

Implementation Characteristics

of Current SPARC-V9 -based Products

V9
SPARC INTERNATIONAL

Version: 2-9-99

© 1998 SPARC International Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of
the copyright owners.

Any comments relating to the material contained herein may be submitted to:

SPARC International Inc.

3333 Bowers Ave., Suite 280

Santa Clara, CA 95054-2913

TEL (408) 748-9111

FAX (408) 748-9777

ATTN: Ghassan Abbas (abbas@sparc.com)

Trademarks

SPARC® is a registered trademark of SPARC International, Inc.

SPARCstation™, UltraSPARC, SPARC 64 are trademark of SPARC International, Inc.

Products bearing SPARC® trademarks are based on an architecture developed by Sun Microsystems, Inc.

ONC™, Solaris and SunOS™ are trademarks of Sun Microsystems, Inc.

NFS® is a registered trademark of Sun Microsystems, Inc.

All other products or services mentioned in this document are identified by the trademarks or service marks of their
respective companies or organizations. SPARC International, Inc. disclaims any responsibility for specifying which
trademarks are owned by which companies or organizations.

SPARC International TABLE OF CONTENTS

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 5

Preface 19
Audience and Purpose 19
Organization and Content 19

CHAPTER 1: HAL SPARC64 23
0. Introduction 23
1. Software emulated instructions 23
2. Number of IU registers 24
3. Incorrect IEEE Std 754-1985 results 24
4-5. Reserved 25
6. I/O registers privileged status 25
7. I/O register definitions 25
8-9. RDASR/WRASR target registers and privileged status 25
10-12 Reserved 25
13. VER.impl 26
14-15 Reserved 26
16. IU deferred-trap queue 26
17. Reserved 26
18. Nonstandard IEEE 754-1985 results 26
19. FPU version, FSR.ver 26
20-21. Reserved 26
22. FPU TEM, cexc, and aexc 26
23. Floating-point traps 27
24. FPU deferred-trap queue (FQ) 27
25. RDPR of FQ with nonexistent FQ 27
26-28. Reserved 27
29,30. Address space identifier (ASI) definitions and ASI address decoding 27
31. Catastrophic error exceptions 29
32. Deferred traps 29
33. Trap precision 29
34. Interrupt clearing 29
35,36. Implementation-dependent traps and priorities 30
37. Reset trap 31
38. Effect of reset trap on implementation-dependent registers 31
 39. Entering error_state on implementation-dependent errors 31
40. Error_state processor state 31
41. Reserved 31
42. FLUSH instruction 31
43. Reserved 32
44. Data access FPU trap 32
45-46. Reserved 32
47. RDASR 32

6 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International TABLE OF CONTENTS

48. WRASR 32
49-54 Reserved 33
55. Floating-point underflow detection 33
56-100. Reserved 33
101. Maximum trap level 33
102. Clean window trap 33
103. Prefetch instructions 33
104. VER.manuf 34
105. TICK register 34
106. IMPDEPn instructions 35
107. Unimplemented LDD trap 35
108. Unimplemented STD trap 35
109. LDDF_mem_address_not_aligned 35
110. STDF_mem_address_not_aligned 36
111. LDQF_mem_address_not_aligned 36
112. STQF_mem_address_not_aligned 36
113. Implemented memory models 36
114. RED_state trap vector address (RSTVaddr) 36
115. RED_state processor state 37
116. SIR_enable control flag 37
117. MMU disabled prefetch behavior 37
118. Identifying I/O locations 38
119. Unimplemented values for PSTATE.MM 38
120. Coherence and atomicity of memory operations 38
121. Implementation-dependent memory model 38
122. FLUSH latency 38
123. Input/output (I/O) semantics 39
124. Implicit ASI when TL>0 39
125. Address masking 39
126. TSTATE bits 19:18 39
127. PSTATE bits 11:10 39
128. CLEANWIN register update 40

CHAPTER 2: SUN ULTRASPARC 43
1. Software emulation of instructions 43
2. Number of IU registers 44
3. Incorrect IEEE Std 754-1985 results 44
6. I/O registers privileged status 45
7. I/O register definitions 45
8. RDASR/WRASR target registers 46
9. RDASR/WRASR privileged status 46
10 - 12. Reserved 47

SPARC International TABLE OF CONTENTS

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 7

13. VER.impl 47
14 - 15. Reserved 47
16. IU deferred-trap queue 47
17. Reserved 48
18. Nonstandard IEEE 754-1985 results 48
19. FPU version, FSR.ver 48
20 - 21. Reserved 48
22. FPU TEM. cexc. and aexc 48
23. Floating-point traps 48
24. FPU deferred-trap queue (FQ) 49
25. RDPR of FQ with nonexistent FQ 49
26 - 28. Reserved 49
29 Address space identifier (ASI) definitions 49
30. ASI address decoding 50
31. Catastrophic error exceptions 50
32. Deferred traps 50
33. Trap precision 51
34. Interrupt clearing 51
35. Implementation-dependent traps 51
36. Trap priorities 52
37. Reset trap 52
38. Effect of reset trap on implementation-dependent registers 52
39. Entering error_state on implementation-dependent errors 52
40. Error_state processor state 53
41. Reserved 53
42. FLUSH instruction 53
43. Reserved 53
44. Data access FPU trap 53
45-46. Reserved 54
47. RDASR 54
48. WRASR 54
49-54. Reserved 54
55. Floating-point underflow detection 54
56 - 100. Reserved 55
101. Maximum trap level 55
102. Clean window trap 55
103. Prefetch instructions 55
104. VER.manuf 55
105. TICK register 56
106. IMPDEP1 instructions 56
107. Unimplemented LDD trap 58
108. Unimplemented STD trap 58

8 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International TABLE OF CONTENTS

109. LDDF_mem_address_not_aligned 59
110. STDF_mem_address_not_aligned 59
111. LDQF_mem_address_not_aligned 59
112. STQF_mem_address_not_aligned 59
113. Implemented memory models 60
114. RED_state trap vector address (RSTVaddr) 60
115. RED_state processor state 60
116. SIR_enable control flag 60
117. MMU disabled prefetch behavior 61
118. Identifying I/O locations 61
119. Unimplemented values for PSTATE.MM 61
120. Coherence and atomicity of memory operations 61
121. Implementation-dependent memory model 62
122. FLUSH latency 62
123. Input/output (I/O) semantics 62
124. Implicit ASI when TL>0 62
125. Address masking 63
126. TSTATE bits 19:18 63
127. PSTATE bits 11:10 63

CHAPTER 3: HAL SPARC64-II 67
0. Introduction 67
1. Software emulated instructions 67
2. Number of IU registers 68
3. Incorrect IEEE Std 754-1985 results 68
4-5. Reserved 68
6. I/O registers privileged status 68
7. I/O register definitions 69
8,9. RDASR/WRASR target registers and privileged status 69
10-12 Reserved 70
13. VER.impl 70
14-15 Reserved 70
16. IU deferred-trap queue 70
17. Reserved 70
18. Nonstandard IEEE 754-1985 results 70
19. FPU version, FSR.ver 71
20-21. Reserved 71
22. FPU TEM, cexc, and aexc 71
23. Floating-point traps 71
24. FPU deferred-trap queue (FQ) 71
25. RDPR of FQ with nonexistent FQ 72
26-28. Reserved 72

SPARC International TABLE OF CONTENTS

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 9

29,30. Address space identifier (ASI) definitions and ASI address decoding 72
31. Catastrophic error exceptions 73
32. Deferred traps 73
33. Trap precision 74
34. Interrupt clearing 74
35,36. Implementation-dependent traps and priorities 74
37. Reset trap 75
38. Effect of reset trap on implementation-dependent registers 75
 39. Entering error_state on implementation-dependent errors 75
40. Error_state processor state 76
41. Reserved 76
42. FLUSH instruction 76
43. Reserved 76
44. Data access FPU trap 76
45-46. Reserved 77
47. RDASR 77
48. WRASR 77
49-54 Reserved 77
55. Floating-point underflow detection 77
56-100. Reserved 78
101. Maximum trap level 78
102. Clean window trap 78
103. Prefetch instructions 78
104. VER.manuf 79
105. TICK register 79
106. IMPDEPn instructions 80
107. Unimplemented LDD trap 80
108. Unimplemented STD trap 80
109. LDDF_mem_address_not_aligned 81
110. STDF_mem_address_not_aligned 81
111. LDQF_mem_address_not_aligned 81
112. STQF_mem_address_not_aligned 81
113. Implemented memory models 82
114. RED_state trap vector address (RSTVaddr) 82
115. RED_state processor state 82
116. SIR_enable control flag 83
117. MMU disabled prefetch behavior 83
118. Identifying I/O locations 83
119. Unimplemented values for PSTATE.MM 83
120. Coherence and atomicity of memory operations 83
121. Implementation-dependent memory model 84
122. FLUSH latency 84

10 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International TABLE OF CONTENTS

123. Input/output (I/O) semantics 84
124. Implicit ASI when TL>0 84
125. Address masking 85
126. TSTATE bits 19:18 85
127. PSTATE bits 11:10 85
128. CLEANWIN register update 85

CHAPTER 4: SUN ULTRASPARC II 89
1. Software emulation of instructions 89
2. Number of IU registers 90
3. Incorrect IEEE Std 754-1985 results 91
4-5. Reserved 92
6. I/O registers privileged status 92
7. I/O register definitions 92
8. RDASR/WRASR target registers 92
9. RDASR/WRASR privileged status 93
10-12. Reserved 93
13. VER.impl 93
14-15. Reserved 94
16. IU deferred-trap queue 94
17. Reserved 94
18. Nonstandard IEEE 754-1985 results 94
19. FPU version, FSR.ver 94
20-21. Reserved 94
22. FPU TEM, cexc, and aexc 95
23. Floating-point traps 95
24. FPU deferred-trap queue (FQ) 95
25. RDPR of FQ with nonexistent FQ 95
26-28. Reserved 95
29. Address space identifier (ASI) definitions 96
30. ASI address decoding 96
31. Catastrophic error exceptions 97
32. Deferred traps 97
33. Trap precision 97
34. Interrupt clearing 97
35. Implementation-dependent traps 98
36. Trap priorities 98
37. Reset trap 98
38. Effect of reset trap on implementation-dependent registers 99
39. Entering error_state on implementation-dependent errors 99
40. Error_state processor state 99
41. Reserved 99

SPARC International TABLE OF CONTENTS

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 11

42. FLUSH instruction 99
43. Reserved 100
44. Data access FPU trap 100
45-46. Reserved 100
47. RDASR 100
48. WRASR 100
49-54. Reserved 101
55. Floating-point underflow detection 101
56-100. Reserved 101
101. Maximum trap level 101
102. Clean window trap 101
103. Prefetch instructions 102
104. VER.manuf 102
105. TICK register 102
106. IMPDEPn instructions 103
107. Unimplemented LDD trap 105
108. Unimplemented STD trap 105
109. LDDF_mem_address_not_aligned 105
110. STDF_mem_address_not_aligned 105
111. LDQF_mem_address_not_aligned 106
112. STQF_mem_address_not_aligned 106
113. Implemented memory models 106
114. RED_state trap vector address (RSTVaddr) 106
115. RED_state processor state 107
116. SIR_enable control flag 107
117. MMU disabled prefetch behavior 107
118. Identifying I/O locations 107
119. Unimplemented values for PSTATE.MM 108
120. Coherence and atomicity of memory operations 108
121. Implementation-dependent memory model 108
122. FLUSH latency 108
123. Input/output (I/O) semantics 109
124. Implicit ASI when TL > 0 109
125. Address masking 109
126. TSTATE bits 19:18 109
127. PSTATE bits 11:10 110

CHAPTER 5: SUN ULTRASPARC IIi 113
1. Software emulation of instructions 113
2. Number of IU registers 114
3. Incorrect IEEE Std 754-1985 results 115
4-5. Reserved 116

12 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International TABLE OF CONTENTS

6. I/O registers privileged status 116
7. I/O register definitions 116
8. RDASR/WRASR target registers 116
9. RDASR/WRASR privileged status 117
10-12. Reserved 117
13. VER.impl 117
14-15. Reserved 118
16. IU deferred-trap queue 118
17. Reserved 118
18. Nonstandard IEEE 754-1985 results 118
19. FPU version, FSR.ver 118
20-21. Reserved 118
22. FPU TEM, cexc, and aexc 119
23. Floating-point traps 119
24. FPU deferred-trap queue (FQ) 119
25. RDPR of FQ with nonexistent FQ 119
26-28. Reserved 119
29. Address space identifier (ASI) definitions 120
30. ASI address decoding 120
31. Catastrophic error exceptions 120
32. Deferred traps 121
33. Trap precision 121
34. Interrupt clearing 121
35. Implementation-dependent traps 122
36. Trap priorities 122
37. Reset trap 122
38. Effect of reset trap on implementation-dependent registers 123
39. Entering error_state on implementation-dependent errors 123
40. Error_state processor state 123
41. Reserved 123
42. FLUSH instruction 123
43. Reserved 124
44. Data access FPU trap 124
45-46. Reserved 124
47. RDASR 124
48. WRASR 124
49-54. Reserved 125
55. Floating-point underflow detection 125
56-100. Reserved 125
101. Maximum trap level 125
102. Clean window trap 125
103. Prefetch instructions 125

SPARC International TABLE OF CONTENTS

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 13

104. VER.manuf 126
105. TICK register 127
106. IMPDEPn instructions 127
107. Unimplemented LDD trap 129
108. Unimplemented STD trap 129
109. LDDF_mem_address_not_aligned 129
110. STDF_mem_address_not_aligned 130
111. LDQF_mem_address_not_aligned 130
112. STQF_mem_address_not_aligned 130
113. Implemented memory models 131
114. RED_state trap vector address (RSTVaddr) 131
115. RED_state processor state 131
116. SIR_enable control flag 131
117. MMU disabled prefetch behavior 131
118. Identifying I/O locations 132
119. Unimplemented values for PSTATE.MM 132
120. Coherence and atomicity of memory operations 132
121. Implementation-dependent memory model 132
122. FLUSH latency 133
123. Input/output (I/O) semantics 133
124. Implicit ASI when TL > 0 133
125. Address masking 133
126. TSTATE bits 19:18 134
127. PSTATE bits 11:10 134

CHAPTER 6: HAL SPARC64-III 137
0. Introduction 137
1. Software emulated instructions 137
2. Number of IU registers 137
3. Incorrect IEEE Std 754-1985 results 138
4-5. Reserved 138
6. I/O registers privileged status 138
7. I/O register definitions 138
8,9. RDASR/WRASR target registers and privileged status 139
10-12 Reserved 139
13. VER.impl 139
14-15 Reserved 140
16. IU deferred-trap queue 140
17. Reserved 140
18. Nonstandard IEEE 754-1985 results 140
19. FPU version, FSR.ver 140
20-21. Reserved 140

14 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International TABLE OF CONTENTS

22. FPU TEM, cexc, and aexc 140
23. Floating-point traps 141
24. FPU deferred-trap queue (FQ) 141
25. RDPR of FQ with nonexistent FQ 141
26-28. Reserved 141
29,30. Address space identifier (ASI) definitions and ASI address decoding 141
31. Catastrophic error exceptions 142
32. Deferred traps 142
33. Trap precision 142
34. Interrupt clearing 143
35,36. Implementation-dependent traps and priorities 143
37. Reset trap 143
38. Effect of reset trap on implementation-dependent registers 144
 39. Entering error_state on implementation-dependent errors 144
40. Error_state processor state 144
41. Reserved 144
42. FLUSH instruction 144
43. Reserved 145
44. Data access FPU trap 145
45-46. Reserved 145
47. RDASR 145
48. WRASR 145
49-54 Reserved 146
55. Floating-point underflow detection 146
56-100. Reserved 146
101. Maximum trap level 146
102. Clean window trap 146
103. Prefetch instructions 146
104. VER.manuf 147
105. TICK register 148
106. IMPDEPn instructions 148
107. Unimplemented LDD trap 148
108. Unimplemented STD trap 148
109. LDDF_mem_address_not_aligned 149
110. STDF_mem_address_not_aligned 149
111. LDQF_mem_address_not_aligned 149
112. STQF_mem_address_not_aligned 149
113. Implemented memory models 150
114. RED_state trap vector address (RSTVaddr) 150
115. RED_state processor state 150
116. SIR_enable control flag 150
117. MMU disabled prefetch behavior 151

SPARC International TABLE OF CONTENTS

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 15

118. Identifying I/O locations 151
119. Unimplemented values for PSTATE.MM 151
120. Coherence and atomicity of memory operations 151
121. Implementation-dependent memory model 151
122. FLUSH latency 152
123. Input/output (I/O) semantics 152
124. Implicit ASI when TL>0 152
125. Address masking 152
126. TSTATE bits 19:18 153
127. PSTATE bits 11:10 153
128. CLEANWIN register update 153

APPENDIX A: VER.impl/VER.manuf 157

APPENDIX B: SPARC V9 Arch Book Changes 161

Change to page 13 161
Change to page 21(r142) 161
Change to page 28(r142) 161
Change to page 30(r142) 161
Change to page 40(r142), 161
Change to page 51 162
Change to page 52(r142) 162
Change to page 55(r142) 162
Change to page 56(r142) 162
Change to page 57(r142) 163
Change to page 58-9(r142) 163
Change to page 76, 163
Change to page 80(r142), 6.3.6.4(r142) 163
Change to page 81(r141/r142): 163
Change to page 81(r141/r142): 163
Change to page 121(r141/r142): 163
Change to page 151(r142), A.9(r142), 164
Change to page 171 164
Change to page 181(r141/r142): 164
Change to page 191(r141/r142): 164
Change to page 195(r141/r142): 164
Change to page 212(r14[123]) A.43(r14[12])/A.44(r143), 164
Change to page 216(r142), A.46(r142), 164
Change to page 220(r142)/A.49(r142) 165
Change to page 228(r141/r142): 165
Change to page 229(r142)/A.55(r142), 165

16 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International TABLE OF CONTENTS

Change to page 231(r142)/233(r143), 165
Change to page 234, A.58(r14[12])/A.59(r143) 165
Change to page 241(r142), A.62(r142), 165
Change to page 242(r142), A.62(r142) 166
Change to page 253(r142) 166
Change to page 253(4142) 166
Change to page 255(r142) 166
Change to page 258(r142) 166
Change to page 268(r142) 167
Change to page 290(r142) 167
Change to page 312(r142) 167

Preface

V9

SPARC International PREFACE

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 19

Preface

Audience and Purpose
The SPARC International Implementation Characateristics of Current SPARC-V9-based Prod-

ucts is intended as companion to the SPARC Architecture Book Version 9.

Organization and Content
This document has been divided as follows

Table of Content

Preface

Chapter 1: HAL SPARC64

Chapter 2: SUN ULTRASPARC

Chapter 3: HAL SPARC64-II

APPENDIX A: VER.impl/VER.manuf

APPENDIX B: SPARC V9 Arch Book Changes

Index

20 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

SPARC International PREFACE

Chapter 1: HAL Implementation of V9 Architecture

SPARC 64

V9
SPARC INTERNATIONAL

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 23

CHAPTER 1: HAL SPARC64

0. Introduction

This document describes the implementation details of the SPARC64TM processor developed
by HAL Computer Systems. The items listed below correspond to the implementation depen-
dencies as listed in the text and by number in Appendix C of “The SPARC Architecture Man-
ual - Version 9” by SPARC International, along with the description of the implementation
dependency. The “Implementation” section for each item describes the implementation on the
SPARC64 processor.

1. Software emulated instructions
Description: Whether an instruction is implemented directly by hardware, simulated by

software, or emulated by firmware is implementation-dependent.

Implementation: SPARC64 does not implement the following instructions in hardware:
All floating point instructions with quad operands or results

These operations will take an fp_exception_other trap with FSR.ftt =
unimplemented_FPop. The kernel will then emulate the quad operation and
store the result into a quad-aligned set of floating-point registers as defined
by SPARC-V9 manual.

fsqrtd, fsqrts: Executing these instructions will cause a fp_exception_other
exception with FSR.ftt = unimplemented_FPop. In this case kernel emula-
tion routines are provided to complete the instructions.

flush: This instruction will cause an illegal_instruction trap if executed.
Kernel emulation routines will be provided to flush the cache line from the
data cache and invalidate any matching cache lines in the instruction cache.

ldd, ldda, std, stda: Executing these instructions in normal mode would
generate unimplemented_LDD and unimplemented_STD trap. Kernel emu-
lation routines will be provided to complete the instructions. SPARC64
also implements a special accelerated emulation trap handling for certain
LDD and STD instructions, if a special mode is chosen.

popc: This instruction will cause an illegal_instruction trap if executed.

SPARC International SPARC 64

24 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Kernel emulation routines will be provided to complete the action.

2. Number of IU registers
Description: An implementation of the IU may contain from 64 to 258 general purpose

64 bit r registers. This corresponds to a grouping of the registers into two
sets of eight global r registers, plus a circular stack of from three to 32 sets
of 16 registers each, known as register windows. Since the number of regis-
ter windows present (NWINDOWS) is implementation-dependent, the
total number of registers is also implementation-dependent.

Implementation: SPARC64 implements 4 16-register sets (windows) in hardware. Thus
there are a total of 80 integer registers visible to software. They are:

8 global registers
8 alternate global registers
4 windows of 16 registers each (=64 registers)

3. Incorrect IEEE Std 754-1985 results
Description: An implementation may indicate that a floating-point instruction did not

produce a correct ANSI/IEEE Standard 754-1985 result by generating a
special floating-point unfinished or unimplemented exception. In this case,
privileged mode software shall emulate any functionality not present in the
hardware.

Implementation: SPARC64 in conjunction with the kernel emulation code produces the cor-
rect IEEE 754 results required in this section.

1)Traps Inhibit Results
SPARC64 in conjunction with the kernel emulation code produces results
required.

2)Trapped Underflow Definition (UFM=1)
SPARC64 detects “tininess” before rounding as recommended.

3) Untrapped Underflow Definition (UFM=0)
SPARC64 meets these requirements with some help from the kernel divide
fixup code.

4) Floating-Point Non standard Mode
SPARC64 FPU is “standard”, and therefore does not support a nonstandard
mode.

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 25

4-5. Reserved

6. I/O registers privileged status
Description: Whether I/O registers can be accessed by non privileged code is implemen-

tation-dependent.

Implementation: In SPARC64 some I/O registers can be accessed by non privileged code.

7. I/O register definitions
Description: The contents and addresses of I/O registers are implementation-dependent.

Implementation: Please contact HAL for details of I/O registers.

8-9. RDASR/WRASR target registers and privileged status
Description: Software can use read/write ancillary state register instructions to read/

write implementation-dependent processor registers (ASRs 16-31).
Whether each of the implementation-dependent read/write ancillary state
register instructions (for ASRs 16-31) is privileged is implementation
dependent.

Implementation: SPARC64 implements 7 implementation-dependent ASR registers. LDD
Trap Base Address (ASR24) This privileged read/write register specifies a
special trap base address for some unimplemented_LDD and
unimplemented_STD traps. Instruction Emulation Register (ASR25) This
read only register is written by CPU on a trap for a LDD/STD that uses the
LDD Trap Base Address described above. Data Breakpoint Register
(ASR26) This privileged write-only register is used to trap any data
accesses to a double word aligned breakpoint address. Software Initiated
Reset (ASR27) A write to this register with a WRASR instruction will
cause a software initiated reset (SIR). An SIR is a precise trap. ASR27 is
privileged and write-only. Fault Address Register (ASR28) and Fault
Access Type (ASR29) These registers facilitate the handling of traps that
involve a data memory access. The registers are privileged and read-only.
System software must take care to read these registers on entry to a fault
handler before any other fault can occur that would overwrite them. State
Control Register (ASR31) ASR31 is a 16bit implementation specific regis-
ter that contains a set of flags for controlling the state of the CPU, MMU
and Caches. The register is privileged and can be read/written.

10-12 Reserved

SPARC International SPARC 64

26 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

13. VER.impl
Description: VER.impl uniquely identifies an implementation or class of software-com-

patible implementations of the architecture. Values FFF0(hex)..FFFF(hex)
are reserved and are not available for assignment.

Implementation: SPARC64 uses a version number of 1.

14-15 Reserved

16. IU deferred-trap queue

Description: The existence, contents, and operation of an IU deferred-trap queue are
implementation-dependent; it is not visible to user application programs
under normal operating conditions

Implementation: SPARC64 does not need and therefore does not implement an IU deferred-
trap queue.

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description: Bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the
FPU to produce implementation-defined results that may not correspond to
IEEE Standard 754-1985.

Implementation: SPARC64 FPU is “standard”, and therefore does not support a nonstandard
mode.

19. FPU version, FSR.ver
Description: Bits 19:17 of the FSR, FSR.ver, identify one or more implementations of

the FPU architecture.

Implementation: SPARC64 uses the value of 0 for this field.

20-21. Reserved

22. FPU TEM, cexc, and aexc
Description: An implementation may choose to implement the TEM, cexc, and aexc

fields in hardware in either of two ways (see section 5.1.7.11 of SPARC-V9

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 27

Architecture Manual for details).

Implementation: SPARC64 implements TEM, cexc and aexc fields of FSR conforming to
IEEE Std. 754-1985.

23. Floating-point traps
Description:
Floating point traps may be precise or deferred. If deferred, a floating point deferred-trap

queue (FQ) must be present.

Implementation: The only deferred traps in SPARC64 are: fp_exception_other (ftt =
unfinished_FPop) for FDIV with unusual arguments and the
data_breakpoint trap. SPARC64 does not need a floating-point deferred-
trap queue because the FDIV that caused the trap is the only deferred
instruction.

24. FPU deferred-trap queue (FQ)
Description: The presence, contents of, and operations on the floating-point deferred-

trap queue (FQ) are implementation-dependent.

Implementation: SPARC64 does not have or need a floating-point deferred-trap queue.

25. RDPR of FQ with nonexistent FQ
Description: On implementations without a floating-point queue, an attempt to read the

FQ with an RDPR instruction shall cause either an illegal_instruction
exception or an fp_exception_other exception with FSR.ftt set to 4
(sequence_error).

Implementation: A RDPR of %FPQ instruction will cause an illegal_instruction trap.

26-28. Reserved

29,30. Address space identifier (ASI) definitions and ASI address decoding
Description: The following ASI assignments are implementation-dependent: restricted

ASIs (all values hex) 00..03, 05..0B, 0D..0F, 12..17, and 1A..7F; and unre-
stricted ASIs C0..FF.

An implementation may choose to decode only a subset of the 8-bit ASI
specifier; however, it shall decode at least enough of the ASI to distinguish
ASI_PRIMARY, ASI_PRIMARY_LITTLE,
ASI_AS_IF_USER_PRIMARY,
ASI_AS_IF_USER_PRIMARY_LITTLE, ASI_PRIMARY_NOFAULT,

SPARC International SPARC 64

28 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

ASI_PRIMARY_NOFAULT_LITTLE, ASI_SECONDARY,
ASI_SECONDARY_LITTLE, ASI_AS_IF_USER_SECONDARY,
ASI_AS_IF_USER_SECONDARY_LITTLE,
ASI_SECONDARY_NOFAULT, and
ASI_SECONDARY_NOFAULT_LITTLE. If ASI_NUCLEUS and
ASI_NUCLEUS_LITTLE are supported (impl. dep. #124), they must be
decoded also. Finally, an implementation must always decode ASI bit<7>
while PSTATE.PRIV = 0, so that an attempt by nonprivileged software to
access a restricted ASI will always cause a privileged_action exception.

Implementation: The encoding of ASIs in the SPARC64 processor is shown below:

 NR (Non-Restricted). This bit conforms to SPARC-V9 definition. An
attempt to use a restricted ASI in non-privileged mode results in a
privileged_action trap.

V (Vendor-specific). This bit conforms to SPARC-V9 definition for non-
restricted ASIs that are implementation-dependent (0xc0 - 0xff). This bit
will be set in all ASIs that are specific to SPARC64.

PO (Program Order). An instruction using an ASI with this bit set is exe-
cuted by SPARC64 strictly in program order.

AS_IF. This bit conforms to SPARC-V9 requirement that there be an
implementation specific ASI encoding that allows the corresponding access
to be made as if the CPU were executing in non-privileged mode, indepen-
dent of PSTATE.PRIV.

LE. This bit conforms to SPARC-V9 definition of ASIs that specify little-
endian byte ordering. If this bit is set to zero, the access is done using big-
endian byte ordering.

M2..M0. These bits are interpreted by the SPARC64 MMU.

SPARC64 does not support a nucleus context and hence does not decode
ASI_NUCLEUS and ASI_NUCLEUS_LITTLE.

NR V (M3) PO AS_IF LE M2 M1 M0

 7 6 5 4 3 2 1 0

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 29

31. Catastrophic error exceptions
Description: The causes and effects of catastrophic error exceptions are implementation-

dependent. They may cause precise, deferred or disrupting traps.

Implementation: An internal CPU watchdog time-out occurs after no instruction has been
committed for 2**n cycles (n can be scan initialized to one of
{12,14,16,18,19,20,21,22,24}, with 24 being the default value). This would
take the processor into error state.

32. Deferred traps
Description: Whether any deferred traps (and associated deferred-trap queues) are

present is implementation-dependent.

Implementation: SPARC64 implements a deferred trap for the following trap types:
fp_exception_other (when FSR.ftt = unfinished_FPop).
data_breakpoint.

Deferred trap queues are not necessary, since the trapping instruction is the
only deferred instruction.

33. Trap precision
Description: Exceptions that occur as the result of program execution may be precise or

deferred, although it is recommended that such exceptions be precise.
Examples include mem_address_not_aligned and division_by_zero.

Implementation: SPARC64 will generate a precise trap for all traps induced by instruction
execution, except for unfinished_FPop, data_breakpoint and
Chip_crossing_errors (CPU_xing).

34. Interrupt clearing
Description: How quickly a processor responds to an interrupt request and the method

by which an interrupt request is removed are implementation-dependent.

Implementation: When SPARC64 is ready to accept an interrupt signal (based on
PSTATE.IE and the PIL), it stops issuing instructions and waits for the
CPU to quiesce. It then issues instructions from the corresponding trap
handler if the interrupt condition is still valid. The TPC points to the
instruction that would have executed in the absence of the interrupt. All
instructions prior to the TPC have completed and all instructions including
and subsequent to TPC remain unexecuted.

SPARC International SPARC 64

30 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

35,36. Implementation-dependent traps and priorities
Description: Trap type (TT) values 060(hex)..07f(hex) are reserved for implementation-

dependent exceptions. The existence of implementation_dependent_n traps
and whether any that do exist are precise, deferred, or disrupting is imple-
mentation-dependent.

The priorities of the particular traps are relative and are implementation-
dependent, because a future version of the architecture may define new
traps, and implementations may define implementation-dependent traps
that establish new relative priorities.

Implementation: The following trap types defined by SPARC-V9 are not used in SPARC64.

SPARC64 defines the following implementation-dependent trap types.

trap not used in SPARC64

instruction_access_MMU_miss

internal_processor_error

data_access_MMU_miss

LDQF_mem_address_not_aligned

STQD_mem_address_not_aligned

async_data_error

tt (in Hex) Trap priority type

0x60 prgorammed_emulation_trap 6 precise

0x61 data_breakpoint 14 deferred

0x62 IO_parity 2 precise

0x63 RED_alert 2 disrupting

0x64 CPU_xing 2 disrupting

0x65 Watchdog 1 disrupting

0x66 ECC_trap 2 precise

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 31

SPARC64 implements a special accelerated emulation trap for certain LDD
and STD instructions.

37. Reset trap
Description: Some of a processor’s behavior during a reset trap is implementation-

dependent.

Implementation: Power-on Reset (POR) and Watchdog reset (WDR) are implemented by
scanning in the reset state on SPARC64.

38. Effect of reset trap on implementation-dependent registers
Description: Implementation-dependent registers may or may not be affected by the var-

ious reset traps.

Implementation: None of the implementation-dependent registers are affected by reset traps
in SPARC64.

39. Entering error_state on implementation-dependent errors
Description: The processor may enter error_state when an implementation-dependent

error condition occurs.

Implementation: An internal CPU watchdog time-out occurs after no instruction has been
committed for 2**n cycles (n can be scan initialized to one of
{12,14,16,18,19,20,21,22,24}, with 24 being the default value). This would
take the processor into error state.

40. Error_state processor state
Description: What occurs after error_state is entered is implementation-dependent, but it

is recommended that as much processor state as possible be preserved upon
entry to error_state.

Implementation: On entry to error state, SPARC64 asserts the output signal CPU_HALTED.
The clock chip in the HAL system stops the clocks to the CPU in response
to this signal. A scan out of processor state could be performed at this stage
for diagnosis.

41. Reserved

42. FLUSH instruction
Description: If flush is not implemented in hardware, it causes an illegal_instruction

SPARC International SPARC 64

32 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

exception and its function is performed by system software. Whether
FLUSH traps is implementation-dependent.

Implementation: SPARC64 takes an illegal_instruction trap when a FLUSH instruction is
executed.

43. Reserved

44. Data access FPU trap
Description: If a load floating-point instruction traps with any type of access error

exception, the contents of the destination floating-point register(s) either
remain unchanged or are undefined.

Implementation: Contents of destination floating-point register(s) remain unchanged.

45-46. Reserved

47. RDASR
Description: RDASR instructions with rd in the range 16..31 are available for imple-

mentation-dependent uses (impl. dep #8).For an RDASR instruction with
rs1 in the range 16..31, the following are implementation-dependent: the
interpretation of bits 13:0 and 29:25 in the instruction, whether the instruc-
tion is privileged (impl. dep. #9), and whether it causes an
illegal_instruction trap.

Implementation: See items 8,9 for details. SPARC64 causes an illegal_instruction trap for
reads of the unused ASR values.

48. WRASR
Description: WRASR instructions with rd in the range 16..31 are available for imple-

mentation-dependent uses (impl. dep. #8). For a WRASR instruction with
rd in the range 16..31, the following are implementation-dependent: the
interpretation of bits 18:0 in the instruction, the operation(s) performed (for
example, xor) to generate the value written to the ASR, whether the
instruction is privileged (impl. dep. #9), and whether it causes an
illegal_instruction trap.

Implementation: See items 8,9 for details. SPARC64 causes an illegal_instruction trap for
writes of the unused ASR values.

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 33

49-54 Reserved

55. Floating-point underflow detection
Description: Whether “tininess” (in IEEE 754 terms) is detected before or after round-

ing is implementation-dependent. It is recommended that tininess be
detected before rounding.

Implementation: SPARC64 detects “tininess” before rounding.

56-100. Reserved

101. Maximum trap level
Description: It is implementation-dependent how many additional levels, if any, past

level 4 are supported.

Implementation: SPARC64 implements 4 levels of traps.

102. Clean window trap
Description: An implementation may choose either to implement automatic “cleaning”

of register windows in hardware, or generate a clean_window trap, when
needed, for window(s) to be cleaned by software.

Implementation: SPARC64 generates a clean_window trap, when needed, for windows to be
cleaned by software.

103. Prefetch instructions
Description: The following aspects of the PREFETCH and PREFETCHA instructions

are implementation-dependent: (1) whether they have an observable effect
in privileged code; (2) whether they can cause a data_access_MMU_miss
exception; (3) the attributes of the block of memory prefetched: its size
(minimum = 64 bytes) and its alignment (minimum = 64-byte alignment);
(4) whether each variant is implemented as a NOP, with its full semantics,
or with common-case prefetching semantics; (5) whether and how variants
16..31 are implemented.

Implementation: (1) PREFETCH and PREFETCHA have identical affects in privileged or
non-privileged code.
(2) Can not cause a data_access_MMU_miss exception
(3) Size and alignments are 128-bytes

SPARC International SPARC 64

34 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

(4),(5) See table-1

104. VER.manuf
Description: VER.manuf contains a 16-bit semiconductor manufacturer code. This field

is optional, and if not present reads as zero. VER.manuf may indicate the
original supplier of a second-sourced chip in cases involving mask-level
second-sourcing. It is intended that the contents of VER.manuf track the
JEDEC semiconductor manufacturer code as closely as possible. If the
manufacturer does not have a JEDEC semiconductor manufacturer code,
SPARC International will assign a VER.manuf value.

Implementation: SPARC64 uses a code of 4 for this field. This is Fujitsu’s JEDEC code.

105. TICK register

Description: The difference between the values read from the TICK register on two
reads should reflect the number of processor cycles executed between the
reads. If an accurate count cannot always be returned, an inaccuracy should
be small, bounded, and documented. An implementation my implement
fewer than 63 bits in TICK.counter; however, the counter as implemented
must be able to count for at least 10 years without overflowing. Any upper
bits not implemented must be read as zero.

Implementation: SPARC64 implements all the bits of TICK register and returns accurate
count of the processor cycles, in response to reads from TICK register.

Table 1: Prefetch Data

fcn V9 Prefetch Function SPARC64 Function

 0 Prefetch for several reads Prefetch for read

 1 Prefetch for one read Prefetch for read

 2 Prefetch for several writes Prefetch for write

 3 Prefetch for one write Prefetch for write

 4 Prefetch page Prefetch for read

 5-15 Reserved illegal_instruction trap

 16-31 Implementation dependent NOP

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 35

106. IMPDEPn instructions

Description: The IMPDEP1 and IMPDEP2 instructions are completely implementation-
dependent. Implementation-dependent aspects include their operation, the
interpretation of bits 29:25 and 18:0 in their encoding, and which (if any)
exceptions they may cause.

Implementation: SPARC64 uses IMPDEP2 to encode the HAL specific Floating Point Mul-
tiply-Add/Subtract instructions. IMPDEP1 is not used and will cause an
illegal_instruction trap if such an opcode is encountered. Please refer to
SPARC64 Processor User Guide for more details.

107. Unimplemented LDD trap
Description: It is implementation-dependent whether LDD and LDDA are implemented

in hardware. If not, an attempt to execute either will cause an
unimplemented_LDD trap.

Implementation: SPARC64 does not implement LDD and LDDA is hardware. It uses the
unimplemented_LDD trap. However in a special mode, there is partial sup-
port in hardware for these instructions. Please refer to SPARC64 Processor
User Guide for more details.

108. Unimplemented STD trap
Description: It is implementation-dependent whether STD and STDA are implemented

in hardware. If not, an attempt to execute either will cause an
unimplemented_STD trap.

Implementation: SPARC64 does not implement STD and STDA is hardware. It uses the
unimplemented_STD trap. However in a special mode, there is partial sup-
port in hardware for these instructions. Please refer to SPARC64 Processor
User Guide for more details.

109. LDDF_mem_address_not_aligned

Description: LDDF and LDDFA require only word alignment. However, if the effective
address is word-aligned but not doubleword-aligned, either may cause an
LDDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shalll emulate the LDDF (or LDDFA) instruction and return.

Implementation: SPARC64 causes LDDF_mem_address_not_aligned trap for both word
and double-word misaligned addresses.

SPARC International SPARC 64

36 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

110. STDF_mem_address_not_aligned

Description: STDF and STDFA require only word alignment. However, if the effective
address is word-aligned but not doubleword-aligned, either may cause an
STDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STDF (or STDFA) instruction and return.

Implementation: SPARC64 causes STDF_mem_address_not_aligned trap for both word and
double-word misaligned addresses.

111. LDQF_mem_address_not_aligned

Description: LDQF and LDQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
LDQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDQF (or LDQFA) instruction and return.

Implementation: SPARC64 generates fp_exception_other trap for LDQF, LDQFA instruc-
tions and kernel provides emulation routines to complete the load. It does
not generate LDQF_mem_address_not_aligned trap.

112. STQF_mem_address_not_aligned

Description: STQF and STQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
STQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STQF (or STQFA) instruction and return.

Implementation: SPARC64 generates fp_exception_other trap for STQF, STQFA instruc-
tions and kernel provides emulation routines to complete the load. It does
not generate STQF_mem_address_not_aligned trap.

113. Implemented memory models
Description: Whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO)

models are supported is implementation-dependent.

Implementation: SPARC64 supports Load/Store ordering (LSO) and Store ordering (STO).
Partial Store Order (PSO) is implemented using LSO and Relaxed Memory
Order (RMO) is implemented using STO.

114. RED_state trap vector address (RSTVaddr)
Description: The RED_state trap vector is located at an implementation-dependent

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 37

address referred to as RSTVaddr.

Implementation: SPARC64 has a scan only register that holds RSTVaddr.

115. RED_state processor state

Description: What occurs after the processor enters RED_state is implementation-
dependent.

Implementation: SPARC64 has the following behavior in RED_state.

1) The output signal RED_MODE is asserted indicating CPU is in
RED_state.

2) The CPU executes in sequential mode.

3) On entry into and exit from RED_state, the CPU invalidates the on-chip
instruction cache and prefetch buffers.

4) Off chip data and instruction caches are disabled.

5) The MMU uses a special translation mechanism.

6) All I/O accesses are disabled.

7) Further red state errors are ignored.

8) XIR, and Chip Crossing Errors are not masked and could cause a trap.

116. SIR_enable control flag
Description: The location of and the means of accessing the SIR_enable control flag are

implementation-dependent. In some implementations, it may be perma-
nently zero.

Implementation: SIR_enable control flag is permanently zero in SPARC64.

117. MMU disabled prefetch behavior

Description: Whether Prefetch and Non-faulting Load always succeed when the MMU
is disabled is implementation-dependent.

Implementation: In SPARC64, Prefetch and Non-faulting Loads will have undefined behav-
ior if the MMU is disabled.

SPARC International SPARC 64

38 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

118. Identifying I/O locations
Description: The manner in which I/O locations are identified is implementation-depen-

dent.

Implementation: Please contact HAL Computer Systems for details of I/O operation.

119. Unimplemented values for PSTATE.MM

Description: The effect of writing an unimplemented memory-mode designation into
PSTATE.MM is implementation-dependent

Implementation: SPARC64 only the most significant bit of MM is used to determine the
memory model; the least significant bit is ignored. However, the system
software should not use the encoding ‘11’ since it is reserved for future
SPARC-V9 extensions.

120. Coherence and atomicity of memory operations
Description: The coherence and atomicity of memory operations between processors

and I/O DMA memory accesses are implementation-dependent.

Implementation: In SPARC64, coherence and atomicity of memory operations between pro-
cessors and I/O DMA memory accesses are variable and depend on the I/O
device. Please contact HAL Computer Systems for details.

121. Implementation-dependent memory model
Description: An implementation may choose to identify certain addresses and use an

implementation dependent memory model for references to them.

Implementation: In SPARC64, certain addresses use implementation dependent memory
models for references to them. Please contact HAL Computer Systems for
details.

122. FLUSH latency
Description: Latency between the execution of FLUSH on one processor and the point

at which the modified instructions have replaced out-dated instructions in a
multiprocessor is implementation-dependent.

Implementation: Not applicable since, SPARC64 does not support a multi-processor config-
uration.

SPARC International SPARC 64

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 39

123. Input/output (I/O) semantics
Description: The semantic effect of accessing input/output (I/O) registers is implemen-

tation-dependent.

Implementation: In SPARC64, the semantic effect of accessing input/output (I/O) registers
is undefined.

124. Implicit ASI when TL>0
Description: When TL > 0, the implicit ASI for instruction fetches, loads, and stores is

implementation-dependent. See SPARC-V9 Architecture Manual section
F.4.4, “Contexts,” for more information.

Implementation: SPARC64 uses ASI_PRIMARY or ASI_PRIMARY_LITTLE for instruction
fetches, loads and stores when TL>0

125. Address masking
Description: When PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-

mitted to the specified destination registers(s) by CALL, JMPL, RDPC,
and on a trap is implementation-dependent.

Implementation: When PSTATE.AM bit is set on SPARC64, a full 64-bit address is trans-
mitted to the specified destination registers by CALL, JMPL, RDPC and
traps transmit all 64-bits to TPC[n] and TNPC[n].

126. TSTATE bits 19:18
Description: If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be imple-

mented and contain the state of PSTATE bit 11 (10) from the previous trap
level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18) shall
read as zero. Software intended to run on multiple implementations should
only write these bits to values previously read from PSTATE, or to zeroes.

Implementation: SPARC64 does not implement PSTATE bits 10 & 11 and they are read as
zeroes. TSTATE bits 19 and 18 are read as zeroes.

127. PSTATE bits 11:10
Description: The presence and semantics of PSTATE.PID1 and PSTATE.PID0 are

implementation-dependent. The presence of TSTATE bits 19 and 18 is
implementation-dependent. If PSTATE bit 11 (10) is implemented,
TSTATE bit 19 (18) shall be implemented and contain the state of PSTATE
bit 11 (10) from the previous trap level. If PSTATE bit 11 (10) is not imple-
mented, TSTATE bit 19 (18) shall read as zero. Software intended to run on
multiple implementations should only write these bits to values previously

SPARC International SPARC 64

40 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

read from PSTATE, or to zeroes.

Implementation: SPARC64 does not implement PSTATE bits 10 & 11 and they are read as
zeroes. TSTATE bits 19 and 18 are read as zeroes.

128. CLEANWIN register update
Earlier implementations of SPARC chips implemented the SPARC-V9
specification for RESTORED using the following equation to update
CLEANWIN register:

 if (CLEANWIN != NWINDOWS) CLEANWIN++;
Subsequently V9 definition changed to modify the equation as:

 if (CLEANWIN < NWINDOWS-1) CLEANWIN++;

SPARC64 implements the RESTORED using the earlier definition. The
SPARC64 Kernel will ensure that CLEANWIN does not have a value
beyond NWINDOWS-1.

Chapter 2: SUN Implementation of V9 Architecture

UltraSPARC - I

V9
SPARC INTERNATIONAL

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 43

CHAPTER 2: SUN ULTRASPARC

0. Introduction

This document describes the implementation-dependencies of Sun’s STP 1030BGA-UltraS-
PARC-1 processor as put forth in “The SPARC Architecture Manual - Version 9” by SPARC
International. The items listed below correspond to the implementation dependencies as listed in
the text and by number in Appendix C of the manual along with the description of the implemen-
tation dependency from the manual. The “Implementation” section for each item describes the
implementation on the UltraSPARC-I processor.

1. Software emulation of instructions

Description: whether an instruction is implemented directly by hardware, simulated by
software, or emulated by firmware is implementation-dependent.

Implementation: all instructions are implemented in hardware except the following, which
must be simulated by software.

POPC Population count
LDQF Load quad-precision FP register
LDQFA Load quad-precision FP register from alternate space
STQF Store quad-precision FP register
STQFA Store quad-precision FP register to alternate space
F{s,d}TOq Convert single-/double- to quad precision FP
F{i,x}TOq Convert 32-/64-bit integer to quad-precision FP
FqTO{s,d} Convert quad- to single-/double-precision FP
FqTO{i.x} Convert quad-precision FP to 32-/64-bit integer
FADDq Quad-precision FP add
FSUBq Quad-precision FP subtraction
FCMP{E}q Quad-precision FP compares
FMOVqcc Move quad-precision FP register on condition
FMOVqr Move quad-precision FP register on integer register condition
FMOVq Move quad-precision FP register
FABSq Quad-precision FP absolute value
FNEGq Quad-precision FP negate
FdMULq Double- to quad-precision FP multiply
FNULq Quad-precision FP multiply

SPARC International STP1030BGA-UltraSPARC-I

44 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

FDIV Quad-precision FP divide
FSQRTq Quad-precision FP divide

2. Number of IU registers

Description: an implementation of the IU may contain from 64 to 258 general purpose
64 bit registers. This corresponds to a grouping of the registers into two
sets of eight global r registers, plus a circular stack of from three to 32 sets
of 16 registers each, known as register windows. Since the number of reg-
ister windows present (NWINDOWS) is implementation-dependent, the
total number of registers is also implementation-dependent.

Implementation: UltraSPARC-I implements eight register windows plus four sets of eight
global r registers, for a total of 160 64-bit r registers.

3. Incorrect IEEE Std 754-1985 results

Description: an implementation may indicate that a floating-point instruction did not
produce a correct ANSI/IEEE Standard 754-1985 result by generating a
special floating-point unfinished or unimplemented exception. In this case,
privileged mode software shall emulate any functionality not present in the
hardware.

Implementation: the quad-precision floating-point instructions listed in implementation
dependency #1 above all generate floating-point unimplemented excep-
tions.

UltraSPARC-I generates floating-point unimplemented exceptions for the
following cases of subnormal operands or results.

Subnormal Operand Unimplemented Exception Cases:

F{s,d}TO{i,x} one subnormal operand

F{s,d}TO{i,x} one subnormal operand

FSQRT{s,d} one subnormal operand

FADD{s,d} one or two subnormal operand

FMUL{s,d} -25 <Er <255 (SP) one subnormal operand
-54 <Er <2047 (DP) one subnormal operand
two subnormal operands

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 45

FDIV{s,d} -25 <Er <255 (SP) one subnormal operand
-54 <Er <2047 (DP) one subnormal operand
two subnormal operands

Subnormal Result Unimplemented Exception Cases:

FdTOs -25 <Er < 1 (SP)
-54 <Er < 1 (DP)

FADD{s,d} -25 <Er < 1 (SP)
-54 <Er < 1 (DP)

FMUL{s,d} -25 <Er < 1 (SP)
-54 <Er < 1 (DP)

FDIV{s,d} -25 <Er < 1 (SP)
-54 <Er < 1 (DP)

Prediction of overflow, underflow and inexact traps for divide and square
roots is used. For divide, pessimistic prediction occurs when underflow/
overflow cannot be determined from examining the source operand expo-
nents. For divide and square root, pessimistic prediction of inexact occurs
unless one of the operands is a zero, NSN or infinity. When pessimistic
prediction occurs and the exception is enabled, a floating-point unfinished
exception is generated.

4 - 5. Reserved

6. I/O registers privileged status

Description: whether I/O registers can be accessed by non-privileged code is implemen-
tation-dependent.

Implementation: For systems using UltraSPARC-I, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation.

7. I/O register definitions

Descriptions: the contents and addresses of I/O registers are implementation-dependent

SPARC International STP1030BGA-UltraSPARC-I

46 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation: For systems using UltraSPARC-I, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation.

8. RDASR/WRASR target registers

Description: software can use read/write ancillary state register instructions to read/
write implementation-dependent processor registers (ASRs 16-31).

Implementation: UltraSPARC-I implements the following implementation-dependent
ASRs.

9. RDASR/WRASR privileged status

Description: whether each of the implementation-dependent read/write ancillary state
register instructions (for ASRs 16-31) is privileged is implementation
dependent.

Implementation: The privileged status of UltraSPARC-I’s implementation-dependent regis-
ters is as follows:

rd name access

16 PERFA_CONTROL_REG RW

17 PERF_COUNTER RW

18 DISPATCH_CONTROL_REG RW

19 GRAPHICS_STATUS_REG RW

20 SET_SOFTINT W

21 CLEAR_SOFTINT W

22 SOFTINT_REG RW

23 TICK_CMPR_REG RW

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 47

 * If PERF_CONTROL_REG. PRIV =1)

10 - 12. Reserved

13. VER.impl

Description: VER.impl uniquely identifies an implementation or class of software-com-
patible implementations of the architecture. Values FFF0 (hex)..FFFF(hex)
are reserved and are not available for assignment.

Implementation: UltraSPARC-I uses the implementation code 0010 (hex).

14 - 15. Reserved

16. IU deferred-trap queue

Description: the existence, contents, and operation of an IU deferred-trap queue are
implementation-dependent; it is not visible to user application programs
under normal operating conditions.

rd name access

16 PERFA_CONTROL_REG PRIVILEGED

17 PERF_COUNTER PRIVILEGED*

18 DISPATCH_CONTROL_REG PRIVILEGED

19 GRAPHICS_STATUS_REG NONPRIVILEGED

20 SET_SOFTINT PRIVILEGED

21 CLEAR_SOFTINT PRIVILEGED

22 SOFTINT_REG PRIVILEGED

23 TICK_CMPR_REG PRIVILEGED

SPARC International STP1030BGA-UltraSPARC-I

48 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation: UltraSPARC-I does not implement a deferred-trap queue.

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description: bit 22 of the FSR, RSR_nonstandard_fp (NS), when set to 1, causes the
FPU to produce implementation-defined results that may not correspond
to IEEE Standard 754-1985.

Implementation: if FSR.NS is set to one, the subnormal operand and results cases identified
for implementation dependency #3 above, are flushed to zero.

19. FPU version, FSR.ver

Description: bits 19:17 of the FSR, FSR.ver, identify one or more implementations of
the FPU architecture.

Implementation: on UltraSPARC-I the FSR.VER field is set to zero.

20 - 21. Reserved

22. FPU TEM. cexc. and aexc

Description: an implementation may choose to implement the TEM, cexc, and aexc
fields in hardware in either of two ways (see section 5.1.7.11 of SPARC-
V9 Architecture Manual for details).

Implementation: UltraSPARC-I implements the TEM, cexc and aexc fields in conformance
to IEEE Std 754-1985.

23. Floating-point traps

Description: floating point traps may be precise or deferred. If deferred, a floating point
deferred-trap queue (FQ) must be present.

Implementation: UltraSPARC-I floating-point traps are precise and it does not implement

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 49

an FQ.

24. FPU deferred-trap queue (FQ)

Description: the presence, contents of, and operations on the floating-point deferred-trap
queue (FQ) are implementation-dependent.

Implementation: UltraSPARC-I does not implement an FQ.

25. RDPR of FQ with nonexistent FQ

Description: on implementations without a floating-point queue, an attempt to read the
FQ with an RDPR instruction shall cause either an illegal_instruction
exception or an fp_exception_other exception with FSR.Ftt set to 4
(sequence_error).

Implementation: attempting to read the FQ with a RDPR instruction causes an
illegal_instruction exception.

26 - 28. Reserved

29 Address space identifier (ASI) definitions

Description: the following ASI assignments are implementation-dependent: restricted
ASIs (all values hex) 00..03.05..0B. 0D..0F, 12..17, and 1A..7F; and unre-
stricted ASIs C0..FF..

Implementation: UltraSPARC-I ssigns the following implementation-dependent ASI
values.

restricted ASI values (all values hex):

14, 15, 1C, 1D, 24, 2C, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 5A, 5B, 5C, 5D, 5E, 5F, 66, 67, 6E, 6F, 70, 71,
76, 77, 78, 79, 7E, 7F

restricted ASI values (all values hex):

SPARC International STP1030BGA-UltraSPARC-I

50 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

C0, C1, C2, C3, C4, C5, C8, C9, CA, CB, CC, CD, D0, D1, D2, D3, D8,
D9, DA, DB, E0, E1, F0, F1, F8, F9

30. ASI address decoding

Description: an implementation may choose to decode only a subset of the 8-bit ASI
specifier; however, it shall decode at least enough of the ASI to distinguish
ASI_PRIMARY, ASI_PRIMARY_LITTLE,
ASI_AS_IF_USER_PRIMARY,ASI_AS_IF_USER_PRIMARY_LITTLE
ASI_PRIMARY_NOFAULT, ASI_PRIMARY_NOFAULT_LITTLE,
ASI_SECONDARY, ASI_SECONDARY_LITTLE,
ASI_AS_IF_USER_SECONDARY,
ASI_AS_IF_USER_SECONDARY_LITTLE,
ASI_SECONDARY_NOFAULT_LITTLE. If AFI_NUCLEUS and
ASI_NUCLEUS_LITTLE are supported (impl. dep. #124), they must be
decoded also. Finally, an implementation must always decode ASI bit<7>
while PSTATE.PRIV = 0, S0 so that an attempt by nonprivileged software
to access a restricted ASI will always cause a privileged_action exception.

Implementation: UltraSPARC-I decodes the entire 8-bit ASI specifier.

31. Catastrophic error exceptions

Description: the causes and effects of catastrophic error exceptions are implementation-
dependent. They may cause precise, deferred or disrupting traps.

Implementation: UltraSPARC-I catastrophic error exceptions cause deferred traps. The
PSTATE.RED bit is not automatically set in hardware for any catastrophic
error exceptions other than when trapping to MAXTL-1.

32. Deferred traps

Description: whether any deferred traps (and associated deferred-trap queues) are
present is implementation-dependent.

Implementation: UltraSPARC-I may encounter deferred traps during memory accesses.
Such errors lead to termination of the currently executing process or result
in a system reset if system state has been corrupted. Error logging inform-
ation allows software to determine if the system state has been corrupted.

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 51

33. Trap precision

Description: exceptions that occur as the result of program execution may be precise or
deferred, although it is recommended that such exceptions be precise.
Examples include mem_address_not_aligned and division_by_zero.

Implementation: all of the exceptions listed in the SPARC-V9 Architecture Manual section
7.3.5, item (2) are precise with the exception of instruction_access_erreor,
which is deferred.

34. Interrupt clearing

Description: how quickly a processor responds to an interrupt request and the method by
which an interrupt request is removed are implementation-dependent.

Implementation: The response time to interrupt is dependent the activity the processor is
is executing at the time the interrupt is received (e.g., whether executing a
trap handler with PSTATE.IE=0, etc.). The interrupt request is removed by
clearing a bit in the implementation-dependent interrupt vector receive reg-
ister.

35. Implementation-dependent traps

Description: trap type (TT) values 060 (hex)..07f(hex)are reserved for implementation-
dependent exceptions. The existence of implementation_dependent_n traps
and whether any that do exist are precise, deferred, or disrupting is imple-
mentation-dependent.

Implementation: the following implementation-dependent trap types are implemented on
UltraSPARC-I.

TT (hex) Exception Category

060 interrupt_vector disrupting

061 PA_watchpoint disrupting

062 VA_watchpoint disrupting

SPARC International STP1030BGA-UltraSPARC-I

52 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

36. Trap priorities

Description: the priorities of the particular traps are relative and are implementation-
dependent, because a future version of the architecture may define new
traps, and implementations may define implementation-dependent traps
that establish new relative priorities.

Implementation: UltraSPARC-I traps are prioritized relative to each other according to the
relative priorities in the SPARC-V9 Manual.

37. Reset trap

Description: some of a processor’s behavior during a reset trap is implementation-
dependent.

Implementation: UltraSPARC-I conforms to the required behavior during a reset trap.
Unspecified behavior is either defined during reset or specified as requiring
initialization.

38. Effect of reset trap on implementation-dependent registers

Description: implementation-dependent registers may or may not be affected by the var-
ious reset traps.

Implementation: Implementation-dependent registers on UltraSPARC-I either have defined
behavior during reset traps or are specified as requiring initialization.

39. Entering error_state on implementation-dependent errors

063 corrected_ECC_error disrupting

064...067 fast_instruction_access_MMU_miss precise

068..06B fast_data_access_MMU_miss precise

06C..06F fast_data_access_protection precise

TT (hex) Exception Category

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 53

Description: the processor may enter error_state when an implementation-dependent
error condition occurs.

Implementation: UltraSPARC-I enters error_state only by trapping when TL = MAXTL.
Any type of trap may cause this.

40. Error_state processor state

Description: what occurs after error_state is entered in implementation-dependent, but it
is recommended that as much processor state as possible be preserved upon
entry to error_state.

Implementation: Entering error_state causes UltraSPARC-I to trigger a watchdog_reset trap.
As much state as possible is preserved during this action.

41. Reserved

42. FLUSH instruction

Description: if flush is not implemented in hardware, it causes an illegal_instruction
exception and its function is performed by system software. Whether
FLUSH traps is implementation-dependent.

Implementation: UltraSPARC-I implements FLUSH in hardware and it can cause a
data_access_exception if the page is mapped with side effects or no-fault-
only bits set, virtual address out of range, privilege violation, or a
data_access_MMU_miss trap.

43. Reserved

44. Data access FPU trap

Description: if a load floating-point instruction traps with any type of access error
exception, the contents of the destination floating-point register(s0 either
remain unchanged or are undefined.

Implementation: access error exceptions on floating-point load instructions leave the desti-
nation floating-point register contents unchanged.

SPARC International STP1030BGA-UltraSPARC-I

54 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

45-46. Reserved

47. RDASR

Description: RDASR instructions with rd in the range 16..31 are available for imple-
mentation-dependent uses (impl. dep #8). For an RDASR instruction with
rs1 in the range 16..31, the following are implementation-dependent: the
interpretation of bits 13:0 and 29:25 in the instruction, whether the instruc-
tion is privileged (impl. dep. #9), and whether the instruction is privileged
(impl. dep. #9), and whether it causes and illegal_instruction trap.

Implementation: the bit fields specified above are not used for UltraSPARC-I implementa-
tion-dependent RDASR instructions. Reads of unused rs1 values and reads
of write-only implementation-dependent ASRs cause illegal_instruction
traps

48. WRASR

Description: WRASR instructions with rd in the range 16..31 are available for imple-
mentation-dependent uses (impl.dep.#8). For a WRASR instruction with
rd in the range 16..31, the following are implementation-dependent: the
interpretation of bits 18:0 in the instruction, the operation(s) performed (for
example, xor) to generate the value written to the ASR, whether the
instruction is privileged (impl. dep.#9), and whether it causes an
illegal_instruction trap.

Implementation: UltraSPARC-I does not interpret bits 18:0 of the WRASR instruction.
Using WRASR to the SET_SOFTINT and CLEAR_SOFTINT ASRs will
set and clear (respectively) bits in the SOFTINT_REG ASR. Writes of the
unused ASR values cause illegal_instruction traps.

49-54. Reserved

55. Floating-point underflow detection

Description: whether “tininess” (in IEEE 754 terms) is detected before or after rounding
is implementation-dependent. It is recommended that tininess be detected
before rounding.

Implementation: UltraSPARC-I detects underflow before rounding.

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 55

56 - 100. Reserved

101. Maximum trap level

Description: it is implementation-dependent how many additional levels, if any, past
level 4 are supported.

Implementation: UltraSPARC-I implements 5 trap levels.

102. Clean window trap

Description: an implementation may choose either to implement automatic “cleaning”
of register windows in hardware, or generate a clean_window trap, when
needed, for window(s) to be cleaned by software.

Implementation: UltraSPARC-I cleans register windows by generating a clean_window trap
for windows to be cleaned by software.

103. Prefetch instructions

Description: the following aspects of the PREFETCH and PREFETCHA instructions
are implementation-dependent: (1) whether they have an observable effect
in privileged code; (2) whether they can cause a data_access_MMU_miss
exception; (3) the attributes of the block of memory prefetched: its size
(minimum = 64 bytes) and its alignment (minimum = 64 byte alignment);
(4) whether each variant is implemented as NOP, with its full semantics,
or with common-case prefetching semantics; (5) whether and how variants
16..31 are implemented.

Implementation: on UltraSPARC-I, PREFETCH and PREFETCHA have the same observ-
able effect as a NOP in both privileged and nonprivileged modes.

104. VER.manuf
Description: VER.manuf contains a 16-bit semiconductor manufacturer code. This field

is optional, and if not present reads a zero. VER.manuf may indicate the
original supplier of a second-sourced chip in cases involving mask-level

SPARC International STP1030BGA-UltraSPARC-I

56 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

second-sourcing. It is intended that the contents of VER.manuf track the
JEDEC semiconductor manufacturer code as closely as possible. If the
manufacturer does not have a JEDEC semiconductor manufacturer code,
SPARC International will assign a VER.manuf value.

Implementation: UltraSPARC-I uses the manufacturer code 0017(hex)

105. TICK register

Description: the difference between the values read from the TICK register on two reads
should reflect the number of processor cycles executed between the reads.
If an accurate count cannot always be returned, an inaccuracy should be
small, bounded, and documented. An implementation may implement
fewer than 63 bits in TICK.counter; however, the counter as implemented
must be able to count for at least 10 years without overflowing. Any upper
bits not implemented must be read as zero.

Implementation: UltraSPARC-I implements 63 bits of TICK.counter and reflects the number
of processor clocks between reads.

106. IMPDEP1 instructions

Description: the IMPDEP1 and IMPDEP2 instructions are completely implementation-
dependent. Implementation-dependent aspects include their operation, the
interpretation of bits 29:25 and 18:0 in their encodings, and which (if any)
exceptions they may cause.

Implementation: UltraSPARC-I implements implementation-dependent instructions using
the following field values:

op op3 opf

10 110110 010000000

10 110110 001010000

10 110110 001010001
10 110110 001010010
10 110110 001010011
10 110110 001010100
10 110110 001010101
10 110110 001010110

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 57

10 110110 001010111

10 110110 000111011
10 110110 000111010
10 110110 000111101
10 110110 001001101
10 110110 001001011

10 110110 000110001
10 110110 000110011
10 110110 000110101
10 110110 000110110
10 110110 000110111
10 110110 000111000
10 110110 000111001

10 110110 000011000
10 110110 000011010
10 110110 001001000

10 110110 001100000
10 110110 001100001
10 110110 001111110
10 110110 001111111
10 110110 001110100
10 110110 001110101
10 110110 001111000
10 110110 001111001
10 110110 001101010
10 110110 001101011
10 110110 001100110
10 110110 001100111
10 110110 001111100
10 110110 001111101
10 110110 001100010
10 110110 001100011
10 110110 001110000
10 110110 001110001
10 110110 001101110
10 110110 001101111
10 110110 001101100
10 110110 001101101
10 110110 001110010
10 110110 001111010
10 110110 001111011

SPARC International STP1030BGA-UltraSPARC-I

58 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

10 110110 001110110
10 110110 001110110
10 110110 001110111
10 110110 001101000
10 110110 001101001
10 110110 001100100
10 110110 001100101

10 110110 000101000
10 110110 000101100
10 110110 000100000
10 110110 000100100
10 110110 000100010
10 110110 000100110
10 110110 000101010
10 110110 000101110

10 110110 000000000
10 110110 000000010
10 110110 000000100
10 110110 000000110
10 110110 000001000
10 110110 000001010

10 110110 000111110

10 110110 000010000
10 110110 000010010
10 110110 000010100

107. Unimplemented LDD trap

Description: it is implementation-dependent whether LDD and LDDA are implemented
in hardware. If not, an attempt to execute either will cause an
unimplemented_LDD trap.

Implementation: UltraSPARC-I implements LDD and LDDA in hardware.

108. Unimplemented STD trap

Description: it is implementation-dependent whether STD and STDA are implemented
in hardware. If not, an attempt to execute either will cause an

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 59

unimplemented_STD trap.

Implementation: UltraSPARC-I implements STD and STDA in hardware.

109. LDDF_mem_address_not_aligned

Description: LDDF and LDDFA require only word alignment. However, if the effective
address is word-aligned but not doubleword-aligned, either may cause an
LDDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDDF (or LDDFA) instruction and return.

Implementation: UltraSPARC-I generates an LDDF_mem_address_not_aligned exception
if an LDDF or LDDFA effective address is word-aligned but not double-
word-aligned.

110. STDF_mem_address_not_aligned

Description: STDF and STDFA require only word alignment. However, if the effective
address is word-aligned but not doubleword-aligned, either may cause an
STDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STDF (or STDFA) instruction and return.

Implementation: UltraSPARC-I generates an STDF_mem_address_not_aligned exception if
an STDF or STDFA effective address is word-aligned but not doubleword-
aligned.

111. LDQF_mem_address_not_aligned

Description: LDQF and LDQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
LDQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDQF (or LDQFA) instruction and return.

Implementation: UltraSPARC-I does not implement the LDQF and LDQFA in hardware,
they must be emulated in software using other instructions.

112. STQF_mem_address_not_aligned

SPARC International STP1030BGA-UltraSPARC-I

60 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Description: STQF and STQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
STQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STQF (or STQFA) instruction and return.

113. Implemented memory models

Description: whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO)
models are supported is implementation-dependent.

Implementation: UltraSPARC-I supports the Partial Store Order and Relaxed Memory Order
models.

114. RED_state trap vector address (RSTVaddr)

Description: the RED_state trap vector is located at an implementation-dependent
address referred to as RSTVaddr.

Implementation: RSTVaddr = 1fff0000000 (hex)

115. RED_state processor state

Description: what occurs after the processor enters RED_state is implementation-
dependent.

Implementation: On UltraSPARC-I some register contents are forced to specified values
and some hardware functions are disabled upon entering RED_state to
avoid as much as possible any additional traps which would cause the
processor to enter error_state.

116. SIR_enable control flag

Description: the location of and the means of accessing the SIR_enable control flag are
implementation-dependent. In some implementations, it may be perma-
nently zero.

Implementation: the SIR_enable in UltraSPARC-I is permanently zero.

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 61

117. MMU disabled prefetch behavior

Description: whether Prefetch and Non-faulting Load always succeed when the MMU is
disabled is implementation-dependent.

Implementation: prefetch instructions behave as NOP instructions. Non-faulting Load
instructions may or may not succeed when the MMU is disabled depending
on the state of an implementation-dependent register determining
whether the cache is enabled.

118. Identifying I/O locations

Description: the manner in which I/O locations are identified is implementation- depen-
dent.

Implementation: For systems using UltraSPARC-I, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implem-
entation, not the processor implementation.

119. Unimplemented values for PSTATE.MM

Description: the effect of writing an unimplemented memory-mode designation into
PSTATE.MM is implementation-dependent.

Implementation: UltraSPARC-I implements all three memory modes specified in the
SPARC Architecture Manual Version 9. If the reserved PSTATE.MM value
(3) were written, UltraSPARC-I would interpret it as RMO.

120. Coherence and atomicity of memory operations

Description: the coherence and atomicity of memory operations between processors and
I/O DMA memory accesses are implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor

SPARC International STP1030BGA-UltraSPARC-I

62 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

implementation for systems that use UltraSPARC-I.

121. Implementation-dependent memory model

Description: an implementation may choose to identify certain addresses and use an
implementation-dependent memory model for references to them.

Implementation: UltraSPARC-I does not use any implementation-dependent memory
models.

122. FLUSH latency

Description: latency between the execution of FLUSH on one processor and the point at
which the modified instructions have replaces out-dated instructions in a
multiprocessor is implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor
implementation for systems that use UltraSPARC-I.

123. Input/output (I/O) semantics

Description: the semantic effect of accessing input/output (I/O) registers is implement-
ation-dependent.

Implementation: For systems using UltraSPARC-I,I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation.

124. Implicit ASI when TL>0

Description: when TL>0, the implicit ASI for instruction fetches, loads, and stores is
implementation-dependent. See SPARC-V9 Architecture Manual section
F.4.4, “Contexts,” for more information.

Implementation: the implicit ASI for instruction fetches, loads, and stores when TL>0 is
ASI_PRIMARY.

SPARC International STP1030BGA-UltraSPARC-I

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 63

125. Address masking

Description: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-
mitted to the specified destination register(s) by CALL, JMPL, RDPC, and
on a trap is implementation-dependent.

Implementation: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-
mitted to the specified destination register(s) by CALL, IMPL, RDPC, and
on a trap is zero.

126. TSTATE bits 19:18

Description: If PSTATE bit 11 (10) is implemented, TSTATE bit 9 (18) shall be imple-
mented and contain the state of PSTATE bit 11 (10) from the previous
trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18)
shall read as zero. Software intended to run on multiple implementations
should only write these bits to values previously read from PSTATE, or
to zeros.

Implementation: UltraSPARC-I implements TSTATE bits 19:18 to hold the state of PSTATE
bits 11:10 for each previous trap level.

127. PSTATE bits 11:10

Description: The presence an semantics of PSTATE.PID1 and PSTATE.PID0 are
implementation-dependent. The presence of TSTATE bits 19 and 18 is
implementation-dependent. If PSTATE bit 11 (10) is implemented,
TSTATE bit 19 (18) shall be implemented and contain the state of PSTATE
bit 11 (10) from the previous trap level. If PSTATE bit 11 (10) is not imple-
mented, TSTATE bit 19 (18) shall read as zero. Software intended to run on
multiple implementations should only write these bits to values previously
read from PSTATE, or to zeros.

Implementation: PSTATE.PID1 and PSTATE.PID0 are implemented on UltraSPARC-I as
selects for two additional sets of eight trap global registers. The corre-
sponding bits in the TSTATE register are implemented to store these bits
for the previous trap level.

SPARC International STP1030BGA-UltraSPARC-I

64 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Chapter 3: HAL Implementation of V9 Architecture

SPARC 64-II

V9
SPARC INTERNATIONAL

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 67

CHAPTER 3: HAL SPARC64-II

0. Introduction

This document describes the implementation details of the SPARC64-II processor developed
by HAL Computer Systems. The items listed below correspond to the implementation depen-
dencies as listed in the text and by number in Appendix C of “The SPARC Architecture Man-
ual - Version 9” by SPARC International, along with the description of the implementation
dependency. The “Implementation” section for each item describes the implementation on the
SPARC64 processor.

1. Software emulated instructions

Description:
Whether an instruction is implemented directly by hardware, simulated by software, or emu-

lated by firmware is implementation-dependent.

Implementation:
Sparc64 does not implement the following instructions in hardware:

• All floating point instructions with quad operands or results
These operations will take an fp_exception_other trap with FSR.ftt = unimplemented_FPop.
The kernel will then emulate the quad operation and store the result into a quad-aligned set of
floating-point registers as defined by Sparc-V9 manual.

• fsqrtd, fsqrts
Executing these instructions will cause a fp_exception_other exception with FSR.ftt =
unimplemented_FPop. In this case kernel emulation routines are provided to complete the
instructions.

• flush
This instruction will cause an illegal_instruction trap if executed. Kernel emulation routines
will be provided to flush the cache line from the data cache and invalidate any matching cache
lines in the instruction cache.

• ldd, ldda, std, stda
Executing these instructions in normal mode would generate unimplemented_LDD and
unimplemented_STD trap. Kernel emulation routines will be provided to complete the instruc-
tions. Sparc64 also implements a special accelerated emulation trap handling for certain LDD
and STD instructions, if a special mode is chosen.

• popc
This instruction will cause an illegal_instruction trap if executed. Kernel emulation routines
will be provided to complete the action.

SPARC International SPARC 64-II

68 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

2. Number of IU registers

Description:
An implementation of the IU may contain from 64 to 528 general purpose 64 bit r registers.

This corresponds to a grouping of the registers into two sets of eight global
r registers, plus a circular stack of from 3 to 32 sets of 16 registers each,
known as register windows. Since the number of register windows present
(NWINDOWS) is implementation-dependent, the total number of registers
is also implementation-dependent.

Implementation:
Sparc64 implements 5 16-register sets (windows) in hardware. Thus there are a total of 96

integer registers visible to software. They are:
• 8 global registers
• 8 alternate global registers
• 5 windows of 16 registers each (=80 registers)

3. Incorrect IEEE Std 754-1985 results

Description:
An implementation may indicate that a floating-point instruction did not produce a correct

ANSI/IEEE Standard 754-1985 result by generating a special floating-
point unfinished or unimplemented exception. In this case, privileged mode
software shall emulate any functionality not present in the hardware.

Implementation:
Sparc64 in conjunction with the kernel emulation code produces the correct IEEE 754 results

required in this section.
• Traps Inhibit Results

Sparc64 in conjunction with the kernel emulation code produces results required.
• Trapped Underflow Definition (UFM=1)

Sparc64 detects “tininess” before rounding as recommended.
• Untrapped Underflow Definition (UFM=0)

Sparc64 meets these requirements with some help from the kernel divide fixup code.
• Floating-Point Nonstandard Mode

Sparc64 FPU is “standard”, and therefore does not support a nonstandard mode.

4-5. Reserved

6. I/O registers privileged status

Description:
Whether I/O registers can be accessed by non privileged code is implementation-dependent.

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 69

Implementation:
In Sparc64 some I/O registers can be accessed by non privileged code.

7. I/O register definitions

Description:
The contents and addresses of I/O registers are implementation-dependent.

Implementation:
Please contact HaL for details of I/O registers.

8,9. RDASR/WRASR target registers and privileged status

Description:
Software can use read/write ancillary state register instructions to read/write implementation-

dependent processor registers (ASRs 16-31).

Whether each of the implementation-dependent read/write ancillary state register instructions
(for ASRs 16-31) is privileged is implementation dependent.

Implementation:
Sparc64 implements 9 implementation-dependent ASR registers.

• PIO Address Match Register (ASR23)
This privileged read/write register is used to specify a range of addresses which
force program ordering for all LD and ST instructions which are within this range.

• LDD Trap Base Address (ASR24)
This privileged read/write register specifies a special trap base address for some
unimplemented_LDD and unimplemented_STD traps.

• Instruction Emulation Register (ASR25)
This read only register is written by CPU on a trap for a LDD/STD that uses the LDD Trap
Base Address described above.

• Data Breakpoint Register (ASR26)
This privileged write-only register is used to trap any data accesses to a double word aligned
breakpoint address.

• Software Initiated Reset (ASR27)
A write to this register with a WRASR instruction will cause a software initiated reset (SIR).
An SIR is a precise trap. ASR27 is privileged and write-only.

• Fault Address Register (ASR28) and Fault Access Type (ASR29)
These registers facilitate the handling of traps that involve a data memory access. The registers
are privileged and read-only. System software must take care to read these registers on entry to
a fault handler before any other fault can occur that would overwrite them.

• Performance Monitor Register (ASR30)
This privilege read/write register is used to evaluate processor performance.

• State Control Register (ASR31)

SPARC International SPARC 64-II

70 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

ASR31 is a 16bit implementation specific register that contains a set of flags for controlling
the state of the CPU, MMU and Caches. The register is privileged and can be read/written.

10-12 Reserved

13. VER.impl

Description:
VER.impl uniquely identifies an implementation or class of software-compatible implementa-

tions of the architecture. Values FFF0(hex)..FFFF(hex) are reserved and
are not available for assignment.

Implementation:
Sparc64 uses a version number of 2.

14-15 Reserved

16. IU deferred-trap queue

Description:
The existence, contents, and operation of an IU deferred-trap queue are implementation-

dependent; it is not visible to user application programs under normal oper-
ating conditions

Implementation:
Sparc64 does not need and therefore does not implement an IU deferred-trap queue.

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description:
Bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the FPU to produce

implementation-defined results that may not correspond to IEEE Standard
754-1985.

Implementation:
Sparc64 FPU is “standard”, and therefore does not support a nonstandard mode.

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 71

19. FPU version, FSR.ver

Description:
Bits 19:17 of the FSR, FSR.ver, identify one or more implementations of the FPU architec-

ture.

Implementation:
Sparc64 uses the value of 0 for this field.

20-21. Reserved

22. FPU TEM, cexc, and aexc

Description:
An implementation may choose to implement the TEM, cexc, and aexc fields in hardware in

either of two ways (see section 5.1.7.11 of SPARC-V9 Architecture Man-
ual for details).

Implementation:
Sparc64 implements TEM, cexc and aexc fields of FSR conforming to IEEE Std. 754-1985.

23. Floating-point traps

Description:
Floating point traps may be precise or deferred. If deferred, a floating point deferred-trap

queue (FQ) must be present.

Implementation:
The only deferred traps in Sparc64 are: fp_exception_other (ftt = unfinished_FPop) for FDIV

with unusual arguments and the data_breakpoint trap. Sparc64 does not
need a floating-point deferred-trap queue because the FDIV that caused the
trap is the only deferred instruction.

24. FPU deferred-trap queue (FQ)

Description:
The presence, contents of, and operations on the floating-point deferred-trap queue (FQ) are

implementation-dependent.

Implementation:
Sparc64 does not have or need a floating-point deferred-trap queue.

SPARC International SPARC 64-II

72 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

25. RDPR of FQ with nonexistent FQ

Description:
On implementations without a floating-point queue, an attempt to read the FQ with an RDPR

instruction shall cause either an illegal_instruction exception or an
fp_exception_other exception with FSR.ftt set to 4 (sequence_error).

Implementation:
A RDPR of %FPQ instruction will cause an illegal_instruction trap.

26-28. Reserved

29,30. Address space identifier (ASI) definitions and ASI address decoding

Description:
The following ASI assignments are implementation-dependent: restricted ASIs (all values

hex) 00..03, 05..0B, 0D..0F, 12..17, and 1A..7F; and unrestricted ASIs
C0..FF.

An implementation may choose to decode only a subset of the 8-bit ASI specifier; however, it
shall decode at least enough of the ASI to distinguish ASI_PRIMARY,
ASI_PRIMARY_LITTLE, ASI_AS_IF_USER_PRIMARY,
ASI_AS_IF_USER_PRIMARY_LITTLE, ASI_PRIMARY_NOFAULT,
ASI_PRIMARY_NOFAULT_LITTLE, ASI_SECONDARY,
ASI_SECONDARY_LITTLE, ASI_AS_IF_USER_SECONDARY,
ASI_AS_IF_USER_SECONDARY_LITTLE,
ASI_SECONDARY_NOFAULT, and
ASI_SECONDARY_NOFAULT_LITTLE. If ASI_NUCLEUS and
ASI_NUCLEUS_LITTLE are supported (impl. dep. #124), they must be
decoded also. Finally, an implementation must always decode ASI bit<7>
while PSTATE.PRIV = 0, so that an attempt by nonprivileged software to
access a restricted ASI will always cause a privileged_action exception.

Implementation:
The encoding of ASIs in the Sparc64 processor is shown below:

NR V (M3) PO AS_IF LE M2 M1 M0

 7 6 5 4 3 2 1 0

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 73

• NR (Non-Restricted). This bit conforms to Sparc V9 definition. An attempt to use a restricted
ASI in non-privileged mode results in a privileged_action trap.

• V (Vendor-specific). This bit conforms to Sparc V9 definition for non-restricted ASIs that are
implementation-dependent (0xc0 - 0xff). This bit will be set in all ASIs that are specific to
Sparc64.

• PO (Program Order). An instruction using an ASI with this bit set is executed by Sparc64
strictly in program order.

• AS_IF. This bit conforms to Sparc V9 requirement that there be an implementation specific
ASI encoding that allows the corresponding access to be made as if the CPU were executing
in non-privileged mode, independent of PSTATE.PRIV.

• LE. This bit conforms to Sparc V9 definition of ASIs that specify little-endian byte ordering.
If this bit is set to zero, the access is done using big-endian byte ordering.

• M2..M0. These bits are interpreted by the Sparc64 MMU.

Sparc64 does not support a nucleus context and hence does not decode ASI_NUCLEUS and
ASI_NUCLEUS_LITTLE.

31. Catastrophic error exceptions

Description:
The causes and effects of catastrophic error exceptions are implementation-dependent. They

may cause precise, deferred or disrupting traps.

Implementation:
An internal CPU watchdog time-out occurs after no instruction has been committed for 2**n

cycles (n can be scan initialized to one of {12,14,16,18,19,20,21,22,24},
with 24 being the default value). This would take the processor into error
state.

32. Deferred traps

Description:
Whether any deferred traps (and associated deferred-trap queues) are present is implementa-

tion-dependent.

Implementation:
Sparc64 implements a deferred trap for the following trap types:

• fp_exception_other (when FSR.ftt = unfinished_FPop).
• data_breakpoint.

Deferred trap queues are not necessary, since the trapping instruction is the only deferred
instruction.

SPARC International SPARC 64-II

74 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

33. Trap precision

Description:
Exceptions that occur as the result of program execution may be precise or deferred, although

it is recommended that such exceptions be precise. Examples include
mem_address_not_aligned and division_by_zero.

Implementation:
Sparc64 will generate a precise trap for all traps induced by instruction execution, except for

unfinished_FPop, data_breakpoint and Chip_crossing_errors (CPU_xing).

34. Interrupt clearing

Description:
How quickly a processor responds to an interrupt request and the method by which an inter-

rupt request is removed are implementation-dependent.

Implementation:
When Sparc64 is ready to accept an interrupt signal (based on PSTATE.IE and the PIL), it

stops issuing instructions and waits for the CPU to quiesce. It then issues
instructions from the corresponding trap handler if the interrupt condition
is still valid. The TPC points to the instruction that would have executed in
the absence of the interrupt. All instructions prior to the TPC have com-
pleted and all instructions including and subsequent to TPC remain unexe-
cuted.

35,36. Implementation-dependent traps and priorities

Description:
Trap type (TT) values 060(hex)..07f(hex) are reserved for implementation-dependent excep-

tions. The existence of implementation_dependent_n traps and whether
any that do exist are precise, deferred, or disrupting is implementation-
dependent.

The priorities of the particular traps are relative and are implementation-dependent, because a
future version of the architecture may define new traps, and implementa-
tions may define implementation-dependent traps that establish new rela-
tive priorities.

Implementation:
The following trap types defined by Sparc-V9 are not used in Sparc64.

• instruction_access_MMU_miss.
• internal_processor_error

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 75

• data_access_MMU_miss.
• LDQF_mem_address_not_aligned.
• STQD_mem_address_not_aligned.
• async_data_error.

Sparc64 defines the following implementation-dependent trap types.

• programmed_emulation_trap (tt=0x60, priority = 6, precise).
• data_breakpoint (tt=0x61, priority = 14, deferred).
• IO_parity (tt=0x62, priority = 2, precise).
• RED_alert (tt=0x63, priority = 2, disrupting).
• CPU_xing (tt=0x64, priority = 2, disrupting).
• Watchdog (tt=0x65, priority = 1, disrupting).
• ECC_trap (tt=0x66, priority = 2, precise).

Sparc64 implements a special accelerated emulation trap for certain LDD and STD instruc-
tions.

37. Reset trap

Description:
Some of a processor’s behavior during a reset trap is implementation-dependent.

Implementation:
Power-on Reset (POR) and Watchdog reset (WDR) are implemented by scanning in the reset

state on Sparc64.

38. Effect of reset trap on implementation-dependent registers

Description:
Implementation-dependent registers may or may not be affected by the various reset traps.

Implementation:
None of the implementation-dependent registers are affected by reset traps in Sparc64.

39. Entering error_state on implementation-dependent errors

Description:
The processor may enter error_state when an implementation-dependent error condition

occurs.

Implementation:
An internal CPU watchdog time-out occurs after no instruction has been committed for 2**n

cycles (n can be scan initialized to one of {12,14,16,18,19,20,21,22,24},

SPARC International SPARC 64-II

76 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

with 24 being the default value). This would take the processor into error
state.

40. Error_state processor state

Description:
What occurs after error_state is entered is implementation-dependent, but it is recommended

that as much processor state as possible be preserved upon entry to
error_state.

Implementation:
On entry to error state, Sparc64 asserts the output signal CPU_HALTED. The clock chip in

the HaL system stops the clocks to the CPU in response to this signal. A
scan out of processor state could be performed at this stage for diagnosis.

41. Reserved

42. FLUSH instruction

Description:
If flush is not implemented in hardware, it causes an illegal_instruction exception and its func-

tion is performed by system software. Whether FLUSH traps is implemen-
tation-dependent.

Implementation:
Sparc64 takes an illegal_instruction trap when a FLUSH instruction is executed.

43. Reserved

44. Data access FPU trap

Description:
If a load floating-point instruction traps with any type of access error exception, the contents

of the destination floating-point register(s) either remain unchanged or are
undefined.

Implementation:
Contents of destination floating-point register(s) remain unchanged.

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 77

45-46. Reserved

47. RDASR

Description:
RDASR instructions with rd in the range 16..31 are available for implementation-dependent

uses (impl. dep #8). For an RDASR instruction with rs1 in the range 16..31,
the following are implementation-dependent: the interpretation of bits 13:0
and 29:25 in the instruction, whether the instruction is privileged (impl.
dep. #9), and whether it causes an illegal_instruction trap.

Implementation:
See items 8,9 for details. Sparc64 causes an illegal_instruction trap for reads of the unused

ASR values.

48. WRASR

Description:
WRASR instructions with rd in the range 16..31 are available for implementation-dependent

uses (impl. dep. #8). For a WRASR instruction with rd in the range 16..31,
the following are implementation-dependent: the interpretation of bits 18:0
in the instruction, the operation(s) performed (for example, xor) to generate
the value written to the ASR, whether the instruction is privileged (impl.
dep. #9), and whether it causes an illegal_instruction trap.

Implementation:
 See items 8,9 for details. Sparc64 causes an illegal_instruction trap for writes of the unused

ASR values.

49-54 Reserved

55. Floating-point underflow detection

Description:
Whether “tininess” (in IEEE 754 terms) is detected before or after rounding is implementa-

tion-dependent. It is recommended that tininess be detected before round-
ing.

Implementation:
Sparc64 detects “tininess” before rounding.

SPARC International SPARC 64-II

78 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

56-100. Reserved

101. Maximum trap level

Description:
It is implementation-dependent how many additional levels, if any, past level 4 are supported.

Implementation:
Sparc64 implements 4 levels of traps.

102. Clean window trap

Description:
An implementation may choose either to implement automatic “cleaning” of register windows

in hardware, or generate a clean_window trap, when needed, for window(s)
to be cleaned by software.

Implementation:
Sparc64 generates a clean_window trap, when needed, for windows to be cleaned by software.

103. Prefetch instructions

Description:
The following aspects of the PREFETCH and PREFETCHA instructions are implementation-

dependent: (1) whether they have an observable effect in privileged code;
(2) whether they can cause a data_access_MMU_miss exception; (3) the
attributes of the block of memory prefetched: its size (minimum = 64
bytes) and its alignment (minimum = 64-byte alignment); (4) whether each
variant is implemented as a NOP, with its full semantics, or with common-
case prefetching semantics; (5) whether and how variants 16..31 are imple-
mented.

Implementation:
(1) PREFETCH and PREFETCHA have identical affects in privileged or non-privileged code.
(2) Can not cause a data_access_MMU_miss exception
(3) Size and alignments are 128-bytes
(4),(5) See table-1

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 79

104. VER.manuf

Description:
VER.manuf contains a 16-bit semiconductor manufacturer code. This field is optional, and if

not present reads as zero. VER.manuf may indicate the original supplier of
a second-sourced chip in cases involving mask-level second-sourcing. It is
intended that the contents of VER.manuf track the JEDEC semiconductor
manufacturer code as closely as possible. If the manufacturer does not have
a JEDEC semiconductor manufacturer code, SPARC International will
assign a VER.manuf value.

Implementation:
Sparc64 uses a code of 4 for this field. This is Fujitsu’s JEDEC code.

105. TICK register

Description:
The difference between the values read from the TICK register on two reads should reflect the

number of processor cycles executed between the reads. If an accurate
count cannot always be returned, an inaccuracy should be small, bounded,
and documented. An implementation my implement fewer than 63 bits in
TICK.counter; however, the counter as implemented must be able to count

Table 2: Prefetch Data

fcn V9 Prefetch
Function

Sparc64
Function

 0 Prefetch for
several reads

Prefetch for
read

 1 Prefetch for
one read

Prefetch for
read

 2 Prefetch for
several writes

Prefetch for
write

 3 Prefetch for
one write

Prefetch for
write

 4 Prefetch page Prefetch for
read

 5-15 Reserved illegal_instru
ction trap

 16-31 Implementa-
tion depen-
dent

NOP

SPARC International SPARC 64-II

80 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

for at least 10 years without overflowing. Any upper bits not implemented
must be read as zero.

Implementation:
Sparc64 implements all the bits of TICK register and returns accurate count of the processor

cycles, in response to reads from TICK register.

106. IMPDEPn instructions

Description:
The IMPDEP1 and IMPDEP2 instructions are completely implementation-dependent. Imple-

mentation-dependent aspects include their operation, the interpretation of
bits 29:25 and 18:0 in their encoding, and which (if any) exceptions they
may cause.

Implementation:
Sparc64 uses IMPDEP2 to encode the HaL specific Floating Point Multiply-Add/Subtract

instructions. IMPDEP1 is not used and will cause an illegal_instruction
trap if such an opcode is encountered. Please refer to Sparc64 Processor
User Guide for more details.

107. Unimplemented LDD trap

Description:
It is implementation-dependent whether LDD and LDDA are implemented in hardware. If

not, an attempt to execute either will cause an unimplemented_LDD trap.

Implementation:
Sparc64 does not implement LDD and LDDA in hardware. It uses the unimplemented_LDD

trap. However in a special mode, there is partial support in hardware for
these instructions. Please refer to Sparc64 Processor User Guide for more
details.

108. Unimplemented STD trap

Description:
It is implementation-dependent whether STD and STDA are implemented in hardware. If not,

an attempt to execute either will cause an unimplemented_STD trap.

Implementation:
Sparc64 does not implement STD and STDA in hardware. It uses the unimplemented_STD

trap. However in a special mode, there is partial support in hardware for
these instructions. Please refer to Sparc64 Processor User Guide for more
details.

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 81

109. LDDF_mem_address_not_aligned

Description:
LDDF and LDDFA require only word alignment. However, if the effective address is word-

aligned but not doubleword-aligned, either may cause an
LDDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDDF (or LDDFA) instruction and return.

Implementation:
Sparc64 causes LDDF_mem_address_not_aligned trap for both word and double-word mis-

aligned addresses.

110. STDF_mem_address_not_aligned

Description:
STDF and STDFA require only word alignment. However, if the effective address is word-

aligned but not doubleword-aligned, either may cause an
STDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STDF (or STDFA) instruction and return.

Implementation:
Sparc64 causes STDF_mem_address_not_aligned trap for both word and double-word mis-

aligned addresses.

111. LDQF_mem_address_not_aligned

Description:
LDQF and LDQFA require only word alignment. However, if the effective address is word-

aligned but not quadword-aligned, either may cause an
LDQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDQF (or LDQFA) instruction and return.

Implementation:
Sparc64 generates fp_exception_other trap for LDQF, LDQFA instructions and kernel pro-

vides emulation routines to complete the load. It does not generate
LDQF_mem_address_not_aligned trap.

112. STQF_mem_address_not_aligned

Description:
STQF and STQFA require only word alignment. However, if the effective address is word-

aligned but not quadword-aligned, either may cause an
STQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STQF (or STQFA) instruction and return.

SPARC International SPARC 64-II

82 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation:
Sparc64 generates fp_exception_other trap for STQF, STQFA instructions and kernel pro-

vides emulation routines to complete the load. It does not generate
STQF_mem_address_not_aligned trap.

113. Implemented memory models

Description:
Whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO) models are sup-

ported is implementation-dependent.

Implementation:
Sparc64 supports Load/Store ordering (LSO) and Store ordering (STO). Partial Store Order

(PSO) is implemented using LSO and Relaxed Memory Order (RMO) is
implemented using STO.

114. RED_state trap vector address (RSTVaddr)

Description:
The RED_state trap vector is located at an implementation-dependent address referred to as

RSTVaddr.

Implementation:
Sparc64 has a scan only register that holds RSTVaddr.

115. RED_state processor state

Description:
What occurs after the processor enters RED_state is implementation-dependent.

Implementation:
Sparc64 has the following behavior in RED_state.

• The output signal RED_MODE is asserted indicating CPU is in RED_state.
• The CPU executes in sequential mode.
• On entry into and exit from RED_state, the CPU invalidates the on-chip instruction cache and

prefetch buffers.
• Off chip data and instruction caches are disabled.
• The MMU uses a special translation mechanism.
• All I/O accesses are disabled.
• Further red state errors are ignored.
• XIR, and Chip Crossing Errors are not masked and could cause a trap.

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 83

116. SIR_enable control flag

Description:
The location of and the means of accessing the SIR_enable control flag are implementation-

dependent. In some implementations, it may be permanently zero.

Implementation:
SIR_enable control flag is permanently zero in Sparc64.

117. MMU disabled prefetch behavior

Description:
Whether Prefetch and Non-faulting Load always succeed when the MMU is disabled is imple-

mentation-dependent.

Implementation:
In Sparc64, Prefetch and Non-faulting Loads will have undefined behavior if the MMU is dis-

abled.

118. Identifying I/O locations

Description:
The manner in which I/O locations are identified is implementation-dependent.

Implementation:
Please contact HaL Computer Systems for details of I/O operation.

119. Unimplemented values for PSTATE.MM

Description:
The effect of writing an unimplemented memory-mode designation into PSTATE.MM is

implementation-dependent

Implementation:
Sparc64 only the most significant bit of MM is used to determine the memory model; the least

significant bit is ignored. However, the system software should not use the
encoding ‘11’ since it is reserved for future SPARC-V9 extensions.

120. Coherence and atomicity of memory operations

Description:
The coherence and atomicity of memory operations between processors and I/O DMA mem-

ory accesses are implementation-dependent.

SPARC International SPARC 64-II

84 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation:
In Sparc64, coherence and atomicity of memory operations between processors and I/O DMA

memory accesses are variable and depend on the I/O device. Please contact
HaL Computer Systems for details.

121. Implementation-dependent memory model

Description:
An implementation may choose to identify certain addresses and use an implementation

dependent memory model for references to them.

Implementation:
In Sparc64, certain addresses use implementation dependent memory models for references to

them. Please contact HaL Computer Systems for details.

122. FLUSH latency

Description:
Latency between the execution of FLUSH on one processor and the point at which the modi-

fied instructions have replaced out-dated instructions in a multiprocessor is
implementation-dependent.

Implementation:
Not applicable since, Sparc64 does not support a multi-processor configuration.

123. Input/output (I/O) semantics

Description:
The semantic effect of accessing input/output (I/O) registers is implementation-dependent.

Implementation:
In Sparc64, the semantic effect of accessing input/output (I/O) registers is undefined.

124. Implicit ASI when TL>0

Description:
When TL > 0, the implicit ASI for instruction fetches, loads, and stores is implementation-

dependent. See SPARC-V9 Architecture Manual section F.4.4, “Contexts,”
for more information.

Implementation:
Sparc64 uses ASI_PRIMARY or ASI_PRIMARY_LITTLE for instruction fetches, loads and

stores when TL>0

SPARC International SPARC 64-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 85

125. Address masking

Description:
When PSTATE.AM = 1, the value of the high-order 32-bits of the PC transmitted to the speci-

fied destination registers(s) by CALL, JMPL, RDPC, and on a trap is
implementation-dependent.

Implementation:
When PSTATE.AM bit is set on Sparc64, a full 64-bit address is transmitted to the specified

destination registers by CALL, JMPL, RDPC and traps transmit all 64-bits
to TPC[n] and TNPC[n].

126. TSTATE bits 19:18

Description:
If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be implemented and contain

the state of PSTATE bit 11 (10) from the previous trap level. If PSTATE bit
11 (10) is not implemented, TSTATE bit 19 (18) shall read as zero. Soft-
ware intended to run on multiple implementations should only write these
bits to values previously read from PSTATE, or to zeroes.

Implementation:
Sparc64 does not implement PSTATE bits 10 & 11 and they are read as zeroes. TSTATE bits

19 and 18 are read as zeroes.

127. PSTATE bits 11:10

Description:
The presence and semantics of PSTATE.PID1 and PSTATE.PID0 are implementation-depen-

dent. The presence of TSTATE bits 19 and 18 is implementation-depen-
dent. If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be
implemented and contain the state of PSTATE bit 11 (10) from the previous
trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18)
shall read as zero. Software intended to run on multiple implementations
should only write these bits to values previously read from PSTATE, or to
zeroes.

Implementation:
Sparc64 does not implement PSTATE bits 10 & 11 and they are read as zeroes. TSTATE bits

19 and 18 are read as zeroes.

128. CLEANWIN register update
Earlier implementations of Sparc chips implemented the V9 specification for RESTORED

SPARC International SPARC 64-II

86 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

using the following equation to update CLEANWIN register:
 if (CLEANWIN != NWINDOWS) CLEANWIN++;
Subsequently V9 definition changed to modify the equation as:
 if (CLEANWIN < NWINDOWS-1) CLEANWIN++;

Sparc64 implements the RESTORED using the current definition. The Sparc64 Kernel will
ensure that CLEANWIN does not have a value beyond NWINDOWS-1.

Chapter 4: SUN Implementation of V9 Architecture

UltraSPARC - II

V9
SPARC INTERNATIONAL

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 89

CHAPTER 4: SUN ULTRASPARC II

0. Introduction

This document describes the implementation on the UltraSPARC-II processor developed by Sun
Microelectronics, a business unit of Sun Microsystems, Inc., of the implementation dependen-
cies as put forth in “The SPARC Architecture Manual - Version 9” by SPARC International. The
items listed below correspond to the implementation dependencies as listed in the text and by
number in Appendix C of the manual along with the description of the implementation depen-
dency from the manual. The “Implementation” section for each item describes the implementa-
tion on the UltraSPARC-II processor.

1. Software emulation of instructions

Description: whether an instruction is implemented directly by hardware, simulated by
software, or emulated by firmware is implementation-dependent.

Implementation: all instructions are implemented in hardware except the following, which
must be simulated by software.

POPC Population count
LDQF Load quad-precision FP register
LDQFA Load quad-precision FP register from alternate space
STQF Store quad-precision FP register
STQFA Store quad-precision FP register to alternate space
F{s,d}TOq Convert single-/double- to quad-precision FP
F{i,x}TOq Convert 32-/64-bit integer to quad-precision FP
FqTO{s,d} Convert quad- to single-/double-precision FP
FqTO{i,x} Convert quad-precision FP to 32-/64-bit integer
FADDq Quad-precision FP add
FSUBq Quad-precision FP subtraction
FCMP{E}q Quad-precision FP compares
FMOVqcc Move quad-precision FP register on condition
FMOVqr Move quad-precision FP register on integer register condition
FMOVq Move quad-precision FP register
FABSq Quad-precision FP absolute value
FNEGq Quad-precision FP negate
FdMULq Double- to quad-precision FP multiply
FMULq Quad-precision FP multiply

SPARC International STP1031LGA-UltraSPARC-II

90 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

FDIVq Quad-precision FP divide
FSQRTq Quad-precision FP square root

DONE for fcn = 2..31 executed in nonprivileged mode
RETRY for fcn = 2..31 executed in nonprivileged mode
SAVED for fcn = 2..31 executed in nonprivileged mode
RESTORED for fcn = 2..31 executed in nonprivileged mode

The DONE/RETRY/SAVED/RESTORED instructions with fcn = 2..31 executed in nonprivileged
mode will take a privileged_opcode trap rather than an illegal_instruction trap. The opcode can be
recognized by software to emulate the proper illegal_instruction behavior. This can be done with
SPARC code in the privileged_opcode trap handler that does the following

PRIVILEGED_OPCODE_HANDLER:
 rdpr %tpc, %g1
 ld [%g1], %g2
 setx 0xc1f80000, %g3, %g4
 and %g4, %g2, %g4 ! %g4 has op/op3 of trapping instr.
 setx 0x3e000000, %g3, %g6
 and %g6, %g2, %g6
 srl %g6, 25, %g6 ! %g6 has fcn of trapping instr.
check_illegal_saved_restored:
 setx 0x81880000, %g3, %g5
 subcc %g4, %g5, %g0 ! saved/restored opcode?
 bne check_illegal_done_retry
 subcc %g6, 2, %g0 ! illegal fcn value?
 bge ILLEGAL_HANDLER
 nop
check_illegal_done_retry:
 setx 0x81f00000, %g3, %g5
 subcc %g4, %g5, %g0 ! done/retry opcode?
 bne not_illegal
 subcc %g6, 2, %g0 ! illegal fcn value?
 bge ILLEGAL_HANDLER
 nop
not_illegal:
 <handle privileged_opcode exception as desired here>

2. Number of IU registers

Description: an implementation of the IU may contain from 64 to 258 general purpose
64 bit r registers. This corresponds to a grouping of the registers into two
sets of eight global r registers, plus a circular stack of from three to 32 sets
of 16 registers each, known as register windows. Since the number of regis-
ter windows present (NWINDOWS) is implementation-dependent, the
total number of registers is also implementation-dependent.

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 91

Implementation: UltraSPARC-II implements eight register windows plus four sets of eight
global r registers, for a total of 160 64 bit r registers.

3. Incorrect IEEE Std 754-1985 results

Description: an implementation may indicate that a floating-point instruction did not
produce a correct ANSI/IEEE Standard 754-1985 result by generating a
special floating-point unfinished or unimplemented exception. In this case,
privileged mode software shall emulate any functionality not present in the
hardware.

Implementation: the quad-precision floating-point instructions listed in implementation
dependency #1 above all generate floating-point unimplemented excep-
tions.

UltraSPARC-II generates floating-point unimplemented exceptions for the
following cases of subnormal operands or results.

Subnormal Operand Unimplemented Exception Cases:

F{s,d}TO{i,x} one subnormal operand

F{s,d}TO{i,x} one subnormal operand

FSQRT{s,d} one subnormal operand

FADD{s,d} one or two subnormal operands

FMUL{s,d}-25 < Er < 255 (SP) one subnormal operand -54 < Er < 2047 (DP) one subnor-
mal operand two subnormal operands

FDIV{s,d}-25 < Er < 255 (SP) one subnormal operand
-54 < Er < 2047 (DP) one subnormal operand
two subnormal operands

Subnormal Result Unimplemented Exception Cases:

FdTOs -25 < Er < 1 (SP)
-54 < Er < 1 (DP)

FADD{s,d}-25 < Er < 1 (SP)
-54 < Er < 1 (DP)

SPARC International STP1031LGA-UltraSPARC-II

92 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

FMUL{s,d}-25 < Er < 1 (SP)
-54 < Er < 1 (DP)

FDIV{s,d}-25 < Er <= 1 (SP)
-54 < Er <= 1 (DP)

Prediction of overflow, underflow and inexact traps for divide and square roots is
used. For divide, pessimistic prediction occurs when underflow/overflow cannot be
determined from examining the source operand exponents. For divide and square
root, pessimistic prediction of inexact occurs unless one of the operands is a zero,
NAN or infinity. When pessimistic prediction occurs and the exception is enabled,
a floating-point unfinished exception is generated.

4-5. Reserved

6. I/O registers privileged status

Description: whether I/O registers can be accessed by nonprivileged code is implemen-
tation-dependent.

Implementation: For systems using UltraSPARC-II, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation.

7. I/O register definitions

Description: the contents and addresses of I/O registers are implementation-dependent

Implementation: For systems using UltraSPARC-II, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation

8. RDASR/WRASR target registers

Description: software can use read/write ancillary state register instructions to read/
write implementation-dependent processor registers (ASRs 16-31).

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 93

Implementation: UltraSPARC-II implements the following implementation-dependent
ASRs.

rd name access

16 PERF_CONTROL_REG RW
17 PERF_COUNTER RW
18 DISPATCH_CONTROL_REG RW
19 GRAPHICS_STATUS_REG RW
20 SET_SOFTINT W
21 CLEAR_SOFTINT W
22 SOFTINT_REG RW
23 TICK_CMPR_REG RW

9. RDASR/WRASR privileged status

Description: whether each of the implementation-dependent read/write ancillary state
register instructions (for ASRs 16-31) is privileged is implementation
dependent.

Implementation: The privileged status of UltraSPARC-II’s implementation-dependent regis-
ters is as follows:

rd name access

16 PERF_CONTROL_REG PRIVILEGED
17 PERF_COUNTER PRIVILEGED (if PERF_CONTROL_REG. PRIV = 1)
18 DISPATCH_CONTROL_REG PRIVILEGED
19 GRAPHICS_STATUS_REG NONPRIVILEGED
20 SET_SOFTINT PRIVILEGED
21 CLEAR_SOFTINT PRIVILEGED
22 SOFTINT_REG PRIVILEGED
23 TICK_CMPR_REG PRIVILEGED

10-12. Reserved

13. VER.impl

Description: VER.impl uniquely identifies an implementation or class of software-com-

SPARC International STP1031LGA-UltraSPARC-II

94 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

patible implementations of the architecture. Values FFF0(hex)..FFFF(hex)
are reserved and are not available for assignment.

Implementation: UltraSPARC-II uses the implementation code 0011 (hex)

14-15. Reserved

16. IU deferred-trap queue

Description: the existence, contents, and operation of an IU deferred-trap queue are
implementation-dependent; it is not visible to user application programs
under normal operating conditions.

Implementation: UltraSPARC-II does not implement a deferred-trap queue.

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description: bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the
FPU to produce implementation-defined results that may not correspond to
IEEE Standard 754-1985.

Implementation: if FSR.NS is set to one, the subnormal operand and results cases identified
for implementation dependency #3 above, are flushed to zero.

19. FPU version, FSR.ver

Description: bits 19:17 of the FSR, FSR.ver, identify one or more implementations of
the FPU architecture.

Implementation: on UltraSPARC-II the FSR.VER field is set to zero.

20-21. Reserved

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 95

22. FPU TEM, cexc, and aexc

Description: an implementation may choose to implement the TEM, cexc, and aexc
fields in hardware in either of two ways (see section 5.1.7.11 of SPARC-V9
Architecture Manual for details).

Implementation: UltraSPARC-II implements the TEM, cexc and aexc fields in conformance
to IEEE Std 754-1985.

23. Floating-point traps

Description: floating point traps may be precise or deferred. If deferred, a floating point
deferred-trap queue (FQ) must be present.

Implementation: UltraSPARC-II floating-point traps are precise and it does not implement
an FQ.

24. FPU deferred-trap queue (FQ)

Description: the presence, contents of, and operations on the floating-point deferred-trap
queue (FQ) are implementation-dependent.

Implementation: UltraSPARC-II does not implement an FQ.

25. RDPR of FQ with nonexistent FQ

Description: on implementations without a floating-point queue, an attempt to read the
FQ with an RDPR instruction shall cause either an illegal_instruction
exception or an fp_exception_other exception with FSR.ftt set to 4
(sequence_error).

Implementation: attempting to read the FQ with a RDPR instruction causes an
illegal_instruction exception.

26-28. Reserved

SPARC International STP1031LGA-UltraSPARC-II

96 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

29. Address space identifier (ASI) definitions

Description: the following ASI assignments are implementation-dependent: restricted
ASIs (all values hex) 00..03, 05..0B, 0D..0F, 12..17, and 1A..7F; and unre-
stricted ASIs C0..FF.

Implementation: UltraSPARC-II assigns the following implementation-dependent ASI val-
ues.

restricted ASI values (all values hex):

14, 15, 1C, 1D, 24, 2C, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 5A, 5B, 5C, 5D, 5E, 5F, 66, 67, 6E, 6F, 70, 71, 76, 77, 78, 79, 7E,
7F

unrestricted ASI values (all values hex):

C0, C1, C2, C3, C4, C5, C8, C9, CA, CB, CC, CD, D0, D1, D2, D3, D8, D9, DA, DB, E0, E1,
F0, F1, F8, F9

30. ASI address decoding

Description: an implementation may choose to decode only a subset of the 8-bit ASI
specifier; however, it shall decode at least enough of the ASI to distinguish
ASI_PRIMARY,
 ASI_PRIMARY_LITTLE,
ASI_AS_IF_USER_PRIMARY,
ASI_AS_IF_USER_PRIMARY_LITTLE,
ASI_PRIMARY_NOFAULT,
ASI_PRIMARY_NOFAULT_LITTLE,
ASI_SECONDARY,
ASI_SECONDARY_LITTLE,
ASI_AS_IF_USER_SECONDARY,
ASI_AS_IF_USER_SECONDARY_LITTLE,
ASI_SECONDARY_NOFAULT, and
ASI_SECONDARY_NOFAULT_LITTLE.
If ASI_NUCLEUS and ASI_NUCLEUS_LITTLE are supported (impl.
dep. #124), they must be decoded also. Finally, an implementation must
always decode ASI bit<7> while PSTATE.PRIV = 0, so that an attempt by
nonprivileged software to access a restricted ASI will always cause a
privileged_action exception.

Implementation: UltraSPARC-II decodes the entire 8-bit ASI specifier.

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 97

31. Catastrophic error exceptions

Description: the causes and effects of catastrophic error exceptions are implementation-
dependent. They may cause precise, deferred or disrupting traps.

Implementation: UltraSPARC-II catastrophic error exceptions cause deferred traps. The
PSTATE.RED bit is not automatically set in hardware for any catastrophic
error exceptions other than when trapping to MAXTL-1.

32. Deferred traps

Description: whether any deferred traps (and associated deferred-trap queues) are
present is implementation-dependent.

Implementation: UltraSPARC-II may encounter deferred traps during memory accesses.
Such errors lead to termination of the currently executing process or result
in a system reset if system state has been corrupted. Error logging informa-
tion allows software to determine if the system state has been corrupted.

33. Trap precision

Description: exceptions that occur as the result of program execution may be precise or
deferred, although it is recommended that such exceptions be precise.
Examples include mem_address_not_aligned and division_by_zero.

Implementation: all of the exceptions listed in the SPARC-V9 Architecture Manual section
7.3.5, item (2) are precise with the exception of instruction_access_error,
which is deferred.

34. Interrupt clearing

Description: how quickly a processor responds to an interrupt request and the method by
which an interrupt request is removed are implementation-dependent.

Implementation: The response time to interrupt is dependent the activity the processor is
executing at the time the interrupt is received (e.g., whether executing a
trap handler with PSTATE.IE=0, etc.). The interrupt request is removed by

SPARC International STP1031LGA-UltraSPARC-II

98 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

clearing a bit in the implementation-dependent interrupt vector receive reg-
ister.

35. Implementation-dependent traps

Description: trap type (TT) values 060(hex)..07f(hex) are reserved for implementation-
dependent exceptions. The existence of implementation_dependent_n traps
and whether any that do exist are precise, deferred, or disrupting is imple-
mentation-dependent.

Implementation: the following implementation-dependent trap types are implemented on
UltraSPARC-II.

TT (hex) Exception Category

060 interrupt_vector disrupting
061 PA_watchpoint disrupting
062 VA_watchpoint disrupting
063 corrected_ECC_error disrupting
064..067 fast_instruction_access_MMU_miss precise
068..06B fast_data_access_MMU_miss precise
06C..06F fast_data_access_protection precise

36. Trap priorities

Description: the priorities of the particular traps are relative and are implementation-
dependent, because a future version of the architecture may define new
traps, and implementations may define implementation-dependent traps
that establish new relative priorities.

Implementation: UltraSPARC-II traps are prioritized relative to each other according to the
relative priorities in the SPARC-V9 Manual.

37. Reset trap

Description: some of a processor’s behavior during a reset trap is implementation-
dependent.

Implementation: UltraSPARC-II conforms to the required behavior during a reset trap.
Unspecified behavior is either defined during reset or specified as requiring

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 99

initialization.

38. Effect of reset trap on implementation-dependent registers

Description: implementation-dependent registers may or may not be affected by the var-
ious reset traps.

Implementation: Implementation-dependent registers on UltraSPARC-II either have defined
behavior during reset traps or are specified as requiring initialization.

39. Entering error_state on implementation-dependent errors

Description: the processor may enter error_state when an implementation-dependent
error condition occurs.

Implementation: UltraSPARC-II enters error_state only by trapping when TL = MAXTL.
Any type of trap may cause this.

40. Error_state processor state

Description: what occurs after error_state is entered is implementation-dependent, but it
is recommended that as much processor state as possible be preserved upon
entry to error_state.

Implementation: Entering error_state causes UltraSPARC-II to trigger a watchdog_reset
trap. As much state as possible is preserved during this action.

41. Reserved

42. FLUSH instruction

Description: if flush is not implemented in hardware, it causes an illegal_instruction
exception and its function is performed by system software. Whether
FLUSH traps is implementation-dependent.

Implementation: UltraSPARC-II implements FLUSH in hardware and it can cause a
data_access_exception if the page is mapped with side effects or no-fault-

SPARC International STP1031LGA-UltraSPARC-II

100 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

only bits set, virtual address out of range, privilege violation, or a
data_access_MMU_miss trap.

43. Reserved

44. Data access FPU trap

Description: if a load floating-point instruction traps with any type of access error
exception, the contents of the destination floating-point register(s) either
remain unchanged or are undefined.

Implementation: access error exceptions on floating-point load instructions leave the desti-
nation floating-point register contents unchanged.

45-46. Reserved

47. RDASR

Description: RDASR instructions with rd in the range 16..31 are available for imple-
mentation-dependent uses (impl. dep #8). For an RDASR instruction with
rs1 in the range 16..31, the following are implementation-dependent: the
interpretation of bits 13:0 and 29:25 in the instruction, whether the instruc-
tion is privileged (impl. dep. #9), and whether it causes an
illegal_instruction trap.

Implementation: the bit fields specified above are not used for UltraSPARC-II implementa-
tion-dependent RDASR instructions. Reads of unused rs1 values and reads
of write-only implementation-dependent ASRs cause illegal_instruction
traps.

48. WRASR

Description: WRASR instructions with rd in the range 16..31 are available for imple-
mentation-dependent uses (impl. dep. #8). For a WRASR instruction with
rd in the range 16..31, the following are implementation-dependent: the
interpretation of bits 18:0 in the instruction, the operation(s) performed (for
example, xor) to generate the value written to the ASR, whether the

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 101

instruction is privileged (impl. dep. #9), and whether it causes an
illegal_instruction trap.

Implementation: UltraSPARC-II does not interpret bits 18:0 of the WRASR instruction.
Using WRASR to the SET_SOFTINT and CLEAR_SOFTINT ASRs will
set and clear (respectively) bits in the SOFTINT_REG ASR. Writes of the
unused ASR values cause illegal_instruction traps.

49-54. Reserved

55. Floating-point underflow detection

Description: whether “tininess” (in IEEE 754 terms) is detected before or after rounding
is implementation-dependent. It is recommended that tininess be detected
before rounding.

Implementation: UltraSPARC-II detects underflow before rounding.

56-100. Reserved

101. Maximum trap level

Description: it is implementation-dependent how many additional levels, if any, past
level 4 are supported.

Implementation: UltraSPARC-II implements 5 trap levels.

102. Clean window trap

Description: an implementation may choose either to implement automatic “cleaning”
of register windows in hardware, or generate a clean_window trap, when
needed, for window(s) to be cleaned by software.

Implementation: UltraSPARC-II cleans register windows by generating a clean_window
trap for windows to be cleaned by software.

SPARC International STP1031LGA-UltraSPARC-II

102 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

103. Prefetch instructions

Description: the following aspects of the PREFETCH and PREFETCHA instructions
are implementation-dependent: (1) whether they have an observable effect
in privileged code; (2) whether they can cause a data_access_MMU_miss
exception; (3) the attributes of the block of memory prefetched: its size
(minimum = 64 bytes) and its alignment (minimum = 64-byte alignment);
(4) whether each variant is implemented as a NOP, with its full semantics,
or with common-case prefetching semantics; (5) whether and how variants
16..31 are implemented.

Implementation: on UltraSPARC-II, PREFETCH and PREFETCHA have the same observ-
able effect as a NOP in both privileged and nonprivileged modes.

104. VER.manuf

Description: VER.manuf contains a 16-bit semiconductor manufacturer code. This field
is optional, and if not present reads as zero. VER.manuf may indicate the
original supplier of a second-sourced chip in cases involving mask-level
second-sourcing. It is intended that the contents of VER.manuf track the
JEDEC semiconductor manufacturer code as closely as possible. If the
manufacturer does not have a JEDEC semiconductor manufacturer code,
SPARC International will assign a VER.manuf value.

Implementation: UltraSPARC-II uses the manufacturer code 0017(hex)

105. TICK register

Description: the difference between the values read from the TICK register on two reads
should reflect the number of processor cycles executed between the reads.
If an accurate count cannot always be returned, an inaccuracy should be
small, bounded, and documented. An implementation my implement fewer
than 63 bits in TICK.counter; however, the counter as implemented must
be able to count for at least 10 years without overflowing. Any upper bits
not implemented must be read as zero.

Implementation: UltraSPARC-II implements 63 bits of TICK.counter and reflects the num-
ber of processor clocks between reads.

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 103

106. IMPDEPn instructions

Description: the IMPDEP1 and IMPDEP2 instructions are completely implementation-
dependent. Implementation-dependent aspects include their operation, the
interpretation of bits 29:25 and 18:0 in their encodings, and which (if any)
exceptions they may cause.

Implementation: UltraSPARC-II implements implementation-dependent instructions using
the following field values:

op op3 opf

10 110110 010000000

10 110110 001010000
10 110110 001010001
10 110110 001010010
10 110110 001010011
10 110110 001010100
10 110110 001010101
10 110110 001010110
10 110110 001010111

10 110110 000111011
10 110110 000111010
10 110110 000111101
10 110110 001001101
10 110110 001001011

10 110110 000110001
10 110110 000110011
10 110110 000110101
10 110110 000110110
10 110110 000110111
10 110110 000111000
10 110110 000111001

10 110110 000011000
10 110110 000011010
10 110110 001001000

10 110110 001100000
10 110110 001100001
10 110110 001111110

SPARC International STP1031LGA-UltraSPARC-II

104 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

10 110110 001111111
10 110110 001110100
10 110110 001110101
10 110110 001111000
10 110110 001111001
10 110110 001101010
10 110110 001101011
10 110110 001100110
10 110110 001100111
10 110110 001111100
10 110110 001111101
10 110110 001100010
10 110110 001100011
10 110110 001110000
10 110110 001110001
10 110110 001101110
10 110110 001101111
10 110110 001101100
10 110110 001101101
10 110110 001110010
10 110110 001110011
10 110110 001111010
10 110110 001111011
10 110110 001110110
10 110110 001110111
10 110110 001101000
10 110110 001101001
10 110110 001100100
10 110110 001100101

10 110110 000101000
10 110110 000101100
10 110110 000100000
10 110110 000100100
10 110110 000100010
10 110110 000100110
10 110110 000101010
10 110110 000101110

10 110110 000000000
10 110110 000000010
10 110110 000000100
10 110110 000000110
10 110110 000001000
10 110110 000001010

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 105

10 110110 000111110

10 110110 000010000
10 110110 000010010
10 110110 000010100

107. Unimplemented LDD trap

Description: it is implementation-dependent whether LDD and LDDA are implemented
in hardware. If not, an attempt to execute either will cause an
unimplemented_LDD trap.

Implementation: UltraSPARC-II implements LDD and LDDA in hardware.

108. Unimplemented STD trap

Description: it is implementation-dependent whether STD and STDA are implemented
in hardware. If not, an attempt to execute either will cause an
unimplemented_STD trap.

Implementation: UltraSPARC-II implements STD and STDA in hardware.

109. LDDF_mem_address_not_aligned

Description: LDDF and LDDFA require only word alignment. However, if the effective
address is word-aligned but not doubleword-aligned, either may cause an
LDDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDDF (or LDDFA) instruction and return.

Implementation: UltraSPARC-II generates an LDDF_mem_address_not_aligned exception
if an LDDF or LDDFA effective address is word-aligned but not double-
word-aligned.

110. STDF_mem_address_not_aligned

Description: STDF and STDFA require only word alignment. However, if the effective

SPARC International STP1031LGA-UltraSPARC-II

106 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

address is word-aligned but not doubleword-aligned, either may cause an
STDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STDF (or STDFA) instruction and return.

Implementation: UltraSPARC-II generates an STDF_mem_address_not_aligned exception
if an STDF or STDFA effective address is word-aligned but not double-
word-aligned.

111. LDQF_mem_address_not_aligned

Description: LDQF and LDQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
LDQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDQF (or LDQFA) instruction and return.

Implementation: UltraSPARC-II does not implement the LDQF and LDQFA in hardware,
they must be emulated in software using other instructions.

112. STQF_mem_address_not_aligned

Description: STQF and STQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
STQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STQF (or STQFA) instruction and return.

Implementation: UltraSPARC-II does not implement the STQF and STQFA in hardware,
they must be emulated in software using other instructions.

113. Implemented memory models

Description: whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO)
models are supported is implementation-dependent.

Implementation: UltraSPARC-II supports the Partial Store Order and Relaxed Memory
Order models.

114. RED_state trap vector address (RSTVaddr)

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 107

Description: the RED_state trap vector is located at an implementation-dependent
address referred to as RSTVaddr.

Implementation: RSTVaddr = 1fff0000000 (hex)

115. RED_state processor state

Description: what occurs after the processor enters RED_state is implementation-depen-
dent.

Implementation: On UltraSPARC-II some register contents are forced to specified values
and some hardware functions are disabled upon entering RED_state to
avoid as much as possible any additional traps which would cause the pro-
cessor to enter error_state.

116. SIR_enable control flag

Description: the location of and the means of accessing the SIR_enable control flag are
implementation-dependent. In some implementations, it may be perma-
nently zero.

Implementation: the SIR_enable in UltraSPARC-II is permanently zero.

117. MMU disabled prefetch behavior

Description: whether Prefetch and Non-faulting Load always succeed when the MMU is
disabled is implementation-dependent.

Implementation: prefetch instructions behave as NOP instructions. Non-faulting Load
instructions may or may not succeed when the MMU is disabled depending
on the state of the an implementation-dependent register determining
whether the cache is enabled.

118. Identifying I/O locations

Description: the manner in which I/O locations are identified is implementation-depen-
dent.

SPARC International STP1031LGA-UltraSPARC-II

108 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation: For systems using UltraSPARC-II, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation

119. Unimplemented values for PSTATE.MM

Description: the effect of writing an unimplemented memory-mode designation into
PSTATE.MM is implementation-dependent

Implementation: UltraSPARC-II implements all three memory modes specified in the
SPARC-V9 manual. If the reserved PSTATE.MM value (3) were written,
UltraSPARC-II would interpret it as RMO.

120. Coherence and atomicity of memory operations

Description: the coherence and atomicity of memory operations between processors and
I/O DMA memory accesses are implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor
implementation for systems that use UltraSPARC-II

121. Implementation-dependent memory model

Description: an implementation may choose to identify certain addresses and use an
implementation-dependent memory model for references to them.

Implementation: UltraSPARC-II does not use any implementation-dependent memory mod-
els.

122. FLUSH latency

Description: latency between the execution of FLUSH on one processor and the point at
which the modified instructions have replaced out-dated instructions in a
multiprocessor is implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor

SPARC International STP1031LGA-UltraSPARC-II

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 109

implementation for systems that use UltraSPARC-II

123. Input/output (I/O) semantics

Description: the semantic effect of accessing input/output (I/O) registers is implementa-
tion-dependent.

Implementation: For systems using UltraSPARC-II, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation

124. Implicit ASI when TL > 0

Description: when TL > 0, the implicit ASI for instruction fetches, loads, and stores is
implementation-dependent. See SPARC-V9 Architecture Manual section
F.4.4, “Contexts,” for more information.

Implementation: the implicit ASI for instruction fetches, loads, and stores when TL > 0 is
ASI_PRIMARY

125. Address masking

Description: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-
mitted to the specified destination registers(s) by CALL, JMPL, RDPC,
and on a trap is implementation-dependent.

Implementation: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-
mitted to the specified destination register(s) by CALL, JMPL, RDPC, and
on a trap is zero.

126. TSTATE bits 19:18

Description: If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be imple-
mented and contain the state of PSTATE bit 11 (10) from the previous trap
level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18) shall
read as zero. Software intended to run on multiple implementations should
only write these bits to values previously read from PSTATE, or to zeroes.

SPARC International STP1031LGA-UltraSPARC-II

110 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation: UltraSPARC-II implements TSTATE bits 19:18 to hold the state of
PSTATE bits 11:10 for each previous trap level.

127. PSTATE bits 11:10

Description: The presence and semantics of PSTATE.PID1 and PSTATE.PID0 are implemen-
tation-dependent. The presence of TSTATE bits 19 and 18 is implementa-
tion-dependent. If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18)
shall be implemented and contain the state of PSTATE bit 11 (10) from the
previous trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit
19 (18) shall read as zero. Software intended to run on multiple implemen-
tations should only write these bits to values previously read from
PSTATE, or to zeroes.

Implementation: PSTATE.PID1 and PSTATE.PID0 are implemented on UltraSPARC-II as
selects for two additional sets of eight trap global registers. The corre-
sponding bits in the TSTATE register are implemented to store these bits
for the previous trap level.

Chapter 5: SUN Implementation of V9 Architecture

UltraSPARC - IIi

V9
SPARC INTERNATIONAL

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 113

CHAPTER 5: SUN ULTRASPARC IIi

0. Introduction
This document describes the implementation on the UltraSPARC-IIi processor developed by Sun
Microelectronics, a business unit of Sun Microsystems, Inc., of the implementation dependen-
cies as put forth in “The SPARC Architecture Manual - Version 9” by SPARC International. The
items listed below correspond to the implementation dependencies as listed in the text and by
number in Appendix C of the manual along with the description of the implementation depen-
dency from the manual. The “Implementation” section for each item describes the implementa-
tion on the UltraSPARC-IIi processor.

1. Software emulation of instructions

Description: whether an instruction is implemented directly by hardware, simulated by
software, or emulated by firmware is implementation-dependent.

Implementation: all instructions are implemented in hardware except the following, which
must be simulated by software.

POPC Population count
LDQF Load quad-precision FP register
LDQFA Load quad-precision FP register from alternate space
STQF Store quad-precision FP register
STQFA Store quad-precision FP register to alternate space
F{s,d}TOq Convert single-/double- to quad-precision FP
F{i,x}TOq Convert 32-/64-bit integer to quad-precision FP
FqTO{s,d} Convert quad- to single-/double-precision FP
FqTO{i,x} Convert quad-precision FP to 32-/64-bit integer
FADDq Quad-precision FP add
FSUBq Quad-precision FP subtraction
FCMP{E}q Quad-precision FP compares
FMOVqcc Move quad-precision FP register on condition
FMOVqr Move quad-precision FP register on integer register condition
FMOVq Move quad-precision FP register
FABSq Quad-precision FP absolute value
FNEGq Quad-precision FP negate
FdMULq Double- to quad-precision FP multiply
FMULq Quad-precision FP multiply
FDIVq Quad-precision FP divide
FSQRTq Quad-precision FP square root

DONE for fcn = 2..31 executed in nonprivileged mode

SPARC International UltraSPARC-IIi

114 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

RETRY for fcn = 2..31 executed in nonprivileged mode
SAVED for fcn = 2..31 executed in nonprivileged mode
RESTORED for fcn = 2..31 executed in nonprivileged mode

The DONE/RETRY/SAVED/RESTORED instructions with fcn = 2..31 executed in nonprivileged
mode will take a privileged_opcode trap rather than an illegal_instruction trap. The opcode can be
recognized by software to emulate the proper illegal_instruction behavior. This can be done with
SPARC code in the privileged_opcode trap handler that does the following

PRIVILEGED_OPCODE_HANDLER:
 rdpr %tpc, %g1
 ld [%g1], %g2
 setx 0xc1f80000, %g3, %g4
 and %g4, %g2, %g4 ! %g4 has op/op3 of trapping instr.
 setx 0x3e000000, %g3, %g6
 and %g6, %g2, %g6
 srl %g6, 25, %g6 ! %g6 has fcn of trapping instr.
check_illegal_saved_restored:
 setx 0x81880000, %g3, %g5
 subcc %g4, %g5, %g0 ! saved/restored opcode?
 bne check_illegal_done_retry
 subcc %g6, 2, %g0 ! illegal fcn value?
 bge ILLEGAL_HANDLER
 nop
check_illegal_done_retry:
 setx 0x81f00000, %g3, %g5
 subcc %g4, %g5, %g0 ! done/retry opcode?
 bne not_illegal
 subcc %g6, 2, %g0 ! illegal fcn value?
 bge ILLEGAL_HANDLER
 nop
not_illegal:
 <handle privileged_opcode exception as desired here>

2. Number of IU registers

Description: an implementation of the IU may contain from 64 to 258 general purpose
64 bit r registers. This corresponds to a grouping of the registers into two
sets of eight global r registers, plus a circular stack of from three to 32 sets
of 16 registers each, known as register windows. Since the number of regis-
ter windows present (NWINDOWS) is implementation-dependent, the
total number of registers is also implementation-dependent.

Implementation: UltraSPARC-IIi implements eight register windows plus four sets of eight
global r registers, for a total of 160 64 bit r registers.

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 115

3. Incorrect IEEE Std 754-1985 results

Description: an implementation may indicate that a floating-point instruction did not
produce a correct ANSI/IEEE Standard 754-1985 result by generating a
special floating-point unfinished or unimplemented exception. In this case,
privileged mode software shall emulate any functionality not present in the
hardware.

Implementation: the quad-precision floating-point instructions listed in implementation
dependency #1 above all generate floating-point unimplemented excep-
tions.

UltraSPARC-IIi generates floating-point unimplemented exceptions for the
following cases of subnormal operands or results.

Subnormal Operand Unimplemented Exception Cases:

F{s,d}TO{i,x} one subnormal operand

F{s,d}TO{i,x} one subnormal operand

FSQRT{s,d} one subnormal operand

FADD{s,d} one or two subnormal operands

FMUL{s,d} -25 < Er < 255 (SP) one subnormal operand
-54 < Er < 2047 (DP) one subnormal operand
two subnormal operands

FDIV{s,d} -25 < Er < 255 (SP) one subnormal operand
-54 < Er < 2047 (DP) one subnormal operand
two subnormal operands

Subnormal Result Unimplemented Exception Cases:

FdTOs -25 < Er < 1 (SP)
-54 < Er < 1 (DP)

FADD{s,d} -25 < Er < 1 (SP)
-54 < Er < 1 (DP)

FMUL{s,d} -25 < Er < 1 (SP)
-54 < Er < 1 (DP)

SPARC International UltraSPARC-IIi

116 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

FDIV{s,d} -25 < Er <= 1 (SP)
-54 < Er <= 1 (DP)

Prediction of overflow, underflow and inexact traps for divide and square
roots is used. For divide, pessimistic prediction occurs when underflow/
overflow cannot be determined from examining the source operand expo-
nents. For divide and square root, pessimistic prediction of inexact occurs
unless one of the operands is a zero, NAN or infinity. When pessimistic
prediction occurs and the exception is enabled, a floating-point unfinished
exception is generated.

4-5. Reserved

6. I/O registers privileged status

Description: whether I/O registers can be accessed by nonprivileged code is implemen-
tation-dependent.

Implementation: For systems using UltraSPARC-IIi, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation.

7. I/O register definitions

Description: the contents and addresses of I/O registers are implementation-dependent

Implementation: For systems using UltraSPARC-IIi, I/O register locations are memory
mapped to non-cacheable address space. The location, access, contents,
and side effects of the I/O registers are dependent on the system implemen-
tation, not the processor implementation

8. RDASR/WRASR target registers

Description: software can use read/write ancillary state register instructions to read/
write implementation-dependent processor registers (ASRs 16-31).

Implementation: UltraSPARC-IIi implements the following implementation-dependent

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 117

ASRs.

rd name access

16 PERF_CONTROL_REG RW
17 PERF_COUNTER RW
18 DISPATCH_CONTROL_REG RW
19 GRAPHICS_STATUS_REG RW
20 SET_SOFTINT W
21 CLEAR_SOFTINT W
22 SOFTINT_REG RW
23 TICK_CMPR_REG RW

9. RDASR/WRASR privileged status

Description: whether each of the implementation-dependent read/write ancillary state
register instructions (for ASRs 16-31) is privileged is implementation
dependent.

Implementation: The privileged status of UltraSPARC-IIi’s implementation-dependent reg-
isters is as follows:

rd name access

16 PERF_CONTROL_REG PRIVILEGED
17 PERF_COUNTER PRIVILEGED (if

 PERF_CONTROL_REG. PRIV = 1)
18 DISPATCH_CONTROL_REG PRIVILEGED
19 GRAPHICS_STATUS_REG NONPRIVILEGED
20 SET_SOFTINT PRIVILEGED
21 CLEAR_SOFTINT PRIVILEGED
22 SOFTINT_REG PRIVILEGED
23 TICK_CMPR_REG PRIVILEGED

10-12. Reserved

13. VER.impl

Description: VER.impl uniquely identifies an implementation or class of software-com-
patible implementations of the architecture. Values FFF0(hex)..FFFF(hex)

SPARC International UltraSPARC-IIi

118 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

are reserved and are not available for assignment.

Implementation: UltraSPARC-IIi uses the implementation code 0012 (hex) [0x12]

14-15. Reserved

16. IU deferred-trap queue

Description: the existence, contents, and operation of an IU deferred-trap queue are
implementation-dependent; it is not visible to user application programs
under normal operating conditions.

Implementation: UltraSPARC-IIi does not implement a deferred-trap queue.

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description: bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the
FPU to produce implementation-defined results that may not correspond to
IEEE Standard 754-1985.

Implementation: if FSR.NS is set to one, the subnormal operand and results cases identified
for implementation dependency #3 above, are flushed to zero.

19. FPU version, FSR.ver

Description: bits 19:17 of the FSR, FSR.ver, identify one or more implementations of
the FPU architecture.

Implementation: on UltraSPARC-IIi the FSR.VER field is set to zero.

20-21. Reserved

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 119

22. FPU TEM, cexc, and aexc

Description: an implementation may choose to implement the TEM, cexc, and aexc
fields in hardware in either of two ways (see section 5.1.7.11 of SPARC-V9
Architecture Manual for details).

Implementation: UltraSPARC-IIi implements the TEM, cexc and aexc fields in conformance
to IEEE Std 754-1985.

23. Floating-point traps

Description: floating point traps may be precise or deferred. If deferred, a floating point
deferred-trap queue (FQ) must be present.

Implementation: UltraSPARC-IIi floating-point traps are precise and it does not implement
an FQ.

24. FPU deferred-trap queue (FQ)

Description: the presence, contents of, and operations on the floating-point deferred-trap
queue (FQ) are implementation-dependent.

Implementation: UltraSPARC-IIi does not implement an FQ.

25. RDPR of FQ with nonexistent FQ

Description: on implementations without a floating-point queue, an attempt to read the
FQ with an RDPR instruction shall cause either an illegal_instruction
exception or an fp_exception_other exception with FSR.ftt set to 4
(sequence_error).

Implementation: attempting to read the FQ with a RDPR instruction causes an
illegal_instruction exception.

26-28. Reserved

SPARC International UltraSPARC-IIi

120 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

29. Address space identifier (ASI) definitions

Description: the following ASI assignments are implementation-dependent: restricted
ASIs (all values hex) 00..03, 05..0B, 0D..0F, 12..17, and 1A..7F; and unre-
stricted ASIs C0..FF.

Implementation: UltraSPARC-IIi assigns the following implementation-dependent ASI val-
ues.

restricted ASI values (all values hex):

14, 15, 1C, 1D, 24, 2C, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 5A, 5B, 5C, 5D, 5E, 5F, 66, 67, 6E, 6F, 70, 71,
76, 77, 78, 79, 7E, 7F

unrestricted ASI values (all values hex):

C0, C1, C2, C3, C4, C5, C8, C9, CA, CB, CC, CD, D0, D1, D2, D3, D8,
D9, DA, DB, E0, E1, F0, F1, F8, F9

30. ASI address decoding

Description: an implementation may choose to decode only a subset of the 8-bit ASI
specifier; however, it shall decode at least enough of the ASI to distinguish
ASI_PRIMARY, ASI_PRIMARY_LITTLE,
ASI_AS_IF_USER_PRIMARY,ASI_AS_IF_USER_PRIMARY_LITTLE,
ASI_PRIMARY_NOFAULT, ASI_PRIMARY_NOFAULT_LITTLE,
ASI_SECONDARY, ASI_SECONDARY_LITTLE,
ASI_AS_IF_USER_SECONDARY,
ASI_AS_IF_USER_SECONDARY_LITTLE,
ASI_SECONDARY_NOFAULT, and
ASI_SECONDARY_NOFAULT_LITTLE. If ASI_NUCLEUS and
ASI_NUCLEUS_LITTLE are supported (impl. dep. #124), they must be
decoded also. Finally, an implementation must always decode ASI bit<7>
while PSTATE.PRIV = 0, so that an attempt by nonprivileged software to
access a restricted ASI will always cause a privileged_action exception.

Implementation: UltraSPARC-IIi decodes the entire 8-bit ASI specifier.

31. Catastrophic error exceptions

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 121

Description: the causes and effects of catastrophic error exceptions are implementation-
dependent. They may cause precise, deferred or disrupting traps.

Implementation: UltraSPARC-IIi catastrophic error exceptions cause deferred traps. The
PSTATE.RED bit is not automatically set in hardware for any catastrophic
error exceptions other than when trapping to MAXTL-1.

32. Deferred traps

Description: whether any deferred traps (and associated deferred-trap queues) are
present is implementation-dependent.

Implementation: UltraSPARC-IIi may encounter deferred traps during memory accesses.
Such errors lead to termination of the currently executing process or result
in a system reset if system state has been corrupted. Error logging informa-
tion allows software to determine if the system state has been corrupted.

33. Trap precision

Description: exceptions that occur as the result of program execution may be precise or
deferred, although it is recommended that such exceptions be precise.
Examples include mem_address_not_aligned and division_by_zero.

Implementation: all of the exceptions listed in the SPARC-V9 Architecture Manual section
7.3.5, item (2) are precise with the exception of instruction_access_error,
which is deferred.

34. Interrupt clearing

Description: how quickly a processor responds to an interrupt request and the method by
which an interrupt request is removed are implementation-dependent.

Implementation: The response time to interrupt is dependent the activity the processor is
executing at the time the interrupt is received (e.g., whether executing a
trap handler with PSTATE.IE=0, etc.). The interrupt request is removed by
clearing a bit in the implementation-dependent interrupt vector receive reg-
ister.

SPARC International UltraSPARC-IIi

122 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

35. Implementation-dependent traps

Description: trap type (TT) values 060(hex)..07f(hex) are reserved for implementation-
dependent exceptions. The existence of implementation_dependent_n traps
and whether any that do exist are precise, deferred, or disrupting is imple-
mentation-dependent.

Implementation: the following implementation-dependent trap types are implemented on
UltraSPARC-IIi.

TT (hex) Exception Category

060 interrupt_vector disrupting
061 PA_watchpoint disrupting
062 VA_watchpoint disrupting
063 corrected_ECC_error disrupting
064..067 fast_instruction_access_MMU_miss precise
068..06B fast_data_access_MMU_miss precise
06C..06F fast_data_access_protection precise

36. Trap priorities

Description: the priorities of the particular traps are relative and are implementation-
dependent, because a future version of the architecture may define new
traps, and implementations may define implementation-dependent traps
that establish new relative priorities.

Implementation: UltraSPARC-IIi traps are prioritized relative to each other according to the
relative priorities in the SPARC-V9 Manual.

37. Reset trap

Description: some of a processor’s behavior during a reset trap is implementation-
dependent.

Implementation: UltraSPARC-IIi conforms to the required behavior during a reset trap.
Unspecified behavior is either defined during reset or specified as requiring
initialization.

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 123

38. Effect of reset trap on implementation-dependent registers

Description: implementation-dependent registers may or may not be affected by the var-
ious reset traps.

Implementation: Implementation-dependent registers on UltraSPARC-IIi either have defined
behavior during reset traps or are specified as requiring initialization.

39. Entering error_state on implementation-dependent errors

Description: the processor may enter error_state when an implementation-dependent
error condition occurs.

Implementation: UltraSPARC-IIi enters error_state only by trapping when TL = MAXTL.
Any type of trap may cause this.

40. Error_state processor state

Description: what occurs after error_state is entered is implementation-dependent, but it
is recommended that as much processor state as possible be preserved upon
entry to error_state.

Implementation: Entering error_state causes UltraSPARC-IIi to trigger a watchdog_reset
trap. As much state as possible is preserved during this action.

41. Reserved

42. FLUSH instruction

Description: if flush is not implemented in hardware, it causes an illegal_instruction
exception and its function is performed by system software. Whether
FLUSH traps is implementation-dependent.

Implementation: UltraSPARC-IIi implements FLUSH in hardware and it can cause a
data_access_exception if the page is mapped with side effects or no-fault-
only bits set, virtual address out of range, privilege violation, or a
data_access_MMU_miss trap.

SPARC International UltraSPARC-IIi

124 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

43. Reserved

44. Data access FPU trap

Description: if a load floating-point instruction traps with any type of access error
exception, the contents of the destination floating-point register(s) either
remain unchanged or are undefined.

Implementation: access error exceptions on floating-point load instructions leave the desti-
nation floating-point register contents unchanged.

45-46. Reserved

47. RDASR

Description: RDASR instructions with rd in the range 16..31 are available for imple-
mentation-dependent uses (impl. dep #8). For an RDASR instruction with
rs1 in the range 16..31, the following are implementation-dependent: the
interpretation of bits 13:0 and 29:25 in the instruction, whether the instruc-
tion is privileged (impl. dep. #9), and whether it causes an
illegal_instruction trap.

Implementation: the bit fields specified above are not used for UltraSPARC-IIi implementa-
tion-dependent RDASR instructions. Reads of unused rs1 values and reads
of write-only implementation-dependent ASRs cause illegal_instruction
traps.

48. WRASR

Description: WRASR instructions with rd in the range 16..31 are available for imple-
mentation-dependent uses (impl. dep. #8). For a WRASR instruction with
rd in the range 16..31, the following are implementation-dependent: the
interpretation of bits 18:0 in the instruction, the operation(s) performed (for
example, xor) to generate the value written to the ASR, whether the
instruction is privileged (impl. dep. #9), and whether it causes an
illegal_instruction trap.

Implementation: UltraSPARC-IIi does not interpret bits 18:0 of the WRASR instruction.

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 125

Using WRASR to the SET_SOFTINT and CLEAR_SOFTINT ASRs will
set and clear (respectively) bits in the SOFTINT_REG ASR. Writes of the
unused ASR values cause illegal_instruction traps.

49-54. Reserved

55. Floating-point underflow detection

Description: whether “tininess” (in IEEE 754 terms) is detected before or after rounding
is implementation-dependent. It is recommended that tininess be detected
before rounding.

Implementation: UltraSPARC-IIi detects underflow before rounding.

56-100. Reserved

101. Maximum trap level

Description: it is implementation-dependent how many additional levels, if any, past
level 4 are supported.

Implementation: UltraSPARC-IIi implements 5 trap levels.

102. Clean window trap

Description: an implementation may choose either to implement automatic “cleaning”
of register windows in hardware, or generate a clean_window trap, when
needed, for window(s) to be cleaned by software.

Implementation: UltraSPARC-IIi cleans register windows by generating a clean_window
trap for windows to be cleaned by software.

103. Prefetch instructions

Description: the following aspects of the PREFETCH and PREFETCHA instructions

SPARC International UltraSPARC-IIi

126 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

are implementation-dependent: (1) whether they have an observable effect
in privileged code; (2) whether they can cause a data_access_MMU_miss
exception; (3) the attributes of the block of memory prefetched: its size
(minimum = 64 bytes) and its alignment (minimum = 64-byte alignment);
(4) whether each variant is implemented as a NOP, with its full semantics,
or with common-case prefetching semantics; (5) whether and how variants
16..31 are implemented.

Implementation: on UltraSPARC-IIi, PREFETCH and PREFETCHA instuctions with the
fcn=0..4 have the following meanings:

FCN Function Action

0 Prefetch for several reads generate read_to_share request if desired
line is not present in E-cache

1 Prefetch for one read generate read_to_share request if desired
line is not present in E-cache

2 Prefetch page generate read_to_share request if desired
line is not present in E-cache

FCN Function Action

3 Prefetch for several writes generate read_to_own request if desired line
is not present in E-cache in either E or M
state

4 Prefetch for one write generate read_to_own request if desired line
is not present in E-cache in either E or M
state

104. VER.manuf

Description: VER.manuf contains a 16-bit semiconductor manufacturer code. This field
is optional, and if not present reads as zero. VER.manuf may indicate the
original supplier of a second-sourced chip in cases involving mask-level
second-sourcing. It is intended that the contents of VER.manuf track the
JEDEC semiconductor manufacturer code as closely as possible. If the
manufacturer does not have a JEDEC semiconductor manufacturer code,
SPARC International will assign a VER.manuf value.

Implementation: UltraSPARC-IIi uses the manufacturer code 0017(hex)

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 127

105. TICK register

Description: the difference between the values read from the TICK register on two reads
should reflect the number of processor cycles executed between the reads.
If an accurate count cannot always be returned, an inaccuracy should be
small, bounded, and documented. An implementation my implement fewer
than 63 bits in TICK.counter; however, the counter as implemented must
be able to count for at least 10 years without overflowing. Any upper bits
not implemented must be read as zero.

Implementation: UltraSPARC-IIi implements 63 bits of TICK.counter and reflects the num-
ber of processor clocks between reads.

106. IMPDEPn instructions

Description: the IMPDEP1 and IMPDEP2 instructions are completely implementation-
dependent. Implementation-dependent aspects include their operation, the
interpretation of bits 29:25 and 18:0 in their encodings, and which (if any)
exceptions they may cause.

Implementation: UltraSPARC-IIi implements implementation-dependent instructions using
the following field values:

op op3 opf

10 110110 010000000

10 110110 001010000
10 110110 001010001
10 110110 001010010
10 110110 001010011
10 110110 001010100
10 110110 001010101
10 110110 001010110
10 110110 001010111

10 110110 000111011
10 110110 000111010
10 110110 000111101
10 110110 001001101
10 110110 001001011

10 110110 000110001

SPARC International UltraSPARC-IIi

128 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

10 110110 000110011
10 110110 000110101
10 110110 000110110
10 110110 000110111
10 110110 000111000
10 110110 000111001

10 110110 000011000
10 110110 000011010
10 110110 001001000

10 110110 001100000
10 110110 001100001
10 110110 001111110
10 110110 001111111
10 110110 001110100
10 110110 001110101
10 110110 001111000
10 110110 001111001
10 110110 001101010
10 110110 001101011
10 110110 001100110
10 110110 001100111
10 110110 001111100
10 110110 001111101
10 110110 001100010
10 110110 001100011
10 110110 001110000
10 110110 001110001
10 110110 001101110
10 110110 001101111
10 110110 001101100
10 110110 001101101
10 110110 001110010
10 110110 001110011
10 110110 001111010
10 110110 001111011
10 110110 001110110
10 110110 001110111
10 110110 001101000
10 110110 001101001
10 110110 001100100
10 110110 001100101

10 110110 000101000

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 129

10 110110 000101100
10 110110 000100000
10 110110 000100100
10 110110 000100010
10 110110 000100110
10 110110 000101010
10 110110 000101110

10 110110 000000000
10 110110 000000010
10 110110 000000100
10 110110 000000110
10 110110 000001000
10 110110 000001010

10 110110 000111110

10 110110 000010000
10 110110 000010010
10 110110 000010100

107. Unimplemented LDD trap

Description: it is implementation-dependent whether LDD and LDDA are implemented
in hardware. If not, an attempt to execute either will cause an
unimplemented_LDD trap.

Implementation: UltraSPARC-IIi implements LDD and LDDA in hardware.

108. Unimplemented STD trap

Description: it is implementation-dependent whether STD and STDA are implemented
in hardware. If not, an attempt to execute either will cause an
unimplemented_STD trap.

Implementation: UltraSPARC-IIi implements STD and STDA in hardware.

109. LDDF_mem_address_not_aligned

SPARC International UltraSPARC-IIi

130 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Description: LDDF and LDDFA require only word alignment. However, if the effective
address is word-aligned but not doubleword-aligned, either may cause an
LDDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDDF (or LDDFA) instruction and return.

Implementation: UltraSPARC-IIi generates an LDDF_mem_address_not_aligned exception
if an LDDF or LDDFA effective address is word-aligned but not double-
word-aligned.

110. STDF_mem_address_not_aligned

Description: STDF and STDFA require only word alignment. However, if the effective
address is word-aligned but not doubleword-aligned, either may cause an
STDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STDF (or STDFA) instruction and return.

Implementation: UltraSPARC-IIi generates an STDF_mem_address_not_aligned exception
if an STDF or STDFA effective address is word-aligned but not double-
word-aligned.

111. LDQF_mem_address_not_aligned

Description: LDQF and LDQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
LDQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDQF (or LDQFA) instruction and return.

Implementation: UltraSPARC-IIi does not implement the LDQF and LDQFA in hardware,
they must be emulated in software using other instructions.

112. STQF_mem_address_not_aligned

Description: STQF and STQFA require only word alignment. However, if the effective
address is word-aligned but not quadword-aligned, either may cause an
STQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STQF (or STQFA) instruction and return.

Implementation: UltraSPARC-IIi does not implement the STQF and STQFA in hardware,
they must be emulated in software using other instructions.

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 131

113. Implemented memory models

Description: whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO)
models are supported is implementation-dependent.

Implementation: UltraSPARC-IIi supports the Partial Store Order and Relaxed Memory
Order models.

114. RED_state trap vector address (RSTVaddr)

Description: the RED_state trap vector is located at an implementation-dependent
address referred to as RSTVaddr.

Implementation: RSTVaddr = 1fff0000000 (hex)

115. RED_state processor state

Description: what occurs after the processor enters RED_state is implementation-depen-
dent.

Implementation: On UltraSPARC-IIi some register contents are forced to specified values
and some hardware functions are disabled upon entering RED_state to
avoid as much as possible any additional traps which would cause the pro-
cessor to enter error_state.

116. SIR_enable control flag

Description: the location of and the means of accessing the SIR_enable control flag are
implementation-dependent. In some implementations, it may be perma-
nently zero.

Implementation: the SIR_enable in UltraSPARC-IIi is permanently zero.

117. MMU disabled prefetch behavior

Description: whether Prefetch and Non-faulting Load always succeed when the MMU is
disabled is implementation-dependent.

SPARC International UltraSPARC-IIi

132 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation: When the data MMU is disabled, accesses are assumed to be non-cache-
able and with side-effect. Non-faulting loads encountered with the MMU
is disabled cause a data_access_exception trap with SFSR.FT-2 (specula-
tive load to page with side-effect attribute). Prefetch behaves as a NOP
when the MMU is disabled.

118. Identifying I/O locations

Description: the manner in which I/O locations are identified is implementation-depen-
dent.

Implementation: For systems using UltraSPARC-IIi, I/O register locations are memory
mapped to non-cacheable address space. In generatl, the location, access,
contents, and side effects of the I/O registers are dependent on the system
implementation, not the processor implementation. PCI bus I/O Space is
hard-wired to locations PA[40:0] = 1FE02000000(hex) through PA[40:0] =
1FE0201FFFF(hex).

119. Unimplemented values for PSTATE.MM

Description: the effect of writing an unimplemented memory-mode designation into
PSTATE.MM is implementation-dependent

Implementation: UltraSPARC-IIi implements all three memory modes specified in the
SPARC-V9 manual. If the reserved PSTATE.MM value (3) were written,
UltraSPARC-IIi would interpret it as RMO.

120. Coherence and atomicity of memory operations

Description: the coherence and atomicity of memory operations between processors and
I/O DMA memory accesses are implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor
implementation for systems that use UltraSPARC-IIi

121. Implementation-dependent memory model

Description: an implementation may choose to identify certain addresses and use an

SPARC International UltraSPARC-IIi

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 133

implementation-dependent memory model for references to them.

Implementation: UltraSPARC-IIi does not use any implementation-dependent memory
models.

122. FLUSH latency

Description: latency between the execution of FLUSH on one processor and the point at
which the modified instructions have replaced out-dated instructions in a
multiprocessor is implementation-dependent.

Implementation: This is dependent on the system implementation rather than the processor
implementation for systems that use UltraSPARC-IIi

123. Input/output (I/O) semantics

Description: the semantic effect of accessing input/output (I/O) registers is implementa-
tion-dependent.

Implementation: For systems using UltraSPARC-IIi, the location, access, contents, and side
effects of the I/O registers are dependent on the system implementation,
not the processor implementation

124. Implicit ASI when TL > 0

Description: when TL > 0, the implicit ASI for instruction fetches, loads, and stores is
implementation-dependent. See SPARC-V9 Architecture Manual section
F.4.4, “Contexts,” for more information.

Implementation: the implicit ASI for instruction fetches, loads, and stores when TL > 0 is
ASI_PRIMARY

125. Address masking

Description: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-
mitted to the specified destination registers(s) by CALL, JMPL, RDPC,
and on a trap is implementation-dependent.

SPARC International UltraSPARC-IIi

134 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation: when PSTATE.AM = 1, the value of the high-order 32-bits of the PC trans-
mitted to the specified destination register(s) by CALL, JMPL, RDPC, and
on a trap is zero.

126. TSTATE bits 19:18

Description: If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be imple-
mented and contain the state of PSTATE bit 11 (10) from the previous trap
level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18) shall
read as zero. Software intended to run on multiple implementations should
only write these bits to values previously read from PSTATE, or to zeroes.

Implementation: UltraSPARC-IIi implements TSTATE bits 19:18 to hold the state of
PSTATE bits 11:10 for each previous trap level.

127. PSTATE bits 11:10

Description: The presence and semantics of PSTATE.PID1 and PSTATE.PID0 are
implementation-dependent. The presence of TSTATE bits 19 and 18 is
implementation-dependent. If PSTATE bit 11 (10) is implemented,
TSTATE bit 19 (18) shall be implemented and contain the state of PSTATE
bit 11 (10) from the previous trap level. If PSTATE bit 11 (10) is not imple-
mented, TSTATE bit 19 (18) shall read as zero. Software intended to run on
multiple implementations should only write these bits to values previously
read from PSTATE, or to zeroes.

Implementation: PSTATE.PID1 and PSTATE.PID0 are implemented on UltraSPARC-IIi as
selects for two additional sets of eight trap global registers. The corre-
sponding bits in the TSTATE register are implemented to store these bits
for the previous trap level.

Chapter 6: HAL Implementation of V9 Architecture

SPARC 64-III

V9
SPARC INTERNATIONAL

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 137

CHAPTER 6: HAL SPARC64-III

0. Introduction

This document describes the implementation details of the SPARC64-III processor developed
by HAL Computer Systems. The items listed below correspond to the implementation depen-
dencies as listed in the text and by number in Appendix C of “The SPARC Architecture Man-
ual - Version 9” by SPARC International, along with the description of the implementation
dependency. The “Implementation” section for each item describes the
SPARC64-III processor.

1. Software emulated instructions

Description:
Whether an instruction is implemented directly by hardware, simulated by software,lated by

firmware is implementation-dependent.

Implementation:
SPARC64-III does not implement the following instructions in hardware:

• All floating point instructions with quad operands or results
These operations will take an fp_exception_other trap with FSR.ftt = unimplemented_FPop.
The kernel will then emulate the quad operation and store the result into afloating-point regis-
ters as defined by Sparc-V9 manual.

• popc
This instruction will cause an illegal_instruction trap if executed. Kernel emulation routines
will be provided to complete the action.

2. Number of IU registers

Description:
An implementation of the IU may contain from 64 to 528 general purpose 64 bit rThis corre-

sponds to a grouping of the registers into two sets of eight global r regis-
ters, plus a circular stack of from 3 to 32 sets of 16 registers each, known as
register windows. Since the number of register windows present (NWIN-
DOWS) is implementation-dependent, the total number of registers is also
implementation-dependent.

Implementation:
SPARC64-III implements 5 16-register sets (windows) in hardware. Thus there are a96 inte-

ger registers visible to software. They are:

SPARC International SPARC 64-III

138 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

• 8 global registers
• 8 alternate global registers
• 5 windows of 16 registers each (=80 registers)

3. Incorrect IEEE Std 754-1985 results

Description:
An implementation may indicate that a floating-point instruction did not produce aANSI/

IEEE Standard 754-1985 result by generating a special floating-point
unfinished or unimplemented exception. In this case, privileged mode soft-
ware shall emulate any functionality not present in the hardware.

Implementation:
SPARC64-III in conjunction with the kernel emulation code produces the correct IEEEresults

required in this section.
• Traps Inhibit Results

SPARC64-IIII in conjunction with the kernel emulation code produces results
• Trapped Underflow Definition (UFM=1)

SPARC64-III detects “tininess” before rounding as recommended.
• Untrapped Underflow Definition (UFM=0)

SPARC64-III meets these requirements with some help from the kernel divide/squarefixup
code.

• Floating-Point Nonstandard Mode
SPARC64-III FPU is “standard”, and therefore does not support a nonstandard

4-5. Reserved

6. I/O registers privileged status

Description:
Whether I/O registers can be accessed by non privileged code is

Implementation:
In SPARC64-III some I/O registers can be accessed by non privileged code.

7. I/O register definitions

Description:
The contents and addresses of I/O registers are implementation-dependent.

Implementation:
Please contact HaL for details of I/O registers.

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 139

8,9. RDASR/WRASR target registers and privileged status

Description:
Software can use read/write ancillary state register instructions to read/writedependent proces-

sor registers (ASRs 16-31).

Whether each of the implementation-dependent read/write ancillary state register(for ASRs
16-31) is privileged is implementation dependent.

Implementation:
SPARC64-III implements 9 implementation-dependent ASR registers.

• Hardware mode Register(ASR18): These register controls, Branch prediction mode andHard-
ware memory models.

• Graphic Status Register(ASR19): Access to this register will cause fp_disabledeither
PSTATE.PER or FPRS.FER is 0.

• Schedule Interrupt(SCHED_INT) Register (ASR22): The OS kernel uses this privileged,write
register to schedule interrupts.

• TICK match Register(ASR23): Privileged read/write register.
• Instruction Access Fault Type Register(ASR24): Privileged , read only register isthe hardware

on instruction_access_error traps.
• Software Scratch Registers 0 through 3(ASR25): These registers are privileged,
• Data Breakpoint Registers(ASR26A): These privileged read/write registers are usedany data

accesses to a double word aligned breakpoint address. ASR26B: privilegedwrite register spec-
ifies the double-word aligned virtual address of the data

• Fault Address Register (ASR28) and Fault Access Type (ASR29)
These registers facilitate the handling of traps that involve a data memory access.are privi-
leged and read-only. System software must take care to read thesea fault handler before any
other fault can occur that would overwrite them.

• Performance Monitor Register (ASR30)
This privilege read/write register is used to evaluate processor performance.

• State Control Register (ASR31)
ASR31 is a 16bit implementation specific register that contains a set of flags forthe state of the
CPU, MMU and Caches. The register is privileged and can be

10-12 Reserved

13. VER.impl

Description:
VER.impl uniquely identifies an implementation or class of software-compatibletions of the

architecture. Values FFF0(hex)..FFFF(hex) are reserved and are not avail-
able for assignment.

SPARC International SPARC 64-III

140 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation:
SPARC64-III uses a version number of 3.

14-15 Reserved

16. IU deferred-trap queue

Description:
The existence, contents, and operation of an IU deferred-trap queue aredependent; it is not

visible to user application programs under normal operating conditions

Implementation:
SPARC64-III does not need and therefore does not implement an IU deferred-trap

17. Reserved

18. Nonstandard IEEE 754-1985 results

Description:
Bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the FPU toimplementa-

tion-defined results that may not correspond to IEEE Standard 754-1985.

Implementation:
SPARC64-III FPU is “standard”, and therefore does not support a nonstandard

19. FPU version, FSR.ver

Description:
Bits 19:17 of the FSR, FSR.ver, identify one or more implementations of the FPUture.

Implementation:
SPARC64-III uses the value of 0 for this field.

20-21. Reserved

22. FPU TEM, cexc, and aexc

Description:
An implementation may choose to implement the TEM, cexc, and aexc fields ineither of two

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 141

ways (see section 5.1.7.11 of SPARC-V9 Architecture Manual for details).

Implementation:
SPARC64-III implements TEM, cexc and aexc fields of FSR conforming to IEEE Std.1985.

23. Floating-point traps

Description:
Floating point traps may be precise or deferred. If deferred, a floating pointqueue (FQ) must

be present.

Implementation:
Floating point traps are always precise.

24. FPU deferred-trap queue (FQ)

Description:
The presence, contents of, and operations on the floating-point deferred-trap queueimplemen-

tation-dependent.

Implementation:
SPARC64-III does not have or need a floating-point deferred-trap queue.

25. RDPR of FQ with nonexistent FQ

Description:
On implementations without a floating-point queue, an attempt to read the FQ withinstruction

shall cause either an illegal_instruction exception or an fp_exception_other
exception with FSR.ftt set to 4 (sequence_error).

Implementation:
A RDPR of %FPQ instruction will cause an illegal_instruction trap.

26-28. Reserved

29,30. Address space identifier (ASI) definitions and ASI address decoding

Description:
The following ASI assignments are implementation-dependent: restricted ASIs (allhex)

00..03, 05..0B, 0D..0F, 12..17, and 1A..7F; and unrestricted ASIs C0..FF.

An implementation may choose to decode only a subset of the 8-bit ASI specifier;shall decode

SPARC International SPARC 64-III

142 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

at least enough of the ASI to distinguish ASI_PRIMARY,
ASI_PRIMARY_LITTLE, ASI_AS_IF_USER_PRIMARY,
ASI_AS_IF_USER_PRIMARY_LITTLE, ASI_PRIMARY_NOFAULT,
ASI_PRIMARY_NOFAULT_LITTLE, ASI_SECONDARY,
ASI_SECONDARY_LITTLE, ASI_AS_IF_USER_SECONDARY,
ASI_AS_IF_USER_SECONDARY_LITTLE,
ASI_SECONDARY_NOFAULT, and
ASI_SECONDARY_NOFAULT_LITTLE. If ASI_NUCLEUS and
ASI_NUCLEUS_LITTLE are supported (impl. dep. #124), they must be
decoded also. Finally, an implementation must always decode ASI bit<7>
while PSTATE.PRIV = 0, so that an attempt by nonprivileged software to
access a restricted ASI will always cause a privileged_action exception.

Implementation:
Please See pg 409 of SPARC64-III user Guide.(L ASR Assignments).

31. Catastrophic error exceptions

Description:
The causes and effects of catastrophic error exceptions aremay cause precise, deferred or dis-

rupting traps.

Implementation:
An internal CPU watchdog time-out occurs after no instruction has been committedcycles (n

can be scan initialized to one of {12,16,18,20,22,24,28,30}). This would
take the processor into error state.

32. Deferred traps

Description:
Whether any deferred traps (and associated deferred-trap queues) are present istion-depen-

dent.

Implementation:
SPARC64-III implements a deferred trap for the following trap types:

• data_breakpoint.

Deferred trap queues are not necessary, since the trapping instruction is the onlyinstruction.

33. Trap precision

Description:
Exceptions that occur as the result of program execution may be precise orit is recommended

that such exceptions be precise. Examples include

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 143

mem_address_not_aligned and division_by_zero.

Implementation:
SPARC64-III will generate a precise trap for all traps induced by instructiondata_breakpoint.

34. Interrupt clearing

Description:
How quickly a processor responds to an interrupt request and the method by which anrupt

request is removed are implementation-dependent.

Implementation:
Please See SPARC64-III user guide pg. 427 (N Interrupt Handling)

35,36. Implementation-dependent traps and priorities

Description:
Trap type (TT) values 060(hex)..07f(hex) are reserved for implementation-dependenttions.

The existence of implementation_dependent_n traps and whether any that
do exist are precise, deferred, or disrupting is implementation-dependent.

The priorities of the particular traps are relative and arefuture version of the architecture may
define new traps, and implementations may define implementation-depen-
dent traps that establish new relative priorities.

Implementation:
The following trap types defined by Sparc-V9 are not used in SPARC64-III.
Please See SPARC64-III user guide pg. 152 (7.5.3.3 Unimplemented Traps in SPARC64-III)

SPARC64-III defines the following implementation-dependent trap types.
Please See SPARC64-III user guide pg. 341 (B IEEE Std 754-1985 Requirements for

SPARC-V9)

37. Reset trap

Description:
Some of a processor’s behavior during a reset trap is

Implementation:
Power-on Reset (POR) are implemented by scanning in the reset state on

SPARC International SPARC 64-III

144 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

38. Effect of reset trap on implementation-dependent registers

Description:
Implementation-dependent registers may or may not be affected by the various reset

Implementation:
All register gets affected on POR
XIR all register except ASR31 gets affected..

39. Entering error_state on implementation-dependent errors

Description:
The processor may enter error_state when an implementation-dependent erroroccurs.

Implementation:
An internal CPU watchdog time-out occurs after no instruction has been committedcycles (n

can be scan initialized to one of {12,16,18,20,22,24,28,30}). This would
take the processor into error state.

40. Error_state processor state

Description:
What occurs after error_state is entered is implementation-dependent, but it isthat as much

processor state as possible be preserved upon entry to error_state.

Implementation:
On entry to error state, SPARC64-III asserts the output signal P_FERR. . Most errorregister

state will be preserved and can be read after a power on reset.

41. Reserved

42. FLUSH instruction

Description:
If flush is not implemented in hardware, it causes an illegal_instruction exceptiontion is per-

formed by system software. Whether FLUSH traps is implementation-
dependent.

Implementation:
SPARC64-III implements a FLUSH instruction.

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 145

43. Reserved

44. Data access FPU trap

Description:
If a load floating-point instruction traps with any type of access error exception,of the destina-

tion floating-point register(s) either remain unchanged or are undefined.

Implementation:
Contents of destination floating-point register(s) remain unchanged.

45-46. Reserved

47. RDASR

Description:
RDASR instructions with rd in the range 16..31 are available foruses (impl. dep #8). For an

RDASR instruction with rs1 in the range 16..31, the following are imple-
mentation-dependent: the interpretation of bits 13:0 and 29:25 in the
instruction, whether the instruction is privileged (impl. dep. #9), and
whether it causes an illegal_instruction trap.

Implementation:
See items 8,9 for details. SPARC64-III causes an illegal_instruction trap for reads of the

unused ASR values.

48. WRASR

Description:
WRASR instructions with rd in the range 16..31 are available foruses (impl. dep. #8). For a

WRASR instruction with rd in the range 16..31, the following are imple-
mentation-dependent: the interpretation of bits 18:0 in the instruction, the
operation(s) performed (for example, xor) to generate the value written to
the ASR, whether the instruction is privileged (impl. dep. #9), and whether
it causes an illegal_instruction trap.

Implementation:
 See items 8,9 for details. SPARC64-III causes an illegal_instruction trap for writes of the

unused ASR values.

SPARC International SPARC 64-III

146 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

49-54 Reserved

55. Floating-point underflow detection

Description:
Whether “tininess” (in IEEE 754 terms) is detected before or after roundingtion-dependent. It

is recommended that tininess be detected before rounding.

Implementation:
SPARC64-III detects “tininess” before rounding.

56-100. Reserved

101. Maximum trap level

Description:
It is implementation-dependent how many additional levels, if any, past level 4 are

Implementation:
SPARC64-III implements 4 levels of traps.

102. Clean window trap

Description:
An implementation may choose either to implement automatic “cleaning” ofin hardware, or

generate a clean_window trap, when needed, for window(s) to be cleaned
by software.

Implementation:
SPARC64-III generates a clean_window trap, when needed, for windows to be cleanedsoft-

ware.

103. Prefetch instructions

Description:
The following aspects of the PREFETCH and PREFETCHA instructions aredependent: (1)

whether they have an observable effect in privileged code; (2) whether they
can cause a data_access_MMU_miss exception; (3) the attributes of the
block of memory prefetched: its size (minimum = 64 bytes) and its align-
ment (minimum = 64-byte alignment); (4) whether each variant is imple-

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 147

mented as a NOP, with its full semantics, or with common-case prefetching
semantics; (5) whether and how variants 16..31 are implemented.

Implementation:
(1) PREFETCH and PREFETCHA have identical affects in privileged or non-privileged
(2) Can not cause a data_access_MMU_miss exception
(3) Size and alignments are 64-bytes
(4),(5) See table-1

104. VER.manuf

Description:
VER.manuf contains a 16-bit semiconductor manufacturer code. This field isnot present reads

as zero. VER.manuf may indicate the original supplier of a second-sourced
chip in cases involving mask-level second-sourcing. It is intended that the
contents of VER.manuf track the JEDEC semiconductor manufacturer
code as closely as possible. If the manufacturer does not have a JEDEC
semiconductor manufacturer code, SPARC International will assign a
VER.manuf value.

Implementation:
SPARC64-III uses a code of 4 for this field. This is Fujitsu’s JEDEC code.

Table 3: Prefetch Data

fcn V9 Prefetch
Function

SPARC64-III
Function

 0 Prefetch for
several reads

Prefetch for
several reads

 1 Prefetch for
one read

Prefetch for
several reads

 2 Prefetch for
several writes

Prefetch for
several writes

 3 Prefetch for
one write

Prefetch for
several writes

 4 Prefetch page Prefetch for
several reads

 5-15 Reserved illegal_instru
ction trap

 16-31 Implementa-
tion depen-
dent

NOP

SPARC International SPARC 64-III

148 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

105. TICK register

Description:
The difference between the values read from the TICK register on two reads shouldnumber of

processor cycles executed between the reads. If an accurate count cannot
always be returned, an inaccuracy should be small, bounded, and docu-
mented. An implementation my implement fewer than 63 bits in
TICK.counter; however, the counter as implemented must be able to count
for at least 10 years without overflowing. Any upper bits not implemented
must be read as zero.

Implementation:
SPARC64-III implements all the bits of TICK register and returns accurate count ofcessor

cycles, in response to reads from TICK register.

106. IMPDEPn instructions

Description:
The IMPDEP1 and IMPDEP2 instructions are completely implementation-dependent.menta-

tion-dependent aspects include their operation, the interpretation of bits
29:25 and 18:0 in their encoding, and which (if any) exceptions they may
cause.

Implementation:
SPARC64-III uses IMPDEP2 to encode the HaL specific Floating Pointtract instructions.

IMPDEP1 is not used and will cause an illegal_instruction trap if such an
opcode is encountered. Please refer to SPARC64-III Processor User Guide
for more details.

107. Unimplemented LDD trap

Description:
It is implementation-dependent whether LDD and LDDA are implemented in hardware. Ifnot,

an attempt to execute either will cause an unimplemented_LDD trap.

Implementation:
SPARC64-III implements LDD and LDDA in hardware.

108. Unimplemented STD trap

Description:
It is implementation-dependent whether STD and STDA are implemented in hardware. Ifan

attempt to execute either will cause an unimplemented_STD trap.

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 149

Implementation:
SPARC64-III implements STD and STDA in hardware.

109. LDDF_mem_address_not_aligned

Description:
LDDF and LDDFA require only word alignment. However, if the effective address isaligned

but not doubleword-aligned, either may cause an
LDDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDDF (or LDDFA) instruction and return.

Implementation:
SPARC64-III causes LDDF_mem_address_not_aligned trap for both word and double-word

misaligned addresses.

110. STDF_mem_address_not_aligned

Description:
STDF and STDFA require only word alignment. However, if the effective address isaligned

but not doubleword-aligned, either may cause an
STDF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STDF (or STDFA) instruction and return.

Implementation:
SPARC64-III causes STDF_mem_address_not_aligned trap for both word and double-word

misaligned addresses.

111. LDQF_mem_address_not_aligned

Description:
LDQF and LDQFA require only word alignment. However, if the effective address isaligned

but not quadword-aligned, either may cause an
LDQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the LDQF (or LDQFA) instruction and return.

Implementation:
SPARC64-III generates an illegal instruction exception for LDQF, LDQFA instructionskernel

provides emulation routines to complete the load.

112. STQF_mem_address_not_aligned

Description:
STQF and STQFA require only word alignment. However, if the effective address isaligned

SPARC International SPARC 64-III

150 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

but not quadword-aligned, either may cause an
STQF_mem_address_not_aligned trap, in which case the trap handler soft-
ware shall emulate the STQF (or STQFA) instruction and return.

Implementation:
SPARC64-III generates an illegal instruction exception for STQF, STQFA instructionskernel

provides emulation routines to complete the load.

113. Implemented memory models

Description:
Whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO) models areported is

implementation-dependent.

Implementation:
SPARC64-III supports Load/Store ordering (LSO), Total store Ordering(TSO)and Store

ordering (STO). Partial Store Order (PSO) is implemented using TSO and
Relaxed Memory Order (RMO) is implemented using STO.

114. RED_state trap vector address (RSTVaddr)

Description:
The RED_state trap vector is located at an implementation-dependent addressRSTVaddr.

Implementation:
RSTVaddr is a Constant when VA = FFFF FFFF F000 0000 and PA = 1FF F000 0000.

115. RED_state processor state

Description:
What occurs after the processor enters RED_state is implementation-dependent.

Implementation:
Plese See SPARC64-III user guide pg.139 (7.2.1.2 RED_state Execution Environment).

116. SIR_enable control flag

Description:
The location of and the means of accessing the SIR_enable control flag aredependent. In some

implementations, it may be permanently zero.

Implementation:
SIR_enable control flag is permanently zero in SPARC64-III.

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 151

117. MMU disabled prefetch behavior

Description:
Whether Prefetch and Non-faulting Load always succeed when the MMU is disabled ismenta-

tion-dependent.

Implementation:
In SPARC64-III, Prefetch and Non-faulting Loads always succeed if the MMU is

118. Identifying I/O locations

Description:
The manner in which I/O locations are identified is implementation-dependent.

Implementation:
Please contact HaL Computer Systems for details of I/O operation.

119. Unimplemented values for PSTATE.MM

Description:
The effect of writing an unimplemented memory-mode designation into PSTATE.MM is

implementation-dependent

Implementation:
Writing ‘11’ into PSTATE.MM causes the machine to use the STO Memoryever, the system

software should not use the encoding ‘11’ since it is reserved for future
SPARC-V9 extensions.

120. Coherence and atomicity of memory operations

Description:
The coherence and atomicity of memory operations between processors and I/O DMAory

accesses are implementation-dependent.

Implementation:
Plese See SPARC64-III user guide pg.355 (Nbr 121)

121. Implementation-dependent memory model

Description:
An implementation may choose to identify certain addresses and use andependent memory

model for references to them.

SPARC International SPARC 64-III

152 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Implementation:
In SPARC64-III, certain addresses use implementation dependent memory models forences to

them. Please contact HaL Computer Systems for details.

122. FLUSH latency

Description:
Latency between the execution of FLUSH on one processor and the point at which thefied

instructions have replaced out-dated instructions in a multiprocessor is
implementation-dependent.

Implementation:
Please contact HaL for FLUSH latency

123. Input/output (I/O) semantics

Description:
The semantic effect of accessing input/output (I/O) registers is

Implementation:
Please contact HaL for I/O semantics..

124. Implicit ASI when TL>0

Description:
When TL > 0, the implicit ASI for instruction fetches, loads, and stores isdependent. See

SPARC-V9 Architecture Manual section F.4.4, “Contexts,” for more infor-
mation.

Implementation:
SPARC64-III uses ASI_NUCLEUS for instruction fetches and ASI_NUCLEUS{_LITTLE},

loads and stores when TL>0

125. Address masking

Description:
When PSTATE.AM = 1, the value of the high-order 32-bits of the PC transmitted tofied desti-

nation registers(s) by CALL, JMPL, RDPC, and on a trap is implementa-
tion-dependent.

Implementation:
When PSTATE.AM bit is set on SPARC64-III, a full 64-bit address is transmitted toified des-

tination registers by CALL, JMPL, RDPC and traps transmit all 64-bits to

SPARC International SPARC 64-III

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 153

TPC[n] and TNPC[n].

126. TSTATE bits 19:18

Description:
If PSTATE bit 11 (10) is implemented, TSTATE bit 19 (18) shall be implemented andthe state

of PSTATE bit 11 (10) from the previous trap level. If PSTATE bit 11 (10)
is not implemented, TSTATE bit 19 (18) shall read as zero. Software
intended to run on multiple implementations should only write these bits to
values previously read from PSTATE, or to zeroes.

Implementation:
SPARC64-III does not implement PSTATE bits 10 & 11 and they are read as zeroes.bits 19

and 18 are read as zeroes.

127. PSTATE bits 11:10

Description:
The presence and semantics of PSTATE.PID1 and PSTATE.PID0 aredent. The presence of

TSTATE bits 19 and 18 is implementation-dependent. If PSTATE bit 11
(10) is implemented, TSTATE bit 19 (18) shall be implemented and contain
the state of PSTATE bit 11 (10) from the previous trap level. If PSTATE bit
11 (10) is not implemented, TSTATE bit 19 (18) shall read as zero. Soft-
ware intended to run on multiple implementations should only write these
bits to values previously read from PSTATE, or to zeroes.

Implementation:
SPARC64-III does not implement PSTATE bits 10 & 11 and they are read as zeroes.bits 19

and 18 are read as zeroes.

128. CLEANWIN register update
Earlier implementations of Sparc chips implemented the V9 specification forusing the follow-

ing equation to update CLEANWIN register:
 if (CLEANWIN != NWINDOWS) CLEANWIN++;
Subsequently V9 definition changed to modify the equation as:
 if (CLEANWIN < NWINDOWS-1) CLEANWIN++;

SPARC64-III implements the RESTORED using the current definition. The SPARC64-III
Kernel will ensure that CLEANWIN does not have a value beyond NWIN-
DOWS-1.

SPARC International SPARC 64-III

154 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Appendix A: Assgined VER.manuf and VER.impl

V9
SPARC INTERNATIONAL

SPARC International APPENDIX A

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 157

APPENDIX A: VER.impl/VER.manuf

The table 1 below includes all the V9 VER.impl and VER.manuf assigned by SPARC Interna-
tional as stated by the V9 Architecture Book (page 57). From Section 5.2.9: “If the manufacturer
does not have a JEDEC semiconductor manufacturer code, SPARC International will assign a
value of VER.manuf”.

To assign new number please contact:
Ghassan Abbas
abbas@sparc.com
Tel: 415-321-8692 x228.

Table 4: assigned VER.impl and VER.manuf by SI

COMPANY CPU VER.impl VER.manuf

HAL SPARC64 0x0001 0x0004

Sun Microsystems UltraSPARC (TI) 0x0010 0x0017

Sun Microsystems UltraSPARC (NEC) 0x0010 0x0022

Sun Microsystems UltraSPARC II 0x0011 0x0017

Sun Microsystems UltraSPARC IIi 0x0012 0x0017

Sun Microsystems UltraSPARC-e 0x0013 0x0017

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 158

SPARC International APPENDIX A

Appendix B: V9 Architecture Errata

as of 17 Jul 1995

V9
SPARC INTERNATIONAL

SPARC International Appendix B

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 161

APPENDIX B: SPARC V9 Arch Book Changes

r141 = R1.4.1 = distrib draft
r142 = R1.4.2 = book first printing;doc dated 15 Sep 93
r143 = R1.4.3 = revision (not used);
r144 = R1.4.4 = current revision;doc dated 17 Jul 95

All changes below are those since R1.4.2, incorporated in R1.4.4.

Change to page 13
subsection 2.57:
definition of “reserved”: “...intended to run on future version of” was corrected to read:
“...intended to run on future versions of”.

The sentence beginning “Reserved register fields” was amend to read: “Reserved register
fields should always be written by software with values of those fields previously read from
that register, or with zeroes; they should read as zero in hardware.”

Change to page 21(r142)
Editor's Notes: Added Les Kohn's name to the Acknowledgments.

Change to page 28(r142)
Tables 3,4,5: Made use of hyphens & dashes made consistent, and easier to read.

Change to page 30(r142)
paragraph just above subsection 5.1: Changed end of sentence to read:
“...should be written with the values of those bits previously read from that register, or with
zeroes.”

Change to page 40(r142),
Table 7: Added lines for 32-bit and 64-bit signed integers in f.p. registers, for clarity.

SPARC International Appendix B

162 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Change to page 51
In figure 17, added bits 11 and 10 to the figure, so it looks like:

Change to page 52(r142)
inserted new subsection 5.2.1.1 before old one: “IMPL. DEP. #127: The presence and seman-
tics of PSTATE.PID1 and PSTATE.PID0 are implementation- dependent. Software intended
to run on multiple implementations should only write these bits to values previously read from
PSTATE, or to zeroes. See also TSTATE bits 19 and 18."

Change to page 55(r142)
In Figure 22, (TSTATE register): Extended the “saved PSTATE” field up through bit 19 of
TSTATE; changed the diagram to look like:

Change to page 56(r142)
Added a new paragraph to the end of subsection 5.2.6: “TSTATE bits 19 and 18 are imple-
mentation-dependent. ImplDep#126: If PSTATE bit 11 (10) is implemented, TSTATE bit
19 (18) shall be implemented and contain the state of PSTATE bit 11 (10) from the previ-
ous trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18) shall read as

PID1 PID0 CLE TLE MM RED PEF AM PRIV IE AG

11 10 9 8 7 6 5 4 3 2 1 0

TSTATE 1 CCR from
TL=0

ASI from
TL = 0

- PSTATE
from TL=0

- CWP from
TL = 0

TSTATE 2 CCR from
TL=1

ASI from
TL = 1

- PSTATE
from TL=1

- CWP from
TL = 1

TSTATE 3 CCR from
TL=2

ASI from
TL = 2

- PSTATE
from TL=2

- CWP from
TL = 2

TSTATE 4 CCR from
TL=3

ASI from
TL = 3

- PSTATE
from TL=3

- CWP from
TL = 3

39 32 31 24 23 20 19 8 7 5 4 0

SPARC International Appendix B

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 163

zero. Software intended to run on multiple implementations should only write these bits to
values previously read from PSTATE, or to zeroes.”

Change to page 57(r142)
subsection 5.2.10 (Register-Window State Registers): Added implementation dependency
#126.

Change to page 58-9(r142)
In subsection 5.2.10 (Register-Window State Registers): Added note to descriptions of CWP,
CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN registers that the effect of writ-
ing a value to them greater than NWINDOWS-1 is undefined.

Change to page 76,
In Section 6, last sentence in 6.3.4.1, “Conditional Branches” changed to: Note that the annul
behavior of a taken conditional branch is different from that of an unconditional branch. And
the last sentence in 6.3.4.2, “Unconditional Branches” changed to: Note that the annul behav-
ior of a unconditional branch is different from that of a taken conditional branch.

Change to page 80(r142), 6.3.6.4(r142)
RESTORED: correct the equation with CLEANWIN to read “(CLEANWIN < (NWIN-
DOWS-1))”. and correct the text above it.

Change to page 81(r141/r142):
In section 6.3.9, “FMOVc” was corrected to read “FMOVr”.

Change to page 81(r141/r142):
In section 6.3.9, a sentence was added stating that FSR.cexc and FSR.ftt are cleared by
FMOVcc and FMOVr whether or not the move occurs.

Change to page 121(r141/r142):
An index entry for “non-faulting loads” was fixed in section 8.3.

SPARC International Appendix B

164 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Change to page 151(r142), A.9(r142),
In Compare and Swap page: Added mention of CASL and CASXL to the Programming Note.

Change to page 171
In Annex A, sentence added specifying that LDFSR does not affect the upper 32 bits of FSR.

Change to page 181(r141/r142):
“A.31” number was fixed so it now increments to A.32. All following section numbers and
odd page headers in Annex A have changed.

Change to page 191(r141/r142):
Page heading: “Condition” --> “Condition”

Change to page 195(r141/r142):
Order of instructions in Suggested Assembly Language Syntax was rearranged to correspond
to order of the instructions in the Opcode/op3/Operation table above it.

“more” and “movrz”, as the assembly-language mnemonic and its synonym, were exchanged
to correspond with the instruction name of MOVRZ.

“movrne” and “movrnz”, as the assembly-language mnemonic and its synonym, were
exchanged to correspond with the instruction name of MOVRNZ.

Change to page 212(r14[123]) A.43(r14[12])/A.44(r143),
In second page of the Read State Register instruction description, 4th paragraph SHOULD
read: “RDFPRS waits for all pending FPops ** and loads of floating-point registers** to com-
plete before reading the FPRS register.”

Change to page 216(r142), A.46(r142),
RESTORED page: correct the equation with CLEANWIN to read “(CLEANWIN < (NWIN-
DOWS-1))”

SPARC International Appendix B

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 165

Change to page 220(r142)/A.49(r142)
In the third Paragraph, the words “the” and “and” were transposed in the implementation
dependency description. It now reads: “The location of the SIR_enable control flag and the
means of accessing the SIR_enable control flag...”

Change to page 228(r141/r142):
Order of instructions in Suggested Assembly Language Syntax was rearranged to correspond
to order of the instructions in the Opcode/op3/Operation table above it.

Change to page 229(r142)/A.55(r142),
paragraph beginning “Store integer...: load” changed to “store”

Change to page 231(r142)/233(r143),
In Annex A, corrected SWAP deprecation note to recommend use of “CASA” or “CASXA”
(not “CASX”) in place of SWAP.

Change to page 234, A.58(r14[12])/A.59(r143)
Tagged Add: op3 opcodes are wrong. Both should have “0” for low-order bit (as correctly
given in Appendix E).

Change to page 241(r142), A.62(r142),
In “Write State Register” page, added footnote to Suggested Assembly Language Syntax
table, noting that the suggested syntax for WRASR with rd=16..31 may vary, citing reference
to implementation dependency #48. (Suggested Assembly Language Syntax is just that --
suggested -- so isn't part of the architecture specification anyway, but this makes it clearer
that if bits are interpreted differently in the instruction, one should expect its assembly-lan-
guage syntax to change, as well)

SPARC International Appendix B

166 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Change to page 242(r142), A.62(r142)
In “Write State Register” page: In the Exceptions section, “WRASR with rs1=16..31” now
reads “WRASR with rd=16..31”.

Change to page 253(r142)
In Annex C, fixed 6 incorrect index entries.

Change to page 253(4142)
In annex C, added a new Implementation Dependency:

Change to page 255(r142)
In Annex C, added implementation dependency #126.

Change to page 258(r142)
In D.3.3., rule (1), the text was clarified, to read: “(1) The execution of Y is conditional on X,
and S(Y) is true.”

Number Category Def/Ref
page # Description

127 f 52,56 The presence and semantics of PSTATE.PID1 and
PSTATE.PID0 are implementation-dependent. The
presence of TSTATE bits 19 and 18isimplementation-dependent.
If PSTATE bit 11 (10) is implemented,TSTATEbit19(18)
shall be implemented and contain the state of PSTATE
bit 11 (10) from the previous trap level.

If PSTATE bit 11 (10) is not implemented, TSTATE bit
19 (18) shall read as zero. Software intended to
run on multiple implementations should only write
these bits to values previously read from PSTATE, orto
zeroes.

SPARC International Appendix B

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 167

Change to page 268(r142)
In table 32, as a privileged instruction, “RDPR” should be listed with a superscript “P”.

Change to page 290(r142)
In section G, Table 43: insert “#” before the “ASI” in the compare-and-swap synthetic instruc-
tion entries

Change to page 312(r142)
In Annex I, Missing word “not” added to Compatibility Note.

SPARC International Appendix B

168 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

Index

V9
SPARC INTERNATIONAL

SPARC International INDEX

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 171

Symbols
, LDQ 36
Numerics
16bit implementation 25
A
Address space identifier 27
aex 26
aexc 95
AG 162
AM 162
and 90
ANSI/IEEE 24
ANSI/IEEE Standard 754-1985 44, 91
AS_IF 28
ASI 27, 28, 39, 96, 109, 162, 167
ASI_AS_IF_USER_PRIMARY 27, 96
ASI_AS_IF_USER_PRIMARY_LITTLE 27, 96
ASI_AS_IF_USER_SECONDARY 28, 96
ASI_AS_IF_USER_SECONDARY_LITTLE

28, 96
ASI_NUCLEUS 28, 96
ASI_NUCLEUS_LITTLE 28, 96
ASI_PRIMARY 27, 39, 96, 109
ASI_PRIMARY_LITTLE 27, 39, 96
ASI_PRIMARY_NOFAULT 27, 96
ASI_PRIMARY_NOFAULT_LITTLE 28, 96
ASI_SECONDARY 28, 96
ASI_SECONDARY_LITTLE 28, 96
ASI_SECONDARY_NOFAULT 28, 96
ASI_SECONDARY_NOFAULT_LITTLE 28,

96
ASR 25, 32, 93, 100, 101
ASR24 25
ASR25 25
ASR26 25
ASR27 25
ASR28 25
ASR29 25
ASR31 25
ASRs 92, 93, 100
Assembly Language Syntax 165
associated deferred-trap queues 29
async_data_error 30

audience 19
B
bge 90
bne 90
C
CALL 39, 109
CANRESTORE 163
CANSAVE 163
CASA 165
CASX 165
CASXA 165
ccelerated emulation trap 31
CCR 162
cex 95
cexc 26, 95
check_illegal_done_retry 90
check_illegal_saved_restored 90
Chip_crossing_errors 29
circular stack 24
CLE 162
clean_window 101
cleaning 33
CLEANWIN 40
CLEANWIN register 40
CLEAR_SOFTINT 93, 101
contents of SCD 2.2 19
corrected_ECC_error 98
CPU 25, 28, 29, 31, 37, 157
CPU_HALTED 31
CPU_xing 29, 30
D
d LDD 35
Data access 100
data_access_exception 99
data_access_MMU_miss 30, 33, 100, 102
data_breakpoin 30
data_breakpoint 27, 29
deferred 30
Deferred trap queues 29
deferred-trap queue 27
definition of audience 19
definition of purpose 19
DISPATCH_CONTROL_REG 93

Index

SPARC International INDEX

172 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

disrupting 30
division_by_zero 29, 97
DMA 38, 108
DONE 90
doubleword-aligned 36
E
ECC_trap 30
error 97
Error logging 97
error state 31
Error_state 31, 99
error_state 31, 99, 107
F
F{i,x}TOq 43, 89
F{s,d} 91
F{s,d}TOq 43, 89
FABSq 43, 89
FADD 91
FADDq 43, 89
fast_data_access_MMU_miss 98
fast_data_access_protection 98
fast_instruction_access_MMU_miss 98
Fault Address Register 25
FCMP{E}q 43, 89
FDIV 27, 44, 91, 92
FDIVq 90
FdMULq 43, 89
FdTOs 91
fetches 109
FFF0 94
FFFF 94
Floating-Point 24
floating-point 32, 91
Floating-point underflow 33
FLUSH 31, 32, 38, 99, 108
flush 31
FMOVc 163
FMOVcc 163
FMOVq 43, 89
FMOVqcc 43, 89
FMOVqr 43, 89
FMOVr 163
FMUL 91, 92
FMULq 89
FNEGq 43, 89
FNULq 43

FP 44, 89
fp_exception_othe 36
fp_exception_other 23, 27, 29, 36, 95
FPQ 27
FPU 24, 26, 27, 94, 95, 100
FPU TEM 95
FPU trap 32
FQ 27, 95
FqTO 43
FqTO{i,x} 89
FqTO{s,d} 89
FSQRT 91
fsqrtd 23
FSQRTq 44, 90
fsqrts 23
FSR 26, 27, 94
FSR.cexc 163
FSR.ft 23
FSR.ftt 23, 27, 29, 95, 163
FSR.NS 94
FSR.VER 94
FSR.ver 26, 94
FSR_nonstandard_fp 26, 94
FSUBq 43, 89
Fujitsu 34
G
GRAPHICS_STATUS_REG 93
H
HAL 25, 31, 35, 38, 157
HAL Computer Systems 23, 38, 67, 137
hex 102
I
I/O register 92
I/O registers 25, 92
IE 162
IEEE 94
IEEE 754 24, 33, 101
IEEE 754-1985 26
IEEE Standard 754-1985 26, 94
IEEE Std 754-1985 24, 91, 95
IEEE Std. 754-1985 27
illegal_instructio 32
illegal_instruction 23, 27, 31, 32, 34, 95, 99
IMPDEP1 35, 103
IMPDEP2 35, 103
IMPL. DEP 162

SPARC International INDEX

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 173

impl. dep 96
implementation-dependent 108
Index 19
instruction_access_error 97
instruction_access_MMU_miss 30
internal_processor_error 30
Interrupt 97
interrupt 98
interrupt_vector 98
Introduction 19
IO_parity 30
IU 24, 26, 90, 94
IU registers 24
J
JEDEC 34, 102, 157
JMPL 39, 109
K
Kernel 23
kernel 24
L
Latency 38
ld 90
LDD 23, 25, 31, 105
LDDA 35, 105
ldda 23
LDDF 35, 105
LDDF_mem_address_not_aligned 35, 105
LDDFA 35, 105
LDQF 36, 43, 89, 106
LDQF_mem_address_not_aligned 30, 36, 106
LDQFA 36, 43, 89, 106
LE 28
Load/Store ordering 36
loads 109
LSO 36
M
M 38
mask-level 34
MAXTL 97, 99
mem_address_not_aligned 29, 97
MM 37, 162
MMU 25, 28, 37, 107
multiprocessor 38
N
no-fault-only 99
non-cacheable 92, 109

Non-faulting 37
Non-faulting Load 107
non-faulting loads 163
non-privileged mode 28
Non-Restricted 28
nonstandard mode 24
NOP 33, 34, 102, 107
nop 90
not_illegal 90
NR 28
NS 26, 94
NWINDOW 40
NWINDOWS 24, 90, 163
NWINDOWS-1 40, 163
O
Opcode 165
organization 19
OTHERWIN 163
overflowing 34
P
PA_watchpoint 98
Partial Store Order 36, 106
PC 109
PEF 162
PERF_CONTROL_REG 93
PERF_COUNTER 93
PID0 162
PID1 162
PIL 29
PO 28
POPC 43, 89
popc 23
POR 31
Power-on Reset 31
precise 30
Preface 19
PREFETCH 33, 102
Prefetch 34, 37, 107
PREFETCHA 33, 102
prgorammed_emulation_trap 30
PRIV 162
privileged status 25
privileged_action 28
privileged_opcode 90
processor cycles 34
Program Order 28

SPARC International INDEX

174 Implementation Characteristics of Current SPARC-V9-Based Products 2/9/99

PSO 36, 106
PSTATE 39, 40, 109, 110, 162, 163, 166
PSTATE.AM 39, 109
PSTATE.IE 29, 97
PSTATE.MM 38, 108
PSTATE.PID 39
PSTATE.PID0 110, 162
PSTATE.PID1 39, 110, 162
PSTATE.PRIV 28, 96
PSTATE.RED 97
purpose 19
Q
quad operands 23
quadword-aligned 36
R
r LDD 35
r Relaxed Memory Orde 36
RDASR 32, 100
RDPC 39, 109
RDPR 27, 95, 167
rdpr 90
RED 162
RED_alert 30
RED_MODE 37
RED_state 36, 37, 106, 107
Relaxed Memory Order 36, 106
Reset trap 98
reset trap 98
RESTORED 40, 90, 163
RETRY 90
RIVILEGED_OPCODE_HANDLER 90
RMO 36, 106, 108
rounding 33
RSTVaddr 37, 106, 107
S
SAVED 90
second-sourced chip 34
sequence_error 27
SET_SOFTIN 101
SET_SOFTINT 93
setx 90
SIR 25
SIR_enable 37, 107, 165
SOFTINT_REG 93, 101
Software 25
Software Installation 19

SP 91, 92
SPARC 89, 90
SPARC International 23, 34, 67, 89, 102, 137,

157
Sparc6 28
SPARC64 25, 27, 28, 30, 31, 35, 38, 157
Sparc64 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 67, 137
Sparc64 Processor User Guide 35
SPARC-V9 26, 28, 30, 38, 39, 40, 97, 98, 109
Sparc-V9 23, 28
srl 90
State Control Register 25
STD 23, 25, 31, 35, 105
std 23
STDA 35, 105
stda 23
STDF 36, 105, 106
STDF_mem_address_not_aligned 36, 105, 106
STDFA 36, 105, 106
STO 36
store 109
Store ordering 36
STP 1030BGA 43
STQD_mem_address_not_aligned 30
STQF 36, 43, 89, 106
STQF_mem_address_not_aligned 36, 106
STQFA 36, 43, 89, 106
subcc 90
SUN 89, 113
Sun Microsystems 157
Sun Microsystems, Inc 89
SWAP 165
T
TEM 26, 27, 95
TICK 34, 102
TICK.counter 102
TICK_CMPR_REG 93
tininess 24, 33
TL 39, 99, 109, 162
TLE 162
TNPC 39
TPC 29, 39
Trap precision 97
Trapped Underflow 24
TSTAT 162

SPARC International INDEX

2/9/99 Implementation Characteristics of Current SPARC-V9-Based Products 175

TSTATE 39, 40, 109, 110, 162
TT 30, 98
U
UFM=0 24
UFM=1 24
UltraSPARC 157
ULTRASPARC II 89, 113
UltraSPARC II 157
Ultra-SPARC-I 43
UltraSPARC-I 43
UltraSPARC-II 89, 91, 92, 93, 94, 95, 96, 97, 98,

99, 100, 101, 102, 103, 105, 106, 107,
108, 109, 110

unfinished_FPop 27, 29
unimplemented exception 24
unimplemented_FPop 23
unimplemented_LDD 23, 25, 35, 105
unimplemented_STD 23, 25, 35, 105
Untrapped Underflow 24
V
V (Vendor-specific) 28
VA_watchpoint 98
Vendor-specific 28
VER.impl 26, 93, 157
VER.manuf 34, 102, 157
W
watchdog 31
Watchdog reset 31
watchdog_reset 99
WDR 31
Window State Registers 163
WRASR 25, 32, 100, 101, 165, 166
Write State Register 165, 166
write-only register 25
X
XIR 37
xor 32, 100

