
Sun Proprietary/Confidential — Internal Use Only September 11, 1996 1

Common Derived Types for SPARC V8 and V9

Tim Marsland and Jonathan Chew

1.0 Introduction
A number of the system derived types will change in the include files that will be shared between 32-bit
and 64-bit versions of the applications environment because of one of the following reasons:
1. The basic difference in C data type models between ILP32 and LP64.

2. The opportunity to expand some of the types for the future.

3. To fix any types that were not properly defined before.

There is a trade-off between making space for future developments, and reducing interoperability and
compatibility. We’ve attempted to make some decisions here, and explain our rationale. Most of the types
are the scalar types from <sys/types.h>. These types are used in many fundamental system interfaces, so
it’s important that we get this correct from the beginning. Our approach has been a conservative one,
largely because we want to reduce the binary compatibility and interoperability problems to a minimum

The rest of this document lists the system derived types to be changed, each with its current and proposed
types and a short description. The definitions used by SGI and DEC are shown for comparison. This com-
parison is interesting because some customers have already ported code to Irix and OSF/1.

1.1 C++ and derived types

C++ presents some peculiarly tricky problems for us. Our goal here is to change our implementation of the
derived types of the system so that they grow (or don’t grow) appropriately when moving from an ILP32 to
an LP64 compilation environment. In the ILP32 compilation environments, C compilers allow 32-bit
quantities to be called int or long, so that we can change the implementation of todays derived types with-
out any source or binary compatibility problems.

However, C++ treats C derived types simply as aliases; that is, it explicitly does not capture anything but
the underlying type implementation. A function or method e.g. gloop() that looks like this in source form

void gloop(size_t);

embeds the implementation of size_t (currently unsigned int) and not size_t into any object file that either
implements or consumes gloop(). So, if we were to change the implementation of size_t, then unless all
objects that are aware of the definition of gloop() were recompiled, applications will break.

We propose to deal with this problem using the following form of header guard:
#if !defined(_LP64) && defined(__cplusplus)
typedef ... /* todays version, unchanged */
#else
typedef ... /* changed version */
#endif /* !_LP64 && __cplusplus */

This ensures that both C and C++ program created in a 32-bit compilation environment to be binary com-
patible with older releases.

Sun Proprietary/Confidential — Internal Use Only September 11, 1996 2

1.2 Large Files Compilation Environments

For ILP32 compilation, all the large file compilation environments must be preserved unaltered. For the
LP64 compilation environment, we propose to adopt the effective types and interfaces of
_FILE_OFFSET_BITS == 64. We do not propose to create a “small files” compilation environment as a
subset of the LP64 environment, and it will be a compilation error to set _LP64 and
_FILE_OFFSET_BITS == 32.

2.0 List of Type Changes

TABLE 1. Proposed Changes to Common System Derived Types

Derived Type Current Proposed SGI 32-bit SGI 64-bit DEC

blkcnt_t 1 long unchanged

blkcnt_t 2 longlong_t unchanged

blkcnt64_t 3 longlong_t unchanged

clock_t long int long int int
daddr_t long int long long int
dev_t ulong_t unsigned int unsigned long __uint32_t int
diskaddr_t longlong_t unchanged

fsblkcnt_t 1 ulong_t unchanged

fsblkcnt_t 2 u_longlong_t unchanged

fsblkcnt64_t 3 u_longlong_t unchanged

fsfilcnt_t 1 ulong_t unchanged

fsfilcnt_t 2 u_longlong_t unchanged

fsfilcnt64_t 3 u_longlong_t unchanged

gid_t uid_t unchanged long __int32_t uint_t
hostid_t long omit long long
id_t long int long __uint32_t int
ino_t unsigned long unsigned long uint_t

ino_t 1 ulong_t unchanged

ino_t 2 u_ longlong_t unchanged

ino64_t 3 u_longlong_t unchanged

len_t u_longlong_t unchanged
major_t ulong_t unsigned int ulong_t __uint32_t uint_t
minor_t ulong_t unsigned int ulong_t __uint32_t uint_t
mode_t ulong_t unsigned int unsigned long __uint32_t uint_t
nlink_t ulong_t unsigned int unsigned long __uint32_t ushort
off_t long long long

off_t 1 long unchanged

Sun Proprietary/Confidential — Internal Use Only September 11, 1996 3

1 Large Files - _FILE_OFFSET_BITS == 32
2 Large Files - _FILE_OFFSET_BITS == 64
3 Large Files - #ifdef _LARGEFILE64_SOURCE

3.0 Descriptions

3.1 blkcnt_t

LFS The type blkcnt_t is defined as an extended signed integral type used for file block
counts. See p14 of [3].

In the LP64 compilation environment, blkcnt_t will be implemented as a long.

3.2 blkcnt64_t

LFS The type blkcnt64_t is defined as an extended signed integral type used for 64-bit
file block counts and is part of the transitional extensions for large files. See p19-
20 of [3].

This type is unchanged.

3.3 clock_t
POSIX clock_t is defined to be capable of representing all integer values from 0 to the number of

ticks in 24 hours. See p34, and p366 of [1].

X/Open clock_t used for system times in clock ticks. See p838 of [2].

off_t 2 longlong_t unchanged

off64_t 3 longlong_t unchanged

offset_t longlong_t unchanged
paddr_t ulong_t omit? unsigned long unsigned long int
pid_t long int long __int32_t int
ptrdiff_t int intptr_t int __int64_t long
rlim_t unsigned long

rlim_t 1 unsigned long unchanged

rlim_t 2 u_longlong_t unchanged

rlim64_t u_longlong_t unchanged
size_t uint_t unsigned long unsigned int unsigned long unsigned long
speed_t unsigned long unsigned int unsigned int
ssize_t int long unsigned int unsigned long long
tcflag_t unsigned long unsigned int unsigned int
time_t long int long int int
u_offset_t u_longlong_t unchanged
uid_t long int long __int32_t uint_t
wchar_t long int unsigned int

Derived Type Current Proposed SGI 32-bit SGI 64-bit DEC

Sun Proprietary/Confidential — Internal Use Only September 11, 1996 4

This type is used for system times in clock ticks by times(2) and clock(3C), and used as time in Hz in the
kernel. The times(2) system call returns the calling process’ system and user times and accumulated system
and user times for its children in clock ticks. If clock_t is a signed 32-bit integer, it will overflow in a little
more than a year if there are 60 ticks per second or less than a year if there are 100. For the accumulated
children times, it may even take less time to overflow. Depending on the average uptime, this might be a
concern, but one year is a pretty long time. Besides, it is probably better to use proc(4) to monitor process
times anyway.

Overflow will occur much sooner with the C library routine, clock(3C), because it returns the amount of
CPU time used in microseconds since the first call to it in the calling process. It will overflow a signed 32-
bit clock_t in about 2147 seconds which is about 36 minutes. This is an existing problem, and it seems
more like a bug than a feature to use clock_t for microseconds instead of ticks as it was intended.

The relatively small amount of time that it takes to overflow clock_t with clock(3C) is troubling, but DEC
and SGI both left clock_t as an int. For now, clock_t will be left as a 32-bit quantity.

3.4 daddr_t

The type daddr_t is the disk block address type. It is commonly used as a 512-byte block number, so it can
address file systems and devices up to 1 terabyte.

Only one system call uses daddr_t — ustat(2) returns a data structure containing a field which is the total
number of free blocks on a filesystem. However, there are several dkio(7I), fdio(7I), hdio(7I), and mtio(7I)
ioctls which embed daddr_t, and of course it is used in persistent data structures saved to disk and tape, as
well as the programs that manipulate them e.g. ufsdump, ufsrestore, format, fsck, mkfs, tar, etc.

The Large Files Summit has made allowances for 64-bit file block counts via stat(2) by defining blkcnt_t.
DEC has left daddr_t as 32 bits and SGI has made it 64 bits.

For now, we intend to leave daddr_t as 32 bits, but its type implementation should change from long to int
to be 32 bits in both ILP32 and LP64 environments. Since 1 terabyte filesystems can be constructed by
concatenation today, we think that this problem will need to be solved in the 32-bit world anyway, so any
disk block addresses that need to be more than 32 bits should use diskaddr_t.

3.5 dev_t
POSIX The type dev_t is used for device numbers. It must be arithmetic and may be made big

enough to accommodate host-locality considerations of networked systems. See p32, p321
of [1].

X/Open dev_t is used for device IDs. See p838 of [2].

The existing device number is partitioned into a 14-bit major number space, and an 18-bit minor number
space. There does not appear to be any pressing need to grow dev_t from 32 to 64 bits now.

Some reviewers of this document have observed that a device driver which partitions the minor number
into spaces to simplify minor number decoding may well be able to use a bigger dev_t. But that conve-
nience has to balanced against the compatibility problems created for 32-bit applications. Both DEC and
SGI have kept dev_t 32 bits in size.

We recommend that dev_t remain 32 bits and its implementation be changed from ulong_t to unsigned int
to be 32 bits in both ILP32 and LP64 worlds.

Sun Proprietary/Confidential — Internal Use Only September 11, 1996 5

3.6 diskaddr_t

The type diskaddr_t is the 64-bit disk block address type used by Sun. It is used by the quot command to
represent a block number. This seems to be the better type on which to base 64-bit disk block numbers in
both ILP32 and LP64 environments.

3.7 fsblkcnt_t

LFS The type fsblkcnt_t is defined as an extended unsigned integral type and used for
file system block counts. See p14 of [3].

This type was introduced for large files. It should become a 64-bit quantity in the LP64 compilation envi-
ronment.

3.8 fsblkcnt64_t

LFS The type fsblkcnt64_t is defined as an extended unsigned integral type used for 64-
bit file system block counts. It is part of the transitional extensions for large files.
See p19-20 of [3].

This type is unchanged.

3.9 fsfilcnt_t

LFS The type fsfilcnt_t is defined as an extended unsigned integral type used for file
system file counts. See p14 of [3].

This type was introduced for large files. It should become a 64-bit quantity in the LP64 compilation envi-
ronment.

3.10 fsfilcnt64_t

LFS The type fsfilcnt64_t is defined as an extended unsigned integral type used for 64-
bit file system file counts. It is part of the transitional extensions for large files.
See p19-20 of [3].

This type is unchanged.

3.11 gid_t
POSIX gid_t is the type used for group IDs. See p32 of [1].

X/Open gid_t is the type used for group IDs. See p838 of [2].

It should remain 32 bits in size, and its implementation should be changed from long to int so that it holds
32 bits in both ILP32 and LP64 compilation environments. For justification, see uid_t below.

3.12 hostid_t

The type hostid_t is used to uniquely define a particular node on an RFS network. It seems to be obsolete
cruft, so we propose to omit it altogether from both compilation environments.

3.13 id_t
X/Open The type id_t is used as a general identifier and can be used to contain at least a pid_t,

uid_t, or a gid_t. See p838 of [2].

It is used for various kinds of identifiers such as process, process group, session, scheduling class, user, and
group IDs. The actual type must be the same for all, since some system calls, e.g. sigsend(2), take argu-

Sun Proprietary/Confidential — Internal Use Only September 11, 1996 6

ments that may be any of these types. The enumeration type idtype_t, defined in <sys/procset.h>, is used to
indicate what type of ID is being specified.

Since it is a general form of system identifier, it should track the type of the things that it represents. As
long as nothing it represents changes, it should remain 32 bits and have its implementation changed from
long to int to be 32 bits in both ILP32 and LP64.

3.14 ino_t
POSIX ino_t is the type used for file serial numbers. See p32 of [1]. File serial numbers are

defined to be a per file system unique identifier for a file. See p15 of [1].

X/Open ino_t is the type used for file serial numbers. See p838 of [2].

It should grow to 64 bits, both because of the LFS specification, and because NFS3 and XFS both use 64-
bit inode numbers already.

3.15 ino64_t

LFS The type ino64_t is defined as an extended unsigned integral type used for file
serial numbers and is part of the transitional extensions for large files. See p19-20
of [3].

This type is unchanged.

3.16 len_t

The type len_t is used for 64-bit lengths.

3.17 major_t

The type major_t is used for the major part of the device number. It should remain 32 bits, and its imple-
mentation should change from ulong_t to unsigned int so it will hold 32 bits in both ILP32 and LP64.

3.18 minor_t

The type minor_t is used for the minor part of the device number. It should remain 32 bits, and its imple-
mentation should change from ulong_t to unsigned int so it will hold 32 bits in both ILP32 and LP64.

3.19 mode_t
POSIX The type mode_t is used for some file attributes like file type and access permissions. In

both 4.3BSD and SVID, it is an unsigned short and historically only the low-order 16 bits
are significant. See p32 and p321 of [1].

X/Open The type mode_t is used for file attributes. See p838 of [2].

There does not appear to be any reason to change its size, but its implementation needs to be changed from
ulong_t to unsigned int so it will hold 32 bits in both ILP32 and LP64.

3.20 nlink_t
POSIX The type nlink_t is used for link counts. The link count to be the number of directories

referring to a given file. It is part of the stat structure as the number of links for the file.
Originally, it was introduced to replace short for the st_nlink field in the stat structure
because short was thought to be too small. See p16, p32 and p321 of [1].

X/Open The type nlink_t is used for link counts. See p838 of [2].

Sun Proprietary/Confidential — Internal Use Only September 11, 1996 7

The current 32-bit version of nlink_t seems adequate in size, so there is no need to change it. Its implemen-
tation should be changed from ulong_t to unsigned int so it will hold 32 bits in both ILP32 and LP64.

3.21 off_t
POSIX The type off_t is used for file sizes and offsets. See p32 of [1].

X/Open The type off_t is used for file sizes and offsets. See p838 of [2].

In the LP64 compilation environment, off_t should grow to 64 bits for system to grow naturally e.g. the 64-
bit system call lseek(2) will naturally take a 64-bit file offset.

3.22 off64_t

LFS The type off64_t is used for file sizes and is part of the transitional extensions for
large files. See p19 of [3].

This types is unchanged.

3.23 offset_t

The type offset_t is used to represent a 64-bit file offset. It is intended to be the file offset type used within
the kernel, though it has also escaped from the kernel into the return value of, and an argument to llseek(2).
It should remain unchanged as a 64-bit quantity.

3.24 paddr_t

The type paddr_t is the physical address type. It has been used in a number of confusing ways.

Since it is so rarely used correctly to mean “a physical address”, we propose to omit it altogether from the
LP64 compilation environment.

3.25 pid_t
POSIX pid_t is used for process IDs and process group IDs. See p32 of [1].

X/Open As above. See p838 of [2].

Both DEC and SGI have left this type as 32 bits.

It is currently implemented using long and should be an int so that it will hold 32 bits for both ILP32 and
LP64 compilation environments.

3.26 ptrdiff_t
X/Open Signed integral type of the result of subtracting two pointers

ptrdiff_t should be implemented using intptr_t instead of int.

3.27 rlim_t
X/Open rlim_t is an unsigned integral type used for limit values

This will be implemented as a 64-bit quantity in the LP64 compilation environment.

3.28 rlim64_t

LFS The type rlim64_t must be an extended unsigned arithmetic type that can represent
correctly a non-negative value of an off64_t

This type is unchanged.

Sun Proprietary/Confidential — Internal Use Only September 11, 1996 8

3.29 size_t
X/Open The type size_t is used for the sizes of objects. See p838 of [2].

For the LP64 compilation environment, it needs to be a 64-bit quantity because it has to be able to repre-
sent the biggest size in the system. Many functions such as malloc(3c) need this capability from size_t.
Often, size_t is used to hold the value of the C sizeof operator, which is also 64 bits.

So, size_t should be a 64-bit quantity and its type should be changed from uint_t to unsigned long to be 32
bits in ILP32 and 64 bits in LP64.

3.30 speed_t
POSIX speed_t shall be an unsigned integral type. See p175 of [1].

X/Open Used for terminal baud rates. See p846 of [2].

This type should stay 32-bit and should be implemented using unsigned int.

3.31 ssize_t
POSIX The type ssize_t is used by functions that return a count of bytes (memory space) or an

error indication and should be capable of holding values in the range from -1 to
{SSIZE_MAX} inclusive. See p32 of [1].

X/Open ssize_t is used for count of bytes or an error indication. See p838 of [2].

Like size_t, ssize_t should be a 64-bit quantity for all the same reasons. Its implementation needs to be
changed from int to long for it to grow naturally from 32 bits in ILP32 to 64 bits in LP64.

3.32 tcflag_t
POSIX tcflag_t shall be an unsigned integral type. See p175 of [1].

X/Open Used for terminal modes. See p846 of [2].

This type should stay 32-bit and should be implemented as an unsigned int.

3.33 time_t
X/Open The type time_t is used for time in seconds. See p838 of [2].

As a 32-bit quantity, it will overflow in the year 2038.

However changing the size of the representation will cause more disruption to existing usage of time_t.

It is very widely used. The file system stores it on disk and ufsdump puts it on tape. Both DEC and SGI
have left it as a 32-bit quantity.

For these reasons, we do not propose to change the size of the representation of time_t, but its type will be
changed from long to int for it to be 32 bits in both ILP32 and LP64.

3.34 u_offset_t

The type u_offset_t is used for an unsigned version of offset_t and introduced by the Large Files project. It
should remain 64 bits in the LP64 compilation environment.

3.35 uid_t
POSIX The uid_t type is used for user IDs. See p32 of [1]. A user ID is a nonnegative integer that

is used to identify a system user. See p25, p32 and p323 of [1].

Sun Proprietary/Confidential — Internal Use Only September 11, 1996 9

X/Open The uid_t type is used for user IDs. See p838 of [2].

Both uid_t and gid_t are widely used in many interfaces which expect them to be 32 bits or smaller. They
are embedded in many media formats created by archive utilities. Apart from ufsdump, only the cpio -x for-
mat allows full 32-bit uids and gids to be saved and restored. They are also stored on-disk in the file system
and passed over the wire by NFS3 which only allows them to be unsigned 32-bit quantities. In addition, the
NIS protocol only allows uid_t and gid_t to be 32-bit. Changing to 64 bits would also grow the cred_t
structure in the kernel and create problems dealing with 32-bit and 64-bit applications issuing the
{s,g}et{,r,e}{u,g}id(2) family of system calls. Both DEC and SGI have left them as 32-bit quantities.

Since many things expect them to be 32 bits and there does not seem to be any need to grow them, uid_t
and gid_t should stay 32 bits. Currently, they are implemented using long but should be of type int to be 32
bits in both ILP32 and LP64. They should stay as signed quantities because interfaces like setreuid(2) use a
value of -1 to mean “don’t set this value”.

3.36 wchar_t
X/Open Integral type whose range of values can represent distinct wide character codes for all

members of the largest character set specified among the locales supported by the compi-
lation environment ...

wchar_t should stay as a 32-bit quantity, but be implemented using int instead of long

4.0 Issues

4.1 struct timeval
X/Open The tv_usec field of struct timeval is defined as an explicit long. See p834 of [2].

This is an unfortunate choice. The field only has to contain values between 0 and 999,999. Interestingly,
DEC has made this field be an int, even though they claim compliance to a standard that mandates it being
a long. We believe that this should be an int or a useconds_t.

4.2 long long

Since it is not an ANSI type, explicit use of the long long in interface definitions should be avoided. The
LP64 compilation environment reduces the dependency on long long even further. For LP64 compilation
environments, long or int64_t can be used instead of long long, though derived types like off_t should be
used wherever possible to keep code as portable as possible.

4.3 Fixed-Width vs. Natural Types

When should fixed-width types be used instead of natural types, e.g. int32_t vs. int? Often, this boils down
to issues of style rather than substance. Here’s some guidelines on when to use one or the other. Use
explicit fixed-width types for:

• Over-the-wire protocols, though XDR is often a better way.

• Shared memory protocols

• CPU and device driver registers

• Providing ILP32 compatibility services from an LP64 program

but not for things that are naturally “an integer” e.g.

• simple counters in loops

Sun Proprietary/Confidential — Internal Use Only September 11, 1996 10

• file descriptors

Also note that there is a performance penalty for simply making everything be 64-bit; while the CPU can
manipulate 32-bit and 64-bit quantities just as quickly, moving more data takes longer, it fills the cache
faster, and occupies more space on disk.

5.0 Summary
The net effect of the changes discussed in this paper is to obsolete hostid_t and paddr_t, grow size_t, ssize_t
and ptrdiff_t to 64-bit quantities, and to co-opt the type changes of _FILE_OFFSET_BITS == 64, but oth-
erwise leave the other system types as 32-bit quantities in the LP64 compilation environment.

6.0 References
[1] IEEE Std 1003.1b-1993, IEEE Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 1: System Application Program Interface (API) — Amendment 1: Real-time —
Extension [C Language]

[2] X/Open CAE Specification — System Interfaces and Headers — Issue 4, Version 2

[3] X/Open Submission: Adding Support for Arbitrary File Sizes to the Single UNIX Specification, March
20, 1996. See http://www.sas.com/standards/large.file/x_open/20Mar96.html.

