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0. PREFACE


0.1. Introduction


The purpose of this document is to describe the differences between the 32-bit SPARC specific
ABI, as published by AT&T as System V Application Binary Interface, SPARCTM Processor
Supplement and the proposed 64-bit version of the SPARC specific ABI.


0.2. Basic Assumptions


A number of basic assumptions are reflected in the proposals presented. It is assumed that
it is necessary to permit the simultaneous support of both V8 and V9 binaries but it is not
necessary to specifically require V8 compatibility. This means it should be possible for V9
systems to support both the V9 ABI and the V8 ABI or just the V9 ABI. Similarly, it assumes
that it should be possible to support binaries that use a combination of the V8 and V9 calling
conventions but the specifics need not be a part of the ABI. It also assumes that there is a
separate set of V9 libraries and that most networking software will continue to use 32-bit
protocols. Since it is likely that V9 hardware and V9 software generation tools will optimize
for 64-bits, the V9 ABI favors 64-bit data. Major emphasis has been placed on addressing
the V8 range limitations that remain in the V9 architecture (e.g. call and sethi instructions).


This document is based heavily on details in The SPARCTM Architecture Manual, Version 9
which is still being revised. This draft corresponds to Release 1.2 of that document.
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1. INTRODUCTION


1.1. SPARC Processor and the System V ABI


        [ This section is unchanged. ]


1.2. How to Use the SPARC ABI Supplement
[ Change all references of the title: ]


The SPARCTM Architecture Manual, Version 8


[ to: ]


The SPARCTM Architecture Manual, Version 9
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2. SOFTWARE INSTALLATION


2.1. Software Distribution Formats


        [ This section is unchanged. ]
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3. LOW-LEVEL SYSTEM INFORMATION


3.1. Machine Interface


3.1.1. Processor Architecture


The SPARCTM Architecture Manual, Version 9 defines the processor architecture. Programs
intended to execute directly on the processor use the instruction set, instruction encodings, and
instruction semantics of the architecture. Four points deserve explicit mention.


� A SPARC V9 ABI conforming program may not use the IMPDEP1 and IMPDEP2
instructions.


� A program may assume all other documented non-privileged instructions exist


� A program may assume all other documented non-privileged instructions work.


� A program may use only the non-privileged instructions defined by the
architecture, with the exception of IMPDEP1 and IMPDEP2.


In other words, from a program’s perspective, the execution environment provides a complete
and working implementation of the non-privileged part of the SPARC V9 architecture. Although
the IMPDEP1 and IMPDEP2 instructions are part of the V9 architecture, they may not be
used by V9 ABI conforming programs because their behavior is undefined.


This does not imply that the underlying implementation provides all instructions in hardware,
only that the instructions perform the specified operations and produce the specified results.
The ABI neither places performance constraints on systems nor specifies what instructions must
be implemented in hardware.


Some processors might support the SPARC V9 architecture as a subset, providing additional
instructions or capabilities. Programs that use those capabilities explicitly do not conform to
the SPARC V9 ABI. Executing those programs on machines without the additional capabilities
gives undefined behavior.


3.1.2. Data Representation


3.1.2.1. Fundamental Types


Figure 3-1 shows the correspondence between ANSI C’s scalar types and the processor’s.


[ The assumption that sizeof(int) and sizeof(long) are 8 bytes is highly likely    ]
[ change. There are numerous places in the rest of the document where these  ]


For performance reasons it is suggested that the FLUSH instruction not be used. The [TBD-
library] routine “flush_instr_mem” is the preferred way to flush instruction memory.


It is suggested that the instructions marked as “deprecated” in “The SPARC(TM) Architecture
Manual, Version 9” not be used. These instructions may exhibit poor performance in some
Version 9 implementations of the architecture and may not be available in future versions
of the architecture.


NOTE
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[ assumptions are used without comment.                                        ]


A null pointer (for all types) has the value zero.


Double and quad-precision values occupy 1 and 2 extended words, respectively. Their natural
alignment is the same, meaning their addresses are multiples of 8 and 16. Compilers should
allocate independent data objects with the proper alignment; examples include global arrays
of double-precision variables, FORTRAN COMMON blocks, and unconstrained stack objects.
However, some language facilities (such as FORTRAN EQUIVALENCE statements) may create
objects with only word alignment. Consequently, arbitrary double- and quad-precision addresses,
such as pointers or reference parameters, might or might not be properly aligned. The system
shall efficiently implement all LDDF(A), STDF(A), LDQF(A), and STQF(A) instructions with
target addresses that are word aligned, even if they are not extended word aligned. Therefore,
compilers should emit LDDF(A), STDF(A), LDQF(A), and STQF(A)instructions unless it is
known at compile time that the target address is not extended word aligned.


Type


Integral


Pointer


Floating-
point


C
char
signed char
unsigned char
short
signed short
unsigned short
int
signed int
long
signed long
enum
unsigned int
unsigned long
any-type *
any-type (*) ()
float


double


long double


sizeof


1


1


2


2


8


8


8


4


8


16


Alignment
(bytes)


1


1


2


2


8


8


8


4
4 required


8 recommended
4 required


16 recommended


SPARC


signed byte


unsigned byte


signed halfword


unsigned halfword


signed extended-word


unsigned extended-word


unsigned extended-word


single-precision


double-precision


quad-precision


Figure 3-1: Scalar Types
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Figure 3-1+ show the correspondence between additional integral scalar data types, which are
conforming extensions to ANSI C, and the processor’s.


Figure 3-1++ shows the correspondence between complex floating-point data types and the
processor’s.


Type


Integral


ANSI C Extension
_ _ int8
signed _ _ int8
unsigned _ _ int8
_ _ int16
signed _ _ int16
unsigned _ _ int16
_ _ int32
signed _ _ int32
unsigned _ _ int32
_ _ int64
signed _ _ int64
unsigned _ _ int64


sizeof


1


1


2


2


4


4


8


8


Alignment
(bytes)


1


1


2


2


4


4


8


8


SPARC


signed byte


unsigned byte


signed halfword


unsigned halfword


signed word


unsigned word


signed extended-word


unsigned extended-word


Figure 3-1+: More Scalar Types


Type


Floating-
point


Complex Type


single complex


double complex


quad complex


sizeof


8


16


32


Alignment
(bytes)


4


4 required
8 recommend


4 required
16 recommend


SPARC
single-precision (real) /
single_precision (imaginary)
double-precision (real) /
double-precision (imaginary)
quad-precision (real) /
quad-precision (imaginary)


Figure 3-1++: Floating-point Complex Data Types







3-4 SPARC V9 ABI SUPPLEMENT Delta Document 1.31


LOW-LEVEL SYSTEM INFORMATION 5/18/94 SPARC International Confidential


3.1.2.2. Aggregates and Unions


Aggregates (structures and arrays) and unions assume the alignment of their most strictly aligned
component. The size of any object, including aggregates and unions, always is a multiple of
the object’s alignment. An array uses the same alignment as its elements. Structure and union
objects can require padding to meet size and alignment constraints.


� An entire structure or union object is aligned on the same boundary as its most
strictly aligned member.


� Each member is assigned to the lowest available offset with the appropriate
alignment. This may require internal padding, depending on the previous member.


� A structure’s size is increased, if necessary, to make it a multiple of the alignment.
This may require tail padding, depending on the last member.


In the following examples, members’ byte offsets appear in the upper left corners.


0
c


Figure 3-2: Structure Smaller Than a Word


struct {
char c;


};


Byte aligned, sizeof is 1


Halfword aligned, sizeof is 4
0


c
1


d
2


s


Figure 3-3: No Padding


struct {
char c;
char d;
short s;


};


Halfword aligned, sizeof is 4
0


c
1
pad


2
s


Figure 3-4: Internal Padding


union {
char c;
short s;


};
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3.1.2.3. Bit-Fields


C struct and union definitions may have bit-fields, defining integral objects with a specified
number of bits.


Extended word aligned, sizeof is 24
0


c
1


pad
8


i
16


s
18


pad


Figure 3-5: Internal and Tail Padding


struct {
char c;
int i;
short s;


};


Extended word aligned, sizeof is 8
0


c
1


pad
0


s
2


pad
0


j


Figure 3-6: Union Allocation


union {
char c;
short s;
int j;


};
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Bit-field Type Width w Range


signed char
char
unsigned char


1 to 8
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1


signed short
short
unsigned short


1 to 16
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1


signed int
int
enum
unsigned int


1 to 64


-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1
0 to 2w-1


signed long
long
unsigned long


1 to 64
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1


Figure 3-7: Bit-Field Ranges


Bit-field Type Width w Range


signed _ _int8
_ _int8
unsigned _ _int8


1 to 8
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1


signed _ _int16
_ _int16
unsigned _ _int16


1 to 16
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1


signed _ _int32
_ _int32
unsigned _ _int32


1 to 32
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1


signed _ _int64
_ _int64
unsigned _ _int64


1 to 64
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1


Figure 3-7+: More Bit-Field Ranges
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“Plain” bit-fields always have non-negative values. Although they may have type char, short,
int, long, __int8, __int16, __int32, __int64, or enum (which can have negative
values), these bit-fields are extracted into an extended word with zero fill. Bit-fields obey the
same size and alignment rules as other structure and union members, with the following
additions.


� Bit-fields are allocated from left to right (most to least significant).


� A bit-field must entirely reside in a storage unit appropriate for its declared type.
Thus a bit-field never crosses a unit boundary.


� Bit-fields may share a storage unit with other struct/union members, including
members that are not bit-fields. Of course, struct members occupy different parts
of the storage unit.


� Unnamed bit-fields’ types do not affect the alignment of a structure or union,
although individual bit-fields’ member offsets obey the alignment constraints.


The following examples show struct and union members’ byte offsets in the upper left
corners; bit numbers appear in the lower corners.


0 1 2 3 4 5 6 7
88 99 AA BB CC DD EE FF


63 55 47 39 31 23 15 7 0
0x8899AABBCCDDEEFF


Figure 3-8: Bit Numbering


Extended word aligned, sizeof is 8


Figure 3-9: Left to Right Allocation


struct {
int j:5;
int k:6;
int m:7;


};


0
j k m pad


63 58 52 45 0
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Extended word aligned, sizeof is 8


Figure 3-10: Boundary Alignment


struct {
short s:9;
int j:9;
char c;
short t:9;
short u:9;
char d;


};


0 3 4 6
s j pad c t pad u pad


63 54 45 39 31 22 15 6 0
8 9


d pad
63 55 0


Halfword aligned, sizeof is 2


Figure 3-11: Storage Unit Sharing


struct {
char c;
short s:8;


};
0 1


c s
7 0


Halfword aligned, sizeof is 2


Figure 3-12: union Allocation


union {
char c;
short s:8;


};


0 1
c pad


0
s pad


15 7 0
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As the examples show, int bit-fields (including signed and unsigned) pack more densely
than smaller base types. One can use char and short bit-fields to force particular alignments,
but int generally works better.


3.2. Function Calling Sequence


This section discusses the standard function calling sequence, including stack frame layout,
register usage, parameter passing, etc. The system libraries described in Chapter 6 require this
calling sequence.


3.2.1. Registers and the Stack Frame


In SPARC V9 all floating-point registers and 8 integer registers are global to a running program,
as the save and restore instructions do not affect them. All remaining integer registers
are windowed: 24 are visible at any time, and sets of 24 overlap by 8 registers each. The
save and restore instructions manipulate the windows as part of the normal function
prologue and epilogue, making the caller’s 8 out registers coincide with the callee’s 8 in registers.
Each window set also has 8 unshared local registers. Generally, each new frame on the dynamic
call stack uses a new register window.


Brief register descriptions appear in Figures 3-14 and 3-15; more complete information appears
later.


Extended word aligned, sizeof is 13


Figure 3-13: Unnamed Bit-fields


struct {
char c;
int :0;
char d;
short :9;
char e;
char :0;


};


0 1
c :0


63 55 0
8 9 12


d pad :9 pad e
63 55 47 38 31 24


C programs follow the conventions given here. For specific information on the implementation
of C, see “Coding Examples” in this chapter.


NOTE
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Name
%i7
%i6
%i5
%i4


%i3


%i2


%i1


%i0


%l7
%l6
%l5
%l4
%l3
%l2
%l1
%l0


%o7


%o6
%o5
%o4


%o3


%o2


%o1


%o0


%r31
%r30
%r29
%r28


%r27


%r26


%r25


%r24


%r23
%r22
%r21
%r20
%r19
%r18
%r17
%r16


%r15


%r14
%r13
%r12


%r11


%r10


%r9


%r8


%fp


%sp


Type


in


local


out


Usage
return address - 8 †


frame pointer †
incoming param †
incoming param †
incoming param, †


outgoing return value
incoming param, †


outgoing return value
incoming param, †


outgoing return value
incoming param, †


outgoing return value
local †
local †
local †
local †
local †
local †
local †
local †


address of call instruction, ‡
temporary value
stack pointer †


outgoing param ‡
outgoing param ‡
outgoing param, ‡


incoming return value
outgoing param, ‡


incoming return value
outgoing param, ‡


incoming return value
outgoing param, ‡


incoming return value


Figure 3-14: A Function’s Window Registers
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Name
%g7
%g6
%g5
%g4
%g3
%g2
%g1
%g0


%d60,d62
%d56,d58
%d52,d54
%d48,d50
%d44,d46
%d40,d42
%d36,d38
%d32,d34
%d28,d30
%d24,d26
%d20,d22
%d16,d18
%d12,d14
%d8,d10


%d4,d6


%d0,d2


%r7
%r6
%r5
%r4
%r3
%r2
%r1
%r0


%f28-f31
%f24-f27
%f20-f23
%f16-f19
%f12-f15
%f8-f11


%f4-f7


%f0-f3


%y
%ccr
%asi
%fprs
%fsr


%q60
%q56
%q52
%q48
%q44
%q40
%q36
%q32
%q28
%q24
%q20
%q16
%q12
%q8


%q4


%q0


Type


global


floating-
point


special


Usage
global (reserved for system)
global (reserved for system)


global ‡
global †
global †
global †
global ‡


0
floating-point ‡
floating-point ‡
floating-point ‡
floating-point ‡
floating-point †
floating-point †
floating-point †
floating-point †
floating-point †
floating-point †
floating-point †
floating-point †


parameter ‡
parameter ‡
parameter, ‡
return value
parameter, ‡
return value
Y register ‡


condition code register ‡
(see below)
(see below)
(see below)


Figure 3-15: A Function’s Global Registers


Registers marked † above are assumed to be preserved across a function call. Registers
marked ‡ above are assumed to be destroyed (volatile) across a function call.


NOTE
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In addition to a register window, each function has a frame on the run-time stack. This grows
downward from high addresses, moving in parallel with the current register window. Figure
3-16 shows the stack frame organization.


Several key points about the stack frame deserve mention.


� Every stack frame must be 16-byte aligned.


� Every stack frame must have a 16-extended-word save area for the in and local
registers, in case of window overflow or underflow. This save area always must
exist at %sp plus a BIAS of 2047 (0x7ff).


� Arguments that do not fit in the argument registers are passed on the stack.


� Other areas depend on the compiler and the code being compiled. The standard
calling sequence does not define a maximum stack frame size, nor does it restrict
how a language system uses the “unspecified” areas of the standard stack frame.


Contents


unspecified
. . .


variable size


(if present)
additional incoming arguments


1 extended word reserved


16 extended word save area


unspecified
. . .


variable size


(if needed)
additional outgoing arguments


1 extended word reserved


16 extended word save area


volatile memory
(do not use)


Frame


High Addresses


Previous


Current


Low Addresses


Offset


+136


+128


0


-1


+136


+128


0


-1
0


Base


%fp+BIAS


%fp+BIAS


%fp+BIAS


%fp+BIAS


%sp+BIAS


%sp+BIAS


%sp+BIAS


%sp+BIAS
%sp


BIAS = 2047


Figure 3-16: Standard Stack Frame
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Across function boundaries, the standard function prologue shifts the register window, making
the calling function’s out registers the called function’s in registers. It also allocates stack space,
including the required areas of figure 3-16 and any private space it needs. The lowest 16
extended-words in the stack must—at all times—be reserved as the register save area. The
example below illustrates this and allocates 160 bytes for the stack frame.


For demonstration, assume a function named first calls second. The register windows for
the two functions appear below.


As explained later, the function epilogue executes a restore instruction to unwind the stack
and restore the register windows to their original condition.


The stack pointer is offset from the stack frame by a BIAS of 2047 (ox7ff). This BIAS permits
stack frame references in the range of %fp-4096 to %fp+2047 and %sp+2047 to %sp+4095
to be made with only immediate offset addressing. By making the BIAS an odd number,
the least significant bit of the stack pointer will be set and the register overflow and underflow
handlers can easily distinguish a 64-bit register window from a 32-bit register window.


NOTE


second:
save %sp, -160, %sp


Figure 3-17: Function Prologue


first()
{


. . .
second()
. . .


}


first


in


local


out


second


in


local


out


shared


global


floating-point


special


Figure 3-18: Register Windows
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Some registers have assigned roles.


%sp or %o6 The stack pointer plus the stack BIAS determines the limit of the
current stack frame, which is the address of the stack’s bottommost,
valid word. At all times the stack pointer plus the stack BIAS must
point to a 16-byte aligned, 16 extended words window save area.


%fp or %i6 The frame pointer plus the stack BIAS is the address of the previous
stack frame, which coincides with the word immediately above the
current frame. Consequently, a function has registers with which
it can access both ends of its frame. Incoming overflow arguments
reside in the previous frame, referenced as positive offsets from the
frame pointer plus the stack BIAS.


%i0 and %o0 Integral and pointer return values appear in %i0. A calling function
receives values in the coincident out register %o0.


%i0,%i1,%i2,%i3 Structure or union return values of size 32 bytes or less appear in
(%o0,%o1,%o2,%o3) registers %i0, %i1, %i2 and %i3. A calling function receives values


in the coincident out registers.


%i7 and %o7 The return address is the location to which a function should return
control. Because a calling function’s out registers coincide with the
called function’s in registers, the calling function puts a return
address in its own %o7, while the called function finds the address
in %i7.


Actually, the return address register holds the call instruction’s
address, normally making the return address %i7+8 for the called
function. (every call instruction has a delay instruction.) Between
function calls, %o7 serves as a scratch register.


%f0,%f1,%f2,%f3 Floating-point return values appear in the floating-point registers.
(%d0, %d2) Single-precision values occupy %f0; double-precision values occupy
(%q0) %d0; quad-precision values occupy %q0. (Refer to the SPARCTM


Architecture Manual, Version 9 for details on the register numbering
scheme). Otherwise, these are scratch registers.


%f0 through %f7 For non-C applications, aggregate floating-point return values of 32
(%d0 through %d6) bytes or less appear in the floating-point registers. FORTRAN
(%q0 and %q4) single-complex values occupy %f0 and %f1; double-complex values


occupy %d0 and %d2; quad-complex values occupy %q0 and %q4.


Strictly speaking a function does not need the save and restore instructions if it preserves
the registers as described below. Although some functions can be optimized to eliminate
the save and restore, the general case uses the standard prologue and epilogue.


NOTE
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%i0 through %i5 Incoming non-floating-point parameters use up to 6 in registers.
Arguments beyond the sixth extended-word appear on the stack.


%o0 through %o5 Outgoing non-floating-point parameters use up to 6 out registers.
Arguments beyond the sixth extended-word appear on the stack.


%f0 through %f15 Floating-point arguments are passed in the floating-point registers.
(%d0 through %d14) Unpromoted single-precision arguments are passed in registers %f0
(%q0 through %q12) through %f15. Double-precision arguments are passed in registers


%d0 through %d14. Quad-precision arguments are passed in registers
%q0 through %q12. Floating-point arguments beyond these appear
on the stack. These registers are assumed volatile across the call.


%l0 through %l7 Local registers have no specified role in the standard calling
sequence.


%f16 through %f31 These floating-point registers have no specified role in the standard
(%d16 through %d42) calling sequence. They are assumed preserved across function calls.
(%q16 through %q40)


%d44 through %d62 These floating-point registers have no specified role in the standard
(%q44 through %q60) calling sequence. They are assumed volatile across function calls.


%g0 Global register 0 has no specified role in the standard calling
sequence.


%g1, %g5 Global registers 1 and 5 have no specified role in the standard calling
sequence. They are assumed volatile across function calls.


%g2, %g3, %g4 Global registers 2, 3, and 4 are reserved for application software.
System software (including the libraries described in Chapter 6)
preserve the registers’ values for the application. Their use is
intended to be controlled by the compilation system and must be
consistent throughout the application.


%g6 and %g7 Global registers 6 and 7 are reserved for system software.


%ccr, %y These special registers are volatile across function calls


%asi The address space identifier register by default holds the value
ASI_PRIMARY_NOFAULT. If modified, it must be restored to the
default value before calling another function or returning.


%fsr The RD, TEM and NS fields are preserved across function calls;
the other fields are volatile. The AEXC bits may be set by a callee,
but may not be cleared.


%fprs The floating point registers state is intended for use by a threads
interface. An application that uses %fprs may not work with a future
threads interface. A threads interface may publish its own rules for
use of %fprs.
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With some exceptions given below, all registers visible to both a calling and a called function
‘belong’ to the called function. In other words, a called function may use all visible registers
without saving their values before it changes them and without restoring their values before
it returns. Registers in this category include global registers 1 and 5, volatile floating-point
registers, out registers (for the calling function), in registers (for the called function), the Y
register... Correspondingly, if a calling function wants to preserve such a register value across
a function call, it must save the value and restore it explicitly. Local registers in each window
are private. A called function should not change its calling function’s local or in registers,
even though the registers may be visible temporarily. The exceptions are the stack pointer,
%sp, global registers 2 through 4, 6 and 7 and the preserved floating-point registers. A called
function is obligated to preserve the stack pointer for its caller.


Signals can interrupt processes [see signal(BA_OS)]. Functions called during signal handling
have no unusual restrictions on their use of registers. Moreover, if a signal handling function
returns, the process resumes its original execution path with registers restored to their original
values. Thus programs and compilers may freely use all non-reserved registers, even global
and floating-point registers, without the danger of signal handlers changing their values. The
address space identifier register will be set to ASI_PRIMARY_NOFAULT on entry to the signal
handler.


3.2.2. Function Argument Passing


Arguments are passed in integer registers, floating-point registers, and on the caller’s stack as
needed. The algorithm for determining the location of a given parameter is given below. Note
that this algorithm depends on the order, types, and sizes of the parameters. Any registers not
needed to actually pass a parameter in a given call are undefined upon call. Stack memory
is only used as needed. In the following, integer registers are referred to from the caller’s
point of view (e.g. %o3). If the callee elects to use the save instruction to allocate a register
window, it will access the value of %i3 instead. This shall be understood implicitly.


There are three separate areas to pass arguments in:
� Integer registers %o0 through %o5


� Floating-point registers %f0 through %f15


� Contiguous memory starting at %sp+BIAS+136 of the caller (%fp+BIAS+136 of
the callee). This area is henceforth called “argument overflow area.”


Arguments are considered left-to-right (first-to-last) in order. Each argument in turn is assigned
to one of these three areas as described below. Register areas are filled starting with the lowest
numbered register and ending with the highest numbered register. The argument overflow area
is filled starting with the lowest address, and is extended as needed.


3.2.2.1. Integral and pointer arguments


Integral and pointer arguments are passed in integer registers, each occupying the next unused
single register. Functions pass all integer-valued arguments as extended-words, expanding signed
and unsigned bytes, halfwords, and words as needed. Once %o5 becomes used, the argument
is instead placed into the next available extended word in the argument overflow area.
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3.2.2.2. Floating and complex arguments


Single-precision floating arguments are passed in %f0 through %f15. Double-precision floating
arguments are passed in %d0 through %d14. Quad-precision arguments are passed in %q0
through %q12. Each argument is assigned the lowest-numbered register of its class (single,
double, or quad) completely unused by previous arguments, starting at %f0/%d0/%q0. Note
that this may leave registers unused where a larger argument follows a smaller one. Such unused
registers have undefined value.


If the area of %f0-%f15 is already filled according to those rules, the argument is placed into
the argument overflow area instead, occupying the lowest-address extended word (for single
or double) or pair of extended words (for quad) completely unused by previous arguments.
Thus, quad arguments in memory are always 16-byte aligned.


Complex arguments are passed as a pair of floating-point arguments of the corresponding size,
real component first, imaginary component second. Note that this may split a complex argument
between floating-point registers and memory.


3.2.2.3. Structure and Union arguments


An argument of structure or union type is passed by reference. The caller places a pointer
to the argument value into the next available integer register, or if %o5 is already used, into
the next available extended word in the argument overflow area. The callee may not modify
the area designated by this pointer under any circumstances. (If the callee wants to modify
its argument, it must make a copy.) The memory area pointed to may be subject to modification
through the side effects of function calls, or through asynchronous activities (signal handlers,
multiprocessing, etc.). Consequently, the callee must make a copy of the argument value early
on unless it can ensure (through code analysis) that any such modifications possible will not
change the logically observed value of the argument. In other words, the callee must guarantee
that the program will behave as if it had made a copy of the structure value.


3.2.2.3.1. Special Rule for Variable Argument Lists


A specific exception is made to the above rules to accommodate implementation of the stdarg.h
mechanism specified by the ANSI C standard (and, by analogy, of the older varargs.h mechanism
used widely in other UNIX implementations). The exception is this:


When an argument is of structure or union type, and is matched against an ellipsis (“...”)
in an active function prototype for the called function, then (and only then) the caller makes
a copy of the argument value and passes a pointer to the copy. In this case (only), the
callee is allowed to modify that copy at will.


3.2.2.4. Varaible Argument Lists


A function that expect a variable argument list typically uses the stdarg.h mechanism to process
the list. That mechanism defines a va_list type that can be passe to another fuction. Figure
XXX defines the va_list type.


3.2.3. Function Result Passing


Functions declared to return the void type do not return a value. All other functions return
their values according to the following rules.
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3.2.3.1. Integral and pointer return values


Integral and pointer return types are returned in integer register %o0. Functions returning integral
and pointer return values always return an extended-word, expanding signed and unsigned bytes,
halfwords, and words as needed.


3.2.3.2. Floating and complex return values


A return value of floating-point type is passed in %f0, %d0, or %q0 respectively. A return
value of complex type is passed in pairs of %f0/%f1, %d0/%d2, or %q0/%q4, respectively,
where the first register of the pair holds the real component and the second register holds the
imaginary component.


3.2.3.3. Structure or Union return values


The caller allocates an area large enough to hold the return value, and passes a pointer to
that area as an implicit first argument (of type pointer-to-data) to the callee. This implicit
argument logically precedes the first actual argument, and is allocated according to normal
argument passing rules (i.e. into %o0). The callee may modify the designated memory area
at any time during its execution; the only requirement is that it hold the return value upon
return. If the callee is terminated through any means other than a normal function return (e.g.
through a call to the longjmp function), the contents of the memory area are undefined.


Note that the caller may pass a pointer to a program variable as long as it ensures that the
above rules cannot cause violation of the program’s proper semantics.


Note also that the caller is required to provide the implicit argument and a properly sized
receiving area even if it does not wish to use the callee’s function result. In that case, the
caller may simply pass a pointer to a scratch area.


3.2.4. Examples of Argument Passing


3.2.4.1. Integral and Pointer Arguments


As mentioned, a function receives its first 6 integral and pointer arguments through the in
registers, %i0 through %i5. Functions pass all integral arguments as extended-words, expanding
signed or unsigned bytes, halfwords and words as needed. If a function call has more than
6 integral and pointer arguments the others go on the stack.
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3.2.4.2. Floating-Point Arguments


The first floating-point arguments are passed in floating-point registers.


3.2.4.3. An Example of Mixed Arguments


Call


g( char,
   char,
   short,
   int,
   char *,
   int,
   int,
   void * );


Argument


1
2
3
4
5
6
7
8


Caller


%o0
%o1
%o2
%o3
%o4
%o5


%sp+BIAS+136
%sp+BIAS+144


Callee


%i0
%i1
%i2
%i3
%i4
%i5


%fp+BIAS+136
%fp+BIAS+144


Figure 3-19: Integral and Pointer Arguments


Call


h( float,
   float,
   double,
   float,
   double,
   float,
   long double,
   float,
   double,
   long double );


Argument


1
2
3
4
5
6
7
8
9
10


Caller


%f0
%f1
%d2
%f4
%d6
%f8
%q12


%sp+BIAS+136
%sp+BIAS+144
%sp+BIAS+160


Callee


%f0
%f1
%d2
%f4
%d6
%f8
%q12


%fp+BIAS+136
%fp+BIAS+144
%fp+BIAS+160


Figure 3-20: Floating-Point Arguments
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3.2.4.4. Structure and Union Arguments


Structure and union arguments are passed by reference and the called function has the option
to make a copy only if necessary to maintain the call-by-value semantics.


The example below shows the effect only; C code does not change.


Addresses occupy one extended-word; so structures and unions occupy a single extended-word
as function arguments. In this respect, these arguments behave the same as integral and pointer
arguments, described above.


f( char,
   float,
   short,
   double,
   int,
   float,
   long long,
   char *,
   long,
 );


Argument


1
2
3
4
5
6
7
8
9
10


Caller


%f0
%f1
%d2
%f4
%d6
%f8
%q12


%sp+BIAS+136
%sp+BIAS+144
%sp+BIAS+160


Callee


%f0
%f1
%d2
%f4
%d6
%f8
%q12


%fp+BIAS+136
%fp+BIAS+144
%fp+BIAS+160


Figure 3-20.5: Mixed Arguments


Figure 3-21: Sending Structure and Union Arguments


 Source


caller()
{


struct s s;


callee(s);
}


Compiler’s Internal Form


caller()
{


struct s s;


callee(&s);
}
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Because the calling function passes a pointer in the argument list, the compiled code for the
called function must accept the same. Underlying machinations are transparent to the source
program. The compiler translates appropriately, implicitly dereferencing the pointer as needed.
Code for a called function might appear as follows. Again, the examples below shows the
effect only; C code does not change.


3.2.5. Examples of Result Passing


3.2.5.1. Functions Returning Scalars or No Value


A function that returns an integral or pointer value places its result in %i0; the calling function
finds that value in %o0.


A floating-point return value appears in the floating-point registers for both the calling and
the called function. Single-precision uses %f0; double-precision uses %d0; quad-precision uses
%q0.


Functions that return no value (also called procedures or void functions) put no particular
value in any return register. Those registers may be used as scratch registers, however.


A call instruction writes its own address into out register %o7. As usual for a control transfer
instruction, the call instruction takes a delay instruction that is executed before the instruction
of the called function. Because every instruction is one word long, the return address is the
address of the call instruction plus 8. The value is %i7+8 for the called function and %o7+8
for the calling function. The following example returns the value contained in local register %l4.


Figure 3-22: Receiving Structure and Union Arguments


 Source


callee(struct s arg)
{


struct s s, s2;


s.m = arg.m;
s2 = arg;


}


Compiler’s Internal Form
 (argument not modified)


callee(struct s *arg)
{


struct s s, s2;


s.m = arg->m;
s2 = *arg;


}


Compiler’s Internal Form
 (argument modified)


callee(struct s *arg)
{


struct s s2, tmp;


tmp = *arg;
tmp.m = 12;
s2 = tmp;


}


 Source


callee(struct s arg)
{


struct s s2;


arg.m = 12;
s2 = arg;


}
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If a function returns no value or if the return register already contains the desired value, the
next epilogue would suffice.


3.3. Operating System Interface


3.3.1. Virtual Address Space


Processes execute in a 64-bit virtual address space. Memory management hardware translates
virtual addresses to physical addresses, hiding physical addressing and letting a process run
anywhere in the system’s real memory. Processes typically begin with three logical segments,
commonly called text, data and stack. As Chapter 5 describes, dynamic linking creates more
segments during execution, and a process can create additional segments for itself with system
services.


3.3.1.1. Page Size


Memory is organized by pages, which are the system’s smallest units of memory allocation.
Page size can vary from one system to another, depending on the processor, memory management
unit and system configuration. Processes may call sysconf(BA_OS) to determine the system’s
current page size. The maximum page size for SPARC V9 is 1 MB.


3.3.1.2. Virtual Address Assignments


Conceptually, processes have the full 64-bit address space available. In practice, however, several
factors limit the size of a process.


� The system reserves a configuration-dependent amount of virtual space.


� A tunable configuration parameter limits process size.


jmpl %i7 + 8, %g0
restore %l4,0,%o0


Figure 3-23: Function Epilogue


jmpl %i7 + 8, %g0
restore %g0,0,%g0


Figure 3-24: Alternative Function Epilogue
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� A process whose size exceeds the system’s available, combined physical memory
and secondary storage cannot run. Although some physical memory must be present
to run any process, the system can execute processes that are bigger than physical
memory, paging them to and from secondary storage. Nonetheless, both physical
memory and secondary storage are shared resources. System load, which can vary
from one process execution to the next, affects the available amounts.


Loadable segments
Processes’ loadable segments may begin at 0. The exact addresses depend on
the executable file format [see Chapters 4 and 5].


Stack and dynamic segments
A process’s stack and dynamic segments reside below the reserved area.
Processes can control the amount of virtual memory allocated for stack space,
as described below.


Reserved A reserved area resides at the top of virtual memory.


As the figure shows, the system reserves the high end of virtual space with a process’s stack
and dynamic segments below that. Although the exact boundary between the reserved area
and a process depends on the system’s configuration, the reserved area shall not consume more
than 8 exabytes (EB) from the virtual address space. Thus the user virtual address range has
a minimum upper bound of 0x7fff ffff ffff ffff. Individual systems may reserve less space,
increasing processes’ virtual memory range. More information follows in the section “Managing
the Process Stack”.


0xffff ffff ffff ffff Reserved
. . .


End of memory


Stack and
dynamic segments


. . .


0
. . .


Loadable segments Beginning of memory


Figure 3-26: Virtual Address Configuration


Although application programs may begin at virtual address 0, they conventionally begin
at 0x100000 (1 M), leaving the initial 1 M with an invalid address mapping. Processes that
reference this invalid memory (for example by dereferencing a null pointer) generate an
access exception trap, as described in the “Trap Interface” section of this chapter. A process
may, however, establish a valid mapping for this area using the mmap(KE_OS) facilities.


NOTE
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Although applications may control their memory assignments, the typical arrangement follows
the diagram above. Loadable segments reside at low addresses; dynamic segments occupy the
higher range. When applications let the system choose addresses for dynamic segments
(including shared object segments), it chooses high addresses. This leaves the “middle” of the
address spectrum available for dynamic memory allocation with facilities such as
malloc(BA_OS).


3.3.2. Trap Interface


3.3.2.1. Hardware Trap Types


The operating system defines the following correspondence between hardware traps and the
signals specified by signal(BA_OS).


The signal is sent only if no user trap handler is provided. See User Traps.


The effects of using load and store alternate instructions with address space identifiers other
than ASI_PRIMARY and ASI_PRIMARY_NOFAULT are undefined.


NOTE


Trap Name


instruction_access_exception
instruction_access_MMU_miss
instruction_access_error
illegal_instruction
privileged_opcode
fp_disabled
fp_exception_ieee_754
fp_exception_other
tag_overflow
division_by_zero
data_access_exception
data_access_MMU_miss
data_access_error
data_access_protection
mem_address_not_aligned
privileged_action
async_data_error
trap_instruction


Signal


SIGSEGV,SIGBUS
SIGSEGV
SIGBUS
SIGILL
SIGILL
SIGILL
SIGFPE
SIGFPE
SIGEMT
SIGFPE
SIGSEGV,SIGBUS
SIGSEGV
SIGBUS
SIGSEGV
SIGBUS
SIGILL
SIGBUS
see next table


Figure 3-27: Hardware Traps and Signals
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Two trap types, instruction_access_exception and data_access_exception, can generate two
signals. In both cases, the “normal” signal is SIGSEGV. Nonetheless, if the access also causes
some external memory error (such as parity error), the system generates SIGBUS.


Floating point instructions exist in the architecture, but they may be implemented either in
hardware or software. If the fp_disabled or fp_exception_other trap occurs because of an
unimplemented, valid instruction, the process receives no signal. Instead the system intercepts
the trap, emulates the instruction, and returns control to the process. A process receives SIGILL
for the fp_disabled trap only when the indicated floating-point instruction is illegal (invalid
encoding, etc.).


3.3.2.2. Software Trap Types


The operating system defines the following correspondence between software traps and the
signals specified by signal(BA_OS).


0 and 8 Trap types 0 and 8 were used in some pre-V9 SPARC systems to implement
operating system service routines. In V9 they are reserved.


Figure 3-28: Software Trap Types


Trap Number Signal Purpose


0
1
2
3
4
5
6
7
8
9


10
11
12
13


14-15
16-31


32
33
34


35-127


unspecified
SIGTRAP
SIGFPE
unspecified
unspecified
SIGILL
none
SIGFPE
unspecified
SIGSYS
unspecified
SIGSYS
SIGSYS
SIGSYS
unspecified
SIGILL
unspecified
unspecified
SIGILL
unspecified


Reserved for the operating system
Breakpoints
Division by zero
Reserved for the operating system
Reserved for the operating system
Range checking
Fix alignment
Integer overflow
Reserved for the operating system
SVID system calls
Reserved for the operating system
SPARC-specific system calls
Vendor-specific system calls
OEM-specific system calls
Reserved for the operating system
Send SIGILL signal
Reserved for the operating system
Reserved for the operating system
Return from deferred trap
Reserved for the operating system
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1 A debugger can set a breakpoint by inserting a trap instruction whose type is 1.


2 A process can explicitly signal division by zero with this trap.


3 Trap type 3 was used in pre-V9 SPARC systems to ask the system to flush all
its register windows to the stack. In V9 the flushw instruction can be used instead.
The trap is reserved.


4 Trap type 4 was used in pre-V9 SPARC systems to cause the system to initialize
local and out registers in all subsequent new windows either to zeros or values
placed into them by the calling process. In V9 this behavior is required. The trap
is reserved.


5 A process can explicitly signal a range checking error with this trap.


6 Executing a type 6 trap makes the operating system “fix” subsequent unaligned
data references. Although the references still generate memory_address_not_aligned
traps, the operating system handles the trap, emulates the data references, and returns
control to the process without generating a signal. In this context a “data reference”
is a load or store operation. Implicit memory references, such as control transfers,
must always be aligned properly, and the stack must always be aligned as described
elsewhere.


This trap is provided to ease porting of existing code. Its use in new code is
deprecated. A user trap handler should be used instead. If a user trap handler for
UT_MEM_ADDRESS_NOT_ALIGNED is installed, it takes precedence.


7 A process can explicitly signal integer overflow with this trap. Either a positive
or a negative value can cause overflow.


9 Operating system service routines specified in the SVID are implemented using this
trap type.


10, 14, 15 The operating system reserves these traps for its own use. Programs that use them
do not conform to the ABI.


11 SPARC-specific operating system service routines are implemented using this trap
type.


12 Vendor-specific operating system service routines are implemented using this trap
type.


13 OEM-specific operating system service routines are implemented using this trap type.


32 Trap type 32 was used in pre-V9 SPARC systems to copy the icc integer condition
codes from the PSR register to global register %g1. In V9 the CCR register is
not privileged and can be accessed directly. The trap is reserved.


The ABI does not define the implementation of individual system calls. Instead, programs
should use the system libraries that chapter 6 describes. Programs with embedded system
call trap instructions do not conform to the ABI.


NOTE
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33 Trap type 33 was used in pre-V9 SPARC systems to copy the rightmost four bits
from global register %g1 to the PSR icc integer condition codes. In V9 the CCR
register is not privileged and can be accessed directly. The trap is reserved.


34 Trap 34 is used to return control to the system from a deferred user trap handler.


35 to 127 The operating system reserves these trap types for its own use. Programs that use
them do not conform to the ABI.


3.3.3. User Traps


The operating system can redirect certain traps from non-privileged code back to user trap
handlers. The interface for this functionality is declared in the new include file <sys/utrap.h>.
See Libraries/System Data Interfaces/Data Definitions, figure 6-57+.


User Trap


UT_ILLTRAP_INSTRUCTION or
UT_ILLEGAL_INSTRUCTION


UT_FP_DISABLED


UT_FP_EXCEPTION_IEEE_754


UT_FP_EXCEPTION_OTHER


UT_TAG_OVERFLOW


UT_DIVISION_BY_ZERO


UT_MEM_ADDRESS_NOT_ALIGNED


UT_PRIVILEGED_ACTION


UT_PRIVILEGED_OPCODE


UT_ASYNC_DATA_ERROR


UT_TRAP_INSTRUCTION_16 through
UT_TRAP_INSTRUCTION_31


UT_INSTRUCTION_EXCEPTION or
UT_INSTRUCTION_PROTECTION or
UT_INSTRUCTION_ERROR


UT_DATA_EXCEPTION or
UT_DATA_PROTECTION or
UT_DATA_ERROR


†


†


†


†


†


†


†


†
†


Trap Name


illegal_instruction


fp_disabled


fp_exception_ieee_754


fp_exception_other


tag_overflow


division_by_zero


mem_address_not_aligned


privileged_action


privileged_opcode


async_data_error


trap_instruction


instruction_access_exception
instruction_access_MMU_miss
instruction_access_error


data_access_exception
data_access_MMU_miss
data_access_error
data_access_protection


Figure 3-35+: Hardware Traps and User Traps
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User trap types marked with † above are required and must be provided by all ABI-conforming
implementations. The other may not be present on every implementation; an attempt to install
a user trap handler for that condition will return EINVAL.


Most user trap types are self-explanatory; a few require a few more words.


UT_ILLTRAP_INSTRUCTION
This trap is raised by user execution of the ILLTRAP instruction. It is always pre-
cise.


UT_ILLEGAL_INSTRUCTION
This trap will be raised by execution of otherwise undefined opcodes. It is imple-
mentation-dependent as to what opcodes raise this trap; the ABI only specifies the
interface. The trap may be precise or deferred.


UT_PRIVILEDGED_OPCODE
All the opcodes declared to be privileged in SPARC V9 will raise this trap. It is
implementation-dependent whether other opcodes will raise it as well; the ABI
only specifies the interface.


UT_DATA_EXCEPTION, UT_INSTRUCTION_EXCEPTION
No valid user mapping can be made to this address, for a data or instruction
access, respectively.


UT_DATA_PROTECTION, UT_INSTRUCTION_PROTECTION
A valid mapping exists, and user privilege to it exists, but the type of access (read,
write, or execute) is denied, for a data or instruction access, respectively.


UT_DATA_ERROR, UT_INSTRUCTION_ERROR
A valid mapping exists, and both user privilege and the type of access are allowed,
but an unrecoverable error occurred in attempting the access, for a data or instruc-
tion access, respectively. %l1 will contain either BUS_ADDRERR or BUS_OB-
JERR.


A functional interface is provided to establish the user trap handlers.


int sparc_utrap_set( utrap_entry_t utrap,
utrap_handler_t new_precise,
utrap_handler_t new_deferred);


This function establishes new values for the user trap handlers for the specified
trap type.


int sparc_utrap_get( utrap_entry_t utrap,
utrap_handler_t *old_precise,
utrap_handler_t *old_deferred);


This function returns the existing trap handler values without changing them.


int sparc_utrap_swap( utrap_entry_t type,
utrap_handler_t new_precise,
utrap_handler_t new_deferred,
utrap_handler_t *old_precise,
utrap_handler_t *old_deferred);
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This function combines the functionality of the functions, sparc_utrap_set and
sparc_utrap_get, in a single atomic operation.


A new handler address of NULL means no user handler of that type will be installed. A new
handler address of UTH_NOCHANGE means that the user handler for that type should not
be changed. An old handler pointer of NULL means that the user is not interested in the old
handler address.


For all traps, the handler executes in a new window, where the in registers are the out registers
of the previous frame and have the value they contained at the time of the trap. Similarly
the global registers (including the special registers %ccr, %asi, and %y) and the floating-
point registers have their values at the time of the trap. If the handler needs scratch space,
it should decrement the stack pointer to obtain it. If the handler needs access to the previous
frame’s in registers or local registers, it should execute a FLUSHW instruction, and then access
them off of the frame pointer. If the handler calls an ABI-conforming function, it must set
the %asi register to ASI_PRIMARY_NOFAULT before the call.


3.3.3.1. Precise Traps


On entry to a precise user trap handler %l6 contains the %pc and %l7 contains the %npc
at the time of the trap. To return from a handler and reexecute the trapped instruction, the
handler would execute:


 jmpl %l6, %g0
 return %l7


To return from a handler and skip the trapped instruction, the handler would execute:


 jmpl %l7, %g0
 return %l7+4


3.3.3.2. Deferred Traps


On entry to a deferred user trap handler %o0 contains the address of the instruction that caused
the trap and %o1 contains the actual instruction, if the information is available. Otherwise %o0
contains the value -1 and %o1 is undefined. For certain cases additional information may be
made available as indicated in the following table.


Instructions Additional Information


LD-type
LDSTUB


%o2 contains the effective address (rs1 + rs2 | simm13).


ST-type
CAS


SWAP


%o2 contains the effective address (rs1 + rs2 | simm13).
%o3 contains the data to be stored if available.


Integer
arithmetic


%o2 contains the rs1 value.
%o3 contains the rs2 | simm13 value.
%o4 contains the contents of %y register.







3-30 SPARC V9 ABI SUPPLEMENT Delta Document 1.31


LOW-LEVEL SYSTEM INFORMATION 5/18/94 SPARC International Confidential


To return from a deferred trap, the trap handler issues:


ta 34 !ST_RETURN_FROM_DEFERRED_TRAP


The instruction that causes the trap will NOT be retried.


3.3.3.3. Dispatching Traps


The following pseudo-code explains how the operating system dispatches traps.


if (precise_trap) {
if (precise_handler) {


invoke(precise_handler);
/* not reached */


} else {
convert_to_signal(precise_trap);


}
} else if (deferred_trap) {


if (deferred_handler) {
invoke(deferred_handler);
/* not reached */


} else {
convert_to_signal(deferred_trap);


}
}


if (signal)
send(signal);


User trap handlers must preserve all registers except the locals (%l0-7) and outs (%o0-7),
i.e. %i0-7, %g1-7, %d0-62, %asi, %fsr, %fprs, %ccr, and %y, except to the extent that
modifying the registers is part of the desired functionality of the handler. For example, the
handler for UT_FP_DISABLED may load floating-point registers.


3.4. Process Initialization


All processes are initiated by the privileged operating system software with the following
characteristics:


� 1. Interrupts enabled


� 2. Non-privileged mode


� 3. Normal global registers


Floating-point
arithmetic


%o2 contains the address of rs1 value.
%o3 contains the address of rs2 value.


Control-transfer %o2 contains the target address (rs1 + rs2 | simm13).


Asynchronous
data errors


%o2 contains the address that caused the error.
%o3 contains the effective ASI, if a variable, else -1
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3.4.1. Special Registers


The architecture defines three non-privileged state registers to control and monitor the processor.
They are the condition code register (CCR), the floating-point registers state (FPRS) and the
floating-point state register (FSR). The tables below give the initial state of these registers.


The architecture defines floating point instructions, and those instructions work whether the
processor has a hardware floating-point unit or not. (A system may provide hardware or software
floating point facilities.) In either case, however, the processor presents a working floating-
point implementation, including an FPRS and an FSR with the following initial values.


Field


xcc
icc


Value


unspecified
unspecified


Note


Extended integer condition codes unspecified
Integer condition codes unspecified


Figure 3-30: Condition Code Register (CCR) Fields


Field


FEF
DL
DU


Value


1
0
0


Note


Floating-point unit enabled
Lower half of floating point registers are not dirty
Upper half of floating-point registers are not dirty


Figure 3-30+: Floating-point Registers State (FPRS) Fields
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Other non-privileged registers and their initial states are listed in the table below.


Field


fcc3
fcc2
fcc1
RD
TEM
NS
ver
ftt
qne
fcc0
aexc
cexc


Value


unspecified
unspecified
unspecified


0
0
0


read only
unspecified


0
unspecified


0
0


Note


Floating-point condition codes unspecified
Floating-point condition codes unspecified
Floating-point condition codes unspecified
Round to nearest
Floating-point traps not enabled
Nonstandard mode off
Implementation version number
Floating-point trap type unspecified
Floating-point queue (if any) is empty
Floating-point condition codes unspecified
No accrued exceptions
No current exceptions


Figure 3-31: Floating-point State (FSR) Register Fields


Register


%asi
%tick
%pc
%y


Value


ASI_PRIMARY_NOFAULT
positive


--
unspecified


Note


Address space identifier default
Monotonically increasing
The current program counter
Y register unspecified


Figure 3-31+: Other Non-privileged Registers
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3.4.2. Process Stack and Registers


When a process receives control, its stack holds the arguments and environment from
exec(BA_OS).


Argument strings, environment strings, and the auxiliary information appear in no specific order
within the information block; the system makes no guarantees about their arrangement. The
system also may leave an unspecified amount of memory between the null auxiliary vector
entry and the beginning of the information block.


Unspecified


Information block, including
argument strings


environment strings
auxiliary information


. . .
(size varies)


Unspecified


Null auxiliary vector entry


Auxiliary vector
. . .


(2 extended-word entries)


0 extended-word


Environment pointers
. . .


(1 extended-word each)


0 extended-word


Argument pointers
. . .


(Argument count extended-words)


Argument count


1 extended word reserved


Window save area
(16 extended-words)


High Addresses


Low Addresses


%sp+BIAS+136


%sp+BIAS+128


%sp+BIAS+0


Figure 3-32: Initial Process Stack
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Except as shown below, global, floating point, and window registers have unspecified values
at process entry. Consequently, a program that requires registers to have specific values must
set them explicitly during process initialization. It should not rely on the system to set all
registers to zero.


%g1 A non-zero value gives a function pointer that the application should register with
atexit(BA_OS). If %g1 contains zero, no action is required.


%fp The system marks the deepest stack frame by setting the frame pointer to zero.
No other frame’s %fp has a zero value.


%sp Performing its usual job, the stack pointer plus the stack BIAS gives the address
of the bottom of the stack, which is guaranteed to be 16-byte aligned.


Every process has a stack, but the system defines no fixed stack address. Furthermore, a
program’s stack address can change from one system to another - even from one process
invocation to another. Thus the process initialization code must use the stack address in %sp.
Data in the stack segment at addresses below the stack pointer contain undefined values.


[ The information on auxiliary information is unchanged. ]


In the following example, the stack resides below 0x8000 0000 0000 0000, growing toward
lower addresses. The process receives three arguments.


� cp


� src


� dst


It also inherits two environment strings (this example is not intended to show a fully configured
execution environment).


� HOME=/home/dir


� PATH=/home/dir/bin:/usr/bin:


Its auxiliary vector holds one non-null entry, a file descriptor for the executable file.


� 13


The initialization sequence preserves the stack pointer’s extended-word alignment.
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0


0


13


2


0


0x7fff ffff ffff ffe2


0x7fff ffff ffff ffd3


0


0x7fff ffff ffff ffcf


0x7fff ffff ffff ffcb


0x7fff ffff ffff ffc8


3


reserved


Window save area
(16 extended-words)


0x7fff ffff ffff ffc0


0x7fff ffff ffff ffb0


0x7fff ffff ffff ffa0


0x7fff ffff ffff ff90


0x7fff ffff ffff ff80


0x7fff ffff ffff ff70


0x7fff ffff ffff ff68


0x7fff ffff ffff ff60


%sp+BIAS
0x7fff ffff ffff fee0


Auxiliary vector


Environment vector


Argument vector


Argument count


Low addresses


r / b i n : \0 pad


/ b i n : / u s


h o m e / d i r


r \0 P A T H = /


/ h o m e / d i


s t \0 H O M E =


c p \0 s r c \0 d


High addresses


0x7fff ffff ffff fff0


0x7fff ffff ffff ffe0


0x7fff ffff ffff ffd0


Figure 3-35: Example Process Stack
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3.5. Coding Examples


This section discusses example code sequences for fundamental operations such as calling
functions, accessing static objects, and transferring control from one part of a program to another.
Previous sections discuss how a program may use the machine or the operating system, and
they specify what a program may and may not assume about the execution environment. Unlike
previous material, the information here illustrates how operations may be done, not how they
must be done.


As before, examples use the ANSI C language. Other programming languages may use the
same conventions displayed below, but failure to do so does not prevent a program from
conforming to the ABI.


3.5.1.  Architectural Constraints


The SPARC V9 architecture has a number of constraints that make it desirable to use several
different code models for different purposes, in order to improve performance and reduce code
size. The relevant constraints are:


a) The call instruction has a 30 bit signed immediate value. The target address
of a call instruction may thus be at most 229 instructions (231 bytes) before
it or 229- 1 instructions (231- 4 bytes) after it.


b) Memory access instructions (e.g., ldx and stx) and arithmetic and logical
instructions (e.g., add and or) have a 13-bit signed immediate value.


c) The sethi instruction has a 22 bit unsigned immediate value that is placed
in register bits 31..10. The other register bits are cleared.


3.5.1.1.  Code Positionability


There are two code positionability models of interest:


absolute The virtual addresses of instructions and static data are known at
static link time. To execute properly, the program must be loaded
at a specific virtual address, making the program’s absolute addresses
correspond with the process’s virtual addresses.


position-independent (PIC) The virtual addresses of instructions and static data are not known
until dynamic link time. PIC uses PC-relative addresses, not absolute
addresses. Consequently, the code is not tied to a specific load
address, allowing it to execute properly at various positions in virtual
memory.


Typically, executables have absolute code and shared objects such as dynamically linked libraries
have PIC.


3.5.1.2.  Code Size


Because of constraint (a), there are two code size models of interest:
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medium The size of the text segment of an executable or shared object is less than
231 bytes (2 GB).


full The only limit on the size of the text segment of an executable or shared object
is the available virtual address space.


The limiting case is a CALL instruction at the beginning of a text segment whose target address
is at the end of the segment. This limits a medium text segment to 229-1 instructions
(231-4 bytes). A single CALL instruction can be used for all subroutine calls within a medium
text segment; more code is needed for full text segments.


3.5.1.3.  Location


Because of constraint (c), there are two location models of interest:


low The executable must be in the low 4 GB of the virtual address space.


anywhere The executable or shared object can be placed anywhere in the virtual address
space.


The low model applies only to absolute code. The low model generates the most efficient code
for accessing static objects: two instructions and one register always suffice.


3.5.1.4.  External Object References


A shared object that references an object external to itself must use indirect addressing. For
example, the libc function localtime() references the external variable daylight. At the time
the libc shared library is created, the address of daylight is not known, so references to it
from libc go through a global offset table. Each shared object has its own global offset table,
which is just a vector of addresses. Each object, e.g. daylight, is associated with an index
into the global offset table. At dynamic link time, the dynamic linker fills in daylight’s element
in the global offset table with the absolute address of daylight.


Because of the effects of constraints (b) and (c) on addressing elements in global offset tables,
there are three external object reference models. However, only the first two are of practical
interest.


small The executable or shared object references at most 1024 external objects.


large The executable or shared object references at most 229 external objects.


huge The size of the global offset table is limited only by the available virtual
address space.


The limiting factor is the 13-bit signed immediate in load instructions. Assuming the address
of the middle of the global offset table is already in some register, the small model can load
any element with one LDX instruction, whereas the large model requires three instructions.


3.5.1.5. Combinations of Practical Interest


The following combinations of models are of practical use. All models use dynamic linking.
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3.5.1.6.  Integer Constant Loading


There are a number of ways to load an integer constant into a register. The examples in the
following table assume x is the ones complement of bits 31..10 of the constant (treated as
a 64-bit bit vector), y is the binary value 111 followed by the low-order 10 bits of the constant,
%hh(c) is bits 63..42 of c, %hm(c) is bits 41..32 of c, %lm(c) is bits 31..10 of c and %lo(c)
is bits 9..0 of c. The table is not exhaustive.


Positionability Code Size Location External Object Reference Model


absolute medium low small
absolute medium low large
absolute medium low none
absolute medium anywhere small
absolute medium anywhere large
absolute medium anywhere none
absolute full anywhere large
absolute full anywhere none
PIC medium anywhere small
PIC medium anywhere large
PIC full anywhere large


Range


-212 .. 212- 1


0 .. 232- 1


-232 .. -1


-263 .. 263- 1


Code


or %g0, c, %o0


sethi %hi(c), %o0
or %o0, %lo(c), %o0


sethi x, %o0
xor %o0, y, %o0


sethi %hh(c), %o1
sethi %lm(c), %o0
or %o1, %hm(c), %o1
or %o0, %lo(c), %o0
sllx %o1, 32, %o1
or %o0, %o1, %o0


Figure x.x: Loading Integer Constants
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3.5.1.7. Addressing Global Offset Tables


A subroutine in a shared object must obtain the address of the shared object’s global offset
table before the subroutine can access the table. Typically, this is done in a prologue. The
offset between the subroutine’s address and the middle of the global offset table must be known
when the shared object is created. The following code examples place the address of the middle
of the global offset table in %l7; other registers can also be used. offset is the offset in bytes
from the rd instruction to the middle of the global offset table. In the medium size case it
is assumed to be positive.


3.5.1.8. Static Data References from Absolute Code


For medium sized code locatable anywhere, register %g4 is assumed to contain the address
of the start of the data segment. All data address constants are then relative to the start of
the data segment. %g4 (or any other preserved global register) can be set up once in an
executable’s startup code (see below).


Since the general case costs 6 instructions and a scratch register, loading from a constant
table may be more efficient in some cases.


NOTE


Medium Size Code Full Size Code


rd %pc, %l7 rd %pc, %l7
sethi %hi(offset), %o0 sethi %hh(offset), %o1
or %o0, %lo(offset), %o0 sethi %lm(offset), %o0


or %o1, %hm(offset), %o1
or %o0, %lo(offset), %o0
sllx %o1, 32, %o1
or %o0, %o1, %o0


add %l7, %o0, %l7 add %l7, %o0, %l7
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The following code could be used in the medium/anywhere startup code. data_start is the virtual
address of the start of the executable’s data segment. Because the code is absolute, data_start
is known at static link time


3.5.1.9.  Static Data References from PIC


ANSI C
extern int s;
extern int d;
extern int *p;


p = &d;


*p = s;


medium/low
.global s
.global d
.global p


sethi %hi(d),%o0
or %o0,%lo(d),%o0


sethi %hi(p),%o1


stx %o0,[%o1+%lo(p)]


sethi %hi(s),%o0


ldx [%o0+%lo(s)],%o0
sethi %hi(p),%o1


ldx [%o1+%lo(p)],%o1
stx %o0,[%o1]


medium/anywhere
.global s
.global d
.global p


sethi %hi(d),%o0
or %o0,%lo(d),%o0
add %o0,%g4,%o0


sethi %hi(p),%o1
or %o1,%lo(p),%o1


stx %o0,[%g4+%o1]


sethi %hi(s),%o0
or %o0,%lo(s),%o0


ldx [%g4+%o0],%o0
sethi %hi(p),%o1
or %o1,%lo(p),%o1


ldx [%g4+%o1],%o1
stx %o0,[%o1]


full/anywhere
.global s
.global d
.global p


sethi %hh(d),%o5
sethi %lm(d),%o0
or %o5,%hm(d),%o5
or %o0,%lo(d),%o0
sllx %o5,32,%o5
or %o0,%o5,%o0
sethi %hh(p),%o5
sethi %lm(p),%o1
or %o5,%hm(p),%o5
or %o1,%lo(p),%o1
sllx %o5,32,%o5
stx %o0,[%o1+%o5]


sethi %hh(s),%o5
sethi %lm(s),%o0
or %o5,%hm(s),%o5
or %o0,%lo(s),%o0
sllx %o5,32,%o5
ldx [%o0+%o5],%o0
sethi %hh(p),%o5
sethi %lm(p),%o1
or %o5,%hm(p),%o5
or %o1,%lo(p),%o1
sllx %o5,32,%o5
ldx [%o1+%o5],%o1
stx %o0,[%o1]


Figure x.x: Static Data References from Absolute Code


sethi %hh(data_start), %g1
sethi %lm(data_start), %g4
or %g1, %hm(data_start), %g1
or %g4, %lo(data_start), %g4
sllx %g1, 32, %g1
or %g4, %g1, %g4


Figure x.x: Startup Code for Medium/Anywhere Model
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3.5.2. Function Calls


Direct function calls are those where the name of the called function is known at compile
time. The following code shows the cases of interest. The call instruction can be used in
all medium size executables and shared objects.


Large Model
.global s
.global d
.global p


sethi %hi(d),%o0
or %o0,%lo(d),%o0
ldx [%l7+%o0],%o0
sethi %hi(p),%o1
or %o1,%lo(p),%o1
ldx [%l7+%o1],%o1
stx %o0,[%o1]


sethi %hi(s),%o0
or %o0,%lo(s),%o0
ldx [%l7+%o0],%o0
ldx [%o0],%o0
sethi %hi(p),%o1
or %o1,%lo(p),%o1
ldx [%l7+%o1],%o1
ldx [%o1],%o1
stx %o0,[%o1]


Small Model
.global s
.global d
.global p


ldx [%l7+d],%o0


ldx [%l7+p],%o1
stx %o0,[%o1]


ldx [%l7+s],%o0
ldx [%o0],%o0


ldx [%l7+p],%o1
ldx [%o1],%o1
stx %o0,[%o1]


ANSI C
extern int s;
extern int d;
extern int *p;


p = &d;


*p = s;


Figure x.x: Static Data References from Position Independent Code


ANSI C
extern void f();


f();


medium
.global f


call f
nop


absolute/full
.global f


sethi %hh(f),%g2
sethi %lm(f),%g1
or %g2,%hm(f),%g2
or %g1,%lo(f),%g1
sllx %g2,32,%g2
jmpl %g1+%g2,%o7
nop


PIC/full
.global f


sethi %hi(f),%g1
or %g1,%lo(f),%g1
ldx [%l7+%g1],%g1


jmpl %g1,%o7
nop


Figure x.x: Function Calls
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For indirect function calls, the address of the function is in a pointer. Appropriate code is
used to load the value of the pointer into a register, just as with static data. A jmpl instruction
is then used.


3.5.3. Branching


Programs use branch instructions to control their execution flow. As defined by the architecture,
branch instructions hold a PC-relative value with up to a 2 MB range, allowing a branch to
locations up to 1 MB away in either direction.


C switch statements provide multiway selection. The best implementation of a switch statement
depends on the distribution of the case label values. When they are dense, as in the C example
below then the computed-jump approach shown may generate good code. The example uses
several simplifying conventions to hide irrelevant details:


• The selection expression resides in local register %l0.


• case label constants begin at zero.


• case labels and default use assembly names .Lcasei and .Ldef, respectively.


The following example is position-independent, and can also be used in absolute code.
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The number of instructions in the legs can be varied. If there is not enough space in a leg,
a branch to additional code can be used.


ANSI C


switch (j)
{
case 0:


...
case 2:


...
case 3:


...
default:


...
}


Assembly


subcc %l0, 4, %g0
movgu xcc, 1, %l0


1:
rd %pc, %l1
sllx %l0, 5, %l0
add %l0, (.Lcase0 - 1b), %l0
jmpl %l0 + %l1, %g0
nop


.Lcase0:
instruction 1
instruction 2
instruction 3
instruction 4
instruction 5
instruction 6
ba .Lcase0_continued
instruction 8


.Ldef:
instruction 1
instruction 2
instruction 3
instruction 4
instruction 5
instruction 6
ba .Lcase_end
instruction 8


.Lcase2:
 ...


.Lcase0_continued:
 ...


.Lcase_end:


Figure 3-46: Position-Independent switch Code
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3.5.4. C Stack Frame


The figure above shows the C stack frame organization. It conforms to the standard stack frame
with designated roles for unspecified areas in the standard frame. A C stack frame doesn’t
normally change size during execution. The exception is dynamically allocated stack memory,
discussed below. By convention, a function allocates automatic (local) variables in the top of
its frame and references them as negative offsets from %fp+BIAS. Its incoming overflow
arguments reside in the previous frame, referenced as positive offsets from %fp+BIAS.


3.5.5. Variable Argument List


Previous sections describe the rules for passing arguments. Unfortunately, some otherwise
portable C programs depend on the argument passing scheme, implicitly assuming that 1) all
arguments reside on the stack, and 2) arguments appear in increasing order on the stack. Programs
that make these assumptions never have been portable, but they have worked on many machines.
They do not work on SPARC because some of the arguments reside in integer and/or floating
point registers. Portable C programs should use the facilities defined in the header files <stdarg.h>
or <varargs.h> to deal with variable argument lists (on SPARC and other machines as well).


3.5.6. Allocating Stack Space Dynamically


To illustrate, assume a program wants to allocate 50 bytes; its current stack frame has 24 bytes
of compiled scratch space. The first step is rounding the 50 to 64, making it a multiple of
16. Figure 3-49 shows how the stack changes.


Contents


y extended words local space:
automatic variables


. . .
other addressable objects


x extended-words compiler scratch
temporaries


register save area
outgoing overflow arguments


reserved to system


16 extended word window save area


Offset


-1


-8y
+136+8x


+136


+128


0


Frame


High addresses


Current


Low addresses


Base


%fp+BIAS


%fp+BIAS
%sp+BIAS


%sp+BIAS


%sp+BIAS


%sp+BIAS


Figure 3-47: C Stack Frame
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New space starts at %sp+BIAS+160. As described, every dynamic allocation in this function
will return a new area starting at %sp+BIAS+160, leaving previous stack objects untouched
(other functions would have different stack addresses). Consequently, the compiler should
compute the absolute address for each area, avoiding relative references. Otherwise future
allocations in the same frame would destroy the stack’s integrity.


Intermediate


automatic
. . .


variables


scratch
space


+++++++++
new space
64 bytes


+++++++++


reserved


save area
16


extended
words


Original


automatic
. . .


variables


scratch
space


reserved


save area
16


extended
words


undefined


Final


automatic
. . .


variables


+++++++++
new space
64 bytes


+++++++++


scratch
space


reserved


save area
16


extended
words


%fp+BIAS-1


%sp+BIAS+160


%sp+BIAS+136


%sp+BIAS+128


%sp+BIAS+0


%fp+BIAS-1


%sp+BIAS+160


%sp+BIAS+136


%sp+BIAS+128


%sp+BIAS+0


Figure 3-49: Dynamic Stack Allocation
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4. OBJECT FILES


4.1. ELF Header


For file identification in e_ident, SPARC requires the following values.


Processor identification resides in the ELF header’s e_machine member and must have the
value 11, defined as the name EM_SPARC64.


The ELF headers e_flags member holds bit flags associated with the file. SPARC64 defines
the following flags.


[ The following table represents work in progress and is highly likely to change. ]


All unspecified bits are reserved and should be set to zero. The compilation system sets
EF_SPARC64_MM to the value required for successful execution of the object. Typically, the
programmer specifies what value to use for compiling a given source unit. A binder that statically
links input objects into a single output object will set EF_SPARC64_MM to the most restrictive
model specified by any of the input objects. (TSO is the most restrictive, followed by PSO
and RMO, in that order.)


Position


e_ident[EI_CLASS]


e_ident[EI_DATA]


iFigure 4-1: SPARC V9 Identification, e_ident


Value


ELFCLASS64


ELFDATA2MSB


Figure 4-2: SPARC64 V9 flags, e_flags


Name Value Meaning


EF_SPARC64_MM
EF_SPARC64_TSO
EF_SPARC64_PSO
EF_SPARC64_RMO
EF_NONSCD


0x3
0x0
0x1
0x2
0x4


0xf8


Mask for Memory Model
Total Store Ordering
Partial Store Ordering
Relaxed Memory Ordering
Identifies a program as one which is
known to be non-SCD conforming
Reserved
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At execution time, the dynamic linker will inform the operating system of the most restrictive
model required by any of the objects partaking of the execution. The operating system will
use that model, if available, or a more restrictive one.


The compilation system may set the value of the EF_NONSCD flag to a one, if it is known
that the program does not conform to the SCD version (to be defined) which covers the V9
ABI. A value of zero does not guarantee that the program is SCD conforming. If the flag
is set to one, the compilation system may use a “.note” section to describe why the flag was set.


4.2. Sections


        [ This section is unchanged. ]


4.3. Relocation


The r_info field is composed of two 32-bit parts, the symbol table index and the relocation
type. The relocation type on SPARC V9 systems is further decomposed into an 8-bit type
identifier and a 24-bit type dependent data field. For the existing ELF-32 relocation types, that
data field is zero. New relocation types, however, may make use of these bits.


4.3.1. Relocation Types


An overview of the instruction and data formats from The SPARCTM Architecture Manual,
Version 9 makes relocation easier to understand. Relocation entries describe how to alter the
following instruction and data fields (bit numbers appear in the lower box corners).


#define ELF64_R_TYPE_DATA(info) (((Elf64_Xword)(info) << 32) >> 40)
#define ELF64_R_TYPE_ID(info) (((Elf64_Xword)(info) << 56) >> 56)
#define ELF64_R_TYPE_INFO(data, type) (((Elf64_Xword)(data) << 8)


+ (Elf64_Xword)(type))


Figure 4-3: Relocation Macros
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19 031
disp19


63 0


15 0


7 0


Figure 4-3: Relocatable Fields
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Calculations below assume the actions are transforming a relocatable file into either an executable
or a shared object file. Conceptually, the link editor merges one or more relocatable files to
form the output. It first decides how to combine and relocate the input files, then updates the
symbol values, and finally performs the relocation. Relocations applied to executable or shared
object files are similar and accomplish the same result. Descriptions below use the following
notation.


A This means the addend used to compute the value of the relocatable field.


B This means the base address at which a shared object has been loaded into memory
during execution. Generally a shared object file is built with a 0 base virtual address,
but the execution address will be different. See “Program Header” in the System
V ABI for more information about base addresses.


G This means the offset into the global offset table at which the address of the
relocation entry’s symbol will reside during execution. See “Coding Examples” in
Chapter 3 and “Global Offset Table” in Chapter 5 for more information.


L This means the place (section offset or address) of the procedure linkage table entry
for a symbol. A procedure linkage table entry redirects a function call to the proper
destination. The link editor builds the initial procedure linkage table, and the dynamic
linker modifies the entries during execution. See “Procedure Linkage Table” in
Chapter 5 for more information.


O This means the secondary addend used to compute the value of the relocation field.
The secondary addend is extracted from the r_info field in the relocation entry
by applying the ELF64_R_TYPE_DATA macro.


P This means the place (section offset or address) of the storage unit being relocated
(computed using r_offset).


S This means the value of the symbol whose index resides in the relocation entry.


Relocation entries apply to bytes (byte8), halfwords (half16), extended-words, (xword64), or
words (the others). In any case, the r_offset value designates the offset or virtual address
of the first byte of the affected storage unit. The relocation type specifies which bits to change
and how to calculate their values. SPARC V9 uses only Elf64_Rela relocation entries with
explicit addends. Thus the r_addend member serves as the relocation addend.


Field names in the following tables tell whether the relocation type checks for “overflow”.
A calculated relocation value may be larger than the intended field, and a relocation type
may verify (V) the value fits or truncate (T) the result. As an example, V-imm22 means
the computed value may not have significant, non-zero bits outside the imm22 field.


NOTE
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Some relocation type have semantics beyond simple calculation.


R_SPARC_GOT10 This relocation type resembles R_SPARC_LO10, except it refers
to the address of the symbols global offset table entry and
additionally instructs the link editor to build a global offset table.


R_SPARC_GOT13 This relocation type resembles R_SPARC_13, except it refers to
the address of the symbols global offset table entry and additionally
instructs the link editor to build a global offset table.


R_SPARC_GOT22 This relocation type resembles R_SPARC_22, except it refers to
the address of the symbols global offset table entry and additionally
instructs the link editor to build a global offset table.


Figure 4-4: Relocation Types
Name  Value  Field Calculation


R_SPARC_NONE 0 none none
R_SPARC_8 1 V-byte8 S + A
R_SPARC_16 2 V-half16 S + A
R_SPARC_32 3 V-word32 S + A
R_SPARC_DISP8 4 V-byte8 S + A - P
R_SPARC_DISP16 5 V-half16 S + A - P
R_SPARC_DISP32 6 V-word32 S + A - P
R_SPARC_WDISP30 7 V-disp30 (S + A - P) >> 2
R_SPARC_WDISP22 8 V-disp22 (S + A - P) >> 2
R_SPARC_HI22 9 V-imm22 (S + A) >> 10
R_SPARC_22 10 V-imm22 S + A
R_SPARC_13 11 V-simm13 S + A
R_SPARC_LO10 12 T-simm13 (S + A) & 0x3ff
R_SPARC_GOT10 13 T-simm13 G & 0x3ff
R_SPARC_GOT13 14 V-simm13 G
R_SPARC_GOT22 15 T-imm22 G >> 10
R_SPARC_PC10 16 T-simm13 (S + A - P) & 0x3ff
R_SPARC_PC22 17 V-imm22 (S + A - P) >> 10
R_SPARC_WPLT30 18 V-disp30 (L + A - P) >> 2
R_SPARC_COPY 19 none none
R_SPARC_GLOB_DAT 20 V-xword64 S + A
R_SPARC_JMP_SLOT 21 none see below
R_SPARC_RELATIVE 22 V-word32 B+ A
R_SPARC_UA32 23 V-word32 S + A
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R_SPARC_WPLT30 This relocation type resembles R_SPARC_WDISP30, except it
refers to the address of the symbol’s procedure linkage table entry
and additionally instructs the link editor to build a procedure linkage
table.


R_SPARC_COPY The link editor creates this relocation type for dynamic linking. Its
offset member refers to a location in a writable segment. The symbol
table index specifies a symbol that should exist both in the current
object file and in a shared object. During execution, the dynamic
linker copies data associated with the shared object’s symbol to the
location specified by the object.


R_SPARC_GLOB_DAT This relocation type resembles R_SPARC_64, except it is used to
set a global offset table entry to the address of the specified symbol.
The special relocation type allows one to determine the
correspondence between symbols and global offset table entries.


R_SPARC_JMP_SLOT The link editor creates this relocation type for dynamic linking. Its
offset member gives a location of a procedure linkage table entry.
The dynamic linker modifies the procedure linkage table entry to
transfer control to the designated symbol’s address [See “Procedure
Linkage Table” in chapter 5].


R_SPARC_RELATIVE The link editor creates this relocation type for dynamic linking. Its
offset member gives a location within a shared object that contains
a value representing a relative address. The dynamic linker computes
the corresponding virtual address by adding the virtual address at
which the shared object was loaded to the relative address.
Relocation entries for this type must specify 0 for the symbol table
index.


R_SPARC_UA32 This relocation type resembles R_SPARC_32, except it refers to
an unaligned word. That is the “word” to be relocated must be
treated as four separate bytes with arbitrary alignment, not as a word
aligned according to the architecture requirements.
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R_SPARC_OLO10 This relocation type resembles R_SPARC_LO10, except an extra
offset is added to make full use of the 13-bit signed immediate field.


R_SPARC_HH22 This relocation type is used by the assembler when it sees an
instruction of the form “imm22-instruction ... %hh(absolute) ...”.


R_SPARC_HM10 This relocation type is generated by the assembler when it sees an
instruction of the form “simm13-instruction ... %hm(absolute) ...”.


R_SPARC_LM22 This relocation type is used by the assembler when it sees an
instruction of the form “imm22-instruction ... %lm(absolute) ...”.
This resembles R_SPARC_HI22, except it truncates rather than
validates.


R_SPARC_PC_HH22 This relocation type is used by the assembler when it sees an
instruction of the form “imm22-instruction ... %hh(pc-relative) ...”.


R_SPARC_PC_HM10 This relocation type is generated by the assembler when it sees an
instruction of the form “simm13-instruction ... %hm(pc-relative) ...”.


R_SPARC_PC_LM22 This relocation type is used by the assembler when it sees an
instruction of the form “imm22-instruction ... %lm(pc-relative) ...”.
This resembles R_SPARC_PC22, except it truncates rather than
validates.


Figure 4-4+: More Relocation Types
Name  Value  Field Calculation


R_SPARC_10 24 V-simm10 S + A
R_SPARC_11 25 V-simm11 S + A
R_SPARC_64 26 V-xword64 S + A
R_SPARC_OLO10 27 V-simm13 ((S + A) & 0x3ff) + O
R_SPARC_HH22 28 V-imm22 (S + A) >> 42
R_SPARC_HM10 29 T-simm13 ((S + A) >> 32) & 0x3ff
R_SPARC_LM22 30 T-imm22 (S + A) >> 10
R_SPARC_PC_HH22 31 V-imm22 (S + A - P) >> 42
R_SPARC_PC_HM10 32 T-simm13 ((S + A - P) >> 32) & 0x3ff
R_SPARC_PC_LM22 33 T-imm22 (S + A - P) >> 10
R_SPARC_WDISP16 34 V-d2/disp14 (S + A - P) >> 2
R_SPARC_WDISP19 35 V-disp19 (S + A - P) >> 2
R_SPARC_GLOB_JMP 36 V-xword64 S + A
R_SPARC_LO7 37 V-imm7 (S + A) & 0x7f
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R_SPARC_GLOB_JMP This relocation type resembles R_SPARC_GLOB_DAT, except that
it is guaranteed to be associated with a procedure call and therefore
the dynamic linker may evaluate the relocation lazily.


R_SPARC_LO7 This relocation type is used by the assembler for 7 bit software
trap numbers.
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5. PROGRAM LOADING AND DYNAMIC LINKING


5.1. Program Loading


As the system creates or augments a process image, it logically copies a file’s segment to
a virtual memory segment. When—and if—the system physically reads the file depends on
the program’s execution behavior, system load, etc. A process does not require a physical page
unless it references the logical page during execution, and processes typically leave many pages
unreferenced. Therefore delaying physical reads frequently obviates them, improving system
performance. To obtain this efficiency in practice, executable and shared object files must have
segment images whose file offsets and virtual addresses are congruent, modulo the page size.


Virtual addresses and file offsets for SPARC segments are congruent modulo 1 M (0x100000)
or larger powers of 2. Because 1 MB is the maximum page size, the files will be suitable
for paging regardless of physical page size.


File


ELF header


Program header table


Other information


Text segment
. . .


0x2bd00 bytes


Data segment
. . .


0x4e00 bytes


Other information
. . .


File Offset


0


0x200


0x2bf00


0x30d00


Virtual Address


0x100200


0x12beff


0x22bf00


0x230cff


Figure 5-1: Executable File
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5.2. Dynamic Linking


        [ This section is unchanged. ]


5.2.1. Dynamic Section


        [ This section is unchanged. ]


0x300000


0x301d24


Uninitialized data


. . .


0x1d24 bytes


Page padding
0x2dc zero bytes


Data


0x22b000


0x22bf00


0x230d00


Text padding
0xf00 bytes


Data segment


. . .


0x4e00 bytes


Page padding
0x200 zero bytes


Data


Virtual Address


0x100000


0x100200


012bf00


Contents


Header padding
0x200 bytes


Text segment


. . .


0x2bd00 bytes


Data padding
0x100 bytes


Segment


Text


Figure 5-3: Process Image Segments
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5.2.2. Global Offset Table


        [ The first part of this section is unchanged. ]


A global offset table’s format and interpretation are processor-specific. For SPARC, the symbol
_GLOBAL_OFFSET_TABLE_ may be used to access the table.


The symbol _GLOBAL_OFFSET_TABLE_ may reside in the middle of the .got section,
allowing both negative and non-negative “subscripts” into the array of addresses.


5.2.3. Function Addresses


        [ This section is unchanged. ]


5.2.4. Procedure Linkage Table


Much as the global offset table redirects position-independent address calculations to absolute
locations, the procedure linkage table redirects position-independent function calls to absolute
locations. The link editor cannot resolve execution transfers (such as function calls) from one
executable or shared object to another. Consequently, the link editor arranges to have the program
transfer control to entries in the procedure linkage table. On SPARC, procedure linkage tables
reside in private data. The dynamic linker determines the destinations’ absolute addresses and
modifies the procedure linkage table’s memory image accordingly. The dynamic linker thus
can redirect the entries without compromising the position-independence and sharability of the
program’s text. Executable files and shared object files have separate procedure linkage tables.


The first four procedure linkage table entries are reserved. (the original contents of these entries
are unspecified, despite the example below.) Each entry in the table occupies 8 instructions
(32 bytes) and must be aligned on a 32-byte boundary. As mentioned before, a relocation table
entry is associated with the procedure linkage table. The DT_JMP_REL entry in the _DYNAMIC
array gives the location of the first relocation entry. The relocation table’s entries parallel the
procedure linkage table in a one-to-one correspondence. That is, relocation table entry 0 applies
to procedure linkage table entry 0, and so on. With the exception of the first four entries,
the relocation type will be R_SPARC_JMP_SLOT, the relocation offset will specify the address
of the first byte of the associated global offset table entry, and the symbol table index will
reference the appropriate symbol.


Figure 5-5: Global Offset Table


extern Elf64_ADDR _GLOBAL_OFFSET_TABLE_[];
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To illustrate procedure linkage tables, the figure below shows four entries: two of the four
initial reserved entries, a third to call name1, and a fourth to call name2. The example assumes
the entry for name2 is the table’s last entry and shows the following nop. The left column
shows the instructions from the object file before dynamic linking. The right column
demonstrates a possible way the dynamic linker might “fix” the procedure linkage table entries.


Figure 5-6: Procedure Linkage Table Example


Object File Memory Segment


.PLT0:
unimp
unimp
unimp
unimp
unimp
unimp
unimp
unimp


.PLT1:
unimp
unimp
unimp
unimp
unimp
unimp
unimp
unimp
. . .


. . .
.PLT101:


sethi(.-.PLT0), %g1
ba,a,pt.PLT0
nop
nop
nop
nop
nop
nop


.PLT102:
sethi(.-.PLT0), %g1
ba,a,pt.PLT0
nop
nop
nop
nop
nop
nop


nop


. . .
.PLT101:


sethi(.-.PLT0), %g1
sethi%hh(name1), %g1
or %hm(name1), %g1
sethi%lm(name1), %g2
sllx %g1, 32, %g1
or %g1, %g2, %g1
jmpl %g1+%lo(name1), %g0
nop


.PLT102:
sethi(.-.PLT0), %g1
sethi%hh(name2), %g1
or %hm(name2), %g1
sethi%lm(name2), %g2
sllx %g1, 32, %g1
or %g1, %g2, %g1
jmpl %g1+%lo(name2), %g0
nop


nop


.PLT0:
save %sp, -136, %sp
sethi%hh(dynamic-linker), %l1
or %hm(dynamic-linker), %l1
sethi%lm(dynamic-linker), %l2
sllx %l1, 32, %l1
or %l1, %l2, %l1
jmpl %l1+%lo(dynamic-linker), %o7
nop


.PLT1:
.xword identification


unimp
unimp
unimp
unimp
unimp
unimp
. . .
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Following the steps below, the dynamic linker and the program “cooperate” to resolve symbolic
references through the global offset table and the procedure linkage table. Again, the steps
described below are for explanation only. The precise execution-time behavior of the dynamic
linker is not specified.


1. When first creating the memory image of the program, the dynamic linker changes
the initial procedure linkage table entries, making them transfer control to one of the
dynamic linker’s own routines: dynamic-linker above. It also stores an extended word
of identification information in the second entry. When it receives control, it can examine
this extended word to determine what object called it.


2. All other procedure linkage table entries initially transfer to the first entry, allowing the
dynamic linker to gain control at the first execution of each table entry. For illustration,
assume the program calls name1, which transfers control to the label .PLT101.


3. The sethi instruction computes the distance between the current and the initial
procedure table entries, .PLT101 and .PLT0, respectively. This value occupies bits
31..10 of the %g1 register. In this example, %g1 will contain 0x32800 when the dynamic
linker receives control.


4. Next the ba,pt instruction jumps to .PLT0, which then establishes a stack frame and
calls the dynamic linker.


5. Using the identification value, the dynamic linker finds its data structures associated with
the object in question, including the relocation table.


6. By shifting the %g1 value and dividing by the size of each procedure linkage table entry,
the dynamic linker computes the index of the relocation entry for name1. Relocation
entry 101 will have type R_SPARC_JMP_SLOT, its offset will specify the address of
.PLT101, and its symbol table index will reference name1.


7. Knowing this, the dynamic linker finds the symbols “real” value, unwinds the stack,
modifies the procedure linkage table entry, and transfers control to the desired
destination.


Although the dynamic linker is not required to create the instruction sequences under the
“Memory Segment” column, it might. Assuming it actually did, several points deserve further
explanation.


� To make the code re-entrant, the procedure linkage table’s instructions must be
changed in a particular sequence. That is, if the dynamic linker is “fixing” a
function’s procedure linkage table entry and a signal arrives, the signal handling
code must be able to call the original function with predictable (and correct) results.


� The dynamic linker must change six words to convert an entry. If it can update
only a single word atomically, then re-entrancy can be achieved by first overwriting
the nop instructions with their replacement instructions and then patching the ba,a
to be a sethi. If a re-entrant function call occurs just prior to the last patch,
the or will reside in the delay slot of the ba,a instruction, which annuls the delay
instruction’s effects. Consequently, the dynamic linker gains control a second time.
Although both invocations of the dynamic linker modify the same procedure linkage
table entry, their changes do not interfere with each other. If more than one word
can be updated atomically, then a simpler mechanism may be possible.
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The LD_BIND_NOW environment variable can change dynamic linking behavior. If its value
is non-null, the dynamic linker evaluates all global offset table and procedure linkage table
entries before transferring control to the program. That is, the dynamic linker processes relocation
entries of type R_SPARC_JMP_SLOT and R_SPARC_GLOB_JMP during process initialization.
Otherwise, the dynamic linker has the option of evaluating these entries lazily, delaying symbol
resolution and relocation until the first execution of the related function.


Lazy binding generally improves overall application performance, because unused
symbols do not incur the dynamic linking overhead. Nevertheless, two situations
make lazy binding undesirable for some applications. First, the initial reference
to a shared object function takes longer than subsequent calls, because the
dynamic linker intercepts the call to resolve the symbol. Some applications cannot
tolerate this unpredictability. Second, if an error occurs and the dynamic linker
cannot resolve the symbol, the dynamic linker will terminate the program. Under
lazy binding, this might occur at arbitrary times. Once again, some applications
cannot tolerate this unpredictability. By turning off lazy binding, the dynamic linker
forces the failure to occur during process initialization, before the application
receives control.


NOTE
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6. LIBRARIES


6.1. Shared Library Names


As chapter 5 in the GENERIC ABI describes, executable and shared object files contain the
names of the required shared libraries.


6.2. System Library


unsigned sparc_get_tick (void)
This function returns the value of the TICK register.


[ Other definitions TBD ]


Library Reference Name


libc
libnsl
libsys
libX


/usr/lib/sparc64/libc.so.1
/usr/lib/sparc64/libnsl.so.1
/usr/lib/sparc64/ld.so.1
/usr/lib/sparc64/libX.so.1


Figure 6-0: Shared Library Names


Figure 6-1: libsys Support Routines


sparc_get_tick sparc_get_saved_reg sparc_set_saved_reg
sparc_sysconf sparc_utrap_get sparc_utrap_set
sparc_utrap_swap
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6.3. System Data Interfaces


6.3.1. Vendor Extensions


An ABI-conforming system vendor may add additional symbolic constants (represented in this
chapter as ANSI C #define macros) to facilitate the use of vendor-specific services. The ABI
does not define these symbolic constants or their values, and programs using them are not
ABI-conforming. Nonetheless, the ABI defines an extension mechanism, providing a way to
avoid conflict among the services from multiple vendors. This extension mechanism is as follows:


� Non-negative symbolic constant values are reserved to SPARC International.


� Negative symbolic constant values are reserved to vendors. Bits 30 through 15 of
each symbolic constant value must contain the binary representation of the vendor’s
Vendor Identification Number obtained from SPARC Internationsl.


It is expected that vendors will use this extension mechanism to add, for example, new vendor-
specific _SC_symbolic constants to <unistd.h>.


6.3.2. Data Definitions


#define ENAMETOOLONG 78
#define EOVERFLOW 79
#define ENOTUNIQ 80
#define EBADFD 81
#define EREMCHG 82
#define ENOSYS 89
#define ELOOP 90
#define ERESTART 91
#define ESTRPIPE 92
#define ENOTEMPTY 93
#define EUSERS 94
#define ESTALE 151


extern int errno;


Figure 6-6: <errno.h> (continued)


typedef union _h_val {
unsigned long i[sizeof(double)/sizeof(unsigned long)];
double d;


} _h_val


external const _h_val __huge_val;
#define HUGE_VAL __huge_val.d;


Figure 6-16: <math.h>
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struct nd_addrlist {
int  n_cnt;
struct netbuf *n_addrs;


};


struct nd_hostservlist {
int h_cnt;
struct nd_hostserv *h_hostservs;


};


struct nd_hostserv {
char *h_host;
char *h_serv;


};


#define ND_BADARG -2
#define ND_NOMEM -1
#define ND_OK 0
#define ND_NOHOST 1
#define ND_NOSERV 2
#define ND_NOSYM 3
#define ND_OPEN 4
#define ND_ACCESS 5
#define ND_UKNWN 6
#define ND_NOCTRL 7
#define ND_FAILCTRL 8
#define ND_SYSTEM 9
#define ND_HOSTSERV 0
#define ND_HOSTSERVLIST 1
#define ND_ADDR 2
#define ND_ADDRLIST 3


#define HOST_SELF ”\\1”
#define HOST_ANY ”\\2”
#define HOST_BROADCAST ”\\3”


#define ND_SET_BROADCAST 1
#define ND_SET_RESERVEDPORT 2
#define ND_CHECK_RESERVEDPORT 3
#define ND_MERGEADDR 4


Figure 6-21: <netdir.h>
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#define CANBSIZ 256
#define HZ 100


#define NGROUPS_UMIN 0


#define MAXPATHLEN 1024
#define MAXSYMLINKS 20
#define MAXNAMELEN 256


#define NADDR 13


#define PIPE_MAX 5120


#define NBBY 8
#define NBPSCTR 512


Figure 6-23: <sys/param.h>


Figure 6-28: <rpc.h> (continued)


change the union des_block on page 6-32 to the following: ]


union des_block {
unsigned long key
char c[8];


};


change the typedef XDR on page 6-39 to the following: ]


typedef struct {
enum xdr_op x_op;
struct xdr_ops {


int (*x_getlong)();
int (*x_putlong)();
int (*x_getint32)();
int (*x_putint32)();
int (*x_getbytes)();
int (*x_putbytes)();
unsigned int (*x_getpostn)();
int (*x_setpostn)();
long *(*x_inline)();
void (*x_destroy)();


} *x_ops;
char *x_public;
char *x_private;
char *x_base
int x_handy;


} XDR;







SPARC International Confidential5/18/94LIBRARIES


Delta Document 1.31 SPARC V9 ABI SUPPLEMENT6-5


#define SIGHUP 1
[ Add other defines from original ABI later. ]


#define SS_DISABLE 0x00000002


struct sigaltstack {
char *ss_sp;
int ss_size;
int ss_flags;


};


typedef struct sigaltstack stack_t;
typedef struct { unsigned long sigbits[16 / sizeof(long)] } sigset_t;
struct sigaction {


int sa_flags;
void (*sa_handler)();
sigset_t sa_mask;
int sa_resv[2];


};


#define SA_ONSTACK 0x00000001
[ Add other defines from original ABI later. ]


Figure 6-33: <signal.h>


#define ILL_ILLOPC 1
#define ILL_ILLOPN 2
#define ILL_ILLADR 3
#define ILL_ILLTRP 4
#define ILL_PRVOPC 5
#define ILL_PRVREG 6
#define ILL_COPROC 7
#define ILL_BADSTK 8
#define ILL_PRVACT 9
#define FPE_INTDIV 1
#define FPE_INTOVF 2
#define FPE_FLTDIV 3
#define FPE_FLTOVF 4
#define FPE_FLTUND 5
#define FPE_FLTRES 6
#define FPE_FLTINV 7
#define FPE_FLTSUB 8
#define SEGV_MAPERR 1
#define SEGV_ACCERR 2
#define SEGV_BADASI 3


Figure 6-34: <sys/siginfo.h>







6-6 SPARC V9 ABI SUPPLEMENT Delta Document 1.31


LIBRARIES 5/18/94 SPARC International Confidential


Figure 6-35: <sys/stat.h>


#define _ST_FSTYPSZ 16


struct stat {
dev_t st_dev;
long st_pad1[3];
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
long st_pad2[2];
off_t st_size;
long st_pad3;
timestruc_t st_atim;
timestruc_t st_mtim;
timestruc_t st_ctim;
long st_blksize;
long st_blocks;
char st_fstype[_ST_FSTYPSZ];
long st_pad4[8];


};


#define st_atime st_atim.tv_sec
#define st_mtime st_mtim.tv_sec
#define st_ctime st_ctim.tv_sec


#define NULL 0
typedef int ptrdiff_t;
typedef unsigned int size_t;
typedef __int32 wchar_t;


Figure 6-37: <stddef.h>
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[ This figure represents work in progress and is highly likely to change. ]


[ This new include file will be explained in the delta document for the SVID. ]


typedef unsigned int size_t;
typedef long fpos_t;


#define _NFILE 64
#define NULL 0
#define BUFSIZ 1024
#define _IOFBF 0000
#define _IOLBF 0100
#define _IONBF 0004
#define _IOEOF 0020
#define _IOERR 0040
#define EOF (-1)
#define FOPEN_MAX _NFILE
#define FILENAME_MAX 1024


extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;


#define clearerr(p) ((void)((p)->_flag &= ~(_IOERR | _IOEOF)))


#define feof(p) ((p)->_flag & _IOEOF)
#define ferror(p) ((p)->_flag & _IOERR)
#define fileno(p) (p)->_file
#define L_ctermid 9
#define L_cuserid 9
#define P_tmpdir ”/var/tmp/”
#define L_tmpnam 25


typedef struct {
int _cnt;
unsigned char *_ptr;
unsigned char *_base;
unsigned char _flag;
unsigned char _file;


} FILE;


extern FILE __iob[_NFILE];


Figure 6-38: <stdio.h>


#define CLOCK_REALTIME 1


struct timespec {
time_t tv_sec;
long tv_nsec;


};


Figure 6-42+: <timers.h>
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#include <sparc.h>


typedef int greg_t;


typedef unsigned __int32 instruction_t;


typedef struct {
unsigned r_ccr;
instruction_t *r_pc;
instruction_t *r_npc;
greg_t r_y;
greg_t r_g1;
greg_t r_g2;
greg_t r_g3;
greg_t r_g4;
greg_t r_g5;
greg_t r_g6;
greg_t r_g7;
greg_t r_o0;
greg_t r_o1;
greg_t r_o2;
greg_t r_o3;
greg_t r_o4;
greg_t r_o5;
greg_t r_o6;
greg_t r_o7;
unsigned r_fprs;
unsigned r_asi;
greg_t r_pad1[2];
greg_t r_pad2[2];


} gregset_t;


struct fpu {
union {


unsigned fpu_regs[32];
double fpu_dregs[32];
long double fpu_qregs[16];


} fpu_fr;
unsigned fpu_fsr;
int fpu_pad1[3];
int fpu_pad2[2];


};


typedef struct fpu fpregset_t;


typedef struct {
gregset_t gregs;
gwindows_t *gwins;
fpregset_t fpregs;


} mcontext_t;


Figure 6-54: <ucontext.h>
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typedef struct ucontext {
unsigned long uc_flags;
struct ucontext *uc_link;
sigset_t uc_sigmask;
stack_t uc_stack;
mcontext_t uc_mcontext;
long uc_pad1[2];


} ucontext_t;


#define UC_SIGMASK 0x01
#define UC_STACK 0x02


#define SPARC_MAXREGWINDOW 31


typedef struct {
int wbcnt;
int *spbuf[SPARC_MAXREGWINDOWS];
win_save_t wbuf[SPARC_MAXREGWINDOW];


} gwindows_t;


Figure 6-54: <ucontext.h> (continued)
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[ The new defines will be explained in the delta document for the SVID. ]


#define _POSIX_VERSION *
#define _XOPEN_VERSION *


/* starred values vary and should be retrieved using sysconf() or pathconf() */


#define _SC_ARG_MAX 1
#define _SC_CHILD_MAX 2
#define _SC_CLK_TCK 3
#define _SC_NGROUPS_MAX 4
#define _SC_OPEN_MAX 5
#define _SC_JOB_CONTROL 6
#define _SC_SAVED_IDS 7
#define _SC_VERSION 8
#define _SC_PASS_MAX 9
#define _SC_LOGNAME_MAX 10
#define _SC_PAGESIZE 11
#define _SC_XOPEN_VERSION 12
#define _SC_CPU_CLK_FRQ 14
#define _SC_CPU_CLK_LOB 15
#define _SC_CPU_CLK_HIB 16


#define _PC_LINK_MAX 1
#define _PC_MAX_CANON 2
#define _PC_MAX_INPUT 3
#define _PC_NAME_MAX 4
#define _PC_PATH_MAX 5
#define _PC_PIPE_BUF 6
#define _PC_NO_TRUNC 7
#define _PC_VDISABLE 8
#define _PC_CHOWN_RESTRICTED 9
#define _PC_MAX_FILE_SIZE 10


#define STDIN_FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2


Figure 6-57: <unistd.h> (continued)
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#define UT_INSTRUCTION_EXCEPTION 1
#define UT_INSTRUCTION_ERROR 2
#define UT_INSTRUCTION_PROTECTION 3
#define UT_ILLTRAP_INSTRUCTION 4
#define UT_ILLEGAL_INSTRUCTION 5
#define UT_PRIVILEGED_OPCODE 6
#define UT_FP_DISABLED 7
#define UT_FP_EXCEPTION_IEEE_754 8
#define UT_FP_EXCEPTION_OTHER 9
#define UT_TAG_OVERFLOW 10
#define UT_DIVISION_BY_ZERO 11
#define UT_DATA_EXCEPTION 12
#define UT_DATA_ERROR 13
#define UT_DATA_PROTECTION 14
#define UT_MEM_ADDRESS_NOT_ALIGNED 15
#define UT_PRIVILEGED_ACTION 16
#define UT_ASYNC_DATA_ERROR 17
#define UT_TRAP_INSTRUCTION_16 18
#define UT_TRAP_INSTRUCTION_17 19
#define UT_TRAP_INSTRUCTION_18 20
#define UT_TRAP_INSTRUCTION_19 21
#define UT_TRAP_INSTRUCTION_20 22
#define UT_TRAP_INSTRUCTION_21 23
#define UT_TRAP_INSTRUCTION_22 24
#define UT_TRAP_INSTRUCTION_23 25
#define UT_TRAP_INSTRUCTION_24 26
#define UT_TRAP_INSTRUCTION_25 27
#define UT_TRAP_INSTRUCTION_26 28
#define UT_TRAP_INSTRUCTION_27 29
#define UT_TRAP_INSTRUCTION_28 30
#define UT_TRAP_INSTRUCTION_29 31
#define UT_TRAP_INSTRUCTION_30 32
#define UT_TRAP_INSTRUCTION_31 33


#define UTH_NOCHANGE (-1)


typedef int utrap_entry_t;
typedef void *utrap_handler_t;


Figure 6-57+: <sys/utrap.h>
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Appendix A. Minor Corrections to Original ABI Supplement


A.1. Introduction
[ On page 1-2 in the last paragraph the text: ]


. . . specification. All components of the ABI an of this supplement . . .


[ should read: ]


. . . specification. All components of the ABI and of this supplement . . .






