

10 SPARC International Proprietary Information — March 30, 1992 C/Extended SPARC


We have previously expressed skepticism over the
utility of the second assumption, given the value
we place upon interoperability with respect to port-
ability. By definition, such programs can not be
portable and interoperable while simultaneously
exploiting the properties of a larger native size —
for they will either scale a problem beyond “the net-
work” that must deal with it, or else they will sim-
ply fail. It’s extremely rare to see a portable, in-
teroperable program that is independent of any
size knowledge, and we confess that we’re unsure
that there exists a real-world example. However,
despite our skepticism, we’ll evaluate both LLP64
and ILP64 from the perspective of either assump-
tion.
5.4.1 Code “knows” Data Size


LLP64 renders the porting of this code trivial
by maintaining the assumption “as is.” Although it
is possible that there will remain portability issues
surrounding pointer arithmetic, it seems unlikely
that these would fail without other portions of the
program similarly failing. lint or similar tools can
automate the detection and correction of such er-
rors should they occur.


ILP64 makes porting code in this class very dif-
ficult. The basic assumptions upon which the code
and algorithms are based are changed, and there is
little one can do to automate the detection of errors
so introduced.
5.4.2 Code assumes “natural sizes”


LLP64 complicates the porting of this code by
denying the code the ability to automatically obtain
the benefits of the 64-bit architecture. It may intro-
duce errors due to assumptions based upon the
ability to perform pointer arithmetic and the size of
the result of such arithmetic. Mitigating this factor
is the prospect that lint or similar tools can auto-
mate an investigation for such issues.


ILP64 presents the “natural” scenario for this
code — the port is trivial and automatically obtains
the benefits of the 64-bit architecture.


5.5 SPARC ANSI-C Conformance
LLP64 extends ANSI-C by the addition of the


type long long. This extension does not invalidate
conforming programs. We maintain our assump-
tion that this extension will take place regardless of
whether or not SPARC-64 exists — many vendors
are already using or plan to provide it. ANSI-C will
ultimately come to recognize it. LLP64 is otherwise
ANSI-C conforming.


ILP64, if it provides no 32-bit type, is ANSI-C


conforming. However, no one believes that
SPARC-64 can exist without a 32-bit type, which
will be the most prevalent type used in interopera-
bility scenarios. Thus, to actually work, ILP64 re-
quires a change to ANSI-C to introduce either size-
specific types (__intn, etc.) or a new, mid-range,
natural type (medium). The success of either type is
predicated upon its penetration into the 32-bit
world, a world that has already chosen to invest in
long long, and thus unlikely to accept a new
change.


6. Summary and Recommendation


The results of our comparisons are summa-
rized in Table 2. Given our goals and assumptions,
LLP64 is the clearly superior choice.


 The cost of choosing ILP64 is to incur interoperabil-
ity difficulties and to expend our most precious re-
source solely for the sake of what is a primarily ac-
ademic argument. Our competitors have made it
clear that they do not intend to make this mistake8


— we should not be lulled into believing that we
can do so either.


That the conclusions reached in our position
differ from positions reached in others is due less to
technical considerations than they are to value
judgements over what is important. The ILP64 ar-
guments have their greatest strengths when viewed
from a perspective of portability as the dominating
concern and when considering a 64-bit architecture
in isolation. Were we to consider portability domi-


8. Mashey, John: USENET group comp.arch on 24-
Mar-92, Message: <kstnndINNss2@spim.mip-
s.com>. With tongue in cheek: “TO ALL COMPETI-
TORS: when you do 64-bit machines, ..., under no
circumstances should you offer an option to let
sizeof(long) = 32. ... Ignore foolish, idiotic software
developers... Make them do the right thing, even if it
means your port takes 18 months longer than your
competition.”


Goal (Section) LLP64 ILP64


32 � 64 (5.1) Yes No


SPARC � Not (5.2) Yes No


Shared Source (5.3) No #ifdef #ifdef


Port: Sizes (5.4.1) Easy Hard


Port: Natural (5.4.2) Modest Easy


ANSI-C (5.5) Extension Change


Table 1: Evaluation Summary







C/Extended SPARC SPARC International Proprietary Information — March 30, 1992 11


nant, rather than merely important, we might also
reach an ILP64 conclusion. Were we to be simply
defining a new architecture of 64 bits, and not an
extension to the existing SPARC family, we might
also look more favorably upon ILP64.


However, the very fact that we are gathered as
part of an organization chartered for product in-
teroperability, rather than as a subcommittee of the
ANSI-C effort, illustrates the dominant importance
to our organizations of both maintaining and in-
creasing the level of interoperability between all
members of the SPARC family. To make a choice
that omits the 32-bit data type from our standard
for binary interoperability, the most widely used
data type in our current software base, cannot be
the right answer. To require an immense effort at
penetrating the 32-bit market with a new data type
at this point in its lifetime also cannot be the right
answer.


If we truly value interoperability and the time
of our software developers, we will not present yet
another issue for them to “cope with”, and instead
we will make the choice that yields maximum re-
turn for them — that choice, and the choice of Sun
Microsystems, is LLP64.







C/Extended SPARC SPARC International Proprietary Information — March 30, 1992 9


5. Evaluation vs. Goals


LLP64 and ILP64 are evaluated with respect to
their suitability at meeting the goals described ear-
lier. We omit an evaluation of IP64 because it would
not be different from that LLP64 except with re-
spect to ANSI-C conformance.


5.1 Interoperability with SPARC-32
LLP64 is completely interoperable with the


SPARC-32 data types, making readily accessible to
native SPARC-64 programs the data and protocols
of the SPARC-32 world. Save data structures con-
taining pointers, the databases of one are complete-
ly interchangeable with those of the other.


ILP64 is nearly completely non-interoperable
with the SPARC-32 data types. It will require com-
plete reworking of source code to contain either ab-
stract types or different algorithms and library
functions delineated with #ifdefs or machine-de-
pendent sources in order to restore it. ILP64 turns
what was to be a zero software investment into a
major project for the writers of software. Examples
of where this work will be required are:


• all file system formats and utilities that op-
erate upon them (including those database
vendors that construct “private” formats
upon raw media);


• file formats containing binary data such as
those produced by Frame and Interleaf;


• communications products such as the X11
window system, all rpcgen or equivalent
source files and in general all sources using
Sun RPC.


Even after this work is finished, interoperability is
not provided in any transparent fashion. Assuming
that, for instance, Frame intended for their binary
formats to be “ANSI-C portable” rather than
SPARC interoperable — then users would have to
use the “interchange format” between two mem-
bers of the SPARC family.


5.2 Interoperability with non-SPARC
For big-endian 32-bit architectures, or for the


exchange of data using “presentation layer” tech-
nologies such as XDR, LLP64 is as interoperable
with non-SPARC architectures as it is with SPARC-
32. ILP64, for these cases, presents all the same
problems — although since expectations for ex-
change are lower across family boundaries the pain
of these considerations might be lessened.


ILP64 is at a significant disadvantage even if it
is assumed that data exchange always happens
through a “presentation layer.” The extant sources


that use these layers know both the sizes of the pre-
sentation transport and the sizes of the data being
marshalled for presentation. This means that, al-
though it is possible for an ILP64 to utilize a “net-
work long”, it will only be possible through use of
a not-yet-defined 32-bit type, whose use is predicat-
ed upon source modification. The “native” long
will require the use of the network “hyper” (the
network 64-bit type), which of course would be an
incompatible change to whatever protocol is in-
volved.


ILP64 again takes an advantage in leverage that
could have accrued to the SPARC-64 community
and reduces it to one that will require effort to
achieve.


5.3 Shared Source
LLP64, by preserving the data types and with


its assumption of long long in 32-bit software, pre-
serves both data structure and algorithm compati-
bilities. It will not be necessary to isolate support
for long long file offsets behind either #ifdef
guards or machine-dependent source modules.
Evolution of the software will affect SPARC-64,
SPARC-32, and most non-SPARC architectures si-
multaneously. “Interchange” or “translation” tech-
nologies will not be required in order to use 32- and
64-bit implementations of a single software pack-
age on a given piece of data.


LLP64 does require that those who wish 64 bit
data types must explicitly request them, even on a
64-bit architecture.


ILP64 without long long makes it impossible to
share source between SPARC-32 and SPARC-64
without considerable effort in isolating both data
structure declarations and algorithms using known
64-bit sized interfaces in SPARC-32 code. ILP64
with long long reduces this effort, but still requires
a significant reworking of the extant data structure
declarations.


5.4 Portability
The impact upon portability of each choice is


primarily a function of which of two assumptions
you wish to make about the nature of the code to be
ported:


1. The code “knows” how big an int and/or
long and/or long long are; or


2. The code is written to rely not upon any
sizing constraints save those in inherent in
the C language — it will run on machines
with 57-bit longs and 35-bit ints.







8 SPARC International Proprietary Information — March 30, 1992 C/Extended SPARC


The first two columns agree in all respects ex-
cept for the size of int: historical practice has accept-
ed variation here, and there are many existing pro-
grams that port between SPARC-32 and the PC-
class systems: the latter being the origin for many
such programs.


4.1 SPARC-64 Common Ground
In all three SPARC-64 columns, the sizes of


char, short, and pointer agree. That no one has se-
riously suggested any assignment for the first two
of these save for what they have always been sug-
gests to us an appreciation of the value of not chal-
lenging assumptions that have never been violated.
That no one has suggested any assignment for
pointer other than 64 bits also suggests an appreci-
ation of one of the few unchallenged assumptions
in C code.


4.2 LLP64
LLP64 makes choices consistent with the view


that the use of types has generally been made with
knowledge of their sizes. It preserves the fact that
long has effectively never been changed. Commu-
nications protocols, media, and files written with
either of the machines in the first two columns is
easily achieved. Porting of software that uses long
long is similarly easy.


LLP64 obligates those who really do want a 64-
bit type to say so. And, it assumes an extension to
ANSI C in the form of the long long data type an
extension that will not affect conforming programs.


4.3 IP64
IP64 builds upon LLP64 in that it preserves


long-standing assumptions but adds the feature of


having a “natural” 64-bit type. Since the industry
already copes with varying sizes of int, this is not a
new burden for the industry.


The principal negative with IP64 is that it vio-
lates the ANSI-C rule that an int is no larger than a
long — an assumption that has never yet been vio-
lated. And, the fact that int changes from 32 bits
will probably increase the cost of this option to the
writers of software compared to LLP64.


4.4 ILP64


ILP64 makes choices consistent with the view
that programs are written without regard to the
value of data type sizes, but are instead based upon
the structural relationships between them. Its only
commonality with SPARC-32 is the sizes of char
and short. It violates the never-changed assump-
tion over the size of long. Interoperability through
communications protocols, media, and files written
in 32-bit environments can only be achieved
through large changes to the source base.


Some claims for ILP64 state that it obviates the
need for a long long type — thus, portability be-
tween SPARC-32 and SPARC-64 will be achieved
only through large amounts of conditional compi-
lation for code involving the use of long long on
SPARC-32 and other 32-bit architectures.


Within the confines of ANSI-C, the only way in
which interoperability with 32-bit software can be
achieved through an extensive change to source
code to use bitfields. Alternatively, a new “natural
type” must be added to the language (e.g., medi-
um) or an extensive list of “size explicit” integral
types. Both changes would have a significant
source impact.


C Type PC
Macintosh


SPARC-32 SPARC-64
LLP64


SPARC-64
IP64


SPARC-64
ILP64


char 8 8 8 8 8


short 16 16 16 16 16


“medium” — — — — 32


int 16 and 32 32 32 64 64


long 32 32 32 32 64


“long long” 64 64 64 64 —


pointer 32 32 64 64 64


Table 1: Data Type sizes







C/Extended SPARC SPARC International Proprietary Information — March 30, 1992 7


tween SPARC-32 and SPARC-64 machines be
equally transparent. A user running a desktop pub-
lishing application should not discover that a pub-
lication can be operated upon by one or the other,
but not both SPARC architectures.


Achieving this goal obtains the maximum le-
verage from the critical software-writer resource —
as it requires no work from them and creates no
pressures to do additional work through barriers to
interchange.


3.2 Interoperability with non-SPARC
The preceding goal dealt with the most impor-


tant consideration of product interoperability be-
tween members of a family. However, in the mar-
ket reality that renders SPARC the underdog with
respect to PC-class computers, it is important to en-
sure that interoperability is maintained throughout
the environment in which SPARC machines will
operate. This means using the protocols and data
formats as they will exist “native on the wire.” A
product can be successful in the computing envi-
ronment of the 1990’s only to the extent that it can
be successfully added to and interoperate with an
extant system — and this means be useful in that
system through ready operation upon and ex-
change of data that already exists.


3.3 Preserve Resources: Shared Source
Most software that exists in “native” form on


SPARC-64 will be built from source for which other
machines are also targets. These machines will be
32-bit architectures, hopefully including SPARC-
32. Having obtained a SPARC-64 port, it will be
necessary to maintain that port as the software
evolves — and the cost of such maintenance can be
seen to vary monotonically with the amount of
“cases” that embed themselves in the source code.7
By “cases” we mean both variances that manifest
themselves as distinct portions of the source code
hierarchy, and in-line differences that appear as
preprocessor managed conditional compilation
(“#ifdef”).


3.4 Portability: Lower Barriers
Most software that will exist on SPARC-64 will


not only target other architectures, but will also


7. “Vary monotonically” means only that costs increase
when the number of “cases” also increase — but we
make no claims as to the proportions of the variance
and merely recognize that there exist cases that are
less than linear, and others that vary as the square or
cube.


originate there. As the architecture that will only
rarely be “first choice” as a target, and even more
rarely the “flagship” target, SPARC-64’s success
will be heavily influenced by being a “cheap win”
that maximizes the software writer’s gain while
minimizing their up-front costs. In the long-term, of
course, maintenance and evolution costs will dom-
inate, thus the lower priority of this goal with re-
spect to the previous one.


To achieve this goal requires meeting the state
of the software as it is — not as we might wish it to
be. Here it becomes important to understand what
the real assumptions are as well as the costs in-
curred by violating them. Given the previously
identified shortcomings in the language, it is clear
that it will be rare to not violate some assumption —
it behooves us to find solutions that minimize the
costs that then occur.


3.5 SPARC-64 ANSI-C Conformance


We already know that the ANSI-C standard is
deficient with respect to our needs. Still, deficient
does not mean “invalid” — and as a tool to help
achieve the preceding goal, conformance with
ANSI-C will be a boon. However, it is less of a goal
than the primarily economic-based practica identi-
fied in the other goals. It is important to recognize
that standards exist to codify an economic consider-
ation of some kind: of money, people, time, or some
combination. Thus, the view of whether a standard
is succeeding is very much dependent upon whose
economy is being maximized. As we have previ-
ously described, the economics of interoperability
dominate those of portability: and ANSI-C, as a
standard supporting portability economics, will be
similarly dominated.


4. The Choices


Table 1 summarizes the dominant choices in
the industry: for the PC space, SPARC-32 (and oth-
er 32 bit architectures), and the three operative pro-
posals for SPARC-64: LLP64, IP64, and ILP64. We
have omitted other “possible” choices because dis-
cussion to date has already eliminated them from
discussion. We have similarly omitted floating
point choices from the table as these are also non-
contentious.


Given the environment into which SPARC-64
machines will be placed, the outcome of our choice
is to construct a table that will contain three of these
columns: the first two (describing the unalterable
state of the environment) and one of the following
three.







6 SPARC International Proprietary Information — March 30, 1992 C/Extended SPARC


change in terms of future editions of the SCD, there
will be first-class usage of long long in system in-
terfaces well before there are any 64-bit systems.
This effort is not restricted to SPARC systems —
competitors such as MIPS already have such a type
on their architectures, and Microsoft is expected to
embed such a type in system interfaces offered with
their NT system software product.


An examination of the ANSI-C standard
evokes the realization that it is not prepared to deal
with 64-bit issues. Although we were able to sur-
vive with only three sizes for integer types for
years, as described above many compilers have al-
ready chosen to extend the language with more
types. Fortunately, most compilers have used simi-
lar designs, and there is consensus as to how to do
this in the 32-bit architectures.


However, the use of ANSI-C in defining other
standards has introduced problems. More precise-
ly, a particular “style” of ANSI-C use has caused
the problem. In a number of system interfaces, the
type int has been used with the assumption that it
would be the “right” size for the architecture. How-
ever, this can lead to imprecision when different C
compilers for the same architecture make different
choices.5 For example, in SPARC-32, ptrdiff_t is de-
fined to be an int6. It is easy to argue that ptrdiff_t
should have been defined as a long, which is what
it is on a Macintosh. A Macintosh has the same size
for pointer as SPARC-32, but uses a 16-bit int. It is
simply coincidence that long and int are the same
size on SPARC-32. This suggests that assumptions
based upon empirical observations of the state of
various standards will be at least occasionally sus-
pect.


The arrival of long long will make such as-
sumptions much more than suspect. It will threaten
a number of system interfaces: in particular, those
defined to return “the largest possible integer” —
clearly, when files can be greater than 32-bits in
length, operations defined to operate upon or re-
turn only a 32-bit quantity can not suffice. Thus,
similar to what was done to the seek() call (which
became lseek()), we must be careful to avoid an as-
sumption that an architecture change occurs simul-
taneously with an interface change — and similarly


5. This is not hypothetical: the 80386 C compiler must
make different choices for int based on whether it is
compiling for the Windows 3.0 vs. Windows-32 li-
braries.


6. System V Application Binary Interface, SPARC Proces-
sor Supplement, pg 6-48.


not assume that an interface change will be obviat-
ed by a predicted architecture change. The corol-
lary negative assumption for SPARC-64 environ-
ments is that simply “floating” interfaces to their
“natural sizes” in a 64-bit environment will not oc-
cur, due to its threat to the body of 32-bit software
that will already exist. Extending the interface, in-
stead of simply redefining it for SPARC-64, allows
SPARC-32 programs to access the objects that
SPARC-64 machines will be creating on the net-
work.


2.5 Derived Assumptions
From the preceding observations on the arrival


of long long, we can derive a number of other as-
sumptions that, although suggested by the previ-
ous paragraphs, are not stated explicitly. These are:


• SPARC-64 programs always use 64-bit
pointers;


• SPARC-32 programs will not change ex-
cept to access new functionality;


• SPARC-32 programs will sometimes ma-
nipulate 64-bit quantities; and


• SPARC-64 programs will often manipulate
32-bit quantities.


3. Goals for SPARC-64 Data Types


The remainder of this section describes an or-
dered list of goals to be achieved in the choice of C
data types for extending the SPARC architecture to
64 bits. These goals derive from the success factors
and technical and market considerations discussed
previously. We recognize that as goals, they are
things we must strive to achieve — but they are not
constraints which must be satisfied perfectly.


3.1 SPARC-32 “Emulation” & Interoperability
SPARC-32 programs must execute efficiently


on SPARC-64 machines. By “efficiently” we refer
not only to execution performance, but also with re-
spect to the facility with which such programs in-
teract with each other and with native SPARC-64
programs. In particular, it is important that neither
developers nor users of SPARC-64 systems develop
different “vocabularies” and therefore usage char-
acteristics that imply knowledge of which pro-
grams operate in emulation vs. those that operate
native. It is “failure” in this context to have a
SPARC-32 program fail to operate for any reason
other than the lack of a 64-bit pointer. It is “success”
if native and emulation versions of the same pro-
gram can operate upon the same data.


Similarly, it is important that exchanges be-







C/Extended SPARC SPARC International Proprietary Information — March 30, 1992 5


tunate if we were to take backward steps in evolv-
ing the SPARC architecture.


However, arguments involving machine types
invariably omit the most dominant machine of all
— the aggregate called “the network” — and in this
respect the network may really be the computer. The
network’s data types are defined (in our space) by
the presentation services offered by XDR. This is
evolving rapidly, as evidenced by recent actions in
the Object Management Group (OMG). The OMG,
seeking technology to allow software developed in
different programming languages on different sys-
tems to communicate, endorsed an approach used
by a number of systems: an Interface Definition
Language (IDL). IDL unambiguously specifies the
range of values that are to be communicated, and
embeds these ranges in a type system similar to that
of C. The sizes chosen are the same as those now in
evidence on SPARC-32 and other 32-bit architec-
tures.


Thus, we believe that not only has historical
precedent established and permitted assumptions
over size to take hold in the industry, we also be-
lieve that this is a trend that will become more em-
phasized over time, rather than lessened. This trend
is supported by the economics driving the domi-
nance of interoperability over portability, and thus
will occur without regard for historical ruminations
over language design.


2.3 Assumptions and the Test of Time


Earlier discussions and exchanges have pro-
duced a catalog of assumptions that C programs,
and in particular, C programs for 32-bit architec-
tures, might have assumed.4 We use this catalog to
determine what assumptions have stood the test of
time, and therefore more likely to be either implic-
itly or explicitly used as fundamental in construct-
ing programs.


2.3.1 Assumptions that are violated in 32-bit code
The following are assumptions that it is


claimed that 32-bit code can make that in fact are vi-
olated in exchanges between 32-bit systems. This
table assumes the existence of long long, an as-
sumption whose validity is pursued later in this
text.


• int=32 bits: 80x86 and Apple Macintosh
computers have a 16-bit int.


4. Sundarrajan, Prabakar, “Rationale for 64-bit C Type
Sizes”, HaL Computer Systems, Inc., March 9th,
1992.


• int=long: 80x86 and Apple Macintosh
computers have a 16-bit int and a 32-bit
long.


• int=ptr: 80x86 and Apple Macintosh com-
puters have a 16-bit int and a 32-bit point-
er.


• int=register size: Apple Macintosh com-
puters have 16-bit int and 32-bit registers.
80x86 can be argued to have either 16- or -
32-bit registers.


• int>=all: Apple Macintosh and 80x86 com-
puters have both long and pointer types
larger than int. SPARC-32 and MIPS have
64-bit long longs.


• long>=all: SPARC-32 and MIPS have 64-bit
long longs and 32-bit longs.


• ptr>=all. SPARC-32 and MIPS have 64-bit
long longs and 32-bit pointers.


2.3.2 Assumptions violated, but not in 32-bits
The following are assumptions that, while gen-


erally safe in 32-bit code, have not always been true,
having been violated at least once. While perhaps a
stronger basis for “important” assumptions than
the previous section, nonetheless they are less valid
than assumptions that have never been violated.


• ptr=32 bits: PDP-11’s had 16-bit pointers.
• long=ptr: PDP-11’s had 16-bit pointers and


32-bit longs.
• long=register size: PDP-11’s had 32-bit


longs and 16-bit registers.
2.3.3 Assumptions never violated


The following are the remaining assumptions
from the catalog: there is no existence proof of their
ever having been violated in the community of gen-
eral-purpose software. It thus appears more risky
to break them than any of the other assumptions, if
habits reinforced by time are to be used as any
guide.


• long=32 bits.
• ptr=register size.


2.4 Emergence of a 64-bit type in SPARC-32
The type system is evolving even without the


advent of true 64-bit architectures. Many vendors
of 32-bit systems have already, or will shortly, add
data types that support access for 64-bit objects.
Our own efforts in the SPARC International “big
SIG” to define new operations and library routines
to operate upon objects that exceed the natural size
of the machine are evidence of this. Assuming that
this effort will yield both product and standards







4 SPARC International Proprietary Information — March 30, 1992 C/Extended SPARC


tions. This group will expect SPARC-64 to be just
like SPARC-32, and expect to change few things in
order to support the new functionality. They will
expect no change whatsoever to gain interoperabil-
ity. Changing the definition of sizes will require
them to engage in work proportional to the differ-
ences.


It can be argued that these changes can be ac-
complished through rote means. Indeed, simply
editing all header files and replacing instances of
long with a typedef’ed abstract type might suffice.
However, this change is a massively intrusive one
— and to a software developer whose time is pre-
cious, it is a questionable use of their energies. That
computers can be used wreak havoc over their
sources will not be a comfort to the testing organi-
zations — who will have to start from scratch with
not only all configurations of the software but also
all active versions. Unless one represents the “flag-
ship” architecture for a software vendor, such ex-
penditures are made as “luxury events” — time
and material permitting.
2.1.2 Those who don’t know


People who write software in this class expect
each architecture to be correct in its own right.
Their assumptions about data type sizes are not
about their value, but instead upon the relation-
ships of those values. They wrote and tested only to
the portability guarantees in the standard, and their
code will work just as well on a 32-bit machine as
on a machine with a 57-bit long, 35-bit int, and 27-
bit short. Not changing the sizes of these data types
to take advantage of new architectures would re-
quire them to edit their programs to use types that
did, or else foreswear such advantages.


A problem with the code of “those who don’t
know” is that of external representation. At a
source level, only char is used in external interfaces
and in data shared with other programs. However,
even at this level the program must be making an
assumption over one data type size or else forego in-
teroperability altogether. A char on a PDP-10, a
Honeywell-6000, or UNIVAC-1100 is going to be 9
bits — and thus using it as a conveyance for data
observed by a machine with 8-bit chars is problem-
atical without other agreements. Such programs
achieve interoperability only by restricting their
manner of interchange to codesets with a pre-
defined and restricted set of values such as ASCII.
2.1.3 Who to believe?


In the absence of the ability to read the minds of
all programmers, or even all of their code, we must


make a decision over whose assumption we’re go-
ing to believe ourselves. We can at best make edu-
cated guesses through an examination of the code
available to us, of the assumptions that history has
permitted people to make, and of our own experi-
ence.


2.2 20 Years of Assumptions


C is old, having existed for almost half of the
era of von Neumann computers and for well over
half of most uses of computing. As a result, we have
a considerable history from which to draw data
about “what people assumed” based on “what
could they have assumed?”


For most data types, there is no controversy
over whether or not the size ought to be defined
and what value that size must be3. char will be 8
bits, short 16 bits, float 32 bits, and double 64 bits.
These values are rarely questioned and even more
rarely changed, and especially so in the volume
market from which we expect to obtain most of our
software. Even the size of long, the target of most of
our controversy, has been 32 bits in practically ev-
ery C compiler ever made. Pointers are assumed to
be dependent upon the size of the architecture, and
are not usually stored in files or communicated in
protocols and thus not an impediment to interoper-
ability. Although the size of int is still arguable,
most people acknowledge that it will be different
for different architectures, and it is almost always
defined to be the same as short or long, making it
redundant. Many of the extant uses of these latter
types are in fact an attempt to fix the property that
int will vary — and thus in the case of long, the at-
tribute that it will be at least 32-bits in length has
come to mean that it is 32 bits in length — at least
for those who know.


In fact, for most of the last 20 years, for practi-
cally every architecture, there has been agreement
over the sizes of char, short, long, float, and dou-
ble, and there has been understanding that int and
pointers vary with the architecture. Thus, you nev-
er see the latter two used in data structures used to
support interoperation. With standardization of
character sets and floating point formats, the indus-
try is within striking distance of easy and reliable
data exchange methods. It would indeed be unfor-


3. We know that there have been and are computers
that have made other choices. However, these sys-
tems occupy niche markets which will not be the ba-
sis of general-purpose computing in the 1990’s. It is
for the latter that we do ABIs.







C/Extended SPARC SPARC International Proprietary Information — March 30, 1992 3


portability one. The importance of this distinction is
easily illustrated in the economics of the software
business. The work to port software is expended a
few times for a particular software product by a few
people. Many copies of the resulting binary are
then distributed. The cost of portability (or lack of
it) is amortized across all the copies that are distrib-
uted. However, the value of interoperability is ac-
crued by the many users of the software over and
over again throughout its life.


Achieving interoperability is a complex prob-
lem — but it eventually comes down to two crucial
agreements over:


• inter-component communication; and
• shared data accessed by different compo-


nents.
Both of these agreements require parties to have
equivalent definitions for the information being
transmitted or stored. Various techniques have
been developed to cope with these problems. For
example, database systems use data definition lan-
guages, RPC systems use packet definition lan-
guages and marshalling routines, protocol hierar-
chies generalize these into “presentation layers.” In
each case, the goal is for different parties to use the
same specification of the format of the information,
eliminating the possibility of multiple inconsistent
specifications. Once there is agreement upon the
specification, a variety of mechanisms can be used
to communicate or access the data.


1.4 SPARC-64 success factors
The environmental considerations discussed


thus far collectively describe necessary constraints
that must be satisfied for SPARC-64 to become suc-
cessful. Summarizing, these are:


1. Economics make interoperability the dom-
inant concern for purveyors of software;


2. Interoperability is fundamentally based in
a shared specification over data and its ac-
cess methods;


3. These economics define and constrain the
activities of the most critical resource in
making a architecture a success — the soft-
ware writer; and


4. The conditions that create these economics
and at which SPARC is at a current disad-
vantage are likely to persist.


 Put succinctly, these simply state that those
who write the software must perceive that a


SPARC-64 system is interoperable with the rest of
environment, and especially so with SPARC-32 sys-
tems. A solution that leaves SPARC-64 and SPARC-
32 interoperability at the same level as SPARC-64
and other architectures deletes any advantage we
might have accumulated from building a 64-bit
SPARC as opposed to a 64-bit architecture with no
discernible heritage.


2. Factors and Assumptions on C Data Types


The extensive considerations of the choice of
sizes for SPARC-64 is the result of, and an indica-
tion of, the fact that the choice of sizes has an impor-
tant affect on the software base. The process of
choice introduces many questions: what assump-
tions have been made in existing code, and what is-
sues were not anticipated when the code was writ-
ten. We have collectively recognized that our stan-
dards and existing practice are imperfect in the face
of the demands presented by a 64-bit architecture,
although we have different opinions over the
“right” way to address these imperfections.


To resolve these differences, we need to estab-
lish a common context within which to make a
choice. The environmental considerations for
SPARC-64 systems are one part of that context.
With respect to the choice of data type sizes the re-
mainder of the context can be obtained through the
assumptions over current choices and their evolu-
tion independent of SPARC-64.


2.1 There are two kinds of programmers...
...those who know the size of data types, and


those who claim they do not.
2.1.1 Those who know


The first group has, either wittingly or not, em-
bedded in their programs choices in data type us-
age that wed their program to attributes of their tar-
get’s data type assignment. It has been academical-
ly popular to sneer at such programs as the result of
bad practice. In some cases, it is. In other cases, the
program had to operate in an environment in
which homogeneity was not an option — and often
these programs had to know size attributes (such as:
long is 32 bits, short is 16 bits) in order to operate at
all. These attributes are used in external interfaces
and data shared with other programs. The en-
shrinement of these choices in the SPARC ABI en-
hances the view that these things are of known, per-
manent, sizes.


Regardless of whether or not the reasons are
technically justifiable, this group has written and
tested their programs with the current size defini-







2 SPARC International Proprietary Information — March 30, 1992 C/Extended SPARC


architecture “family.”
This level of heterogeneity will not be short-


lived. Unlike the transitions from 16- to 32-bit archi-
tectures that occurred over the last decade, in
which most 32-bit architectures entirely displaced
the corresponding 16-bit architectures in a short
time, the 32-bit to 64-bit transition will happen
more slowly. We expect the coexistence of SPARC-
32 and -64 machines to continue into the next cen-
tury, as well as coexistence with other 32-bit archi-
tectures, especially IBM PC-compatible and Apple
Macintosh computers.


In fact, not only do we expect them to coexist,
we expect that SPARC-32 machines will outnumber
SPARC-64 machines for most of the lifetime of the
SPARC-64 architecture. And we further expect oth-
er architectures to dominate the overall computer
market for the foreseeable future. As a result, most
of the software that will run native on SPARC-64
machines will also (and probably first) run on
SPARC-32 and other 32-bit architectures. This con-
dition will probably hold for all software that does
not absolutely require a 64-bit architecture, which
includes most current and envisioned applications,
the operating system, and other platform software.


Because the SPARC-64 instruction set is a su-
perset of the SPARC-32 instruction set, it is possible
for “SPARC-32 emulation mode” to be implement-
ed using software techniques that allow SPARC-32
programs to run at practically the same speed as the
native SPARC-64 applications.1 It is likely that
many applications will not need to be “ported” to
SPARC-64 in order to be used effectively. This ad-
vantage will help the market penetration of
SPARC-64 bit machines, as the considerations of
distribution and support costs as well as system ad-
ministration issues will make transparent use of
SPARC-32 executables important. The model for
success in this space is exemplified by the Intel
80x86 transitions, as opposed to the PDP-11 to VAX
transition experienced by DEC.


1.2 ISV’s


The ideal to which most software developers
aspire is to have a large amount of “architecture-
spanning” software with a small amount of addi-
tional “architecture-specific” software. This soft-
ware base is then used to produce different execut-


1. Existence proof: SunOS 4.x binary compatibility in
SunOS 5.x. using the precursor technique to what
SunSoft plans to do with the extended SPARC archi-
tecture.


able files. The now pervasive ability to share files
over networks supports this model, often making it
as easy to develop for multiple architectures as sim-
ply saying “make” on each target.


Despite this technological change, a software
developer will tend to prefer a particular architec-
ture (generally the one with greatest volume for
their product.) It is common for the product to be
shipped first on that architecture, and the edition of
the product on that architecture is typically the
“flagship” edition. As a result, purveyors of “lower
priority” architectures need to mitigate the differ-
ences between their architecture and the “flagship”
ones. And, in the race to marketplace success, it’s
important to recognize that the most critical re-
source to conserve is the time and energy of the
software writer — not just the energy required to
perform an initial “port”, but on a continuing basis.


It is certainly true that there will be software
that is designed specifically for the SPARC-64 ar-
chitecture. There will also be software vendors who
will consider it their primary architecture. Those
developers who are motivated to target SPARC-64,
and those customers who value its added capabili-
ties will be willing to devote some effort to fully ex-
ploit it. However, an important reason for being
part of the SPARC architecture family is to have
available on the platform a larger body of software
than might be attracted otherwise. To convince
those developers who are primarily focused upon
other architectures (especially SPARC-32) to contrib-
ute to SPARC-64, we must make it as easy as possi-
ble for them to support it and, having done so,
make it as easy as possible for the users of the soft-
ware to use it sensibly in the context of the total sys-
tem environment.


1.3 Interoperability dominates Portability


In an earlier era, software portability was cru-
cial issue. Most customers of software had access to
the source and expected to carry it to different ar-
chitectures. Architectures were numerous and
changed frequently.


But in the modern computing environment,
and in the market of the 1990’s, interoperability be-
tween programs is more important than portability
of software.2 The existence of SPARC International
and the fact of our current considerations demon-
strate this: SI is an interoperability body — not a


2. This is not to say that portability is unimportant, sim-
ply that it is false economy to sacrifice interoperabil-
ity for portability.







C/Extended SPARC SPARC International Proprietary Information — March 30, 1992 1


1. The SPARC-64 Environment


As we design the software view of the SPARC-
64 architecture, we must consider the environment
in which we expect to find SPARC-64 machines.
The “environment” in this case includes the physi-
cal, technical relationship between SPARC-64 and
other machines, and also the dynamics and eco-
nomics of the software business for both suppliers
of systems as well as those software developers
upon whom our product success is predicated.


1.1 Configurations


SPARC-64 machines will almost always be con-
nected to networks containing SPARC-32 ma-
chines. Moreover, it will be common for SPARC-32
binaries to be running on SPARC-64 machines. In
both cases, whether by sharing files over a network
or through the access of “native” files in “compati-
bility mode”, it will be commonplace for the same
source code and run-time data to be available to
both 64- and 32-bit SPARC instruction sets. As illus-
trated by Figure 1, a decade of networking software
development has made transparent sharing of data
between machines a reality. It is typical today for
users to be unaware of the architecture of the ma-
chine upon which the data is actually stored. It is


becoming increasingly typical that users are uncon-
cerned about the architectures that process that
data, and it is a “feature” of our SPARC-64 designs
that users should not have such concerns with re-
spect to SPARC-32. This is, after all, the point of an


Extending SPARC Data Types to 64 Bits


Michael L. Powell & Robert A. Gingell


Sun Microsystems, Inc.
2550 Garcia Avenue


Mountain View CA 94043


ABSTRACT


In extending the SPARC¸ architecture to 64 bits, careful design will allow us to make
an asset of our SPARC-32 investments, support convenient and efficient interoperation
among the SPARC family, and allow programs to access the additional power and func-
tionality of SPARC-64 machines. The design decisions we make must consider widely-
used non-SPARC architectures, since these architectures will either be the source or com-
mon target of much of our software.


We examine the environment in which we are making this decision, our perspectives
on the issues to be addressed and the goals to be satisfied, and examine the leading alter-
natives in light of these. We recommend the proposal that best satisfies these goals and as-
sumptions, and comment upon the ramifications of it.


Figure 1: File Access Configuration


non-SPARC


SPARC-32


SPARC-64SPARC-32






