
FINAL RELEASE
2/26/99

1.0 Implementation Characteristice of IEEE1754 based
products

IEEE
1754

SPARC International

© 1990-1999 SPARC International Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of
the copyright owners.

The manual pages for socket functions are
¶ 1992, 1993 The Regents of the University of California. All rights reserved

Includes material copyrighted by UNIX System Laboratories, Inc., a subsidiary of SCO, Inc. Reprinted with permis-
sion.
The SPARC Compliance Definition 2.4 is published and printed by SPARC International.

Any comments relating to the material contained herein may be submitted to:

SPARC International Inc.

3333 Bowers Ave., Suite 280

Santa Clara, CA 95054-2913

TEL: (408) 748-9111 (Ext 228)

FAX: (408) 743-9777

URL: www.sparc.org

ATTN: Ghassan Abbas (abbas@sparc.org)

Trademarks

SPARC® is a registered trademark of SPARC International, Inc.

SPARCstation™ is a trademark of SPARC International, Inc.

Products bearing SPARC® trademarks are based on an architecture developed by Sun Microsystems, Inc.

ONC™ and SunOS™ are trademarks of Sun Microsystems, Inc.

NFS® is a registered trademark of Sun Microsystems, Inc.

UNIX® and OPEN LOOK® are registered trademarks of UNIX System Laboratories, Inc.

The X-Window System™ is a trademark of Massachusetts Institute of Technology.

OSF/Motif™ is a trademark of the TOG (X/Open + Open Software Foundation, Inc).

All other products or services mentioned in this document are identified by the trademarks or service marks of their
respective companies or organizations. SPARC International, Inc. disclaims any responsibility for specifying which
trademarks are owned by which companies or organizations.

This product contains intellectual property of Sun Microsystems, Inc., and any user of this product will be required
to obtain a license from Sun Microsystems, Inc., prior to use.

Page iii2/26/99 IEEE 1754

Table of Contents

Introduction . i

Chapter 1 : 1754 Architecture
Implementation Dependencies 1
1.1 Definition of an Implementation Dependency 1
1.2 Hardware Dependencies . 2
1.3 Categories of Implementation Dependencies 2
1.4 List of Implementation Dependencies 3

Chapter 2 : Dependencies
Questionnaire . 14
2.1 Dependencies Questionnaire 15
2.2 Hardware Dependencies . 15
2.3 Implementation Dependencies 15

Chapter 3 : Current Product
Information . 32

Chapter 4 : Current PSR
Assignments . 34

Introduct ion

Page i2/26/99 IEEE 1754

1. Introduction

This document is maintained by SPARC International and describes the
implementation-dependent design features of 1754-compliant implementa-
tions. The document is structured to match Annex E of the 1754 standard
which was written knowing that such an document would be available. Annex
E is reproduced in this document as Chapter 1. System and software design-
ers using this document must read it as a complement to the 1754 standard
which can be obtained from IEEE.....

Designers of 1754-compliant processor must contact SPARC International to
register their design, must furnish the information contained in the Implemen-
tation Dependencies Questionnaire (Chapter 2), and participate in the Com-
pliance and Certification Program run by SPARC International. SPARC
International will also help them with the Assigned Value information which is
part of the standard (see section 1.3).

The information provided in Chapter 3, Current Product Information, was fur-
nished by each vendor and should reflect the implementation dependent fea-
tures of each of the described products. Although SPARC International will
make every effort to collect accurate information only the specific vendors
can be contacted when a problem arise from the accuracy of the information..

Chapter 1: 1754 Architecture
Implementat ion Dependencies

Page i2/26/99 IEEE 1754

This chapter provides a convenient summary list of all the architec-
tural implementation dependencies of the 1754 standard. It is a copy of the
normative Annex E of the standard. The notation “Impl. Dep. #nn” is used
to identify the definition of an architectural implementation dependency.
The notation “(impl. dep. #nn)” is used to identify a minor reference to an
architectural implementation dependency. The number nn provides a
unique index to an architectural implementation dependency definition in
this chapter.

1.1. Definition of an Implementation Dependency

The 1754 architecture is a model which specifies unambiguously the
behavior observed by software on 1754 systems. Therefore, it does not
necessarily describe the operation of the hardware in any actual implemen-
tation.

An implementation is not required to execute every instruction in
hardware. An attempt to execute a 1754 instruction that is not implemented
in hardware generates a trap. If the unimplemented instruction is nonprivi-
leged, then it must be possible to emulate it in software. If it is a privileged
instruction, whether it is emulated by software is implementation-depen-
dent (impl. dep. #1).

Compliance with this specification shall be claimed only by a collec-
tion of components which is capable of fully implementing all 1754
opcodes, through any combination of hardware or software. Specifically,
nonprivileged instructions which are not implemented in hardware shall
trap to the software such that they can be implemented in software. For the
implementation to be complete, by default the implementation shall trap
and report all undefined and reserved instructions.

Some elements of the architecture are defined to be implementation-
dependent. These elements include certain registers and operations that
may vary from implementation to implementation, and are explicitly identi-
fied as such in this chapter.

Implementation elements (such as instructions or registers) that

Page ii2/26/99 IEEE 1754

appear in an implementation but are not defined in this document (or its
updates) are not considered to be 1754 elements of that implementation.

1.2. Hardware Dependencies

Hardware dependencies which do not affect the behavior observed
by software on 1754 systems are not considered architectural implementa-
tion dependencies. A hardware dependency may be relevant to the user
system design (e.g., the speed of execution of an instruction) or may be
fairly transparent to the user (e.g, the method used for achieving cache con-
sistency). The SPARC International document, “Implementation Character-
istics of Current 1754-based Products, Revision 1.x”, provides a useful list
of these hardware dependencies, along with the list of implementation-
dependent design features of 1754-compliant implementations.

In general, hardware dependencies deal with:
• the speed of execution of instructions
• the fact that instructions are implemented in hardware or not
• the degree of concurrence of the various hardware units comprising

1754.

1.3. Categories of Implementation Dependencies

To understand many of the implementation dependencies, one can
group them into five categories represented with their first letter abbrevia-
tion in the rest of this chapter:

• Value (v)
The semantic of the architectural feature is well-defined, except that
a value associated with it is different across implementations. A typ-
ical example is the number of implemented register windows (impl.
dep. #2).

• Assigned Value (a)
Similar to Value, except that a body is appointed to assign values
for this dependency (specifically, the body is SPARC International,
535 Middlefield Rd., Suite 210, Menlo Park, CA 94025). Typical ex-

Page iii2/26/99 IEEE 1754

amples are the version fields associated with the IU (impl. dep. #13),
Floating Point (impl. dep. #19), or MMU units (impl. dep. #59).

• Functional choice (f)
The 1754 architecture allows the implementation to choose be-
tween several semantic treatments related to an architectural func-
tion. A typical example is the treatment of “catastrophic error” ex-
ception, which may cause either a deferred or a disrupting trap (im-
pl. dep. #31).

• Total Unit (t)
The existence of the architectural unit or function is recognized, but
details are totally left to each implementation. The obvious example
of this is the coprocessor unit (impl. dep. #4). More complex cases
include the handling of I/O registers (impl. dep. #7) and alternate ad-
dress spaces (impl. dep. #29).

• Compatibility and Miscellaneous issues (c)
The architecture has evolved, and the standard recognizes the ex-
istence of past variants without encouraging them to be used in the
future. One example concerns the decoding of the 8 bits of the ASI
(impl. dep. #30) or the writing of the Y register by a WRASR instruc-
tion (impl. dep. #50).

1.4. List of Implementation Dependencies

This section provides a complete list of all the implementation depen-
dencies of the architecture, the definition of each, and a reference to the
section number in the standard where they are defined. Most implementa-
tion dependencies occur because of the coprocessor unit, the address
spaces, I/O registers, registers (including ASR’s), the type of trapping used
for an exception, the handling of errors, and miscellaneous non-1754-archi-
tectural units such as the MMU or caches (which affect the FLUSH instruc-
tion).

Page iv2/26/99 IEEE 1754

Impl
Dep#

Cate-
gory

Defining
Section# Description

1 f 1.5 Software emulation of instructions
An implementation is not required to execute every instruc-
tion An implementation is not required to execute every
instruction in hardware. An attempt to execute a 1754
instruction that is not implemented in hardware generates a
trap. If the unimplemented instruction is nonprivileged, then
it must be emulated by software. If it is a privileged instruc-
tion, whether it is emulated by software is implementation-
dependent.

2 v 3.1.1 Number of IU registers
An implementation of the IU may contain from 40 to 520
general-purpose 32-bit r registers. This corresponds to a
grouping of the registers into 8 global r registers, plus a circu-
lar stack of from 2 to 32 sets of 16 registers each, known as
register windows. Since the number of register windows
present (NWINDOWS) is implementation-dependent, the
total number of registers is implementation dependent.

3 f 3.1.2 Incorrect ANSI/IEEE 754-1985 results
An implementation can indicate that a floating-point instruc-
tion did not produce a correct ANSI/IEEE Standard 754-
1985 result by generating a special floating-point unfinished
or unimplemented exception. Software must emulate any
functionality not present in the hardware.

4 t 3.1.3,
5.2.1.9

Coprocessor
An implementation can indicate that a floating-point instruc-
tion did not produce a correct ANSI/IEEE Standard 754-
1985 result by generating a special floating-point unfinished
or unimplemented exception. Software must emulate any
functionality not present in the hardware

5 t 3.2.1.3 Load/Store alternate target registers
The privileged load/store alternate instructions can be used
by supervisor software to access special protected registers,
such as MMU, cache control, and processor state registers,
and other processor- or system-dependent values.

Page v2/26/99 IEEE 1754

6 f 3.2.2 I/O registers privileged status
If normal load/store instructions, coprocessor instructions, or
read/write Ancillary State Register instructions are used,
whether the I/O registers can be accessed outside of supervi-
sor code or not is implementation-dependent.

7 t 3.2.2 I/O registers definitions
The contents and addresses of I/O registers are implementa-
tion-dependent.

8 t 3.2.5 RDASR/WRASR target registers
There are read/write “ancillary state register” instructions
that software can use to read/write unique implementation-
dependent processor registers (ASR’s 16-31).

9 f 3.2.5,
B.9.24,
B.9.25

RDASR/WRASR privileged status
Whether each of the implementation-dependent read/write
ancillary state register instructions (for ASR’s 16-31) is privi-
leged or not is implementation-dependent.

10 f 5.1.4 Misaligned IU register numbers
An attempt to execute a doubleword load or store instruction
that refers to a misaligned (odd) destination register number
should cause an illegal_instruction trap.

11 f 5.1.4,
A.7,
A.8

Trap on Doubleword Load
During execution of a load doubleword integer or coproces-
sor (LDD, LDDA, or LDDC) instruction, if an exception is
generated during the memory cycle in which the second word
is being loaded, the destination registers(s) may be modified
before the trap is taken. A similar exception can occur during
the store memory access but not the load access of a
LDSTUB, LDSTUBA, SWAP, or SWAPA instruction. Thus,
the destination register may be modified before the trap is
taken.

Impl
Dep#

Cate-
gory

Defining
Section# Description

Page vi2/26/99 IEEE 1754

12 f 5.1.4 Trap on Doubleword Store
An implementation might cause a data_access_exception trap
due to a “catastrophic” error during the “effective address +
4” memory access of a store-doubleword (STD, STDA,
STDF, STDFQ, STDC, or STDCQ) instruction, even though
the corresponding “effective address” access did not cause an
error. Thus, memory data at the effective memory address
may be modified before the trap is taken.

13 a 5.2.1.1 PSR.impl
Bits 31 through 24 of the PSR are hardwired to uniquely
identify an implementation or class of software-compatible
implementations of the architecture.

14 t 5.2.1.8,
5.2.7,
7.5.2,
A.36

Enable Extensions Bit
Whether PSR.EE is implemented or not is implementation-
dependent. If it is not implemented, PSR.EE reads as 0 and
writes to it are ignored. The existence of the Implementation-
dependent Extensions register (IER) and the meaning of spe-
cific values contained in it are implementation-dependent.
The function of the WRIER instruction is implementation-
dependent: if the IER register exists, WRIER writes it; if the
IER register does not exist, WRIER produces undefined
results, but an illegal_instruction trap should be taken.
Whether and to what value the enable extensions bit
(PSR.EE) is written by a non-reset trap is implementation-
dependent.

15 f 5.2.1.10 PSR.EF when no FPU is implemented
If an implementation does not support a hardware FPU,
PSR.EF should always read as 0 and writes to it should be
ignored.

16 t 5.2.8 IU deferred-trap queue
The contents and operation of an IU deferred-trap queue are
implementation-dependent and are not visible to user appli-
cation programs.

Impl
Dep#

Cate-
gory

Defining
Section# Description

Page vii2/26/99 IEEE 1754

17 f 5.3.1 Misaligned FPU register numbers
An attempt to execute an instruction that refers to a mis-
aligned floating-point register operand (double-precision
operand in a register whose number is not 0 mod 2, or qua-
druple-precision operand in a register whose number is not 0
mod 4) should cause an fp_exception trap, with FSR.ftt = 6
(invalid_fp_register).

18 f 5.4.1.4 Non standard ANSI/IEEE 754-1985 results
Bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1,
causes the FPU to produce implementation-defined results
that may not correspond to ANSI/IEEE Standard 754-1985.
1754 implementations are permitted but not encouraged to
deviate from 754 requirements when the nonstandard mode
bit of the FSR is 1. In an implementation where the nonstand-
ard floating-point mode operates identically to standard 1754
mode, the NS bit of the FSR always reads as 0, even after a 1
is written to it.

19 a 5.4.1.6 FPU version, FSR.ver
Bits 19 through 17 of the FSR, FSR_version, identify one or
more particular implementations of the FPU architecture.

20 v 5.4.1.7 Zeroing of FSR.ftt
Supervisor-mode software which handles floating-point traps
must execute an STFSR to determine the floating-point trap
type. Whether STFSR explicitly zeroes FSR.ftt is imple-
mentation-dependent.

21 f 5.4.1.11 FSR.cexc contents upon trap
An IEEE_754_exception which traps should cause exactly
one bit in FSR.cexc to be set, corresponding to the detected
IEEE 754 exception.

22 f 5.4.3 FPU TEM, cexc, and aexc
An implementation may choose to implement the TEM, cexc,
and aexc fields in hardware in either of two ways (see sec-
tion 5.4.3 for details).

23 f 5.4.4 Floating Point Traps
Floating-point traps may be precise or deferred. If deferred, a
floating-point deferred trap queue (FQ) must be present.

Impl
Dep#

Cate-
gory

Defining
Section# Description

Page viii2/26/99 IEEE 1754

24 t 5.4.4 FPU deferred-trap queue
The contents of and operations upon the floating-point
deferred-trap queue FQ are implementation-dependent.

25 f 5.4.4 STDFQ with Empty FQ
On an implementation with a floating-point queue, an attempt
to execute STDFQ when the FQ is empty (FSR.qne = 0)
should cause an fp_exception trap with FSR.ftt set to 4
(sequence_error).

26 t 5.5 Coprocessor Registers
All of the coprocessor data and control/status registers are
optional and implementation-dependent.

27 t 5.5 Coprocessor State Register
The architecture provides instruction support for reading and
writing a Coprocessor State Register (CSR).

28 t 5.5 Coprocessor Traps
Coprocessor traps may be precise or deferred. If deferred, a
coprocessor deferred-trap queue (CQ) must be present.

29 t 6.3.1.3 Alternate Space Identifier (ASI) definitions
The definitions of most alternate spaces are implementation-
dependent.

30 c 6.3.1.3 ASI address decoding
Whether an implementation decodes all eight ASI bits is
implementation-dependent.

31 f 7,
7.2

Catastrophic error exceptions
A “catastrophic error” exception is due to the detection of
a hardware malfunction from which, due to its nature, the
state of the machine at the time of the exception cannot be
restored. Since the machine state cannot be restored, contin-
ued execution after such an exception may not be resumable.
Catastrophic error exceptions are implementation-dependent.
They may cause precise, deferred or disrupting traps.

32 t 7.1.3 Deferred traps
Whether any deferred traps (and associated deferred-trap
queues) are present is implementation-dependent.

Impl
Dep#

Cate-
gory

Defining
Section# Description

Page ix2/26/99 IEEE 1754

33 f 7.2 Trap precision
Exceptions that occur as the result of program execution may
be precise or deferred, although it is recommended that such
exceptions be precise. Examples: mem_address_not_aligned,
division_by_zero.

34 f 7.3.1 Interrupt clearing
The method by which an interrupt request is removed is
implementation-dependent.

35 t 7.4.1 Special traps
Trap Type (tt) values 0x60 to 0x7F are reserved for imple-
mentation-dependent exceptions.

36 f 7.4.2 Trap priorities
Note that particular traps have relative priorities and are
implementation-dependent, because a future version of the
architecture may define new traps, and implementations can
define implementation-dependent traps which establish new
relative priorities.

37 f 7.5.1 Reset trap
A reset trap sets PSR.S @ 1, PSR.ET @0, and
PSR.EE @ 0. A reset trap should set PC @0, nPC @ 4,
and FSR.qne@ 0. It should not alter other processor state.

38 f 7.5.1 Effect of reset trap on implementation-dependent regis-
ters
Implementation-dependent registers may or may not be
affected by reset.

39 f 7.5.3 Entering error_mode processor state ‘
The processor enters error_mode state when a precise trap
occurs while ET = 0, or when an implementation-dependent
error condition occurs. When error_mode is entered, PSR.ET
(@0 and PSR.S (@1; any other processor state changes are
implementation-dependent.

40 f 7.5.3 Error_mode processor state
What occurs after error_mode is entered is implementation-
dependent. Typically, the processor triggers an external reset,
causing a reset trap.

Impl
Dep#

Cate-
gory

Defining
Section# Description

Page x2/26/99 IEEE 1754

41 f 7.6, MMU miss
Whether MMU-miss exceptions (data_access_MMU_miss,
instruction_access_MMU_miss) cause precise, deferred, or
disrupting traps is implementation-dependent.

42 t 7.6 Implementation-Dependent Traps
The existence of implementation_dependent_n traps, and
whether any implemented ones are precise, deferred, or dis-
rupting is entirely implementation-dependent.

43 t,f,v 7.6,
A.39,
B.9.28

FLUSH instruction
Four aspects of the FLUSH instruction are implementation-
dependent: (1) whether FLUSH generates no trap, an
uniplemented_FLUSH trap, or an illegal_instruction trap; (2)
the definition of the flush_cache_line() ISP macro;
(3) the definition of the flush_Ibuf_and_pipeline()
ISP macro; and (4) the number of instructions (0 to 5) which
must execute after a FLUSH before its effect is complete.

44 t 7.6 Watchpoint
Whether a 1754 processor generates watchpoint_detected
exceptions is implementation-dependent.

45 f A.2 Data access FPU trap
If a load floating-point instruction traps with a data access
exception, the destination f register(s) either remain
unchanged or are set to an implementation-dependent pre-
determined constant value.

46 t,f A.5 STDFQ
The store double floating-point deferred-trap queue instruc-
tion (STDFQ) stores the front entry of the Floating-point
Queue (FQ) into memory. An attempt to execute STDFQ on
an implementation without a floating-point queue causes an
fp_exception trap with FSR.ftt set to 4 (sequence_error).
On an implementation with a floating-point queue, an attempt
to execute STDFQ when the FQ is empty (FSR.qne = 0)
should cause an fp_exception trap with FSR.ftt set to 4
(sequence_error). Any additional semantics of this instruc-
tion are implementation-dependent.

Impl
Dep#

Cate-
gory

Defining
Section# Description

Page xi2/26/99 IEEE 1754

47 f A.20 Divide overflow
Which of the two Divide overflow-detection conditions is
used is implementation-dependent.

48 t A.35 RDASR
For an RDASR instruction with rs1 in the range 16...31, the
following are implementation-dependent: the interpretation
of bits 13:0 and 29:25 in the instruction, whether the instruc-
tion is privileged or not (impl. dep. #9), and whether the
instruction causes an illegal_instruction trap or not.

49 t A.36 WRASR
WRASR instructions with rd in the range 16...31 are avail-
able for implementation-dependent uses (impl. dep. #8). For
a WRASR instruction rd in the range 16...31, the following
are all implementation-dependent: the interpretation of bits
18:0 in the instruction, the operation(s) performed (for exam-
ple, xor) to generate the value written to the ASR, whether
the instruction is privileged or not (impl. dep. #9), and
whether the instruction causes an illegal_instruction trap or
not.

50 c A.36 Y register
In some existing implementations, WRASR and WRIER
instructions may write the Y register. WRIER and WRASR
in new implementations shall not write the Y register.

51 v A.36 Write state register delay
The write state register instructions are delayed-write
instructions. That is, they may take until completion of the
third instruction following the write instruction to consum-
mate their write operation. The number of delay instructions
(0 to 3) is implementation-dependent.

52 f A.36 WRPSR
In some implementations, if a WRPSR instruction updates
the PSR’s PIL field to a new value and simultaneously sets
ET to 1, an interrupt trap at a level equal to the old value of
the PIL may result.

Impl
Dep#

Cate-
gory

Defining
Section# Description

Page xii2/26/99 IEEE 1754

53 f A.41 Coprocessor Instruction Fields
The interpretation of the rd, rs1, opc, and rs2 fields in CPop
instructions is coprocessor-dependent.

54 t A.41 Coprocessor Data
The data types supported by a coprocessor are coprocessor-
dependent. Operand alignment within the coprocessor is
coprocessor-dependent.

55 t A.41 Coprocessor Exception trap
The conditions under which execution of a CPop instruction
causes a cp_exception trap are coprocessor-dependent.

56 f D.3 Floating-point underflow detection
During floating-point underflow detection, whether (in IEEE
754 terms) “tininess” is detected before or after rounding is
implementation-dependent. It is recommended that tininess
be detected before rounding.

57 v F.3.1 MMU context table
The size of the Reference MMU context table is implementa-
tion-dependent.

58 t F.3.4.2 MMU probe operations
The presence of page, segment, region, and context probe
operations is implementation-dependent; that is, an imple-
mentation may or may not provide these probe operations. If
a probe operation is not implemented, the value it returns is
undefined.

59 a F.4.2 MMU CR.IMPL and CR.VER
The Reference MMU Control Register IMPL field identifies
the specific implementation of the MMU. The Reference
MMU Control Register VER field identifies a particular ver-
sion of this MMU implementation (and is typically a mask
number). Both are hardwired into the implementation and is
read-only.

Impl
Dep#

Cate-
gory

Defining
Section# Description

Page xiii2/26/99 IEEE 1754

60 f F.4.2 MMU CR.SC
The Reference MMU Control Register System Control (SC)
field bits are implementation-dependent. They may be
reflected in a variable number of signals external to the MMU
and need not all be implemented. If a bit is not implemented,
it reads as zero and writes to it are ignored.

61 t F.4.5 MMU diagnostics
A 1754 Reference MMU may provide access to diagnostic
registers through an alternate address space See Annex G,
“Suggested ASI Assignments for 1754 Systems.” If present,
their operation is implementation-dependent.

62 v F.5 MMU Fault Status Register EBE
The Reference MMU Fault Status Register External Bus
Error (EBE) field bits are set when a system error occurs dur-
ing a memory access. The meanings of the individual bits are
implementation-dependent. Examples of system errors are:
time-out, uncorrectable error, and parity error. The MMU
need not implement all the bits in EBE. Unimplemented bits
read as zeros.

Impl
Dep#

Cate-
gory

Defining
Section# Description

Chapter 2: Dependencies
Quest ionnaire

Page xv2/26/99 IEEE 1754

2.1. Dependencies Questionnaire

Designers of 1754-based products must furnish to SPARC Interna-
tional the information contained in this Chapter to help in maintaining an
accurate list of all the implementation-dependent design features of 1754-
compliant implementations.

2.2. Hardware Dependencies

This section provides information about:
• the speed of execution of instructions,
• the fact that instructions are implemented in hardware or not,
• the degree of concurrence of the various hardware units comprising

1754.

2.3. Implementation Dependencies

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

1 f 1.5 Software emulation of instructions

Page xvi2/26/99 IEEE 1754

2 v 3.1.1 Number of IU registers

3 f 3.1.2 Incorrect ANSI/IEEE 754-1985 results

4 t 3.1.3,
5.2.1.9

Coprocessor

5 t 3.2.1.3 Load/Store alternate target registers

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Page xvii2/26/99 IEEE 1754

6 f 3.2.2 I/O registers privileged status

7 t 3.2.2 I/O registers definitions

8 t 3.2.5 RDASR/WRASR target registers

9 f 3.2.5,
B.9.24,
B.9.25

RDASR/WRASR privileged status

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Page xviii2/26/99 IEEE 1754

10 f 5.1.4 Misaligned IU register numbers

11 f 5.1.4,
A.7,
A.8

Trap on Doubleword Load

12 f 5.1.4 Trap on Doubleword Store

13 a 5.2.1.1 PSR.impl

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Page xix2/26/99 IEEE 1754

14 t 5.2.1.8,
5.2.7,
7.5.2,
A.36

Enable Extensions Bit

15 f 5.2.1.10 PSR.EF when no FPU is implemented

16 t 5.2.8 IU deferred-trap queue

17 f 5.3.1 Misaligned FPU register numbers

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Page xx2/26/99 IEEE 1754

18 f 5.4.1.4 Non standard ANSI/IEEE 754-1985 results

19 a 5.4.1.6 FPU version, FSR.ver

20 v 5.4.1.7 Zeroing of FSR.ftt

21 f 5.4.1.11 FSR.cexc contents upon trap

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Page xxi2/26/99 IEEE 1754

22 f 5.4.3 FPU TEM, cexc, and aexc

23 f 5.4.4 Floating Point Traps

24 t 5.4.4 FPU deferred-trap queue

25 f 5.4.4 STDFQ with Empty FQ

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Page xxii2/26/99 IEEE 1754

26 t 5.5 Coprocessor Registers

27 t 5.5 Coprocessor State Register

28 t 5.5 Coprocessor Traps

29 t 6.3.1.3 Alternate Space Identifier (ASI) definitions

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Page xxiii2/26/99 IEEE 1754

30 c 6.3.1.3 ASI address decoding

31 f 7,
7.2

Catastrophic error exceptions

32 t 7.1.3 Deferred traps

33 f 7.2 Trap precision

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Page xxiv2/26/99 IEEE 1754

34 f 7.3.1 Interrupt clearing

35 t 7.4.1 Special traps

36 f 7.4.2 Trap priorities

37 f 7.5.1 Reset trap

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Page xxv2/26/99 IEEE 1754

38 f 7.5.1 Effect of reset trap on implementation-dependent regis-
ters

39 f 7.5.3 Entering error_mode processor state

40 f 7.5.3 Error_mode processor state

41 f 7.6, MMU miss

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Page xxvi2/26/99 IEEE 1754

42 t 7.6 Implementation-Dependent Traps

43 t,f,v 7.6,
A.39,
B.9.28

FLUSH instruction

44 t 7.6 Watchpoint

45 f A.2 Data access FPU trap

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Page xxvii2/26/99 IEEE 1754

46 t,f A.5 STDFQ

47 f A.20 Divide overflow

48 t A.35 RDASR

49 t A.36 WRASR

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Page xxviii2/26/99 IEEE 1754

50 c A.36 Y register

51 v A.36 Write state register delay

52 f A.36 WRPSR

53 f A.41 Coprocessor Instruction Fields

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Page xxix2/26/99 IEEE 1754

54 t A.41 Coprocessor Data

55 t A.41 Coprocessor Exception trap

56 f D.3 Floating-point underflow detection

57 v F.3.1 MMU context table

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Page xxx2/26/99 IEEE 1754

58 t F.3.4.2 MMU probe operations

59 a F.4.2 MMU CR.IMPL and CR.VER

60 f F.4.2 MMU CR.SC

61 t F.4.5 MMU diagnostics

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Page xxxi2/26/99 IEEE 1754

62 v F.5 MMU Fault Status Register EBE

Impl
Dep#

Cate-
gory

Defining
Section# Description of your implementation

Chapter 3: Current Product
Information

Page xxxiii2/26/99 IEEE 1754

Appendix A: Current PSR
Assignments

Page xxxv2/26/99 IEEE 1754

A. The following are the existing PSR implementation number
assignments, as of February 26, 1999:

NOTE: This list may be incomplete, since some development projects
are not disclosed yet. Please contact SPARC International for more Infor-
mation.

PSR Impl Device Implementor

0x00 MB86900
MB86901
MB86902
L64801

Fujitsu Microelectronics, Inc.

0x02 MB86930 Fujitsu Microelectronics, Inc.

0x10, 0x11 CY7C601
L64811

Cypress Semiconductor, Corp & Ross Technology, Inc.

0x13 CY7C611 Cypress Semiconductor, Corp & Ross Technology, Inc.

0x1F Cypress Semiconductor, Corp & Ross Technology, Inc.

0x20 B5010 Bipolar Integrated Technology

0x21 Matsushita Semiconductor, Inc.

0x30 LSI Logic, Corp

0x40, 0x41 Texas Instruments

0x50 MN10501 Matsushita Semiconductor, Inc. & Solbourne Computer, Inc.

0x60 Philips, Corp

0x70 Harvest VLSI Design Center, Inc.

0x80 System and Processes Engineering, Corp

