The Rockridge
filesystem is actually an extension to (and compliant with) the ISO 9660 specification.

The Rock Ridge filesystem appears to be stable at this time. However there are some issues concerning bootability,
security, and sparse files which are still being addressed by the IEEE working group on CD-ROM filesystems. There
will be some minor changes made before the Rock Ridge filesystem is adopted as a NIST (National Institute of Sci-
ence and Technology) standard.

For these reasons, the Rock Ridge filesystem is being excluded from SCD 2.3.

Upon adoption as a standard by NIST, it is expected that the Rock Ridge format will be included in the standard.

CHAPTER 3: Low-Level System Information

SCD
2.3

___ Low-Level System Information

8/16/95 SPARC Compliance Definition 2.3 3-1

Low-Level System Information

Low-level system information pertinent to SPARC platforms may be found in Chapter 3 of the System V ABI, SPARC
Processor Supplement. Information such as page size restrictions, as well as stack management, function calling sequence
and data representations may be found there.

Self-Modifying Coding Practices:

Self modified (or otherwise changed) code sequence must be the target of the appropriate sequence of FLUSH instruc-
tions prior to being executed. A specific example of a problematic example can be seen in the code fragment:

(void) read(fd, buf, sizeof (buf));

(*(void(*))())buf)();

which treats the contents of “buf” as a function which has just been read in.

Low-level System Information Changes
Facility Location Description

1 Fundamental psABI Add the following to Figure 3-1:
Types Type C sizeof Alig. SPARC

Integral long long 8 8 signed doubleword
signed long long 8 8
unsigned long long 8 8 unsigned doubleword

2 Registers and psABI Add the following description to the Stack Frame page 3-13:
the stack Frame %i0,%i1,%o0 and %o1 64-bit integer return values appear and%o1

in%i0 and%i1 (most significant word in%i0). A calling function
receives values in the coincident out registers,%o0 and%o1.

3 Integral and psABI Add the following description:
Pointer Arguments 64-bit integer argument uses two registers.

4 Functions psABI Add the following description:
Returning Scalars
or No Value A function that returns a 64-bit integer value places its result in%i0

and%i1 (most significant word in%i0); the calling function finds that
value in%o0 and%o1.

Low-Level System Information ___

3-2 SPARC Compliance Definition 2.3 8/16/95

CHAPTER 4: Object Files

SCD
2.3

___Object Files

8/16/95 SPARC Compliance Definition 2.3 4-1

Object Files

Processor independent descriptions of the object file format for System V Release 4 may be found in Chapter 4 of the
System V ABI. Information specific to SPARC platforms may be found in Chapter 4 of the System V ABI, SPARC Processor
Supplement.

Object Files Changes
The following are changes to the System V Application Binary Interface as reported to SPARC International.

Facility Location Description

1 SHT_DYNSYM gABI On page 4-14 add before the last sentence: “However this minimal
set of symbols will always include all symbols of STB_GLOBAL
binding.”

Relocation Types
The following table augments the relocation types found in Chapter 4 of the System V ABI, SPARC Processor Supplement.
The format and interpretation of these entries are as described in that document. These relocation types are, in their
entirety, introduced as an EXPERIMENTAL INTERFACE.

Figure 4-1. Relocation Types

The descriptive portions of this table are for background information only. The primary significance of the table, given
the presence of these interfaces as EXPERIMENTAL is to reserve the space of relocation values indicated in the table for
use in EXPERIMENTAL system implementations. No conforming application will employ these values for any pur-
pose, and no system is required to demonstrate conformance to any interpretation of these relocation types.

Name Value Field Calculation
R_SPARC_PLT32 24 V-word32 L + A
R_SPARC_HIPLT22 25 T-imm22 (L + A) >> 10
R_SPARC_LOPLT10 26 T-simm13 (L + A) & 0x3ff
R_SPARC_PCPLT32 27 V-word32 L + A - P
R_SPARC_PCPLT22 28 V-disp22 (L + A - P) >> 10
R_SPARC_PCPLT10 29 V-simm12 (L + A - P) & 0x3ff
R_SPARC_10 30 V-simm10 S + A
R_SPARC_11 31 V-simm11 S + A
R_SPARC_64 32 V-xword64 S + A
R_SPARC_OLO10 33 V-simm13 ((S + A) & 0x3ff) + O
R_SPARC_HH22 34 V-imm22 (S + A) >> 42
R_SPARC_HM10 35 T-simm13 ((S + A) >> 32) & 0x3ff
R_SPARC_LM22 36 T-imm22 (S + A) >> 10
R_SPARC_PC_HH22 37 V-imm22 (S + A - P) >> 42
R_SPARC_PC_HM10 38 T-simm13 ((S + A - P) >> 32) & 0x3ff
R_SPARC_PC_LM22 39 T-imm22 (S + A - P) >> 10
R_SPARC_WDISP16 40 V-d2/disp14 (S + A - P) >> 2
R_SPARC_WDISP19 41 V-disp19 (S + A - P) >> 2
R_SPARC_GLOB_JMP 42 V-xword64 S + A
R_SPARC_7 43 V-imm7 S + A
R_SPARC_5 44 V-imm5 S + A
R_SPARC6 45 V-imm6 S + A

Object Files___

4-2 SPARC Compliance Definition 2.3 8/16/95

CHAPTER 5: Program Loading and Dynamic Linking

SCD
2.3

___ Program Loading and Dynamic Linking

8/16/95 SPARC Compliance Definition 2.3 5-1

Program Loading and Dynamic Linking

Processor independent descriptions of program loading and linking for SCD compliant systems may be found in Chap-
ter 5 of the System V Application Binary Interface. Information specific to the SPARC platforms may be found in Chapter
5 of the System V Application Binary Interface, SPARC Processor Supplement.

Program Loading and Dynamic Linking Changes
The following are changes to the System V Application Binary Interface, and the System V Application Binary Interface,
SPARC Processor Supplement as reported to SPARC International.

Facility Location Description

1 LD_LIBRARY_PATH gABI Change the order of the first and the second bullets in page 5-20 such
that the influence of LD_LIBRARY_PATH takes precedence over
DT_RPATH specifications.

2 Dynamic Linking gABI Add a new third bullet to the entries on page 5-20: “DT_RPATH spec-
ifications influence search operations for their own DT_NEEDED
objects. Each evaluation of a given object’s set of DT_NEEDED spec-
ification uses that object’s DT_RPATH. Thus, if an executable specifies
a set of DT_NEEDED objects (e.g., a, b, and c) and a DT_RPATH
specification of x:y, then the search for a, b, and c will involve the
paths x and y. If, when later evaluating the DT_NEEDED object for a
(e.g., d), then x and y will not be used for that search unless a also
specifies a DT_RPATH containing them.”

3 Initialization and gABI Add the following new third paragraph on page 5-22:
Termination Functions “Initialization and Termination functions can expect to use all libsys

and libc ABI-defined services in their execution.”

4 Shared Object gABI In page 5-20, the gABI specifies in a “NOTE” that for
Dependencies setuser and set-group ID programs, LD_LIBRARY_PATH is ignored

and DT_RPATH entries are used. This statement is incomplete.
DT_RPATH entries should be used only to the extent that compo-
nents beginning with “/” are acceptable (not relative path), in partic-
ular, relative path names are not used as these constitute a security
hazard. Further, the prohibition against LD_LIBRARY_PATH is
unnecessarily restrictive and conflicts with at least some widespread
existing practice, in which those items contained in LD_LIBARY_-
PATH which are also acceptable DT_RPATH entries or are “/usr/
lib” are also used.

5 Dynamic linking psABI Add a section entitled “Dynamic Linker” as the first subsection of the
“Dynamic Linking” section, which is: “The value of the program
header element PT_INTERP in an ABI-conforming program is the
reference name for libsys. As a special case, the reference name for
version 1 of the C library reference name is also accepted as a legiti-
mate PT_INTERP specification.”

Program Loading and Dynamic Linking ___

5-2 SPARC Compliance Definition 2.3 8/16/95

CHAPTER 6: Libraries

SCD
2.3

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-1

Libraries

Overview

This chapter defines the interfaces set represented by each of the following libraries:

- System Library

- C Library

- Network Services Library

- Socket Library

- Dynamic Object File Loading Library

- Large File Library

- Multithreading Library

- Asynch I/O Library

- Math Library

The System Library, the C Library, the Network Services Library, the Socket Library, the Dynamic Object File Loading
Library, the Multithreading Library, the Asynchronous File I/O Library, and the Math Library are REQUIRED interface
sets. The Large File Library is an EXPERIMENTAL interface set and conforming systems need not supply it.

Some of the entries in the tables which define the function interfaces provided by various libraries have a superscript.
All entries with a superscript have an entry in the changes table describing differences between the SCD definition and
the gABI, psABI, or System V Interface Definition, Third Edition definition of the function.

The first part of this chapter is the changes to the System V Application Binary Interface, SPARC Processor Supplement, and
the System V Interface Definition as reported to SPARC International.

Libraries ___

6-2 SPARC Compliance Definition 2.3 8/16/95

System Library Changes
Facility Location Description

1 _ _dtou psABI Change - On page 6-6, replace the description of exceptions for
__dtou with
“If -231) a < 232 then the operation is successful. If a is not a whole
number, the inexact exception is raised.
Otherwise, the value returned by __dtou is unspecified, and the
invalid exception is raised. Note that negative values of a, in a
successful operation, are first converted to integer and then cast to an
unsigned integer.”

2 _ _ftou psABI Change - On page 6-7, replace the description of exceptions for
__ftou with
“If -231) a < 232 then the operation is successful. If a is not a whole
number, the inexact exception is raised.
Otherwise, the value returned by __ftou is unspecified, and the
invalid exception is raised. Note that negative values of a, in a
successful operation, are first converted to integer and then cast to an
unsigned integer.”

3 _Q_qtou psABI Change - On page 6-5, replace the description of exceptions for
_Q_qtou with
“If -231) a < 232 then the operation is successful. If a is not a whole
number, the inexact exception is raised.
Otherwise, the value returned by _Q_qtou is unspecified, and the
invalid exception is raised. Note that negative values of a, in a
successful operation, are first converted to integer and then cast to an
unsigned integer.”

4 _environ gABI Addition - On page 6.6, add the symbol _environ to Figure 6-5.

5 Additional Entry psABI Page 6-5 of the System V Application Binary Interface states
Points “ABI-conforming systems must provide a libsys entry point for each

of [fstat, lstat, mknod, stat, and uname]. The name and syntax of
[these entry points] may be the same as those characteristics of the
source-level service or they may vary across processor architectures.
The actual names of the entry points are specified in each processor’s
supplement to the ABI, together with the entry points’ syntax
information if names differ from those of the source-level services.”
The System V Application Binary Interface, SPARC Processor Supplement
(psABI) is missing the required specification. A section titled
Additional Entry Points (Processor -Specific) should be added to the
beginning of chapter 6 of the psABI which states “The binary entry
points for fstat, lstat, mknod, stat, uname exist with these names and
with the same calling sequence as described in their source-level
interface. Synonyms exist for each of these entry points.”

6 errno gABI Addition - On page 6-6, add the symbol errno to Figure 6-5.

7 fcntl(BA_OS) SVID, Vol. 1 Add a description of the command F_FREESP which reads: “Free
storage space associated with a section of the ordinary file fildes. The
section is specified by a variable of data type struct flock pointed to
by the third argument arg. l_whence is SEEK_SET, SEEK_CUR, or
SEEK_END to indicate that the relative offset l_start will be
measured from the start of the file, the current position, or the end of
the file, respectively. l_start is the offset from the position specified in
l_whence. l_len is the size of the section. An l_len of 0 frees up to the
end of the file; in this case, the end of file (i.e., file size) is set to the
beginning of the section freed. Any data previously written into this
section is no longer accessible.”

8 fcntl(BA_OS) SVID, Vol. 1 Change - The EAGAIN error return value only applies to files for
which mandatory locking is enabled.

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-3

System Library Changes (continued)
Facility Location Description

9 getcwd(BA_OS) SVID, Vol.1 Change - For POSIX conformance, the type of the second argument
size should be size_t rather than int.

10 getgrent(BA_LIB) gABI Add the functions getgrent, setgrent, endgrent and fgetgrent to
Figure 6-2 on page 6-4.

11 getgrent(BA_LIB) SVID, Vol. 1 The description that the information in the group structure comes
from the /etc/group file is too restrictive; the information may come
from other sources. These sources are collectively called “group
database”. Applications should not depend on the implementation
of the group database.

12 getpwent(BA_LIB) gABI Add the functions getpwent, setpwent, endpwent and fgetpwent to
Figure 6-2 on page 6-4.

13 getpwent(BA_LIB) SVID, Vol. 1 The description that the information in the passwd structure comes
from /etc/passwd file is too restrictive; the information may come
from other sources. These sources are collectively called “user
database”. Applications should not depend on the implementation
of the user database.

14 Global Data Symbols gABI Change the description of _altzone. Replace “tzset(BA_LIB)” with
“tzset(). See ctime(BA_LIB).”

15 mmap(KE_OS) SVID, Vol. 1 Add to the paragraph which begins “Not all implementations...”
insert “No implementation will permit an access to succeed where
PROT_NONE has been set.” after “... where PROT_WRITE has not
been set.”.

16 read, readv(BA_OS) SVID, Vol. 1 Addition - The SVID specifies that the write, writev(BA_OS)length of
the struct iov[] in calls to readv()/writev() must be in the range 0 =<
iovcnt =< IOV_MAX. However, IOV_MAX is never defined. SCD
compliant systems will support a minimum of 16 elements in a struct
iov[].

17 rename gABI Change - On page 6-4, move rename from Figure 6-2 to Figure 6-3.

18 sbrk SVID, Vol. 1 Add description of the function sbrk. See the man page for this
function in the SCD 2.3 Interface Semantics.

19 sbrk gABI Add the function sbrk to Figure 6-2 on page 6-4.

20 symlink(BA_OS) SVID, Vol. 1 Change description of ENAMETOOLONG to “if the length of path2
exceeds {PATH_MAX}, or pathname component of path2 is longer
than {NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.”

21 system(BA_OS) SVID, Vol.1 Change - For POSIX conformance, system() will ignore SIGINT and
SIGQUIT, and block SIGCHLD while waiting for the command it
invokes to terminate. Receipt of these signals will not result in
system() returning with a -1 result and with errno set to EINTR.

22 waitid(BA_OS) SVID, Vol. 1 Change - The flag WTRACED should be replaced with WTRAPPED.

Libraries ___

6-4 SPARC Compliance Definition 2.3 8/16/95

C Library Changes
Facility Location Description

1 crypt(BA_LIB) gABI Add the function crypt to Figure 6-7 on page 6-10.

2 crypt(BA_LIB) gABI Add the function encrypt to Figure 6-7 on page 6-10.

3 crypt(BA_LIB) gABI Add the function setkey to Figure 6-7 on page 6-10.

4 fdopen(BA_OS) SVID, Vol. 1 Change - The requirement that the fildes argument be open is
incorrect.

5 getitimer(RT_OS) SVID, Vol.3 Change - The description of canonical form is incorrect. The
microsecond value can be zero. Hardware platforms must provide at
least 60 Hz resolution. Platforms may provide greater than 60 Hz
resolution, but applications that rely on a faster clock will not be
portable.

6 getitimer(RT_OS) gABI Add the function setitimer to Figure 6-7 on page 6-10.

7 gettimeofday(RT_OS) gABI Add the function gettimeofday to Figure 6-7 on page 6-10.

8 lockf(BA_OS) SVID, Vol. 1 Addition - The EAGAIN error return value only applies to files for
which mandatory locking is enabled.

9 sysinfo gABI Add the function sysinfo to Figure 6-7 on page 6-1

10 termios(BA_OS) SVID, Vol.1 Change - On page 6-152, in the description of tcsendbreak(), “If
duration is not zero, zero-valued bits are not transmitted” is
incorrect. Zero valued bits will be sent forimplementation dependent
period of time.

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-5

Network Services Changes
Facility Location Description

1 netconfig(RS_ENV) SVID, Vol. 3 Change - On page 17-20 the type declaration of nc_flag should be
changed from char * to unsigned long.

2 rpc_broadcast_exp gABI Add the function rpc_broadcast_exp to Figure 6-11 on page 6-13.

3 rpc_clnt_calls(RS_LIB) SVID, Vol. 3 Change - On page 18-11 the function prototype of rpc_call() should
be rpc_call (char *host, u_long prognum, u_long versnum,
 u_long procnum, xdrproc_t inproc, char *in,
 xdrproc_t outproc, char *out, char *nettype)

4 rpc_svc_err(RS_LIB) SVID, Vol. 3 Change - Description of the function svcerr_progvers() is missing its
last two arguments in the function prototype. Prototype should be:
void svcerr_progvers(

const SVCXPRT *xprt,
ulong_t low,
ulong_t high

)
where low and high represent the lowest and highest, respectively, of
the versions of the service provided.

5 svc_fdset gABI svc_fds in Figure 6-12 should be changed to svc_fdset.

6 t_alloc(BA_LIB) SVID, Vol. 1 Change the sentence starting with “If the size value associated with
any specified field is -1 or -2...” to “If the size value associated with
any specified field is -1, t_alloc() will allocate the buffer with the size
of 1024 bytes. If the size value is -2, t_alloc() will set the buffer pointer
to NULL and the buffer maximum size to 0 and will return with
success.”

7 t_getstate(BA_LIB) SVID, Vol. 1 Delete the phrase beginning with “or t_getstate() was called...”.

Libraries ___

6-6 SPARC Compliance Definition 2.3 8/16/95

System Data Interface Changes
Facility Location Description

1 <dirent.h> psABI Change the declaration of DIR, in Figure 6-5, to be an opaque type.
Application programs can know neither the size nor the layout of
this type.:

typedef struct{
/* unspecified */

} DIR;

2 <fcntl.h> psABI The following manifest constant is needed for implementing
ftruncate() and truncate() operations but is missing from Figure 6-7:

#define F_FREESP 11

3 <rpc.h> psABI page 6-31, The identity of this header file is incorrect, it is specified in
the SVID (and in existing practice) to be <rpc/rpc.h>.

4 <rpc.h> psABI Change - Delete the definition of RPC_ANYSOCK, and change the
definition of RPC_ANYFD to be -1

5 <signal.h> psABI Change - On page 6-41, in Figure 6-33 for the struct sigaction type
declaration change sigdisp_t sa_disp to void (*sa_handler)().

struct sigaction {
int sa_flags;
void (*sa_handler)();
sigset_t sa_mask;
int sa_resv[2];

};

6 <signal.h> psABI page 6-41, The values “28” (SIGVTALRM) and “29” (SIGPROF) are
missing from <signal.h> in the psABI. These are needed now that
getitimer() and setitimer() are part of the SCD 2.3 (figure 6-33).

7 <signal.h> psABI page 6-41, The signal of values 32 and above are reserved to the
system implementation and must not be used by an SCD-compliant
application.

8 <sys/param.h> psABI Remove definition of HZ from Figure 6-23.

9 <sys/tiuser.h> psABI Change - In Figure 6-52 through 6-58 on page 6-59 through 6-63,
header name <sys/tiuser.h> should be changed to <tiuser.h>.

10 <sys/types.h> psABI Addition - On page 6-63, in Figure 6-59, add the following type
definitions:
typedef unsigned int u_int;
typedef unsigned long u_long;
typedef unsigned short u_short;
typedef char *caddr_t;

11 <wait.h> psABI Change - In Figure 6-66 on page 6-68, header name <wait.h> should
be changed to <sys/wait.h>.

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-7

Miscellaneous ABI Changes
Facility Location Description

1 Dependencies Among gABI Change - On page 6-2, at the statement which begins “Application
Libraries executable and shared object files...” replace to the end of the

paragraph with “Application executables must provide a complete
list of those shared objects which the application uses directly. Each
system library must supply a complete dependency graph for its
own execution as DT_NEEDED entries.

Rationale: No application should be required to know what
secondary dependencies any platform system library may have.
Such dependencies may vary from system to system.

2 Shared Library Names psABI Addition - A section should be inserted that identifies the actual
version numbers and reference names for shared objects on a SPARC
system.

3 Shared Library Names gABI Deletion - Delete Table 6-1 on page 6-2.
Addition - Actual full path names (reference names) of these shared
libraries are specified in the appropriate processor supplement.

Table 6-1 Library Logical and Reference Names

Library Reference Name

libc /usr/lib/libc.so.1

libdl /usr/lib/libdl.so.1

libnsl /usr/lib/libnsl.so.1

libsocket /usr/lib/libsocket.so.1

libsys /usr/lib/ld.so.1

libm /usr/lib/libm.so.1

libthread /usr/lib/libthread.so.1

libaio /usr/lib/libaio.so.1

liblf /usr/lib/liblf.so.1

libX /usr/lib/libX11.so.5
/usr/lib/libX11.so.4 (deprecated)

libXext /usr/lib/libXext.so.0

libXt /usr/lib/libXt.so.5
/usr/lib/libXt.so.4 (deprecated)

libXol /usr/lib/libXol.so.3

libXm /usr/lib/libXm.so.1.2

libMrm /usr/lib/libMrm.so.1.2

Libraries ___

6-8 SPARC Compliance Definition 2.3 8/16/95

Miscellaneous ABI Changes (continued)
Facility Location Description

4 Shared Library Names gABI Addition page 6-2 - A second paragraph should be inserted to this
section that states: “The version numbers of shared objects are set on
a per-processor basis with the constraint that they are derived from
a Generic ABI ‘reference version number’ for each interface and
must change their current value whenever that reference version
number changes. In this manner, the reference names can reflect the
often combined generic and processor specific portions of the
interface in a consistent manner.“A shared object version number
must change whenever one or more of the following occurs:
• an entry point is deleted,
• an entry point is added,
• an entry point is changed,
• program visible semantic properties change, or
• changes to exported data objects change in size, type, or name.”

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-9

The System Library

The libsys Interfaces

This section contains the REQUIRED libsys interfaces to basic system services listed in the System V Application Binary
Interface and described in sections BA_OS, BA_LIB, BA_ENV, KE_OS, and RT_OS of the System V Interface Definition,
Third Edition.

Effective November 1st, 1993, the sbrk function interface is DEPRECATED. The interface may be removed from the SCD
as early as November 1st, 1996.

The interfaces listed below in Table 6-2, Table 6-3, Table 6-4, and Table 6-5 have been included in SCD 2.3 because they
are REQUIRED to be present in the system library libsys. libsys is the entity obtained through the use of the reference
name /usr/lib/ld.so.1. Table 6-3 contains the exported data which are also REQUIRED to be present in /usr/lib/ld.so.1.
The format of these entries is: data[size], where size is a hexadecimal byte count. Issues regarding synonyms and global
data symbols associated with this library can be found in the System V Application Binary Interface.

ABI Extensions

The SCD requires /usr/lib/libld.so.1 to have functions which are not specified by the gABI. These extra functions are
either not defined in the SVID, or, are defined differently in the SCD than in the SVID. The semantics pages for these
additional/modified function definitions are available in the SCD 2.3 Interface Semantics document.

Libraries ___

6-10 SPARC Compliance Definition 2.3 8/16/95

_exit
access
acct
alarm
atexit
calloc
catclose
catgets
catopen
chdir
chmod
chown
chroot
close
closedir
creat
dup
endgrent1,2

endpwent1,2

execl
execle
execlp
execv
execve
execvp
exit
fattach
fchdir
fchmod
fchown
fcntl1

fdetach
fgetgrent1,2

fgetpwent1,2

fork
fpathconf
free
fstat
fstatvfs
fsync
ftok
getcontext
getcwd1

getegid
geteuid
getgid
getgrent1,2

getgrgid
getgrnam
getgroups
getlogin
getmsg
getpgid

Table 6-2 libsys Contents

realloc
remove
rename1

rewinddir
rmdir
sbrk1

seekdir
semctl
semget
semop
setcontext
setgid
setgrent1,2

setgroups
setlocale
setpgid
setpgrp
setpwent1,2

setrlimit
setsid
setuid
shmat
shmctl
shmdt
shmget
sigaction
sigaddset
sigaltstack
sigdelset
sigemptyset
sigfillset
sighold
sigignore
sigismember
siglongjmp
signal
sigpause
sigpending
sigprocmask
sigrelse
sigsend
sigsendset
sigset
sigsetjmp
sigsuspend
stat
statvfs
stime
strcoll
strerror
strftime
strxfrm
swapcontext2

getpgrp
getpwent1,2

getpid
getpmsg
getppid
getpwnam
getpwuid
getrlimit
getsid
gettxt
getuid
grantpt
initgroups
ioctl
isastream
kill
lchown
link
localeconv
lseek
lstat
malloc
makecontext2

memcntl
mkdir
mknod
mlock
mmap1

mount
mprotect
msgctl
msgget
msgrcv
msgsnd
msync
munlock
munmap
nice
open
opendir
pathconf
pause
pipe
poll
profil
ptrace
ptsname
putmsg
putpmsg
read1

readdir
readlink
readv1

symlink1

sync
sysconf
system1

telldir
time
times
ttyname
ulimit
umask
umount
uname
unlink
unlockpt
utime
wait
waitid1

waitpid
write1

writev1

1- see system
library changes at
the beginning of
this chapter.

2- New additions:
not in SCD 2.2

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-11

1 - see system library changes at the beginning of this chapter.

2- Conformant systems are required to reserve space for _environ in libsys. It is the responsibility of either the
compilation system or the application to ensure that _environ is properly initialized. (see system library changes at
the beginning of this chapter)

3- New additions: not in SCD 2.2

1- see system library changes at the beginning of this chapter.

_ctype[0x209]
__huge_val[0x8]
_altzone[0x4]
_daylight[0x4]

Table 6-3 Exported data for libsys

daylight[0x4]
environ[0x4]2

errno[0x4]1,3

timezone[0x4]

_environ[0x4]1,2,3

_numeric[0x2]
_timezone[0x4]
_tzname[0x8]

tzname[0x8]

.div

.mul

.rem

.stret1

.stret2

.stret4

.stret8

.udiv

.umul

.urem

Table 6-4 libsys SPARC Support Routines

_Q_fne
_Q_itoq
_Q_mul
_Q_neg
_Q_qtod
_Q_qtoi
_Q_qtos
_Q_qtou1

_Q_sqrt
_Q_stoq

_Q_add
_Q_cmp
_Q_cmpe
_Q_div
_Q_dtoq
_Q_feq
_Q_fge
_Q_fgt
_Q_fle
_Q_flt

_Q_sub
_Q_utoq
__dtou1

__ftou1

Libraries ___

6-12 SPARC Compliance Definition 2.3 8/16/95

Long Long Intrinsics support

libsys contains the following routines for support of operation on a 64-bit integer (“long long”) for both signed and
unsigned quantities. Their descriptions are available in the SCD 2.3 Interface Semantics document. Calling sequence for
64-bit integer arguments and return value is described in Low-level System Information Changes in Chapter 3.

1- New additions: not in SCD 2.2

The long long type is supported in printf(BA_LIB) and scanf(BA_LIB) as follows:

In format string, conversion specifiers d, i, o, u, x, and X may be preceded by ll (ell ell) to
indicate that corresponding argument is of type long long integer (printf) or pointer to long
long integer (scanf).

__mul64
__umul64
__div64
__udiv64

Table 6-5 libsys Long Long Intrinsics support1

_Q_qtoll
__dtoull
__ftoull
_Q_qtoull

__rem64
__urem64
__dtoll
__ftoll

_Q_lltoq
_Q_ulltoq

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-13

The C Library

The libc Interfaces

This section contains the REQUIRED libc interfaces listed in the System V Application Binary Interface and described in
the System V Interface Definition, Third Edition. Interfaces listed below in Table 6-4 have been included because they are
REQUIRED on all systems conforming to the System V Application Binary Interface, made available through the reference
name /usr/lib/libc.so.1. Table 6-6 contains the exported data which are also REQUIRED to be present in
/usr/lib/libc.so.1. The format of these entries is: data[size], where size is hexadecimal byte count. Issues regarding
synonyms and global data symbols associated with this library can be found in the System V Application Binary Interface.

ABI Extensions

The SCD requires /usr/lib/libc.so.1 to have functions which are not specified by or different from the gABI. These extra
functions are either not defined in the SVID, or, are defined differently in the SCD than in the SVID. These functions are
crypt, setkey, encrypt, and sysinfo. The semantics for these additional/modified function definitions are available in the
SCD 2.3 Interface Semantics document.

Figure 6-1 contains manifest constants for sysinfo.

Rationale

The library version number has remained 1, as these functions are correctly included in existing SCD
conformant systems.

__iob[0x140]
_getdate_err[0x4]

Table 6-6 Exported Data for libc

getdate_err[0x4]
optarg[0x4]

opterr[0x4]
optind[0x4]

optopt[0x4]

Figure 6-1 Manifest Constants from <sys/systeminfo.h>

/* Commands to sysinfo() */

#define SI_SYSNAME 1 /* return name of operating system */
#define SI_HOSTNAME 2 /* return name of node */
#define SI_RELEASE 3 /* return release of operating system */
#define SI_VERSION 4 /* return version field of utsname */
#define SI_MACHINE 5 /* return kind of machine */
#define SI_ARCHITECTURE 6 /* return instruction set arch */
#define SI_HW_SERIAL 7 /* return hardware serial number */
#define SI_HW_PROVIDER 8 /* return hardware manufacturer */
#define SI_SRPC_DOMAIN 9 /* return secure RPC domain */

Libraries ___

6-14 SPARC Compliance Definition 2.3 8/16/95

__assert
__filbuf
__flsbuf
_cleanup2

_tolower
_toupper
_xftw
abort
abs
addseverity
asctime
atof
atoi
atol
bsearch
cfgetispeed
cfgetospeed
cfsetispeed
cfsetospeed
clearerr
clock
crypt1

ctermid
ctime
cuserid
difftime
div
dup2
encrypt1

fclose
fdopen1

feof
ferror
fflush
fgetc
fgetpos
fgets
fileno
fmtmsg
fopen
fprintf
fputc
fputs
fread
freopen
frexp
fscanf
fseek
fsetpos
ftell
fwrite
getc

Table 6-7 Libc contents

nextafter2

nftw
nl_langinfo
pclose
perror
popen
printf
putc
putchar
putenv
puts
putw
qsort
raise
rand
rewind
scalb2

scanf
setbuf
setitimer1

setjmp
setkey1

setlabel3

setvbuf
sleep
sprintf
srand
sscanf
strcat
strchr
strcmp
strcpy
strcspn
strdup
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strstr
strtod
strtok
strtol
strtoul
swab
sysinfo1

tcdrain
tcflow
tcflush
tcgetattr

getchar
getdate
getenv
getopt
getpass
gets
getsubopt
getitimer1

gettimeofday1

getw
gmtime
hcreate
hdestroy
hsearch
isalnum
isalpha
isascii
isatty
iscntrl
isdigit
isgraph
islower
isnan
isnand
isprint
ispunct
isspace
isupper
isxdigit
labs
ldexp
ldiv
lfind
localtime
lockf1

logb2

longjmp
lsearch
mblen
mbstowcs
mbtowc
memccpy
memchr
memcmp
memcpy
memmove
memset
mkfifo
mktemp
mktime
modf
monitor

tcgetpgrp
tcgetsid
tcsendbreak
tcsetattr
tcsetpgrp
tdelete
tell
tempnam
tfind
tmpfile
tmpnam
toascii
tolower
toupper
tsearch
twalk
tzset
ungetc
vfprintf
vprintf
vsprintf
wcstombs
wctomb

1-see the C library
changes at the
beginning of this
chapter.

2-New additions:
Not in the SCD 2.2

3- change of status
between SCD 2.2 and
SCD 2.3

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-15

The Network Services Library

Overview

This section contains the libnsl interfaces listed in the System V Application Binary Interface, and described in the System
V Interface Definition, Third Edition.

The libnsl Interfaces

The interfaces listed below in Table 6-9 have been included in SCD 2.3 because they are REQUIRED to be present on all
systems conforming to the System V Application Binary Interface, in the dynamic library /usr/lib/libnsl.so.1.

The interfaces found in Table 6-10 are also REQUIRED to be present on an ABI-conforming system. Systems without
networking capabilities are not required to implement these interfaces, but must provide an entry point in libnsl for
each. Entry points which are provided as stubs and not implemented must fail normally and set the external symbol
errno to ENOSYS. Additionally, DEPRECATED functions needed for socket support can be found in Table 6-11

ABI Extension

The SCD requires /usr/lib/libnsl.so.1 to have functions which are not specified by or different from the gABI. These
extra functions are either not defined in the SVID, or, are defined differently in the SCD than in the SVID. The semantics
for these additional/modified function definitions are available in the SCD 2.3 Interface Semantics document.

_nderror[0x4]
_null_auth2

rpc_createerr[0x16]

Table 6-8 Exported data for libnsl

1- see libnsl
library changes at
the beginning of
this chapter.

svc_fdset1

t_errno [0x4]
2- DEPRECATED

t_accept
t_alloc1

t_bind
t_close
t_connect
t_error
t_free
t_getinfo

Table 6-9 libnsl contents, Part 1 of 2

t_rcvrel
t_rcvudata
t_rcvuderr
t_snd
t_snddis
t_sndrel
t_sndudata
t_sync

t_getstate1

t_listen
t_look
t_open
t_optmgmt
t_rcv
t_rcvconnect
t_rcvdis

t_unbind

1- see the libnsl
library changes at
the beginning of
this chapter.

Libraries ___

6-16 SPARC Compliance Definition 2.3 8/16/95

authdes_getucred
authdes_seccreate
authnone_create
authsys_create
authsys_create_default
clnt_create
clnt_dg_create
clnt_pcreateerror
clnt_perrno
clnt_perror
clnt_raw_create
clnt_spcreateerror
clnt_sperrno
clnt_sperror
clnt_tli_create
clnt_tp_create
clnt_vc_create
endnetconfig
endnetpath
freenetconfigent
getnetconfig
getnetconfigent
getnetname
getnetpath
getpublickey
getsecretkey
host2netname
key_decryptsession
key_encryptsession
key_gendes
key_setsecret
nc_perror
netdir_free
netdir_getbyaddr
netdir_getbyname
netdir_options
netname2host
netname2user
rpc_broadcast
rpc_broadcast_exp1

rpc_call1

Table 6-10 libnsl contents, part 2 of 2

xdr_float
xdr_free
xdr_int
xdr_long
xdr_opaque
xdr_opaque_auth
xdr_pointer
xdr_reference
xdr_rejected_reply
xdr_replymsg
xdr_short
xdr_string
xdr_u_char
xdr_u_long
xdr_u_short
xdr_union
xdr_vector
xdr_void
xdr_wrapstring
xdrmem_create
xdrrec_create
xdrrec_eof
xdrrec_skiprecord
xdrstdio_create
xprt_register
xprt_unregister

1- see libnsl library
changes at the beginning
of this chapter.

2- was dropped by mistake
in the SCD 2.2

rpc_reg
rpcb_getaddr
rpcb_getmaps
rpcb_gettime
rpcb_rmtcall
rpcb_set
rpcb_unset
setnetconfig
setnetpath
svc_create
svc_dg_create
svc_fd_create
svc_getreqset
svc_raw_create
svc_reg
svc_run
svc_sendreply
svc_tli_create
svc_tp_create
svc_unreg
svc_vc_create
svcerr_auth
svcerr_decode
svcerr_noproc
svcerr_noprog
svcerr_progvers1

svcerr_systemerr
svcerr_weakauth
taddr2uaddr
uaddr2taddr
user2netname
xdr_accepted_reply2

xdr_array
xdr_authsys_parms
xdr_bool
xdr_bytes
xdr_callhdr
xdr_callmsg
xdr_char
xdr_double
xdr_enum

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-17

Networking Interface Set

This section contains the socket inter-networking interface, primarily used with the TCP/IP protocol suite. This is a
REQUIRED interface set. It is also a a DEPRECATED interface set effective November 1st, 1993. This interface set will
not be removed from the SCD before November 1st, 1996.

The description of this interface is available in the 2.3 Interface Semantics document.

All functions must be provided by systems from one or more of the libraries /usr/lib/libnsl.so.1, and
/usr/lib/libsocket.so.1. Table 6-11 and Table 6-12 document which system libraries are REQUIRED to provide each of
the various socket functions.

Structures and Manifest Constants

The Figures 6-2 through 6-5 contain the values of manifest constants and type declarations of the data types needed for
the socket functions.

gethostbyaddr
gethostbyname

inet_addr
inet_netof

inet_ntoa

Table 6-11 Socket Functions in libnsl

Table 6-12 Socket Functions in libsocket

accept
bind
connect
getpeername
getprotobyname
getprotobynumber
getprotoent
getservbyname
getservbyport
getsockname
getsockopt

inet_lnaof
inet_makeaddr
inet_network
listen
recv
recvfrom
recvmsg
send
sendmsg
sendto
setsockopt

shutdown
socket

Libraries ___

6-18 SPARC Compliance Definition 2.3 8/16/95

Figure 6-2 Manifest Constants and Data Types from <sys/socket.h>

/* Types */
#define SOCK_STREAM 2 /* stream socket */
#define SOCK_DGRAM 1 /* datagram socket */
#define SOCK_RAW 4 /* raw-protocol interface */
#define SOCK_RDM 5 /* reliably-delivered message */
#define SOCK_SEQPACKET 6 /* sequenced packet stream */

/* Option flags per-socket. */
#define SO_DEBUG 0x0001 /* turn on debugging info recording */
#define SO_ACCEPTCONN 0x0002 /* socket has had listen() */
#define SO_REUSEADDR 0x0004 /* allow local address reuse */
#define SO_KEEPALIVE 0x0008 /* keep connections alive */
#define SO_DONTROUTE 0x0010 /* just use interface addresses */
#define SO_BROADCAST 0x0020 /* permit sending of broadcast msgs */
#define SO_USELOOPBACK 0x0040 /* bypass hardware when possible */
#define SO_LINGER 0x0080 /* linger on close if data present */
#define SO_OOBINLINE 0x0100 /* leave received OOB data in line */

/* Additional options, not kept in so_options. */
#define SO_SNDBUF 0x1001 /* send buffer size */
#define SO_RCVBUF 0x1002 /* receive buffer size */
#define SO_SNDLOWAT 0x1003 /* send low-water mark */
#define SO_RCVLOWAT 0x1004 /* receive low-water mark */
#define SO_SNDTIMEO 0x1005 /* send timeout */
#define SO_RCVTIMEO 0x1006 /* receive timeout */
#define SO_ERROR 0x1007 /* get error status and clear */
#define SO_TYPE 0x1008 /* get socket type */
#define SO_PROTOTYPE 0x1009 /* get/set protocol type */

/* Structure used for manipulating linger option. */
struct linger {
 int l_onoff; /* option on/off */
 int l_linger; /* linger time */
};

/* Level number for (get/set) sockopt() to apply to socket itself. */
#define SOL_SOCKET 0xffff /* options for socket level */

/* Address families. */

#define AF_UNSPEC 0 /* unspecified */
#define AF_UNIX 1 /* local to host (pipes, portals) */
#define AF_INET 2 /* internetwork: UDP, TCP, etc. */
#define AF_IMPLINK 3 /* arpanet imp addresses */
#define AF_PUP 4 /* pup protocols: e.g. BSP */
#define AF_CHAOS 5 /* mit CHAOS protocols */
#define AF_NS 6 /* XEROX NS protocols */
#define AF_NBS 7 /* nbs protocols */
#define AF_ECMA 8 /* european computer manufacturers */
#define AF_DATAKIT 9 /* datakit protocols */
#define AF_CCITT 10 /* CCITT protocols, X.25 etc */
#define AF_SNA 11 /* IBM SNA */
#define AF_DECnet 12 /* DECnet */
#define AF_DLI 13 /* Direct data link interface */
#define AF_LAT 14 /* LAT */
#define AF_HYLINK 15 /* NSC Hyperchannel */

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-19

#define AF_APPLETALK 16 /* Apple Talk */
#define AF_NIT 17 /* Network Interface Tap */
#define AF_802 18 /* IEEE 802.2, also ISO 8802 */
#define AF_OSI 19 /* umbrella for all families used */
#define AF_X25 20 /* CCITT X.25 in particular */
#define AF_OSINET 21 /* AFI = 47, IDI = 4 */
#define AF_GOSIP 22 /* U.S. Government OSI */
#define AF_MAX 22

/* Structure used by kernel to store most addresses. */
struct sockaddr {
 u_short sa_family; /* address family */
 char sa_data[14]; /* up to 14 bytes of direct address */
};

/* Structure used by kernel to pass protocol * information in raw sockets. */
struct sockproto {
 u_short sp_family; /* address family */
 u_short sp_protocol; /* protocol */
};

/* Protocol families, same as address families for now. */
#define PF_UNSPEC AF_UNSPEC
#define PF_UNIX AF_UNIX
#define PF_INET AF_INET
#define PF_IMPLINK AF_IMPLINK
#define PF_PUP AF_PUP
#define PF_CHAOS AF_CHAOS
#define PF_NS AF_NS
#define PF_NBS AF_NBS
#define PF_ECMA AF_ECMA
#define PF_DATAKIT AF_DATAKIT
#define PF_CCITT AF_CCITT
#define PF_SNA AF_SNA
#define PF_DECnet AF_DECnet
#define PF_DLI AF_DLI
#define PF_LAT AF_LAT
#define PF_HYLINK AF_HYLINK
#define PF_APPLETALK AF_APPLETALK
#define PF_NIT AF_NIT
#define PF_802 AF_802
#define PF_OSI AF_OSI
#define PF_X25 AF_X25
#define PF_OSINET AF_OSINET
#define PF_GOSIP AF_GOSIP
#define PF_MAX AF_MAX

/* Maximum queue length specifiable by listen. */
#define SOMAXCONN 5

/* Message header for recvmsg and sendmsg calls. */

struct msghdr {
 caddr_t msg_name; /* optional address */
 int msg_namelen; /* size of address */
 struct iovec *msg_iov; /* scatter/gather array */
 int msg_iovlen; /* # elements in msg_iov */
 caddr_t msg_accrights; /* access rights sent/received */
 int msg_accrightslen;

Libraries ___

6-20 SPARC Compliance Definition 2.3 8/16/95

};

#define MSG_OOB 0x1 /* process out-of-band data */
#define MSG_PEEK 0x2 /* peek at incoming message */
#define MSG_DONTROUTE 0x4 /* send without using routing tables */
#define MSG_MAXIOVLEN 16

/* option header */
struct opthdr {
 long level; /* protocol level affected */
 long name; /* option to modify */
 long len; /* length of option value */
};

#define OPTLEN(x) ((((x) + sizeof (long) - 1) / sizeof (long)) * sizeof (long))
#define OPTVAL(opt) ((char *)(opt + 1))

/* the optdefault structure is used for internal tables of option default values. */
struct optdefault {
 int optname; /* the option */
 char *val; /* ptr to default value */
 int len; /* length of value */
};

/* the opproc structure is used to build tables of options processing functions for
dooptions(). */
struct opproc {
 int level; /* options level this function handles */
 int (*func)(); /* the function */
};

/* This structure is used to encode pseudo system calls */
struct socksysreq {int args[7];};

/* This structure is used for adding new protocols to the list supported by sockets. */
struct socknewproto {
 int family; /* address family (AF_INET, etc.) */
 int type; /* protocol type (SOCK_STREAM, etc.) */
 int proto; /* per family proto number */
 dev_t dev; /* major/minor to use (must be a clone) */
 int flags; /* protosw flags */
};

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-21

Figure 6-3 Manifest Constants and Data Types from <netinet/in.h>

/* IP address */
struct in_addr {
 union {
 struct {u_char s_b1, s_b2, s_b3, s_b4;} S_un_b;
 struct {u_short s_w1, s_w2;} S_un_w;
 u_long S_addr;

} S_un;
};

/* socket address using IP */

struct sockaddr_in {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

/* Options for use with [gs]etsockopt at the IP level. */

#define IP_OPTIONS 1 /* set/get IP per-packet options */
#define IP_HDRINCL 2 /* int; header is included with data (raw) */
#define IP_TOS 3 /* int; IP type of service and precedence */
#define IP_TTL 4 /* int; IP time to live */
#define IP_RECVOPTS 5 /* bool; receive all IP options w/datagram */
#define IP_RECVRETOPTS 6 /* bool; receive IP options for response */
#define IP_RECVDSTADDR 7 /* bool; receive IP dst addr w/datagram */
#define IP_RETOPTS 8 /* ip_opts; set/get IP per-packet options */

#define IP_MULTICAST_IF 0x10 /* set/get IP multicast interface */
#define IP_MULTICAST_TTL 0x11 /* set/get IP multicast timetolive */
#define IP_MULTICAST_LOOP 0x12 /* set/get IP multicast loopback */
#define IP_ADD_MEMBERSHIP 0x13 /* add an IP group membership */
#define IP_DROP_MEMBERSHIP 0x14 /* drop an IP group membership */

#define IP_DEFAULT_MULTICAST_TTL 1 /* normally limit m’casts to 1 hop */
#define IP_DEFAULT_MULTICAST_LOOP 1 /* normally hear sends if a member */

/* Argument structure for IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP. */

struct ip_mreq {
 struct in_addr imr_multiaddr; /* IP multicast address of group */
 struct in_addr imr_interface; /* local IP address of interface */
};

Libraries ___

6-22 SPARC Compliance Definition 2.3 8/16/95

Figure 6-4 Manifest Constants and Data Types from <netdb.h>

struct hostent {
 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses from name server */
#define h_addr h_addr_list[0] /* address, for backward compatibility */
};

struct servent {
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port # */
 char *s_proto; /* protocol to use */
};

struct protoent {
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list */
 int p_proto; /* protocol # */
};

#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Auth. Host not found, or SERVERFAIL */
#define NO_RECOVERY 3 /* Non recover errors:FORMERR,REFUSED,NOTIMP */
#define NO_DATA 4 /* Valid name, no data rec. of requested type */
#define NO_ADDRESS NO_DATA /* no address, look for MX record */

Figure 6-5 Manifest Constants and Data Types from <errno.h>

#define EADDRINUSE 125 /* Address already in use */
#define EADDRNOTAVAIL 126 /* Can’t assign requested address */
#define EAFNOSUPPORT 124 /* Address family not supported by
#define EALREADY 149 /* operation already in progress */
#define ECONNREFUSED 146 /* Connection refused */
#define EINPROGRESS 150 /* operation now in progress */
#define EISCONN 133 /* Socket is already connected */
#define EMSGSIZE 97 /* Message too long */
#define ENETUNREACH 128 /* Network is unreachable */
#define ENOTCONN 134 /* Socket is not connected */
#define ENOTSOCK 95 /* Socket operation on non-socket */
#define EOPNOTSUPP 122 /* Operation not supported on socket */
#define EPROTONOSUPPORT 120 /* Protocol not supported */
#define EPROTOTYPE 98 /* Protocol wrong type for socket */
#define ETIMEDOUT 145 /* Connection timed out */

#define EWOULDBLOCK EAGAIN

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-23

Dynamic Object File Loading

Overview

The run-time dynamic linking facilities of the system are made available to the executing application program through
the functions in libdl as shown in Table 6-13. This is a REQUIRED interface set in the library /usr/lib/libdl.so.1.

The particulars on dynamic linking and loading, path name resolution, data initialization functions, symbol relocation
and binding, and automatic loading of secondary objects are given in Chapter 5 of this document and in the normative
documents it references, the System V Application Binary Interface and the System V Application Binary Interface, SPARC
Processor Supplement.

ABI Extensions

The SCD requires an additional library /usr/lib/libdl.so.1 which is not specified by the gABI. This library contains the
functions dlclose, dlerror, dlopen and dlsym. These extra functions are not defined in the SVID. The semantics for these
additional function definitions are available in the SCD 2.3 Interface Semantics document.

Figure 6-6 contains manifest constants for dlopen.

dlclose dlopen dlsym

Table 6-13 libdl contents

dlerror

Figure 6-6 Manifest Constants and Data Types from <dlfcn.h>

/* Valid values for mode argument to dlopen. */

#define RTLD_LAZY 1 /* lazy function call binding */
#define RTLD_NOW 2 /* immediate function call binding */

Libraries ___

6-24 SPARC Compliance Definition 2.3 8/16/95

Multithreading Library

Overview

The services specified in this section provide applications with the ability to create multiple “threads of control” within
their address spaces. The interface set described here resides entirely in the library /usr/lib/libthread.so.1, and
represents a REQUIRED INTERFACE. The library contains the entry points described in the table below.

1 - This function is designated EXPERIMENTAL because the SCD definition differ from that in POSIX. There exist
implementations which conform to this definition, and others which conform to POSIX. The future direction of the SCD is full
conformance with POSIX (see the SCD-IS for more information):

SCD: int sigwait (sigset_t *setp);
POSIX: int sigwait (const sigset_t *setp, int *signo);

For an application to use libthread correctly, it must specify a reference to libthread in a DT_NEEDED entry prior to a
DT_NEEDED entry which specifies either libsys or libc. libthread redefines the semantics of a number of entry points
normally provided by either libsys or libc, primarily to support the correct management of signals in a multithreaded
program.

Additional Interfaces in libsys/libc

When a system provides the multithreading interface specified in this section, it also provides enhancements to the
system services provided by libsys and libc. These enhancements are, for the most part, transparent to the application.
However, in a few cases, these enhancements manifest themselves as new entry points in these libraries. This is
necessary as the nature of the manner in which the interface was previously defined made it impossible to express a
multi-threaded-safe implementation. For the most part, these new routines have the name of the old routine with the
string _r appended. All of these entry points are part of libc. Those whose “root names” are also present in libsys also
reside there. All, with the exception of ___errno, have synonyms. The entry points so added are described in Table 6-
16, “Additions to libsys,” on page 6-25 and Table 6-16, “Additions to libsys,” on page 6-25.

ABI Extensions

The SCD requires an additional library /usr/lib/libthread.so.1 which is not specified by the gABI. The functions
defined in /usr/lib/libthread.so.1 are not defined in the SVID. The semantics for these additional function definitions
are available in the SCD 2.3 Interface Semantics document.

cond_broadcast
cond_destroy
cond_init
cond_signal
cond_timedwait
cond_wait
fork1
mutex_destroy
mutex_init
mutex_lock
mutex_trylock
mutex_unlock

Table 6-14 libthread contents

setcontext
sigaction
sigprocmask
sigwait1

sleep
thr_continue
thr_create
thr_exit
thr_getconcurrency
thr_getprio
thr_getspecific
thr_join

rw_rdlock
rw_tryrdlock
rw_trywrlock
rw_unlock
rw_wrlock
rwlock_destroy
rwlock_init
sema_destroy
sema_init
sema_post
sema_trywait
sema_wait

thr_keycreate
thr_kill
thr_main
thr_min_stack
thr_self
thr_setconcurrency
thr_setprio
thr_setspecific
thr_sigsetmask
thr_suspend
thr_yield

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-25

1 - These functions are designated EXPERIMENTAL because the SCD definitions differ from those in POSIX 1003.1c. There exist
implementations which conform to these definitions, and others which conform to POSIX. The future direction of the SCD is full
conformance with POSIX. (see the SCD-IS for more information):

SCD: char *asctime_r(const struct tm *tm, char *buf, int buflen);
POSIX: char *asctime_r(const struct tm *tm, char *buf);

SCD: char *ctime_r(const time_t *clock, char *buf, int buflen);
POSIX: char *ctime_r(const time_t *clock, char *buf);

1 - These functions are designated EXPERIMENTAL because the SCD definitions differ from those in POSIX 1003.1c. There exist
implementations which conform to these definitions, and others which conform to POSIX. The future direction of the SCD is full
conformance with POSIX (see the SCD-IS for more information):

SCD: struct group *getgrgid_r (gid_t gid, struct group *result, char *buffer, int buflen);
POSIX: int getgrgid_r (gid_t gid, struct group *grp, char *buffer, size_t bufsize, struct group **result);

SCD: struct group *getgrnam_r (const char *name, struct group *result, char *buffer, int buflen);
POSIX: int getgrnam_r (const char *name, struct group *grp, char *buffer, size_t bufsize, struct group **result);

SCD: char *getlogin_r (char *name, int namelen);
POSIX: int getlogin_r (char *name, size_t namelen)

SCD: struct passwd *getpwnam_r (const char *name, struct passwd *result, char *buffer, int buflen);
POSIX: int getpwnam_r (const char *name, struct passwd *pwd, char *buffer, size_t buflen, struct passwd **result);

SCD: struct passwd *getpwuid_r (uid_t uid, struct passwd * result, char *buffer, int buflen);
POSIX: int getpwuid_r (uid_t uid, struct passwd *pwd, char *buffer, size_t bufsize, struct passwd **result);

SCD: struct direct *readdir_r (DIR *dirp, struct dirent *res);
POSIX: int readdir_r (DIR *dirp, struct direct *entry, struct dirent **result);

SCD: char *ttyname_r (int fildes, char *buf, int len);
POSIX: int ttyname_r (int fildes, char *name, size_t namesize);

___errno
asctime_r1

ctime_r1

flockfile

Table 6-15 Additions to libc

localtime_r
putc_unlocked
putchar_unlocked
rand_r

funlockfile
getc_unlocked
getchar_unlocked
gmtime_r

strtok_r

fgetgrent_r
fgetpwent_r
getgrent_r

Table 6-16 Additions to libsys

getpwent_r
getpwnam_r1

getpwuid_r1

getgrgid_r1

getgrnam_r1

getlogin_r1

readdir_r1

ttyname_r1

Libraries ___

6-26 SPARC Compliance Definition 2.3 8/16/95

1- fork multi-threading features are designated as EXPERIMENTAL, because the SCD definition differs from that in POSIX
1003.1c. When fork is called, all threads of the process get forked, However in POSIX only a single thread is forked (similar to the
SCD fork1).

fork1

Table 6-17 modified libsys functions

Figure 6-7 Manifest Constants and Data Types from <synch.h>

#define USYNC_THREAD 0 /* private to a process */
#define USYNC_PROCESS 1 /* shared by processes */

typedef struct {/* unspecified, but sizeof(mutext_t) is 24. */} mutex_t;
typedef struct {/* unspecified, but sizeof(cond_t) is 16. */} cond_t;
typedef struct {/* unspecified, but sizeof(sema_t) is 48. */} sema_t;
typedef struct {/* unspecified, but sizeof(rwlock_t) is 64. */} rwlock_t;

Figure 6-8 Manifest Constants and Data Types from <thread.h>

typedef unsigned int thread_t;
typedef unsigned int thread_key_t;

#define THR_BOUND 0x00000001
#define THR_NEW_LWP 0x00000002
#define THR_DETACHED 0x00000040
#define THR_SUSPENDED 0x00000080
#define THR_DAEMON 0x00000100

Figure 6-9 Manifest Constants and Data Types from <errno.h>

/* When _REENTRANT is defined, a multithreaded application is being constructed. */
#ifdef _REENTRANT
#define errno (*___errno())
#else
extern int errno;
#endif

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-27

Asynchronous I/O

Overview

The services specified in this section provide applications with the ability in invoke a number of file operations
asynchronously with the execution of the application program. The interface set described here resides entirely in the
library /usr/lib/libaio.so.1, and represents a REQUIRED and DEPRECATED INTERFACE. The library contains the
entry points described in the table below.

ABI Extensions

The SCD requires an additional library /usr/lib/libaio.so.1 which is not specified by the gABI. The functions defined
in /usr/lib/libaio.so.1are not defined in the SVID. The semantics for these additional function definitions are available
in the SCD 2.3 Interface Semantics document.

aiocancel aiowait aiowrite

Table 6-18 libaio Contents

aioread

Figure 6-10 Manifest Constants and Data Types from <sys/asynch.h>

#define AIO_INPROGRESS -2 /* values not set by the system */

typedef struct aio_result_t {
 int aio_return; /* return value of read or write */
 int aio_errno; /* errno generated by the IO */
} aio_result_t;

Libraries ___

6-28 SPARC Compliance Definition 2.3 8/16/95

The Math Library

Overview

The math library, libm, contains several mathematical functions listed in the table “libm Contents” below. These
interfaces are defined in the System V Interface Definition, Third Edition. The math library is a REQUIRED interface set
with reference name /usr/lib/libm.so.1.

acos
acosh
asin
asinh
atan
atan2
atanh
cbrt
ceil
cos
cosh

Table 6-19 libm contents

lgamma
log10
log
pow
remainder
sin
sinh
sqrt
tan
tanh
y0

erf
erfc
exp
fabs
floor
fmod
gamma
hypot
j0
j1
jn

y1
yn

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-29

The Large files Library

Overview

The operating system service routines specified in this section provide access to large files, large file systems, and
associated resources. Their semantics are the same as the corresponding routines without the lf_ prefixes, except as
noted below. All of the lf_ interfaces reside in the liblf library /usr/lib/liblf.so.1 regardless of whether the
corresponding small-file interfaces reside in libsys or libc. None has a synonym (identical interface with '_' prefix.) Since
this is a new interface set, it is included in the SCD as an EXPERIMENTAL INTERFACE. Table 6-20 lists the new
routines provided in this interface set. Figure 6-11 through Figure 6-15 list the new data structures and manifest
constants required to support this interface set.

FUTURE DIRECTION:

At the time of the writing of this document, members of the Unix community are meeting in an attempt to
agree on a standard implementation of 64-bit files on a 32-bit system. Members of SPARC International are
taking part in these discussions. If agreement on these interfaces is reached by the industry, the interfaces for
large file support contained in this section will be modified, if necessary, to match the agreed to interfaces.

lf_fcntl
lf_fpathconf
lf_fseek
lf_fstat

Table 6-20 liblf contents

lf_lstat
lf_mmap
lf_pathconf
lf_setrlimit

lf_fstatvfs
lf_ftell
lf_getrlimit
lf_lseek

lf_stat
lf_statvfs
lf_tell

Figure 6-11 Data Types Defined in <sys/fcntl.h>

typedef struct lf_flock {
 short l_type;
 short l_whence;
 int l_pad_1;
 lf_off_t l_start;
 lf_off_t l_len;
 long l_sysid;
 pid_t l_pid;
 long pad[4];
} lf_flock_t;

Libraries ___

6-30 SPARC Compliance Definition 2.3 8/16/95

Figure 6-12 Data Types Defined in <sys/stat.h>

typedef struct lf_stat {
dev_t st_dev;
long st_pad1[3];
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
long st_pad2[2];
lf_off_t st_size;
long st_pad3;
timestruc_t st_atim;
timestruc_t st_mtim;
timestruc_t st_ctim;
long st_blksize;
int64_t st_blocks;
char st_fstype[_ST_FSTYPSZ];
long st_pad4[8];

} lf_stat_t;

Figure 6-13 Data Types Defined in <sys/resource.h>

struct lf_rlimit {
lf_rlimit_t rlim_cur;
lf_rlimit_t rlim_max;

};

___ Libraries

8/16/95 SPARC Compliance Definition 2.3 6-31

Figure 6-14 Data Types Defined in <sys/statvfs.h>

typedef struct lf_statvfs {
unsigned long f_bsize;
unsigned long f_frsize;
uint64_t f_blocks;
uint64_t f_bfree;
uint64_t f_bavail;
unsigned long f_files;
unsigned long f_ffree;
unsigned long f_favail;
unsigned long f_fsid;
char f_basetype[FSTYPESZ];
unsigned long f_flag;
unsigned long f_namemax;
char f_fstr[32];
unsigned long f_filler[16];

} lf_statvfs_t;

Figure 6-15 Manifest Constants Defined in <unistd.h>

#define _PC_MAX_FILE_SIZE 10

Libraries ___

6-32 SPARC Compliance Definition 2.3 8/16/95

CHAPTER 7: Formats and Protocols

SCD
2.3

___ Formats and Protocols

8/16/95 SPARC Compliance Definition 2.3 7-1

Formats and Protocols

Archive file formats, networking protocols, and the terminfo data base format may be found in Chapter 7 of the System
V Application Binary Interface.

Formats and Protocols Changes
The following are changes to the System V ABI, the System V ABI SPARC Processor Supplement, and the System V Interface
Definition as reported to SPARC International.

Facility Location Description

1 rpcbind Operation gABI Change - page 7-38-The reference to IP in the first paragraph is
ambiguous -- port 111 is used for IP-carried transports (rather
than IP itself).

Interconnecting SCD Conforming Systems

Overview
This section contains the REQUIRED internetworking interfaces available to applications running on an SCD conform-
ing system. Note that the networking ABI is defined by the TLI interfaces described in section BA_LIB of the System V
Interface Definition (Third Edition), Volume I. This chapter adds to that definition by specifying that there shall be present
in all SCD complying systems an Internet Protocol Suite (IPS) transport provider that is accessible through TLI. Also
added are the commands, which exist in /usr/bin, and their associated daemons, which exist in /usr/sbin.

Transport Providers
All SPARC-compliant systems will provide a transport provider interface for each of the IP protocols, TCP, UDP, ICMP,
and ARP. The device names for these transport provider interfaces must be /dev/tcp, /dev/udp, /dev/icmp, and
/dev/arp respectively. Additionally, shared objects will be present to convert IP format universal addresses into the
necessary internal format needed by the TLI interfaces. These interfaces are previously defined in the Network Services
Library portion of this chapter.

Additional Interfaces
The interfaces listed below in Table 7-1 show the additional commands, protocols, and service daemons that are
included to ensure inter-operability between SCD conforming systems. The table includes three columns, the command
name which is invoked, the RFC number for the protocol specification as maintained by the Internet Engineering Task
Force, and a short description of the feature provided.

Table 7-2 shows the “well-known” port numbers as derived from RFC 1700 that SCD conforming systems are
REQUIRED to provide for supported services.

Formats and Protocols ___

7-2 SPARC Compliance Definition 2.3 8/16/95

Table 7-1: Required Commands

Command RFC Description

rlogin BSDNET Remote terminal services (BSD)

rsh BSDNET Remote user shell (BSD)

rcp BSDNET Remote file copy (BSD)

rwho BSDNET Remote user information service (BSD)

rdate BSDNET Remote uptime statistics (BSD)

talk BSDNET Remote chat utility (BSD)

finger rfc1288 Information server for logged on users

telnet <many> Interactive terminal services

ftp rfc959 File transfer protocol

arp rfc826 Address Resolution Protocol

___ Formats and Protocols

8/16/95 SPARC Compliance Definition 2.3 7-3

Table 7-2: Well-Known Port Numbers

Keyword Description TCP Port Number UDP Port Number

tcpmux rfc1078 1

echo Echo 7 7

discard Discard 9 9

systat Active Users 11 11

daytime Daytime 13 13

netstat Who is up or NETSTAT 15 15

chargen Character Generator 19 19

ftp-data File Transfer Protocol (Data) 20

ftp File Transfer Protocol 21

telnet Terminal Connection 23

smtp Simple Mail Transport Protocol 25

time Time 37 37

name Host Name Server 42 42

nicname Who Is 43 43

domain Domain Name Server 53 53

tftp Trivial File Transfer 69 69

Any private RJE service 77 77

finger Finger 79 79

supdup SUPDUP Protocol 95

hostname NIC Host Name Server 101

iso-tsap ISO-TSAP 102

uucp-path UUCP Path Service 117

ntp Network Time Protocol 123 123

X X Window Service 6000+Display Number

Formats and Protocols ___

7-4 SPARC Compliance Definition 2.3 8/16/95

CHAPTER 8: System Commands

SCD
2.3

__ System Commands

8/16/95 SPARC Compliance Definition 2.3 8-1

System Commands

Overview
This chapter contains the commands for application programs as listed in the System V Application Binary Interface (Third
Edition), and described in the System V Interface Definition, (Third Edition).

System Commands Changes
The following are changes to the basic system commands (detailed in the System V Application Binary Interface), as
reported to SPARC International.

Facility Location Description

1 ex(BU_CMD) SVID, Vol. 2 Change - The SVID states that the “ed compatible” option of ex
causes the g suffix on substitute commands to be remembered, and
toggled by repeating the suffix. Omitted from this description is the
fact that this behavior is applicable only to the “&” form of substitute
commands.

ar
awk
basename2

cat
cd†
chgrp
chmod
chown
cmp
cp
cpio
compress2

date
dirname2

dd
df
echo*
ed
ex1

expr

Table 8-1. Commands for Application Programs

* These commands marked are also built into the standard UNIX system shell, sh.

† These commands are only available as commands built-in to the UNIX system shell, sh.

1- see system commands changes below 2- New Additions: not in SCD 2.2

pwd*
rm
rmdir
sed
sh1

sleep
sort
stty
su
sum2

tail
tee
test*
touch
tr
true
tty
umask†
uname
uncompress2

false
find1

fmtmsg
gencat2

gettxt
grep
id
kill
line
ln
logname
lp
ls
make2

mkdir
mv
passwd
pg
pr1

priocntl

uucp
uulog
uustat
uux
vi
wait†
wc2

who1

2

System Commands __

8-2 SPARC Compliance Definition 2.3 8/16/95

System Commands Changes (continued)
Facility Location Description

1 ex(BU_CMD) SVID, Vol. 2 Change - The “c” command should be defined as “Enters input
mode; the input text replaces the specified lines. The last input line
becomes the current line; if no lines are input the line before the
deleted line(s) becomes the current line.”

1 ex(BU_CMD) SVID, Vol. 2 Change - The “m” command description must be changed to note
that the current line becomes the last of the moved lines, rather than
the first.

2 find(BU_CMD) SVID, Vol. 2 Change the descriptions of -atime, -mtime, and -ctime from “in n
days” to “n days ago.”

3 pr(BU_CMD) SVID, Vol. 2 Change - The SVID says that using -m with the -column option will
cause the -m option to override the -column option. This does not
match current practice; using these two options together will be
treated as an error.

3 pr(BU_CMD) SVID, Vol. 2 Change - Comments about truncating lines in the text of the
description and in the options are incorrect with respect to single
column output: existing practice and P1003.2 is that truncation is not
applied to single column output. The “note” in the description of the
-w option is to be applicable to multi-column output only. In the
description change the second paragraph to read: “By default, in
multi-column mode, columns are....”

4 sh(BU_CMD) SVID, Vol. 2 Changed - In the section marked “Input/Output” the description of
“<<[-]word” states: “... \ must be used to quote the characters \, $, ‘,
and the first character of word” should be changed to read “... \ must
be used to quote the characters \, $, and ‘". This matches both
existing practice and P1003.2.

5 who(AU_CMD) SVID, Vol. 2 Change the description of the -T and -a option to “The -T and -a
options to who are unspecified and cannot be relied on to be
portable.”
Rationale:
On investigation, these options were found to differ on various
SPARC implementations. The -a option is an aggregate option; rather
than using this option, for SCD 2 portability an application should
use the specific individual options to who that the application
requires. Rather than using the
-T option, an application should use either the -s or -u option for SCD
2 portability.

CHAPTER 9: Execution Environment

SCD
2.3

__ Execution Environment

8/16/95 SPARC Compliance Definition 2.3 9-1

Execution Environment

All information regarding File System Structure and Contents may be found in Chapter 9 of the System V Application
Binary Interface (Third Edition).

Execution Environment Changes
The following are changes to the System V Application Binary Interface (Third Edition), the System V Application Binary
Interface - SPARC Processor Supplement (Third Edition), and the System V Interface Definition (Third Edition) as reported to
SPARC International.

Facility Location Description

1 Root subtree - /dev gABI Change Figure 9-1 page 9-4, Required device files are: /dev/tty,
/dev/null, /dev/console, /dev/zero. The device /dev/lpX may
not be exist, as well as sub-directories /dev/rmt and /dev/mt.
The definition of /dev/zero can be found in the SCD 2.3 Interface
Semantics.

Execution Environment __

9-2 SPARC Compliance Definition 2.3 8/16/95

