
SPARC COMPLIANCE DEFINITION 2.3

Interface Semantics

SCD 2.3
IS

SPARC INTERNATIONAL

© 1995 SPARC International Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of
the copyright owners.

The manual pages for socket functions are
¶ 1992, 1993 The Regents of the University of California. All rights reserved

Includes material copyrighted by UNIX System Laboratories, Inc., a subsidiary of Novell, Inc. Reprinted with permis-
sion.
The SPARC Compliance Interface Definition 2.3 is published and printed by SPARC International.

Any comments relating to the material contained herein may be submitted to:

SPARC International Inc.

535 Middlefield Road, Suite 210

Menlo Park, California 94025

ATTN: Ghassan Abbas (abbas@sparc.com)

Trademarks

SPARC® is a registered trademark of SPARC International, Inc.

SPARCstation™ is a trademark of SPARC International, Inc.

Products bearing SPARC® trademarks are based on an architecture developed by Sun Microsystems, Inc.

ONC™ and SunOS™ are trademarks of Sun Microsystems, Inc.

NFS® is a registered trademark of Sun Microsystems, Inc.

UNIX® and OPEN LOOK® are registered trademarks of UNIX System Laboratories, Inc.

The X-Window System™ is a trademark of Massachusetts Institute of Technology.

OSF/Motif™ is a trademark of the Open Software Foundation, Inc.

All other products or services mentioned in this document are identified by the trademarks or service marks of their
respective companies or organizations. SPARC International, Inc. disclaims any responsibility for specifying which
trademarks are owned by which companies or organizations.

SPARC COMPLIANCE DEFINITION 2.3

TABLE OF CONTENTS

__ Table of Contents

August 1995 SPARC Compliance Definition 2.3 Interface Semantics Contents-1

Introduction
Introduction .. 1-1

libaio
aiocancel .. 2-1
aioread ... 2-2
aiowrite .. 2-2
aiowait .. 2-4

libc
_cleanup ... 3-1
addseverity .. 3-2
crypt ... 3-3
encrypt ... 3-3
setkey ... 3-3
setlabel ... 3-5
sysinfo .. 3-6
___errno ... 3-8
asctime_r .. 3-8
ctime_r ... 3-8
flockfile .. 3-8
funlockfile .. 3-8
getc_unlocked ... 3-8
getchar_unlocked ... 3-8
gmtime_r ... 3-8
localtime_r ... 3-8
putc_unlocked .. 3-8
putchar_unlocked .. 3-8
rand_r ... 3-8
strtok_r ... 3-8

libdl
Introduction .. 4-1
dlclose .. 4-2
dlerror .. 4-4
dlopen .. 4-5
dlsym .. 4-8

liblf
Introduction .. 5-1
lf_fcntl .. 5-2
lf_fpathconf ... 5-2
lf_fseek ... 5-2
lf_fstat ... 5-2
lf_fstatvfs ... 5-2
lf_ftell ... 5-2
lf_getrlimit ... 5-2
lf_lseek ... 5-2
lf_lstat ... 5-2
lf_mmap ... 5-2

Table of Contents ___

Contents-2 SPARC Compliance Definition 2.3 Interface Semantics August 1995

lf_pathconf ... 5-2
lf_setrlimit ... 5-2
lf_stat .. 5-2
lf_statvfs ... 5-2
lf_tell ... 5-2

libnsl
inet_addr .. 6-1
inet_netof ... 6-1
inet_ntoa .. 6-1
rpc_broadcast_exp ... 6-3

libsocket
accept .. 7-1
bind ... 7-3
connect ... 7-4
gethostbyname .. 7-6
gethostbyaddr ... 7-6
getpeername .. 7-7
getprotobyname ... 7-8
getprotobynumber ... 7-8
getprotoent .. 7-8
getservbyname .. 7-9
getservbyport .. 7-9
getsockname .. 7-10
inet_lnaof ... 7-11
inet_makeaddr .. 7-11
inet_network ... 7-11
listen ... 7-13
recv ... 7-14
recvfrom ... 7-14
recvmsg .. 7-14
send .. 7-16
sendto ... 7-16
sendmsg ... 7-16
getsockopt ... 7-18
setsockopt .. 7-18
shutdown ... 7-20
socket .. 7-21

libsys
__div64 ... 8-1
__dtoll .. 8-2
__dtoull .. 8-3
__ftoll .. 8-4
__ftoull ... 8-5
__mul64 .. 8-6
__rem64 .. 8-7
__udiv64 .. 8-8
__umul64 ... 8-9
__urem64 ... 8-10
_Q_lltoq .. 8-11

__ Table of Contents

August 1995 SPARC Compliance Definition 2.3 Interface Semantics Contents-3

_Q_qtoll .. 8-12
_Q_qtoull ... 8-13
_Q_ulltoq ... 8-14
fgetgrent_r ... 8-15
fgetpwent_r ... 8-16
fork ... 8-18
getgrent_r .. 8-21
getlogin_r ... 8-22
getpwent_r .. 8-23
getgrgid_r .. 8-25
getgrnam_r .. 8-25
getpwnam_r .. 8-25
getpwuid_r .. 8-25
readdir_r .. 8-25
makecontext .. 8-27
swapcontext .. 8-27
sbrk ... 8-28
ttyname .. 8-29
ttyname_r ... 8-29

libthread
cond_broadcast ... 9-1
cond_destroy ... 9-1
cond_init .. 9-1
cond_timedwait .. 9-1
cond_signal ... 9-1
cond_wait .. 9-1
fork1 ... 9-4
mutex_destroy .. 9-5
mutex_init .. 9-5
mutex_lock .. 9-5
mutex_trylock ... 9-5
mutex_unlock ... 9-5
rwlock_destroy ... 9-8
rwlock_init .. 9-8
rw_rdlock .. 9-8
rw_tryrdlock ... 9-8
rw_trywrlock .. 9-8
rw_unlock .. 9-8
rw_wrlock .. 9-8
sema_destroy .. 9-10
sema_init .. 9-10
sema_post .. 9-10
sema_trywait ... 9-10
sema_wait .. 9-10
thr_continue .. 9-12
thr_suspend ... 9-12
thr_create ... 9-13
thr_exit ... 9-15
thr_getconcurrency .. 9-16
thr_setconcurrency ... 9-16
thr_getprio ... 9-17
thr_setprio ... 9-17

Table of Contents ___

Contents-4 SPARC Compliance Definition 2.3 Interface Semantics August 1995

thr_getspecific ... 9-18
thr_keycreate ... 9-18
thr_setspecific ... 9-18
thr_join ... 9-20
thr_kill .. 9-21
thr_min_stack ... 9-22
thr_self ... 9-23
thr_sigsetmask .. 9-24
thr_main .. 9-25
thr_yield ... 9-26
sigwait .. 9-27

Execution Environment
/dev/zero .. 10-1

INDEX

SPARC COMPLIANCE DEFINITION 2.3

Introduction

___ Introduction

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 1-1

Introduction

This is the SPARC Compliance Definitions 2.3 Interface Semantics

This book is a companion volume to the SCD 2.3. It defines the interface semantics for those interfaces that
are required by the SCD but are not specified in any other normative reference or whose semantics are
different for SCD from that of a normative reference.

It is expected that many of these semantic definitions will eventually be adopted by the committees
responsible for the SCD normative references. The definitions here will be deleted when and as they are
added to the normative references.

Introduction__

1-2 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

SPARC COMPLIANCE DEFINITION 2.3

libaio

___ libaio

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 2-1

aiocancel

NAME
aiocancel - cancel an asynchronous operation

SYNOPSIS
#include <sys/asynch.h>
int aiocancel (aio_result_t *resultp);

 DESCRIPTION
aiocancel() cancels the asynchronous operation associated with the result buffer pointed to by
resultp. It may not be possible to immediately cancel an operation which is in progress and in this
case, aiocancel() will not wait to cancel it.
Upon successful completion, aiocancel() returns 0 and the requested operation is cancelled. The
application will not receive the SIGIO completion signal for an asynchronous operation that is
successfully cancelled.

RETURN VALUE
aiocancel() returns 0 on success, and -1 on failure and sets errno to indicate the error.

ERRORS
aiocancel() will fail if any of the following are true:
EACCES The parameter resultp does not correspond to any outstanding

asynchronous operation, although there is at least one currently
outstanding.

EINVAL There are not any outstanding requests to cancel.

libaio __

2-2 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

aioread
aiowrite

NAME
aioread, aiowrite - asynchronous I/O operations.

SYNOPSIS
#include <sys/asynch.h>
int aioread (int fildes, char *bufp, size_t bufs, off_t offset, int whence, aio_result_t *resultp);
int aiowrite (int fildes, const char *bufp, size_t bufs, off_t offset, int whence, aio_result_t *resultp);

DESCRIPTION
aioread() initiates one asynchronous read(BA_OS) and returns control to the calling program. The
read() continues concurrently with other activity of the process. An attempt is made to read bufs
bytes of data from the object referenced by the descriptor fildes into the buffer pointed to by bufp.
aiowrite() initiates one asynchronous write(BA_OS) and returns control to the calling program. The
write() continues concurrently with other activity of the process. An attempt is made to write bufs
bytes of data from the buffer pointed to by bufp to the object referenced by the descriptor fildes.
On objects capable of seeking, the I/O operation starts at the position specified by whence and offset.
These parameters have the same meaning as the corresponding parameters to the lseek (BA_OS)
function. On objects not capable of seeking the I/O operation always start from the current position
and the parameters whence and offset are ignored. The seek pointer for objects capable of seeking is
not updated by aioread() or aiowrite(). Sequential asynchronous operations on these devices must
be managed by the application using the whence and offset parameters.
The result of the asynchronous operation is stored in the structure pointed to by resultp:
 int aio_return; /* return value of read() or write() */
 int aio_errno; /* value of errno for read() or write() */
Upon completion of the operation both aio_return and aio_errno are set to reflect the result of the
operation. AIO_INPROGRESS is not a value used by the system so the client may detect a change
in state by initializing aio_return to this value.
The application supplied buffer bufp should not be referenced by the application until after the
operation has completed. While the operation is in progress, this buffer is in use by the operating
system.
Notification of the completion of an asynchronous I/O operation may be obtained synchronously
through the aiowait function, or asynchronously by installing a signal handler for the SIGIO signal.
Asynchronous notification is accomplished by sending the process a SIGIO signal. If a signal
handler is not installed for the SIGIO signal, asynchronous notification is disabled. The delivery of
this instance of the SIGIO signal is reliable in that a signal delivered while the handler is executing
is not lost. If the client ensures that aiowait returns nothing (using a polling timeout) before
returning from the signal handler, no asynchronous I/O notifications are lost. The aiowait function
is the only way to dequeue an asynchronous notification. Note: SIGIO may have several meanings
simultaneously: for example, that a descriptor generated SIGIO and an asynchronous operation
completed. Further, issuing an asynchronous request successfully guarantees that space exists to
queue the completion notification.
close(BA_OS), exit(BA_OS) and execve() (see exec(BA_OS)) will block until all pending
asynchronous I/O operations can be canceled by the system.

___ libaio

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 2-3

It is an error to use the same result buffer in more than one outstanding request. These structures
may only be reused after the system has completed the operation.

RETURN VALUE
aioread() and aiowrite() return 0 on success, and -1 on failure and set errno to indicate the error.

ERRORS
EAGAIN The number of asynchronous requests that the system can handle at any

one time has been exceeded
EBADF fildes is not a valid file descriptor open for reading.
EINVAL The parameter resultp is currently being used by an outstanding

asynchronous request.
ENOMEM Memory resources are unavailable to initiate request.

libaio __

2-4 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

aiowait

NAME
aiowait - wait for completion of asynchronous I/O operation

SYNOPSIS
#include <sys/asynch.h>
#include <sys/time.h>
aio_result_t *aiowait (const struct timeval *timeout);

 DESCRIPTION
aiowait() suspends the calling process until one of its outstanding asynchronous I/O operations
completes. This provides a synchronous method of notification.
If timeout is a non-NULL pointer, it specifies a maximum interval to wait for the completion of an
asynchronous I/O operation. If timeout is a NULL pointer, then aiowait() blocks indefinitely. To
effect a poll, the timeout parameter should be non-zero, pointing to a zero-valued timeval structure.
The timeval structure is defined in <sys/time.h> and contains the following members:
 long tv_sec; /* seconds */
 long tv_usec; /* and microseconds */
The value of tv_usec is restricted to the range [0:1000000].

RETURN VALUE
On success, aiowait() returns a pointer to the result structure used when the completed
asynchronous I/O operation was requested, or a NULL pointer if the time limit expires. On failure,
it returns (aio_result_t *)-1 and sets errno to indicate the error.

ERRORS
EINTR A signal was delivered before an asynchronous I/O operation completed.
EINVAL There are no outstanding asynchronous I/O requests (or, all outstanding

asynchronous EINVAL. There are no outstanding asynchronous I/O
requests (or, all outstanding /O requests were cancelled via aiocancel.); or
tv_usec is outside of the range [0:1000000].

 NOTES
aiowait() is the only way to dequeue an asynchronous notification. It may be used either inside a
SIGIO signal handler or in the main program. One SIGIO signal may represent several queued
events.

SPARC COMPLIANCE DEFINITION 2.3

libc

___ libc

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 3-1

_cleanup

NAME
_cleanup - flush all open files for writing

SYNOPSIS
void _cleanup();

DESCRIPTION
_cleanup is used to flush all open files for writing, functionally it is equivalent to fflush(NULL).

SEE ALSO
fflush(BA_OS)

libc __

3-2 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

addseverity

NAME
 addseverity - build a list of severity levels for an application for use with fmtmsg

SYNOPSIS
int addseverity(int value, const char *string)

DESCRIPTION

The function addseverity adds a new severity level of value. value must be greater than 4.

The function associates string with the level value so that string is produced with messages of that
value yielded by fmtmsg().
 If a severity of value already exists it is replaced by the new description.
If string is (char *)0 then the severity level is deleted.

DIAGNOSTICS
Under the following conditions, addseverity fail by returning -1, and setting errno to:

EINVAL Using a value smaller or equal to 4.
EIVAL If an attempt is made to delete a currently undefined severity level.

___ libc

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 3-3

crypt
encrypt
setkey

NAME
 crypt, setkey, encrypt - generate string encoding

SYNOPSIS
char *crypt (char *key, char *salt);
void setkey (char *key);
void encrypt (char *block, int edflag);

DESCRIPTION
The function crypt is a string-encoding function.
The argument key is a string to be encoded. The argument salt is a two-character string chosen from
the set [a-zA-Z0-9./]; this string is used to perturb the encoding algorithm, after which the string
that key points to is used as the key to repeatedly encode a constant string. The returned value
points to the encoded string. The first two characters are the salt itself, the remaining characters
shall not be identical to the original value of key.
The functions setkey and encrypt provide (rather primitive) access to the encoding algorithm. The
argument to setkey is a 64-bit string represented by a character array of length 64 containing only
the characters with numerical value 0 and 1. The string is divided into groups of 8 and the low-
order bit in each group is ignored; this gives a 56-bit key. This is the key that may be used with the
above mentioned algorithm to encode the string block with the function encrypt; the encryption
algorithm provided by the system may not actually use key.
The argument block to encrypt is a character array of length 64 containing only the characters with
numerical value 0 and 1. The argument array is modified in place to a similar array representing
the bits of the argument after having been subjected to the encoding algorithm using the key set by
setkey.
If the argument edflag is zero, the string block is encoded. If the edflag is non-zero and the
implementation supports decryption then the string block is decoded. If the edflag is non-zero and
the implementation does not support decryption then errno is set to ENOSYS.

DIAGNOSTICS
Under the following conditions, these functions fail, and set errno to:
ENOSYS encrypt was called with a non-zero value for edflag on a system that does

not support decryption.
USAGE

The return value of the function crypt points to static data that are overwritten by each call. A
portable application shall not depend on portability of encrypted data, nor assume that decryption
is supported on all SCD conforming platforms. Also, portable applications must set errno to zero
before calling any of the functions since there are no function return values for setkey or encrypt.

libc __

3-4 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

RATIONALE
Encryption capability is often needed by an application that wants to provide some of its own
license protection. The application needs to be able to depend on the system to provide an
encryption service to do this even if the system does not provide a mechanism for decryption.
This standard does not require any particular underlying encryption algorithm, but only requires
that the crypt function return a value that is not identical to the original. This leaves it to the system
vendors to chose whatever algorithm they find to be appropriate, and alleviates any requirement
for a system vendor to choose one that has export restrictions.

___ libc

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 3-5

setlabel

NAME
setlabel - define the label for standard format messages.

SYNOPSIS
#include <pfmt.h>
int setlabel (const char *label);

DESCRIPTION
The routine setlabel() defines the label for messages produced in standard format.
label is a character string no more than 25 characters in length.
No label is defined before setlabel() is called. A NULL pointer or an empty string passed as
argument will reset the definition of the label.

RETURN VALUE
setlabel() returns 0 in case of success, non-zero otherwise.

USAGE
The label should be set once at the beginning of a utility and remain constant.

SEE ALSO
getopt(BA_LIB)

libc __

3-6 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

sysinfo

NAME
sysinfo - get system information strings

SYNOPSIS
#include <sys/systeminfo.h>
long sysinfo (int command, char *buf, long count);

DESCRIPTION
sysinfo copies information relating to the UNIX system on which the process is executing into the
buffer pointed to by buf. count is the size of the buffer.
The commands available are:
SI_SYSNAME Copy into the array pointed to by buf the string that would be returned by

uname [see uname(BA_OS)] in the sysname field. This is the name of the
implementation of the operating system, for example, UNIX_SV.

SI_HOSTNAME Copy into the array pointed to by buf a string that names the present host
machine. This is the string that would be returned by uname in the
nodename field. This hostname or nodename is often the name the machine
is known by locally.
The hostname is the name of this machine as a node in some network;
different networks may have different names for the node, but presenting
the nodename to the appropriate network Directory or name-to-address
mapping service should produce a transport end point address. The name
may not be fully qualified.
Internet host names may be up to 256 bytes in length (plus the terminating
null).

SI_RELEASE Copy into the array pointed to by buf the string that would be returned by
uname in the release field. Typical values might be 4.2, 4.0, 3.2.

SI_VERSION Copy into the array pointed to by buf the string that would be returned by
uname in the version field. The syntax and semantics of this string are
defined by the system provider.

SI_MACHINE Copy into the array pointed to by buf the string that would be returned by
uname in the machine field.

SI_ARCHITECTURE Copy into the array pointed to by buf a string describing the instruction set
architecture of the current system, for example, sparc. These names may
not match predefined names in the C language compilation system.

SI_HW_PROVIDER Copies the name of the hardware manufacturer into the array pointed to
by buf.

SI_HW_SERIAL Copy into the array pointed to by buf a string which is the ASCII
representation of the hardware-specific serial number of the physical
machine on which the system call is executed. Note that this may be
implemented in Read-Only Memory, via software constants set when
building the operating system, or by other means, and may contain non-
numeric characters. It is anticipated that manufacturers will not issue the

___ libc

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 3-7

same “serial number” to more than one physical machine. The pair of
strings returned by SI_HW_PROVIDER and SI_HW_SERIAL is likely to
be unique across all vendors’ System V implementations.

SI_SRPC_DOMAIN Copies the Secure Remote Procedure Call domain name into the array
pointed to by buf.

DIAGNOSTICS
Upon successful completion, the value returned indicates the buffer size in bytes required to hold
the complete value and the terminating null character. If this value is no greater than the value
passed in count, the entire string was copied; if this value is greater than count, the string copied into
buf has been truncated to count-1 bytes plus a terminating null character.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

RATIONALE
The commands included for sysinfo in SCD 2.3 are values that have been determined to be
uniformly implemented on systems that have been presented for testing at the SCD 2.1 level. Also,
the commands that require that the effective user-id be superuser are omitted.

libc __

3-8 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

___errno
asctime_r
ctime_r
flockfile
funlockfile
getc_unlocked
getchar_unlocked
gmtime_r
localtime_r
putc_unlocked
putchar_unlocked
rand_r
strtok_r

NAME
___errno, asctime_r, ctime_r, gmtime_r, localtime_r, flockfile, funlockfile, getc_unlocked,
getchar_unlocked, putc_unlocked, putchar_unlocked, rand_r, strtok_r - Support routines for
multithreading added to libsys and libc.

SYNOPSIS
#include <errno.h>
int *___errno(void);

#include <time.h>
char *asctime_r (const struct tm *tm, char *buf, int buflen);
char *ctime_r (const time_t *clock, char *buf, int buflen);
struct tm *gmtime_r (const time_t *clock, struct tm *res);
struct tm *localtime_r (const time_t *clock, struct tm *res);

#include <stdio.h>
void flockfile (FILE *stream);
void funlockfile (FILE *stream);
int getc_unlocked (FILE *stream);
int getchar_unlocked (void);
int putc_unlocked (int c, FILE *stream);
int putchar_unlocked (int c);
#include <stdlib.h>
int rand_r(unsigned int *seed);

#include <string.h>
char *strtok_r(char *s1, const char *s2, char **lasts);

___ libc

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 3-9

DESCRIPTION and RETURN VALUES
These functions are “reentrant” versions of existing functions. They exist as the definition of the
existing functions prevents the transparent implementation of multithreading, usually because of
the use of a static storage area. In general, these functions are exactly equivalent to the non-
reentrant versions in terms of function and results, but differ in providing for the implementation
the necessary storage for completion of the function.
___errno returns the address of errno for the “calling thread”. The location labelled errno provides
the storage for the “main thread” in the process. In all references to “errno” which follow, it is
implied that the storage used will be that for the thread invoking the operation.
asctime_r is equivalent to asctime, however the caller must supply a buffer buf in which to store the
resulting string. buflen indicates the length which must be at least 26 bytes. The return value of
asctime_r is a pointer to buf on success. On failure, NULL is returned and errno is set. If the
operation fails because buflen is not large enough, errno will be set to ERANGE.
ctime_r is equivalent to ctime, however the caller must supply a buffer buf in which to store the
resulting string. buflen indicates the length of buf which must be at least 26 bytes. If the operation
fails because buflen is not long enough, ctime_r will return NULL and errno will be set to ERANGE.
flockfile and funlockfile are new functions which allow the caller to gain or release exclusive access,
respectively, to stream. They can be used in conjunction with a sequence of calls to getc et al. so as to
avoid the overhead of locking the stream on each access to the buffers managed by stream.
getc_unlocked, getchar_unlocked, putc_unlocked, and putchar_unlocked implement an unlocked
access to stream (or, for getchar the standard input and for putchar the standard output).
gmtime_r is equivalent to gmtime but the caller must supply a result buffer res, which is the return
value of the function.
localtime_r is equivalent to localtime but the caller must supply a result buffer res, which is the
return value of the function.
rand_r is equivalent to rand except that a pointer to a seed seed must be supplied by the caller
strtok_r is equivalent to strtok except that a pointer to a string placeholder lasts must be supplied
by the caller. The lasts pointer is to keep track of the next substring in which to search for the next
token.

NOTES

asctime_r and ctime_r are designated as EXPERMIMENTAL since they have interfaces which are
different from the ones in POSIX 1003.1c. The interfaces of these functions are in POSIX as
following:

char *asctime_r (const struct tm *tm,
char *buf);

char *ctime_r (const time_t *clock,
char *buf);

libc __

3-10 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

SPARC COMPLIANCE DEFINITION 2.3

libdl

__ libdl

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 4-1

Introduction

The following terms are used in this specification:

For a program to reference a symbol means for the program to use the storage value associated with that
symbol. To reference a data symbol means (a) to retrieve the value stored in the location associated with that
symbol, or (b) to store a value into the location associated with that symbol. To reference a function symbol
means to (a) use the value directly by calling that function, or (b) to obtain its value via a call to dlsym,
presumably in order to call the function later.

For a program to contain a reference to a symbol means that the program has been constructed in such a way
that it will reference a symbol that is not defined within it. In the C language, this is done by declaring a
data or function to have the extern attribute. The reference that the program contains is an indication to the
linker and loader of what the name of the symbol is, and the fact that it will be found in some other program.
For details on how this is implemented in a SPARC executable file, see the System V Application Binary
Interface and the System V Application Binary Interface, SPARC Processor Supplement.

Two kinds of objects are mentioned in these specifications. A data object is the storage location associated
with a symbol in an application program. A shared object is (a) a file on disk that was created by linking a
program as a shared object, or (b) such a file that has been loaded into memory and prepared for execution.
When the word “object” is used without qualification in this specification, it means shared object, and
usually the shared object in memory.

For an object to reference another object means that the first object has been link-edited with the second object
in such a way as to create DT_NEEDED entries that cause the second object to be loaded automatically with
the first object. (See Chapter 5 of the SCD 2.3 document.)

__ libdl

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 4-2

dlclose

NAME
dlclose - close a shared object

SYNOPSIS
#include <dlfcn.h>
int dlclose (void *handle);

DESCRIPTION
The function dlclose disassociates from the current process a shared object previously opened by
dlopen.
handle is a value that was returned from a previous call to dlopen. It designates the shared object
whose pathname was specified in that previous call to dlopen.
Once an object has been dissasociated from the process using dlclose, its symbols and those of any
objects that were loaded automatically as a result of opening the object designated by handle are no
longer available to dlsym via handle.
In order for dlclose to dissasociate an object from a process, there must have been exactly one
dlclose executed for each dlopen that was executed. Thus if a dlopen was executed once for a
pathname, dlclose would have to be executed once with the handle that was returned for pathname.
If a dlopen were executed twice for the same pathname, the disassociation would occur only after
the second dlclose.
A successful invocation of dlclose does not guarantee that the objects associated with handle will
actually be removed from the address space of the process, even if the object has been disassociated
from the process and its symbols are no longer available through handle. Objects loaded by one
invocation of dlopen may also be loaded by another invocation of dlopen. The same object may also
be opened multiple times. An object may be removed from the address space by the system only
after all references to that object through an explicit dlopen invocation have been closed and all
other objects that reference that object have also been closed. Even then, however, it is unspecified
in this standard whether the object will actually be removed from the address space.
When the system removes an object from the process address space, the object’s termination
function is executed. The termination function for each object is specified by the DT_FINI entry in
that object’s dynamic section. The exact timing of the execution of termination function relative to
the timing of the dlclose that release the object is unspecified in this standard.
An SCD-conforming application will not have any processing dependencies upon the system’s
removal or non-removal of an object from the process address space following dlclose.

DIAGNOSTICS
If the referenced object was successfully closed, dlclose returns 0. If the object could not be closed,
or if handle does not refer to an open object, dlclose returns a non-0 value. More detailed diagnostic
information will be available through dlerror.

NOTES
The following notes are a consequence of that fact that this standard does not specify whether an
object ever is actually removed from a process address space:

__ libdl

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 4-3

Once a program has executed a sequence of dlclose operations that would permit the system to
remove an object from the process address space, the result of the program’s executing any
reference to symbols defined in that object are unspecified in this standard.
Once a program has executed a sequence of dlclose operations that would permit the system to
remove an object from the process address space, if the program executes another dlopen for that
object, it is unspecified in this standard whether the object is actually loaded again and whether the
object’s data will be in its initial state.

__ libdl

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 4-4

dlerror

NAME
dlerror - get diagnostic information

SYNOPSIS
#include <dlfcn.h>
char *dlerror (void);

DESCRIPTION
The function dlerror returns a null-terminated character string (with no trailing newline) that
describes the last error that occurred during dynamic linking processing. If no dynamic linking
errors have occurred since the last invocation of dlerror, dlerror returns NULL. Thus, invoking
dlerror a second time, immediately following a prior invocation, will result in NULL being
returned.

NOTES
The messages returned by dlerror may reside in a static buffer that is overwritten on each call to
dlerror. Application code should not write to this buffer. Programs wishing to preserve an error
message should make their own copies of that message.

__ libdl

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 4-5

dlopen

NAME
dlopen - open a shared object

SYNOPSIS
#include <dlfcn.h>
void *dlopen (char *pathname, int mode);

DESCRIPTION
The function dlopen is one of a family of routines that give the user direct access to the dynamic
linking facilities.
The function dlopen makes a shared object available to a running process. dlopen returns to the
process a handle the process must use to identify the object on subsequent calls to dlsym and dlclose.
This value must not be interpreted in any way by the process. (See Rationale)
pathname is the path name of the object to be opened; it may be an absolute path or relative to the
current directory. If the value of pathname is 0, dlopen will make the symbols contained in the
original a.out, and all of the objects that were loaded at program startup with the a.out, available
through dlsym.
If the value of pathname is not zero, and no file specified by pathname has already been loaded into
the address space, the file specified by pathname will be loaded. If the file specified by pathname
contains DT_NEEDED entries for other shared objects, those objects will automatically be loaded
by dlopen.
Objects whose names resolve to the same absolute or relative path name may be opened any
number of times either using dlopen or automatically as a result of executing dlopen for an object
that uses them. However, the object referenced is loaded only once into the address space of the
current process. This means that the object only takes up space once; there is only one copy of its
static data; and the static data are initialized only once, when the initial load takes place.
When a shared object is brought into the address space of a process, it may contain references to
symbols whose addresses are not known until the object is loaded. These references must be
relocated before the symbols can be accessed. The mode parameter governs when these relocations
take place and may have the following values:
RTLD_LAZY Under this mode, only references to data symbols are relocated when the

object is loaded. References to functions are not relocated until a given
function is referenced for the first time by the executing program. This
mode should result in better performance, since a process may not
reference all of the functions in any given shared object.

RTLD_NOW Under this mode, all necessary relocations are performed when the object
is first loaded. This may result in some wasted effort, if relocations are
performed for functions that are never referenced, but is useful for
applications that need to know as soon as an object is loaded that all
symbols referenced during execution will be available.

The mode parameter only takes effect when an object is initially loaded. If RTLD_LAZY is specified
in the first dlopen for an object, and RTLD_NOW is specified for the second dlopen of the same
object, the second dlopen will not cause any relocations to be performed.
The mode parameter is required, and always overrides the value of the LD_BIND_NOW

__ libdl

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 4-6

environment variable.
When the system loads an object for the first time, the object’s initialization function is executed.
The initialization function for each object is specified by the DT_INIT entry in that object’s dynamic
section. If multiple objects are loaded as a result of dlopen, the order initialization functions are
called is unspecified.
Objects loaded by a single invocation of dlopen may import symbols from one another or from any
object loaded automatically with a.out during program startup, but objects loaded by one dlopen
invocation may not directly reference symbols from objects loaded by a different dlopen
invocation. Those symbols may, however, be referenced indirectly using dlsym.

RATIONALE
The functions dlopen and dlclose may not work in a manner consistent with the way the functions
open and close work. For example, if the same file is opened twice, the open function will return
unique file descriptors for each open operation. Using dlopen to open the same file multiple times
may return the same file handle every time. The result is that if the first file handle for a dlopen call
is used more than once as a parameter to dlclose, there may be unexpected side effects.

DIAGNOSTICS
If the file specified by pathname cannot be found, cannot be opened for reading, is not a shared
object, or if an error occurs during the process of loading the file specified by pathname or relocating
its symbolic references, dlopen will return NULL. More detailed diagnostic information will be
available through dlerror.

NOTES
The same object referenced by different path names may be loaded multiple times. For example,
given the object /usr/home/me/mylibs/mylib.so, and assuming the current working directory is
/usr/home/me/workdir,
...
void *handle1;
void *handle2;

handle1 = dlopen (“/mylibs/mylib.so”, RTLD_LAZY);
handle2 = dlopen (“/usr/home/me/mylibs/mylib.so”, RTLD_LAZY);
...
results in mylibs.so being loaded twice for the current process. On the other hand, given the same
object and current working directory, if LD_LIBRARY_PATH=/usr/home/me/mylibs, then
...
void *handle1;
void *handle2;

handle1 = dlopen (“mylib.so”, RTLD_LAZY);
handle2 = dlopen (“/usr/home/me/mylibs/mylib.so”, RTLD_LAZY);
...

__ libdl

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 4-7

results in mylibs.so being loaded only once.
Users who wish to gain access to the symbol table of the a.out itself using dlopen(0, mode) should
be aware that some symbols defined in the a.out may not be available to the dynamic linker. The
symbol table created by ld for use by the dynamic linker might contain only a subset of the symbols
originally defined in the a.out: specifically, those referenced by the shared objects with which the
a.out is linked.

libdl___

4-8 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

dlsym

NAME
dlsym - get the address of a symbol in a shared object

SYNOPSIS
#include <dlfcn.h>
void *dlsym (void *handle, char *name);

DESCRIPTION
The function dlsym allows a process to obtain the address of a symbol defined within a shared
object previously opened by dlopen.
handle is a value returned by a call to dlopen; the corresponding shared object must not have been
disassociated from the executing process using dlclose. name is the symbol’s name as a character
string.
dlsym searches for the named symbol in the shared object designated by handle and in all shared
objects loaded automatically as a result of loading the object referenced by handle [see dlopen(3X)].

EXAMPLES
The following example shows how one can use dlopen and dlsym to access either function or data
objects. For simplicity, error checking has been omitted.
void *handle;

int i, *iptr;

int (*fptr) (int);

/* open the needed object */

handle = dlopen (“/usr/mydir/libx.so”, RTLD_LAZY);

/* find address of function and data objects */

fptr = (int (*)(int)) dlsym (handle, “some_function”);

iptr = (int *) dlsym (handle, “int_object”);

/* invoke function, passing value of integer as a parameter */

i = (*fptr) (*iptr);

DIAGNOSTICS
If handle does not refer to a valid object opened by dlopen, or if the named symbol cannot be found
within any of the objects associated with handle, dlsym will return NULL. More detailed diagnostic
information will be available through dlerror.

SPARC COMPLIANCE DEFINITION 2.3

liblf

___liblf

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 5-1

Introduction

At the time of the writing of this document, members of the Unix community are meeting in an attempt to
agree on a standard implementation of 64-bit files on a 32-bit system. Members of SPARC International are
taking part in these discussions. If agreement on these interfaces is reached by the industry, the interfaces
for large file support contained in this section will be modified, if necessary, to match the agreed to
interfaces.

liblf ___

5-2 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

lf_fcntl
lf_fpathconf
lf_fseek
lf_fstat
lf_fstatvfs
lf_ftell
lf_getrlimit
lf_lseek
lf_lstat
lf_mmap
lf_pathconf
lf_setrlimit
lf_stat
lf_statvfs
lf_tell

NAME
lf_fcntl,lf_fpathconf,lf_fseek,lf_fstat, lf_fstatvfs, lf_ftell, lf_getrlimit, lf_lseek, lf_lstat, lf_mmap,
lf_pathconf, lf_setrlimit, lf_stat, lf_statvfs, lf_tell - Large support functions.

SYNOPSIS
#include <fcntl.h>
int lf_fcntl (int fildes, int cmd,... /* arg */);
int64_t lf_fpathconf (int fildes, int name);
int lf_fseek (FILE *stream, lf_off_t offset, int ptrname);
#include <sys/stat.h>
int lf_fstat (int fildes, struct lf_stat *buf);
#include <sys/fstatvfs.h>
int lf_fstatvfs (int fildes, struct lf_statvfs *buf);
#include <sys/types.h>
lf_off_t lf_ftell (FILE *stream);
#include <sys/time.h>
#include <sys/resource.h>
int lf_getrlimit (int resource, struct lf_rlimit *rlp);
lf_off_t lf_lseek (int fildes, lf_off_t offset, int whence);
#include <sys/stat.h>
int lf_lstat (const char *path, struct lf_stat *buf);
#include <sys/mman.h>
caddr_t lf_mmap (caddr_t addr, size_t len, int prot, int flags, int fd, lf_off_t off);
#include <sys/types.h>
int64_t lf_pathconf (char *path, int name);
#include <sys/time.h>
#include <sys/resource.h>

___liblf

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 5-3

int lf_setrlimit (int resource, struct lf_rlimit *rlp);
#include <sys/stat.h>
int lf_stat (const char *path, struct lf_stat *buf);
#include <sys/statvfs.h>
int lf_statvfs (const char *path, struct lf_statvfs *buf);
#include <sys/types.h>
lf_off_t lf_tell (char *path);

DESCRIPTION
Two new data types, int64_t and uint64_t are needed to define 64-bit signed and unsigned values.
They must be defined by compliant systems in <sys/types.h>. <sys/types.h> must also contain

typedef int64_t lf_off_t;
The layout of 64-bit integers and how they are passed as parameters are specified in Table 3-1 of the
SPARC Architecture Manual, Version 8.

lf_fcntl: The F_SETLK, F_SETLKW, F_RSETLK, and F_RSETLKW
subcommands can lock a segment containing a byte at an offset
greater than INT_MAX. The F_FREESP command can set the file
size to values over INT_MAX. The F_GETLK, F_RGETLK, and
F_FREESP subcommands set errno to EOVERFLOW if the
filesystem protocol cannot satisfy the request due to an interface
restriction, such as if the file is being accessed through a remote
file system not supporting 64-bit file offsets.

lf_fpathconf and lf_pathconf: In addition to the _PC_* commands defined in <unistd.h> for
fpathconf and pathconf, lf_fpathconf and lf_pathconf also
recognize the _PC_MAX_FILE_SIZE command. When passed
_PC_MAX_FILE_SIZE, lf_pathconf and lf_pathconf will return
the largest file size supported on the given file system, without
regard to disk space currently available. The value of
_PC_MAX_FILE_SIZE must be defined in <unistd.h> to be 10.

lf_fstat, lf_lstat, and lf_stat: lf_fstat, lf_lstat, and lf_stat set errno to EOVERFLOW if the
filesystem protocol cannot satisfy the request due to an interface
restriction, such as if the file is being accessed through a remote
file system not supporting 64-bit file offsets.

lf_fstatvfs and lf_statvfs: lf_fstatvfs and lf_statvfs set errno to EOVERFLOW if the
filesystem protocol cannot satisfy the request due to an interface
restriction, such as if the file is being accessed through a remote
file system not supporting 64-bit file offsets.

lf_getrlimit and lf_setrlimit: lf_getrlimit and lf_setrlimit never set errno to EOVERFLOW, such
as if the file is being accessed through a remote file system not
supporting 64-bit file offsets.

liblf ___

5-4 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

DIAGNOSTICS
When lseek() attempts to position or query the file pointer beyond the point addressable in 31 bits,
it will fail with errno set to EOVERFLOW.
When stat(), fstat(), or lstat() is invoked on a file whose size cannot be represented in 31 bits, it will
fail with errno set to EOVERFLOW.

SEE ALSO
fcntl(BA_OS), fpathconf(BA_OS), getrlimit(BA_OS), lseek(BA_OS), mmap(KE_OS), stat(BA_OS),
statvfs(BA_OS), limits(BA_ENV).

SPARC COMPLIANCE DEFINITION 2.3

libnsl

___ libnsl

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 6-1

inet_addr
inet_netof
inet_ntoa

NAME
inet_addr, inet_netof, inet_ntoa - Internet address manipulation

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
unsigned long inet_addr (char *cp);
int inet_netof (struct in_addr in);
char *inet_ntoa (struct in_addr in);

DESCRIPTION
The inet_addr routines interpret a character string, cp, representing numbers expressed in the
Internet standard “.” notation, returning numbers suitable for use as Internet addresses and
Internet network numbers, respectively. The routines inet_netof breaks apart an Internet host
address, in, returning the network number and local network address part, respectively.
The routine inet_ntoa returns a pointer to a string in the base 256 notation “d.d.d.d” described
below.
All Internet addresses are returned in network order (bytes ordered from left to right). All network
numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES
Values specified using the ‘.’ notation take one of the following forms:
a.b.c.d
a.b.c
a.b
a
When four parts are specified, each is interpreted as a byte of data and assigned, from left to right,
to the four bytes of an Internet address.
When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed in
the right most two bytes of the network address. This makes the three part address format
convenient for specifying Class B network addresses as “128.net.host”.
When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed in
the right most three bytes of the network address. This makes the two part address format
convenient for specifying Class A network addresses as “net.host”.
When only one part is given, the value is stored directly in the network address without any byte
rearrangement.

___ libnsl

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 6-2

All numbers supplied as “parts” in a ‘.’ notation may be decimal, octal, or hexadecimal, as specified
in the C language (that is, a leading 0x or 0X implies hexadecimal; otherwise, a leading 0 implies
octal; otherwise, the number is interpreted as decimal).

RETURN VALUES
The value -1 is returned by inet_addr for malformed requests.
The routines inet_netof break apart Internet host addresses, returning the network number and
local network address part, respectively.
The routine inet_ntoa returns a pointer to a string in the base 256 notation “d.d.d.d” described
below.

___ libnsl

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 6-3

rpc_broadcast_exp

NAME
rpc_broadcast_exp - broadcast a call message specifying timeout

SYNOPSIS
#include <rpc/rpc.h>
enum clnt_stat rpc_broadcast_exp (const u_long prognum,
 const u_long versnum, const u_long procnum, const xdrproc_t xargs,
 caddr_t argsp, const xdrproc_t xresults, caddr_t resultsp,
 const resultproc_t eachresult, const int inittime, const int waittime,
 char *nettype);

DESCRIPTION
This function is like rpc_broadcast(), except that the initial timeout, inittime, and the maximum
timeout, waittime, are specified in milliseconds.
inittime is the initial time that rpc_broadcast_exp() waits before re-sending the request. After the
first re-send, the re-transmission interval increases exponentially until it exceeds waittime.

libnsl __

6-4 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

SPARC COMPLIANCE DEFINITION 2.3

libsocket

__ libsocket

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 7-1

accept

NAME
accept - accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int accept (int s, struct sockaddr *addr, int *addrlen);

DESCRIPTION
The argument s is a socket that has been created with socket() and bound to an address with bind(),
and that is listening for connections after a call to listen(). accept extracts the first connection on the
queue of pending connections, creates a new socket with the properties of s, and allocates a new file
descriptor, ns, for the socket. If no pending connections are present on the queue and the socket is
not marked as non-blocking, accept blocks the caller until a connection is present. If the socket is
marked as non-blocking and no pending connections are present on the queue, accept returns an
error as described below. accept uses the netconfig(4) file to determine the STREAMS device file
name associated with s. This is the device on which the connect indication will be accepted. The
accepted socket, ns, is used to read and write data to and from the socket that connected to ns; it is
not used to accept more connections. The original socket (s) remains open for accepting further
connections.
The argument addr is a result parameter that is filled in with the address of the connecting entity as
it is known to the communications layer. The exact format of the addr parameter is determined by
the domain in which the communication occurs.
addrlen is a value-result parameter. Initially, it contains the amount of space pointed to by addr; on
return it contains the length in bytes of the address returned.
accept is used with connection-based socket types, currently with SOCK_STREAM.
It is possible to poll(BA_OS) a socket for the purpose of an accept by polling it for a read. However,
this will only indicate when a connect indication is pending; it is still necessary to call accept.

RETURN VALUES
accept returns -1 on error. If it succeeds, it returns a non-negative integer that is a descriptor for the
accepted socket.

ERRORS
accept will fail if:
EBADF The descriptor is invalid.
ENODEV The protocol family and type corresponding to s could not be found in the

netconfig file.
ENOMEM There was insufficient user memory available to complete the operation.
ENOSR There were insufficient STREAMS resources available to complete the

operation.

libsocket __

7-2 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

ENOTSOCK The descriptor does not reference a socket.
EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.
EPROTO A protocol error has occurred; for example, the STREAMS protocol stack

has not been initialized.
EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be

accepted.

__ libsocket

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 7-3

bind

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int bind (int s, struct sockaddr *name, int namelen);

DESCRIPTION
bind assigns a name to an unnamed socket, s. When a socket is created with socket(), it exists in a
name space (address family) but has no name assigned. bind requests that the name pointed to by
name be assigned to the socket. namelen specifies the size of name.

RETURN VALUES
If the bind is successful, a 0 value is returned. A return value of -1 indicates an error, which is further
specified in the global errno.

ERRORS
The bind call will fail if:
EADDRINUSE The specified address is already in use.
EADDRNOTAVAIL The specified address is not available on the local machine.
EBADF s is not a valid descriptor.
EINVAL namelen is not the size of a valid address for the specified address family.
EINVAL The socket is already bound to an address.
ENOSR There were insufficient STREAMS resources for the operation to complete.
ENOTSOCK s is a descriptor for a file, not a socket.

libsocket __

7-4 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

connect

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int connect(int s, struct sockaddr *name, int namelen);

DESCRIPTION
The parameter s is a socket. If it is of type SOCK_DGRAM, connect specifies the peer with which
the socket is to be associated; this address is the address to which datagrams are to be sent if a
receiver is not explicitly designated; it is the only address from which datagrams are to be received.
If the socket s is of type SOCK_STREAM, connect attempts to make a connection to another socket.
The other socket is specified by name. name is an address in the communication space of the socket.
namelen specifies the size of data structure pointed to by name. Each communication space
interprets the name parameter in its own way. If s is not bound, then it will be bound to an address
selected by the underlying transport provider. Generally, stream sockets may successfully connect
only once; datagram sockets may use connect multiple times to change their association. Datagram
sockets may dissolve the association by connecting to a null address.

RETURN VALUES
If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned and sets errno
to indicate the error.

ERRORS
The call fails if:
EADDRINUSE The address is already in use.
EADDRNOTAVAIL The specified address is not available on the remote machine.
EAFNOSUPPORT Addresses in the specified address family cannot be used with this socket.
EALREADY The socket is non-blocking and a previous connection attempt has not yet

been completed.
EBADF s is not a valid descriptor.
ECONNREFUSED The attempt to connect was forcefully rejected. The calling program

should close(BA_OS) the socket descriptor, and issue another socket() call
to obtain a new descriptor before attempting another connect call.

EINPROGRESS The socket is non-blocking and the connection cannot be completed
immediately. It is possible to poll(BA_OS) for completion by polling the
socket for writing. However, this is only possible if the socket STREAMS
module is the topmost module on the protocol stack with a write service
procedure. This will be the normal case.

EINTR The connection attempt was interrupted before any data arrived by the

__ libsocket

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 7-5

delivery of a signal.
EINVAL namelen is not the size of a valid address for the specified address family.
EISCONN The socket is already connected.
ENETUNREACH The network is not reachable from this host.
ENOSR There were insufficient STREAMS resources available to complete the

operation.

libsocket __

7-6 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

gethostbyname
gethostbyaddr

NAME
gethostbyname, gethostbyaddr - get network host entry

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
struct hostent *gethostbyname (char *name);
struct hostent *gethostbyaddr (struct in_addr *addr,
 const sizeof (struct in_addr), const int AF_INET);

DESCRIPTION
gethostbyaddr, and gethostbyname each return a host entry.
The entry comes from the system’s hosts database. The lookup order is unspecified.
gethostbyname searches for a host entry with a given hostname.
gethostbyaddr searches for a host entry with a given hostaddress.
The internal representation of a host entry is a structure defined in <netdb.h> with the following
members:
char *h_name;
char **h_aliases;
int h_addrtype;
int h_length;
char **h_addr_list;
Host addresses are supplied in network byte order.

RETURN VALUES
gethostbyname and gethostbyaddr return a pointer to a struct hostent if they successfully locate the
requested entry; otherwise they return NULL, and set an integer h_errno to indicate one of these
errors: HOST_NOT_FOUND, TRY_AGAIN, NO_RECOVERY, NO_DATA and NO_ADDRESS (see
/usr/include/netdb.h).

NOTES
All information is contained in a static area so it must be copied if it is to be saved.

__ libsocket

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 7-7

getpeername

NAME
getpeername - get name of connected peer

SYNOPSIS
int getpeername(int s, struct sockaddr *name, int *namelen);

DESCRIPTION
getpeername returns the name of the peer connected to socket s. The int pointed to by the namelen
parameter should be initialized to indicate the amount of space pointed to by name. On return it
contains the actual size of the name returned (in bytes). The name is truncated if the buffer provided
is too small.

RETURN VALUES
If successful, getpeername returns 0; otherwise it returns -1 and sets errno to indicate the error.

ERRORS
The call succeeds unless:
EBADF The argument s is not a valid descriptor.
ENOMEM There was insufficient user memory for the operation to complete.
ENOSR There were insufficient STREAMS resources available for the operation to

complete.
ENOTCONN The socket is not connected.
ENOTSOCK The argument s is not a socket.

libsocket __

7-8 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

getprotobyname
getprotobynumber
getprotoent

NAME
getprotobyname, getprotobynumber, getprotoent - get protocol entry

SYNOPSIS
#include <netdb.h>
struct protoent *getprotobyname (char *name);
struct protoent *getprotobynumber (int proto);
struct protoent *getprotoent (void);

DESCRIPTION
getprotoent, getprotobyname, and getprotobynumber each return a protocol entry. The entry may
comes from the system’s protocols database. name is a pointer to one of the strings “tcp”, “udp”, or
“icmp”. proto is one of the values 6 (tcp), 17 (udp), 0 (ip), or 1 (icmp).
getprotoent enumerates protocol entries: successive calls to getprotoent will return either
successive protocol entries or NULL. Enumeration may not be supported by some sources.
The internal representation of a protocol entry is a protoent structure defined in <netdb.h> with the
following members:
char *p_name;
char **p_aliases;
int p_proto;

RETURN VALUES
getprotobyname and getprotobynumber return a pointer to a struct protoent if they successfully
locate the requested entry; otherwise they return NULL.
getprotoent returns a pointer to a struct protoent if it successfully enumerates an entry; otherwise
it returns NULL, indicating the end of the enumeration.

NOTES
All information is contained in a static area so it must be copied if it is to be saved.
Use of getprotoent is deprecated.

__ libsocket

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 7-9

getservbyname
getservbyport

NAME
getservbyname, getservbyport - get service entry

SYNOPSIS
#include <netdb.h>
struct servent *getservbyname (char *name, char *proto);
struct servent *getservbyport (int port, char *proto);

DESCRIPTION
getservbyname, and getservbyport each return a service entry. The entry come from the system’s
services database. getservbyname searches for a service entry with a given service name.
getservbyport searches for a service entry with a given port number and, if the protocol name is
non-NULL, the protocol.
name is a pointer to one of the strings “tcp” or “udp”. port is the number of a well-known port.
The internal representation of a service entry is a struct servent defined in <netdb.h> with the
following members:
char *s_name;
char **s_aliases;
int s_port;
char *s_proto;

RETURN VALUES
getservbyname and getservbyport return a pointer to a struct servent if they successfully locate the
requested entry; otherwise they return NULL.

NOTES
All information is contained in a static area, so it must be copied if it is to be saved.

libsocket __

7-10 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

getsockname

NAME
getsockname - get socket name

SYNOPSIS
#include <sys/types.h>
#include <sys/sockets.h>
int getsockname(int s, struct sockaddr *name, int *namelen);

DESCRIPTION
getsockname returns the current name for socket s. The namelen parameter should be initialized to
indicate the amount of space pointed to by name. On return it contains the actual size in bytes of the
name returned.

RETURN VALUES
If successful, getsockname returns 0; otherwise it returns -1 and sets errno to indicate the error.

ERRORS
The call succeeds unless:
EBADF The argument s is not a valid file descriptor.
ENOMEM There was insufficient memory available for the operation to complete.
ENOSR There were insufficient STREAMS resources available for the operation to

complete.
ENOTSOCK The argument s is not a socket.

__ libsocket

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 7-11

inet_lnaof
inet_makeaddr
inet_network

NAME
inet_network, inet_makeaddr, inet_lnaof - Internet address manipulation

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
int inet_network (char *cp);
struct in_addr inet_makeaddr (int net, int lna);
int inet_lnaof (struct in_addr in);

DESCRIPTION
The inet_network routine interprets a character string, cp, representing numbers expressed in the
Internet standard “.” notation, returning numbers suitable for use as Internet addresses and
Internet network numbers, respectively. The routine inet_makeaddr takes an Internet network
number, net, and a local network address, lna, and constructs an Internet address from it. The
routine inet_lnaof break apart an Internet host address, in, returning the network number and local
network address part, respectively.
All Internet addresses are returned in network order (bytes ordered from left to right). All network
numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES
Values specified using the ‘.’ notation take one of the following forms:
a.b.c.d
a.b.c
a.b
a
When four parts are specified, each is interpreted as a byte of data and assigned, from left to right,
to the four bytes of an Internet address.
When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed in
the right most two bytes of the network address. This makes the three part address format
convenient for specifying Class B network addresses as “128.net.host”.
When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed in
the right most three bytes of the network address. This makes the two part address format
convenient for specifying Class A network addresses as “net.host”.
When only one part is given, the value is stored directly in the network address without any byte
rearrangement.

libsocket __

7-12 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

All numbers supplied as “parts” in a ‘.’ notation may be decimal, octal, or hexadecimal, as specified
in the C language (that is, a leading 0x or 0X implies hexadecimal; otherwise, a leading 0 implies
octal; otherwise, the number is interpreted as decimal).

RETURN VALUES
The value -1 is returned by inet_network for malformed requests.
The routine inet_lnaof break apart Internet host addresses, returning the network number and local
network address part, respectively.

__ libsocket

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 7-13

listen

NAME
listen - listen for connections on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/sockets.h>

int listen(int s, int backlog);

DESCRIPTION
To accept connections, a socket, s, is first created with socket(), a backlog for incoming connections
is specified with listen and then the connections are accepted with accept(). The listen call applies
only to sockets of type SOCK_STREAM or SOCK_SEQPACKET.
The backlog parameter defines the maximum length the queue of pending connections may grow
to. If a connection request arrives with the queue full, the client will receive an error with an
indication of ECONNREFUSED.

RETURN VALUES
A 0 return value indicates success; -1 indicates an error.

ERRORS
The call fails if:
EBADF The argument s is not a valid file descriptor.
ENOTSOCK The argument s is not a socket.
EOPNOTSUPP The socket is not of a type that supports the operation listen.

NOTES
There is currently no backlog limit.

libsocket __

7-14 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

recv
recvfrom
recvmsg

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/uio.h>
int recv (int s, char *buf, int len, int flags);
int recvfrom (int s, char *buf, int len, int flags, struct sockaddr *from, int *fromlen);
int recvmsg (int s, struct msghdr *msg, int flags);

DESCRIPTION
recv, recvfrom, and recvmsg are used to receive messages from another socket. recv may be used
only on a connected socket (see connect()), while recvfrom and recvmsg may be used to receive data
on a socket whether it is in a connected state or not. s is a socket created with socket(). buf is a pointer
to the buffer to receive the data and len is its size in bytes.
If from is not a NULL pointer, the source address of the message is filled in. fromlen is a value-result
parameter, initialized to the size of the buffer associated with from, and modified on return to
indicate the actual size of the address stored there. The length of the message is returned. If a
message is too long to fit in the supplied buffer, excess bytes may be discarded depending on the
type of socket the message is received from (see socket()).
If no messages are available at the socket, the receive call waits for a message to arrive, unless the
socket is nonblocking (see fcntl(BA_OS)) in which case -1 is returned with the external variable
errno set to EWOULDBLOCK.
The poll call may be used to determine when more data arrives.
The flags parameter is formed by ORing one or more of the following:
MSG_OOB Read any out-of-band data present on the socket rather than the regular in-

band data.
MSG_PEEK Peek at the data present on the socket; the data is returned, but not

consumed, so that a subsequent receive operation will see the same data.
The recvmsg call uses a struct msghdr, msg, to minimize the number of directly supplied
parameters. This structure is defined in <sys/socket.h> and includes the following members:
caddr_t msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_accrights; /* access rights sent/received */
int msg_accrightslen;

__ libsocket

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 7-15

Here msg_name and msg_namelen specify the destination address if the socket is unconnected;
msg_name may be given as a NULL pointer if no names are desired or required. The msg_iov and
msg_iovlen describe the scatter-gather locations, as described in read(BA_OS). A buffer to receive
any access rights sent along with the message is specified in msg_accrights, which has length
msg_accrightslen.

RETURN VALUES
These calls return the number of bytes received, or -1 if an error occurred.

ERRORS
The calls fail if:
EBADF s is an invalid file descriptor.
EINTR The operation was interrupted by delivery of a signal before any data was

available to be received.
ENOMEM There was insufficient user memory available for the operation to

complete.
ENOSR There were insufficient STREAMS resources available for the operation to

complete.
ENOTSOCK s is not a socket.
EWOULDBLOCK The socket is marked non-blocking and the requested operation would

block.

libsocket __

7-16 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

send
sendto
sendmsg

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int send (int s, char *buf, int len, int flags);
int sendto (int s, char *buf, int len, int flags, struct sockaddr *to, int tolen);
int sendmsg (int s, struct msghdr *msg, int flags);

DESCRIPTION
send, sendto, and sendmsg are used to transmit a message to another transport end-point. send
may be used only when the socket is in a connected state, while sendto and sendmsg may be used
at any time. s is a socket created with socket(). buf points to a buffer containing the data to be sent.
len is number of bytes to be sent.
The address of the target is given by to with tolen specifying its size. The length of the message is
given by len. If the message is too long to pass atomically through the underlying protocol, then the
error EMSGSIZE is returned, and the message is not transmitted.
A return value of -1 indicates locally detected errors only. It does not implicitly mean the message
was not delivered.
If the socket does not have enough buffer space available to hold the message being sent, send
blocks, unless the socket has been placed in non-blocking I/O mode (see fcntl(BA_OS)). The poll
call may be used to determine when it is possible to send more data.
The flags parameter is formed from the bit-wise OR of zero or more of the following:
MSG_OOB Send out-of-band data on sockets that support this notion. The underlying

protocol must also support out-of-band data. Only SOCK_STREAM
sockets created in the AF_INET address family support out-of-band data.

MSG_DONTROUTE The SO_DONTROUTE option is turned on for the duration of the
operation. It is used only by diagnostic or routing programs.

See recv() for a description of the msghdr structure.

RETURN VALUES
These calls return the number of bytes sent, or -1 if an error occurred.

ERRORS
The calls fail if:
EBADF s is an invalid file descriptor.
EINTR The operation was interrupted by delivery of a signal before any data

__ libsocket

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 7-17

could be buffered to be sent.
EINVAL tolen is not the size of a valid address for the specified address family.
EMSGSIZE The socket requires that message be sent atomically, and the message was

too long.
ENOMEM There was insufficient memory available to complete the operation.
ENOSR There were insufficient STREAMS resources available for the operation to

complete.
ENOTSOCK s is not a socket.
EWOULDBLOCK The socket is marked non-blocking and the requested operation would

block.

libsocket __

7-18 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

getsockopt
setsockopt

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int getsockopt (int s, int level, int optname, void *optval, int *optlen);
int setsockopt (int s, int level, int optname, void *optval, int optlen);

DESCRIPTION
getsockopt and setsockopt manipulate options associated with a socket, s. Options may exist at
multiple protocol levels; they are always present at the uppermost socket level.
When manipulating socket options, the level at which the option resides and the name of the option
must be specified. To manipulate options at the socket level, level is specified as SOL_SOCKET. To
manipulate options at any other level, level is the protocol number of the protocol that controls the
option. For example, to indicate that an option is to be interpreted by the TCP protocol, level is set
to the TCP protocol number (see getprotobyname()).
The parameters optval and optlen are used to access option values for setsockopt. For getsockopt,
they identify a buffer in which the value(s) for the requested option(s) are to be returned. For
getsockopt, optlen is a value-result parameter, initially containing the size of the buffer pointed to
by optval, and modified on return to indicate the actual size of the value returned. Use a 0 optval if
no option value is to be supplied or returned.
optname and any specified options are passed un-interpreted to the appropriate protocol module for
interpretation. The include file <sys/socket.h> contains definitions for the socket-level options
described below. Options at other protocol levels vary in format and name.
Most socket-level options take an int for optval. For setsockopt, the optval parameter should be non-
zero to enable a boolean option, or zero if the option is to be disabled. SO_LINGER uses a struct
linger parameter that specifies the desired state of the option and the linger interval (see below).
struct linger is defined in <sys/socket.h>. struct linger contains the following members:
l_onoff option on/off
l_linger linger time
The following options are recognized at the socket level. Except as noted, each may be examined
with getsockopt and set with setsockopt.
SO_DEBUG toggle recording of debugging information
SO_REUSEADDR toggle local address reuse
SO_KEEPALIVE toggle keep connections alive
SO_DONTROUTE toggle routing bypass for outgoing messages
SO_LINGER linger on close if data is present
SO_BROADCAST toggle permission to transmit broadcast messages
SO_OOBINLINE toggle reception of out-of-band data in band

__ libsocket

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 7-19

SO_SNDBUF set buffer size for output
SO_RCVBUF set buffer size for input
SO_TYPE get the type of the socket (get only)
SO_ERROR get and clear error on the socket (get only)

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR indicates
that the rules used in validating addresses supplied in a bind() call should allow reuse of local
addresses. SO_KEEPALIVE enables the periodic transmission of messages on a connected socket.
If the connected party fails to respond to these messages, the connection is considered broken and
processes using the socket are notified using a SIGPIPE signal. SO_DONTROUTE indicates that
outgoing messages should bypass the standard routing facilities. Instead, messages are directed to
the appropriate network interface according to the network portion of the destination address.
SO_LINGER controls the action taken when un-sent messages are queued on a socket and a
close(BA_OS) is performed. If the socket promises reliable delivery of data and SO_LINGER is set,
the system will block the process on the close attempt until it is able to transmit the data or until it
decides it is unable to deliver the information (a timeout period, termed the linger interval, is
specified in the setsockopt call when SO_LINGER is requested). If SO_LINGER is disabled and a
close is issued, the system will process the close in a manner that allows the process to continue as
quickly as possible.
The option SO_BROADCAST requests permission to send broadcast datagrams on the socket. With
protocols that support out-of-band data, the SO_OOBINLINE option requests that out-of-band
data be placed in the normal data input queue as received; it will then be accessible with recv or
read calls without the MSG_OOB flag.
SO_SNDBUF and SO_RCVBUF are options that adjust the normal buffer sizes allocated for output
and input buffers, respectively. The buffer size may be increased for high-volume connections or
may be decreased to limit the possible backlog of incoming data.
Finally, SO_TYPE and SO_ERROR are options used only with getsockopt. SO_TYPE returns the
type of the socket (for example, SOCK_STREAM). It is useful for servers that inherit sockets on
startup. SO_ERROR returns any pending error on the socket and clears the error status. It may be
used to check for asynchronous errors on connected datagram sockets or for other asynchronous
errors.

RETURN VALUES
If successful, getsockopt returns 0; otherwise it returns -1 and sets errno to indicate the error.

ERRORS
The call succeeds unless:
EBADF The argument s is not a valid file descriptor.
ENOMEM There was insufficient memory available for the operation to complete.
ENOPROTOOPT The option is unknown at the level indicated.
ENOSR There were insufficient STREAMS resources available for the operation to

complete.
ENOTSOCK The argument s is not a socket.

libsocket __

7-20 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

shutdown

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
int shutdown (int s, int how);

DESCRIPTION
The shutdown call shuts down all or part of a full-duplex connection on the socket associated with
s. If how is 0, then further receives will be disallowed. If how is 1, then further sends will be
disallowed. If how is 2, then further sends and receives will be disallowed.

RETURN VALUES
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:
EBADF s is not a valid file descriptor.
ENOMEM There was insufficient user memory available for the operation to

complete.
ENOSR There were insufficient STREAMS resources available for the operation to

complete.
ENOTCONN The specified socket is not connected.
ENOTSOCK s is not a socket.

NOTES
The how values should be defined constants.

__ libsocket

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 7-21

socket

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int socket (int domain, int type, int protocol);

DESCRIPTION
socket creates an endpoint for communication and returns a descriptor.
The domain parameter specifies a communications domain within which communication will take
place; this selects the protocol family which should be used. The protocol family generally is the
same as the address family for the addresses supplied in later operations on the socket. These
families are defined in the include file <sys/socket.h>.
The only supported protocol family is PF_INET.
The socket has the indicated type, which specifies the communication semantics. Currently defined
types are:
SOCK_STREAM: A SOCK_STREAM type provides sequenced, reliable, two-way

connection-based byte streams. An out-of-band data transmission
mechanism may be supported.

SOCK_STREAM A SOCK_DGRAM socket supports datagrams (connectionless, unreliable
messages of a fixed (typically small) maximum length).

SOCK_SEQPACKET A SOCK_SEQPACKET socket may provide a sequenced, reliable, two-
way connection-based data transmission path for datagrams of fixed
maximum length; a consumer may be required to read an entire packet
with each read system call. This facility is protocol specific, and presently
not implemented for any protocol family.

protocol specifies a particular protocol to be used with the socket. Normally only a single protocol
exists to support a particular socket type within a given protocol family. However, multiple
protocols may exist, in which case a particular protocol must be specified in this manner. The
protocol number to use is particular to the “communication domain” in which communication is
to take place. If a protocol is specified by the caller, then it will be packaged into a socket level
option request and sent to the underlying protocol layers.
Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket
must be in a connected state before any data may be sent or received on it. A connection to another
socket is created with a connect() call. Once connected, data may be transferred using read(BA_OS)
and write(BA_OS) calls or some variant of the send() and recv() calls. When a session has been
completed, a close(BA_OS) may be performed. Out-of-band data may also be transmitted as
described on the send() manual page and received as described on the recv() manual page.
The communications protocols used to implement a SOCK_STREAM insure that data is not lost or
duplicated. If a piece of data for which the peer protocol has buffer space cannot be successfully
transmitted within a reasonable length of time, then the connection is considered broken and calls

libsocket __

7-22 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

will indicate an error with -1 returns and with ETIMEDOUT as the specific code in the global
variable errno. The protocols optionally keep sockets “warm” by forcing transmissions roughly
every minute in the absence of other activity. An error is then indicated if no response can be elicited
on an otherwise idle connection for a extended period (for instance 5 minutes). A SIGPIPE signal is
raised if a process sends on a broken stream; this causes naive processes, which do not handle the
signal, to exit.
SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets. The only
difference is that read calls will return only the amount of data requested, and any remaining in the
arriving packet will be discarded.
SOCK_DGRAM sockets allow datagrams to be sent to correspondents named in sendto calls.
Datagrams are generally received with recvfrom, which returns the next datagram with its return
address.
An ioctl(BA_OS) call can be used to specify a process group to receive a SIGURG signal when the
out-of-band data arrives. It may also enable non-blocking I/O and asynchronous notification of
I/O events with SIGPOLL signals.
The operation of sockets is controlled by socket level options. These options are defined in the file
<sys/socket.h>. setsockopt and getsockopt() are used to set and get options, respectively.

RETURN VALUES
A -1 is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.

ERRORS
The socket call fails if:
EACCES Permission to create a socket of the specified type and/or protocol is

denied.
EMFILE The per-process descriptor table is full.
ENOMEM Insufficient user memory is available.
ENOSR There were insufficient STREAMS resources available to complete the

operation.
EPROTONOSUPPORT The protocol type or the specified protocol is not supported within this

domain.

SPARC COMPLIANCE DEFINITION 2.3

libsys

___ libsys

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 8-1

__div64

NAME
__div64 - 64 bit division function

SYNOPSIS
long long __div64(long long a, long long b);

DESCRIPTION

The function __div64() computes the quotient of the division of the numerator “a” by the
denominator “b”, truncates any fractional part, and return the signed long long results.

This function returns 0 if “b” is 0.

Trap handling, when the divisor is zero, is intentionally not present in this specification, since it is
considered SPARC architecture version dependent.

libsys___

8-2 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

__dtoll

NAME
__dtoll - convert double to long long

SYNOPSIS
long long __dtoll (double d)

DESCRIPTION

This function converts the double precision value of “d” to a signed long long (integer result) by
truncating (discarding) any fractional part and returns the signed long long value.

__dtoll() raises an invalid exception if the integer portion is outside of the range:
-263) d < 263

and returns the negative number in the inequality expression above if “d” is negative, otherwise
returning the positive number in the inequality.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FdTOx instruction.

___ libsys

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 8-3

__dtoull

NAME

__dtoull - convert double to unsigned long long

SYNOPSIS
unsigned long long __dtoull (double d);

DESCRIPTION

This function converts the double precision value of “d” to an unsigned long long (integer result)
by truncating (discarding) any fractional part and returns the unsigned long long value.

__dtoull raises an invalid exception if the integer portion of “d” is outside of the range:
 0) abs(d) < 264.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FdTOx instruction.

libsys___

8-4 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

__ftoll

NAME
__ftoll - convert float to long long

SYNOPSIS
long long __ftoll (float f);

DESCRIPTION

This function converts the single precision value of “f” to a signed long long (integer result) by
truncating (discarding) any fractional part and returns the signed long long value.

__ftoll() raises an invalid exception if the integer portion is outside of the range:
-263) f < 263

and returns the negative number in the inequality expression above if “f” is negative, otherwise
returning the positive number in the inequality.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FsTOx instruction.

___ libsys

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 8-5

__ftoull

NAME
__ftoull - convert float to unsigned long long

SYNOPSIS
unsigned long long __ftoull(float f);

DESCRIPTION

This function converts the single precision value of “f” to an unsigned long long (integer result) by
truncating (discarding) any fractional part and returns the unsigned long long value.

__ftoull raises an invalid exception if the integer portion of “f” is outside of the range:
 0) abs(f) < 264.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FsTOx instruction.

libsys___

8-6 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

__mul64

NAME
__mul64 - 64 bit multiplication function

SYNOPSIS
long long __mul64(long long a, long long b);

DESCRIPTION

This function implements the multiplication of “a” and “b” (“a * b”).

This function returns p - 264 if p * 263; it returns “p” otherwise. Where “p” denote the mathematical
product modulo 264 of “a” and “b”; “p” is in the range:

0) p < 264

Overflow handling is intentionally not present in this specification, since it is considered SPARC
architecture version dependent.

___ libsys

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 8-7

__rem64

NAME
__rem64 - 64 bit remain function

SYNOPSIS
long long __rem64(long long a, long long b);

DESCRIPTION

The function __rem64() computes the remainder of the division of the numerator “a” by the
“denominator “b” and returns the signed long long result.

This function returns 0 if “b” is 0.

Trap handling, if the divisor is zero, is intentionally not present in this specification, since it is
considered SPARC architecture version dependent.

libsys___

8-8 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

__udiv64

NAME
__udiv64 - Unsigned 64 bit division function

SYNOPSIS
unsigned long long __udiv64(unsigned long long a, unsigned long long b);

DESCRIPTION

The function __udiv64() computes the quotient of the division of the numerator “a” by the
denominator “b”, truncates any fractional part, and return the unsigned long long result.

This function returns 0 if “b” is 0.

Trap handling, if the divisor is zero, is intentionally not present in this specification, since it is
considered SPARC architecture version dependent.

___ libsys

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 8-9

__umul64

NAME
__umul64 - Unsigned 64 bit multiplication function

SYNOPSIS
unsigned long long __umul64(unsigned long long a, unsigned long long b);

DESCRIPTION

This function implements the multiplication of “a” and “b” (“a * b”).

It returns the product modulo 264 of “a” and “b”. The result is in unsigned long long.

Overflow handling is intentionally not present in this specification, since it is considered SPARC
architecture version dependent.

libsys___

8-10 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

__urem64

NAME
__urem64 - unsigned 64 bits remain function

SYNOPSIS
unsigned long long __urem64(unsigned long long a, unsigned long long b);

DESCRIPTION

The function __urem64() computes the remainder of the division of the numerator “a” by the
“denominator “b” and returns the unsigned long long result.

This function returns 0 if “b” is 0.

Trap handling is intentionally not present in this specification, since it is considered SPARC
architecture version dependent.

___ libsys

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 8-11

_Q_lltoq

NAME
_Q_lltoq - Convert long long to long double

SYNOPSIS
long double _Q_lltoq (long long a);

DESCRIPTION

This function converts the long long value of “a” to quad precision (floating result) and returns the
quad precision value.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FxTOq instruction.

libsys___

8-12 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

_Q_qtoll

NAME
_Q_qtoll - convert long double to long long

SYNOPSIS
long long _Q_qtoll(long double a);

DESCRIPTION
This function converts the quad precision value of “a” to a signed long long (integer result) by
truncating (discarding) any fractional part and returns the signed long long value.

__Q_qtoll() raises an invalid exception if the integer portion is outside of the range:
 -263) a < 263

and returns the negative number in the inequality expression above if “a” is negative, otherwise
returning the positive number in the inequality.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FqTOx instruction.

___ libsys

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 8-13

_Q_qtoull

NAME
_Q_qtoull - convert double to unsigned long long.

SYNOPSIS
unsigned long long _Q_qtoull (long double a);

DESCRIPTION

This function converts the quad precision value of “a” to an unsigned long long (integer result) by
truncating (discarding) any fractional part and returns the unsigned long long value.

_Q_qtoull raises an invalid exception if the integer portion of “a” is outside of the range:
 0) abs(a) < 264.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FqTOx instruction.

libsys___

8-14 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

_Q_ulltoq

NAME
_Q_ulltoq - convert unsigned long long to long double

SYNOPSIS
long double _Q_ulltoq (unsigned long long a);

DESCRIPTION

This function converts the unsigned long long value of “a” to quad precision (floating result) and
returns the quad precision value.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FxTOq instruction.

___ libsys

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 8-15

fgetgrent_r

NAME
fgetgrent_r - get group entry

SYNOPSIS
#include <grp.h>
struct group *fgetgrent_r (FILE *f, struct group *result, char *buffer, int buflen);

DESCRIPTION

fgetgrent_r() reads and parses the next line from the stream “f”, which is assumed to have the
format of the group file, where each entry is of the form:

groupname: password: gid: user-list

The function fgetgrent_r() provides a reentrant interface for the fgetgrent() function which uses
static storage that is re-used in each call. The use of static storage makes fgetgrent() unsafe for use
in multithreaded applications. fgetgrent_r() performs the same operation as fgetgrent().
fgetgrent_r(), however, uses buffers supplied by the caller to store returned results, and is safe for
use in both single-threaded and multithreaded applications.

The parameter “result” must be a pointer to a “struct group” structure allocated by the caller. On
successful completion, the function returns the group entry in this structure. The parameter
“buffer” must be a pointer to a buffer supplied by the caller. This buffer is used as storage space
for the group data. All of the pointers within the returned struct group result point to data stored
within this buffer (see RETURN VALUES). The buffer must be large enough to hold all of the data
associated with the group entry. The parameter “buflen” should give the size in bytes of the
buffer indicated by buffer.

RETURN VALUES
Group entries are represented by the struct group structure defined in <grp.h>:

struct group {
char *gr_name; /* the name of the group */
char *gr_passwd; /* the encrypted group password */
gid_t gr_gid; /* the numerical group ID */
char **gr_mem; /* vector of pointers to member names */

};

The function fgetgrent_r() returns a pointer to a struct group if it successfully enumerates an entry;
otherwise it returns NULL, indicating the end of the enumeration.

When the pointer returned by fgetgrent_r() is non-NULL, it is always equal to the result pointer
that was supplied by the caller.

ERRORS
ERANGE fgetgrent_r() will return NULL and set errno to ERANGE if the length of the

buffer supplied by caller is not large enough to store the result.

NOTES Programs that use fgetgrent_r() cannot be linked statically since the implementations of
these functions employ dynamic loading and linking of shared objects at run time.

libsys___

8-16 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

fgetpwent_r

NAME
fgetpwent_r - get password entry

SYNOPSIS
#include <pwd.h>
struct passwd *fgetpwent_r (FILE *f, struct passwd *result, char *buffer, int buflen);

DESCRIPTION
This function is used to obtain password entries. fgetpwent_r() reads and parses the next line from
the stream f, which is assumed to have the format of the passwd file, where each entry is of the
form:

username: password: uid: gid: gcos-field: home-dir: login-shell

The function fgetpwent_r() provides a reentrant interface for fgetpwent(). fgetpwent_r() performs
the same operation as fgetpwent(). fgetpwent_r(), however, uses buffers supplied by the caller to
store returned results, and is safe for use in both single-threaded and multithreaded applications.
fgetpwent() is not safe for use in multithreaded applications since it uses static storage that is re-
used in each call to this routine.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as the
following additional parameters. The parameter result must be a pointer to a struct passwd
structure allocated by the caller. On successful completion, the function returns the password entry
in this structure. The parameter buffer must be a pointer to a buffer supplied by the caller. This
buffer is used as storage space for the password data. All of the pointers within the returned struct
passwd result point to data stored within this buffer. See RETURN VALUES. The buffer must be
large enough to hold all of the data associated with the password entry. The parameter buflen
should give the size in bytes of the buffer indicated by buffer.

RETURN VALUES
Password entries are represented by the struct passwd structure defined in <pwd.h>:

struct passwd {
char *pw_name; /* user's login name */
char *pw_passwd; /* no longer used */
uid_t pw_uid; /* user's uid */
gid_t pw_gid; /* user's gid */
char *pw_age; /* not used */
char *pw_comment; /* not used */
char *pw_gecos; /* typically user's full name */
char *pw_dir; /* user's home dir */
char *pw_shell; /* user's login shell */

};

The function fgetpwent_r() returns a pointer to a struct passwd if it successfully enumerates an
entry; otherwise it returns NULL, indicating the end of the enumeration.

When the pointer returned by the reentrant function fgetpwent_r() is non-NULL, it is always equal
to the result pointer that was supplied by the caller.

ERRORS
ERANGE fgetpwent_r() will return NULL and set errno to ERANGE if the length of the

buffer supplied by caller is not large enough to store the result.

___ libsys

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 8-17

NOTES

fgetpwent_r() cannot be linked statically since, the implementations of this function employ
dynamic loading and linking of shared objects at run time.

If the shell field is empty, “login” automatically assigns the default shell.

libsys___

8-18 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

fork

NAME
fork - create a new process

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

DESCRIPTION
fork() causes the creation of a new process. The new process (child process) is an exact copy of the
calling process (parent process). This means the child process inherits the following attributes from
the parent process:

• real user ID, real group ID, effective user ID, effective group ID
• environment
• open file descriptors
• close-on-exec flags (see exec(BA_OS))
• signal handling settings (that is SIG_DFL, SIG_IGN, SIG_HOLD, Function address)
• supplementary group IDs
• set-user-ID mode bit
• set-group-ID mode bit
• profiling on/off status
• nice value (see nice(KE_OS))
• scheduler class (see priocntl(RT_OS))
• all attached shared memory segments (see shmop(KE_OS))
• process group ID -- memory mappings (see mmap(KE_OS))
• session ID (see exit(BA_OS))
• current working directory
• root directory
• file mode creation mask (see umask(BA_OS))
• resource limits (see getrlimit(BA_OS))
• controlling terminal
• saved user ID and group ID

Scheduling priority and any per-process scheduling parameters that are specific to a given
scheduling class may or may not be inherited according to the policy of that particular class (see
priocntl(RT_OS)).

The child process differs from the parent process in the following ways:

• The child process has a unique process ID which does not match any active process
group ID.

• The child process has a different parent process ID (that is, the process ID of the parent
process).

• The child process has its own copy of the parent’s file descriptors and directory streams.
Each of the child’s file descriptors shares a common file pointer with the corresponding file
descriptor of the parent.

• Each shared memory segment remains attached and shm_nattach is incremented by 1.

___ libsys

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 8-19

• All semadj values are cleared (see semop(KE_OS))).

• Process locks, text locks, data locks, and other memory locks are not inherited by the
child (see plock(KE_OS) and memcntl(RT_OS)).

• The child process’s tms structure is cleared: tms_utime, stime, cutime, and cstime are set
to 0 (see times(BA_OS)).

• The child processes resource utilizations are set to 0; see getrlimit(BA_OS). The it_value
and it_interval values for the ITIMER_REAL timer are reset to 0; see getitimer(RT_OS).

• The set of signals pending for the child process is initialized to the empty set.

• No asynchronous input or asynchronous output operations are inherited by the child.

Record locks set by the parent process are not inherited by the child process (see fcntl(BA_OS)).

fork() duplicates all the threads (see thr_create) and LWPs in the parent process in the child process.

RETURN VALUES

Upon successful completion, fork() returns a value of 0 to the child process and returns the process
ID of the child process to the parent process. Otherwise, a value of (pid_t) - 1 is returned to the
parent process, no child process is created, and errno is set to indicate the error.

ERRORS

fork() will fail and no child process will be created if one or more of the following are true:

EAGAIN There are two conditions that will cause an EAGAIN error.

The system-imposed limit on the total number of processes under execution by a
single user would be exceeded.

The total amount of system memory available is temporarily insufficient to
duplicate this process.

ENOMEM There is not enough swap space.

SEE ALSO
alarm(BA_OS), exec(BA_OS), exit(BA_OS), fcntl(BA_OS), getitimer(RT_OS), getrlimit(BA_OS),
mmap(KE_OS), nice(KE_OS), plock(KE_OS), priocntl(RT_OS), ptrace(KE_OS), semop(KE_OS),
shmop(KE_OS), times(BA_OS), umask(BA_OS), wait(BA_OS), memcntl(RT_OS), signal(BA_OS),
system(BA_OS), thr_create

NOTES

The semantics of fork() in a multi-threaded application are designated as EXPERIMENTAL. The
SCD2.3 definition of the multi-threaded semantics for fork() is that the entire process is duplicated
(i.e. all its threads). This differs from the POSIX 1003.1c specification in which only the thread
invoking fork() is duplicated in an MT application. MT semantics equivalent to the POSIX 1003.1c
of fork() are offered by the SCD2.3 fork1() interface.

libsys___

8-20 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

Be careful to call _exit() rather than exit(BA_OS) if you cannot execve(), since exit(BA_OS) will flush
and close standard I/O channels, and thereby corrupt the parent processes standard I/O data
structures. Using exit(BA_OS) will flush buffered data twice. See exit(BA_OS).

In a multi-threaded process, fork() can cause blocking system calls to be interrupted and return
with an error of EINTR

___ libsys

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 8-21

getgrent_r

NAME
getgrent_r - get group entry

SYNOPSIS
#include <grp.h>
struct group *getgrent_r (struct group *result, char *buffer, int buflen);

DESCRIPTION
getgrent_r() is used to obtain entries from the system’s groups database. The function getgrent_r()
provides a reentrant interface for the getgrent() function which uses static storage that is re-used in
each call. The use of static storage makes getgrent() unsafe for use in multithreaded applications.

getgrent_r() performs the same operation as getgrent(). getgrent_r() uses a buffer supplied by the
caller to store returned results, and is safe for use in both single-threaded and multithreaded
applications.

The parameter result must be a pointer to a struct group structure allocated by the caller. On
successful completion, the function returns the group entry in this structure. The parameter buffer
must be a pointer to a buffer supplied by the caller. This buffer is used as storage space for the
group data. All of the pointers within the returned struct group result point to data stored within
this buffer (see RETURN VALUES). The buffer must be large enough to hold all of the data
associated with the group entry. The parameter buflen should give the size in bytes of the buffer
indicated by buffer.

RETURN VALUES
Group entries are represented by the struct group structuredefined in <grp.h>:
struct group {

char *gr_name; /* the name of the group */
char *gr_passwd; /* the encrypted group password */
gid_t gr_gid; /* the numerical group ID */
char **gr_mem; /* vector of pointers to member names */

};

The function getgrent_r() returns a pointer to a struct group if it successfully enumerates an entry;
otherwise it returns NULL, indicating the end of the enumeration.

When the pointer returned by the reentrant function getgrent_r() is non-NULL, it is always equal
to the result pointer that was supplied by the caller.

ERRORS
ERANGE getgrent_r() will return NULL and seterrno to ERANGE if the length of the buffer

supplied by caller is not large enough to store the result.

NOTES
Programs that use getgrent_r() cannot be linked statically since the implementations of this
function employ dynamic loading and linking of shared objects at run time.

libsys___

8-22 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

getlogin_r

NAME
getlogin_r - get login name

SYNOPSIS
#include <stdlib.h>

char *getlogin_r(char *name, int namelen);

DESCRIPTION
getlogin_r() returns a pointer to the login name associated with the controlling terminal. It may
be used in conjunction with getpwnam_r() to locate the correct password file entry when the same
user id is shared by several login names.

If getlogin_r() is called within a process that is not attached to a terminal, it returns a null pointer.
The correct procedure for determining the login name is to call cuserid(), or to call getlogin_r() and
if it fails to call getpwuid_r().

getlogin_r() has the same functionality as getlogin() except that a buffer name with length namelen
has to be supplied by the caller to store the result. name must be at least LOGNAME_MAX bytes
in size (defined in limits.h).

RETURN VALUES
Returns a null pointer if the login name is not found.

ERRORS
getlogin_r() will fail if the following is true:

ERANGE The size of the buffer is smaller than the result to be returned.

NOTES
The getlogin_r() interface is different from the POSIX 1003.1c interface. The function getlogin_r is
defined in POSIX as following:

int getlogin_r(char *name, size_t namelen);

This function is designated as EXPERIMENTAL.

The return values point to static data whose content is overwritten by each call.

getlogin() is unsafe in multi-thread applications. getlogin_r() should be used instead.

___ libsys

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 8-23

getpwent_r

NAME
getpwent_r - get password entry

SYNOPSIS
#include <pwd.h>
struct passwd *getpwent_r (struct passwd *result, char *buffer, int buflen);

DESCRIPTION

This function is used to obtain password entries. The function getpwent_r() is used to enumerate
password entries from the system’s passwords database. Successive calls to getpwent_r() return
either successive entries or NULL, indicating the end of the enumeration.

The function getpwent_r() provides a reentrant interface for getpwent(). getpwent_r() performs the
same operation as getpwent(). getpwent_r() uses buffers supplied by the caller to store returned
results, and is safe for use in both single-threaded and multithreaded applications. getpwent() is
not safe for use in multithreaded applications since it uses static storage that is re-used in each call
to this routine.

The parameter result must be a pointer to a struct passwd structure allocated by the caller. On
successful completion, getpwent_r() returns the password entry in this structure. The parameter
buffer must be a pointer to a buffer supplied by the caller. This buffer is used as storage space for
the password data. All of the pointers within the returned struct passwd result point to data stored
within this buffer. See RETURN VALUES. The buffer must be large enough to hold all of the data
associated with the password entry. The parameter buflen should give the size in bytes of the buffer
indicated by buffer.

For enumeration in multithreaded applications, the position within the enumeration is a process-
wide property shared by all threads. If multiple threads interleave calls to getpwent_r(), the threads
will enumerate disjoint subsets of the password database.

RETURN VALUES
Password entries are represented by the struct passwd structure defined in <pwd.h>:

struct passwd {
char *pw_name; /* user's login name */
char *pw_passwd; /* no longer used */
uid_t pw_uid; /* user's uid */
gid_t pw_gid; /* user's gid */
char *pw_age; /* not used */
char *pw_comment; /* not used */
char *pw_gecos; /* typically user's full name */
char *pw_dir; /* user's home dir */
char *pw_shell; /* user's login shell */

};

The function getpwent_r() returns a pointer to a struct passwd if it successfully enumerates an
entry; otherwise it returns NULL, indicating the end of the enumeration.

The function getpwent() uses static storage, so returned data must be copied before a subsequent
call to this function if the data is to be saved. When the pointer returned by getpwnam_r() is non-

libsys___

8-24 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

NULL, it is always equal to the result pointer that was supplied by the caller.

ERRORS
ERANGE getpwent_r() will return NULL and set errno to ERANGE if the length of the buffer

supplied by caller is not large enough to store the result.

NOTES

getpwent_r cannot be linked statically since, the implementations of this function employ dynamic
loading and linking of shared objects at run time.

If the shell field is empty, “login” automatically assigns the default shell.

___ libsys

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 8-25

getgrgid_r
getgrnam_r
getpwnam_r
getpwuid_r
readdir_r

NAME
getgrgid_r, getgrnam_r, getpwnam_r, getpwuid_r, readdir_r - Support routines for multithreading
added to libsys and libc.

SYNOPSIS
#include <grp.h>
struct group *getgrgid_r (gid_t gid, struct group *result, char *buffer, int buflen);
struct group *getgrnam_r(const char *name, struct group *result, char *buffer, int buflen);

#include <pwd.h>
struct passwd *getpwnam_r (const char *name, struct passwd *result, char *buffer, int buflen);
struct passwd *getpwuid_r (uid_t uid, struct passwd *result, char *buffer, int buflen);

#include <dirent.h>
struct dirent *readdir_r(DIR *dirp, struct dirent *res);

DESCRIPTION and RETURN VALUES
These functions are “reentrant” versions of existing functions. They exist as the definition of the
existing functions prevents the transparent implementation of multithreading, usually because of
the use of a static storage area. In general, these functions are exactly equivalent to the non-
reentrant versions in terms of function and results, but differ in providing for the implementation
the necessary storage for completion of the function.
getgrgid_r and getgrnam_r are equivalent to getgrgid and getgrnam, respectively. When these
functions succeed, they return the argument result as their value. Otherwise they return NULL.
When successful, the contents of result have been updated to return the group entry associated with
either name or gid, respectively. buf is provided in order to store the strings and pointers needed to
describe a group entry, and is buflen in length. If buflen is not large enough to store the resulting
strings, the functions return NULL with errno set to ERANGE.
getpwuid_r and getpwnam_r are equivalent to getgrgid and getgrnam, respectively. When these
functions succeed, they return the argument result as their value. Otherwise they return NULL.
When successful, the contents of result have been updated to return the password entry associated
with either name or uid, respectively. buf is provided in order to store the strings and pointers
needed to describe a password entry, and is buflen in length. If buflen is not large enough to store the
resulting strings, the functions return NULL with errno set to ERANGE.
readdir_r is equivalent to readdir except that res must be supplied by the caller to store the result.
To allocate res, a block of storage equivalent to sizeof (struct dirent) + _POSIX_PATH_MAX should
be allocated.

libsys___

8-26 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

NOTES

These functions are designated as EXPERMIMENTAL since they have interfaces which are
different from the ones in POSIX 1003.1c. The interfaces of these functions are in POSIX as
following:

int getgrgid_r (gid_t gid,
struct group *grp,
char *buffer,
size_t bufsize,
struct group **result);

int getgrnam_r (const char *name,
struct group *grp,
char *buffer,
size_t bufsize,
struct group **result);

int getpwnam_r (const char *name,
struct passwd *pwd,
char *buffer,
size_t buflen,
struct passwd **result);

int getpwuid_r (uid_t uid,
struct passwd *pwd,
char *buffer,
size_t bufsize,
struct passwd **result);

int readdir_r (DIR *dirp,
struct direct *entry,
struct dirent **result);

___ libsys

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 8-27

makecontext
swapcontext

NAME
 makecontext, swapcontext - manipulate user contexts

SYNOPSIS
 #include <ucontext.h>
 void makecontext (ucontext_t *ucp, void(*func)(), int argc,...);
 int swapcontext (ucontext_t *oucp, ucontext_t *ucp);

DESCRIPTION
These functions are useful for implementing user-level context switching between multiple threads
of control within a process.

makecontext() modifies the context specified by ucp, which has been initialized using getcontext();
when this context is resumed using swapcontext() or setcontext() (see getcontext(BA_OS)),
program execution continues by calling the function func, passing it the arguments that follow argc
in the makecontext() call. The integer value of argc must match the number of arguments that
follow argc. Otherwise the behavior is undefined.

swapcontext() saves the current context in the context structure pointed to by oucp and sets the
context to the context structure pointed to by ucp.

RETURN VALUES
On successful completion, swapcontext returns a value of zero. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
These functions will fail if either of the following is true:

EFAULT ucp or oucp points to an invalid address.

ENOMEM ucp does not have enough stack left to complete the operation.

SEE ALSO
exit(BA_OS), getcontext(BA_OS), sigaction(BA_OS), sigprocmask(BA_OS)

NOTES
The size of the ucontext_t structure may change in future releases. To remain binary compatible,
users of these features must always use makecontext() or getcontext() to create new instances of
them.

libsys___

8-28 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

sbrk

NAME
sbrk - query the current break value

SYNOPSIS
#include <unistd.h>
void *sbrk (const int 0);

DESCRIPTION
The function sbrk is used to query the amount of space allocated for the calling process’s data
segment [see exec(BA_OS)].

STATUS
This function is DEPPRECATED effective November 1st, 1993. It may be removed from the SCD as
early as November 1st, 1996.

DIAGNOSTICS
Upon successful completion, sbrk returns the current break value. Otherwise, a value of -1 is
returned and errno is set to indicate the error. If sbrk is called with a non-zero value, the application
is not portable.

RATIONALE
Calling sbrk(0) yields a value that, at one time, had a predictable, well defined interpretation. It has
not had this property for many years, since the wide-spread usage of sparse, demand-paged
address spaces. Its use is deprecated because the interpretation of the value returned is so highly
variable as to be non-portable. It is more appropriately regarded as a function yielding a value
relevant to one of many attributes of memory occupancy. sbrk (non-zero) is not specified in any
relevant standard, as its interactions with and dependencies upon other memory allocation
mechanisms (e.g., malloc) are undefined. The use of sbrk (non-zero) is non-conforming since the
implementation of system supplied functions may freely use such memory allocation mechanisms.

NOTES
Applications desiring memory allocation functionality should use malloc for this purpose.
Alternatively, applications may construct their own memory allocation arenas by building upon
mmap and mappings to /dev/zero

___ libsys

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 8-29

ttyname
ttyname_r

NAME
ttyname, ttyname_r - find name of a terminal

SYNOPSIS
#include <stdlib.h>
char *ttyname (int fildes);
char *ttyname_r (int fildes, char *buf, int len);

DESCRIPTION
ttyname() returns a pointer to a string containing the null-terminated path name of the terminal
device associated with file descriptor fildes.

ttyname_r() has the equivalent functionality to ttyname() except that a buffer buf with length len
must be supplied by the caller to store the result. buf must be at least POSIX_PATH_MAX in size
(defined in <limits.h>).

RETURN VALUES
ttyname() and ttyname_r() return a NULL pointer if fildes does not describe a terminal device in
directory /dev.

ERRORS
ttyname_r() will fail if the following is true:
ERANGE The size of the buffer is smaller than the result to be returned.

NOTES

ttyname_r is designated as EXPERMIMENTAL since it has an interface which is different from the
one in POSIX 1003.1c. ttyname_r interface in POSIX is as following:

int ttyname_r (int fildes,
char *name,
size_t namesize);

libsys___

8-30 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

SPARC COMPLIANCE DEFINITION 2.3

libthread

__ libthread

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 9-1

cond_broadcast
cond_destroy
cond_init
cond_timedwait
cond_signal
cond_wait

NAME
condition, cond_init, cond_destroy, cond_wait, cond_timedwait, cond_signal, cond_broadcast -
condition variables

SYNOPSIS
#include <synch.h>
int cond_init (cond_t *cvp, int type, void *arg);
int cond_destroy (cond_t *cvp);
int cond_wait (cond_t *cvp, mutex_t *mp);
int cond_timedwait (cond_t *cvp, mutex_t *mp, timestruc_t *abstime);
int cond_signal (cond_t *cvp);
int cond_broadcast (cond_t *cvp);

DESCRIPTION
A condition variable enables threads to atomically block until a condition is satisfied. The condition
is tested under the protection of a mutual exclusion lock (mutex). When the condition is false, a
thread typically blocks on a condition variable and atomically releases the mutex waiting for the
condition to change. When another thread changes the condition, it may signal the associated
condition variable to cause one or more waiting threads to wake up, reacquire the mutex, and re-
evaluate the condition.
Condition variables can be used to synchronize threads among processes if they are allocated in
memory that is writable and shared by the cooperating processes (see mmap(KE_OS)) and have
been initialized for this behavior.
Condition variables must be initialized before use. cond_init() initializes the condition variable
pointed to by cvp. A condition variable can potentially have several different types of behavior,
specified by type. No current type uses arg although a future type may specify additional behavior
parameters via arg. type may be one of the following:
USYNC_PROCESS The condition variable can be used to synchronize threads in this process

and other processes. Only one process should initialize the condition
variable. arg is ignored.

USYNC_THREAD The condition variable can be used to synchronize threads in this process,
only. arg is ignored.

Condition variables may also be initialized by allocation in zeroed memory. In this case a type of
USYNC_THREAD is assumed. Multiple threads must not initialize the same condition variable
simultaneously. A condition variable must not be re-initialized while other threads may be using it.
cond_destroy() destroys any state associated with the condition variable pointed to by cvp. The
space for storing the condition variable is not freed. A condition variable must not be destroyed
while other threads may be using it.

libthread ___

9-2 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

cond_wait() atomically releases the mutex pointed to by mp and causes the calling thread to block
on the condition variable pointed to by cvp. The blocked thread may be awakened by cond_signal(),
cond_broadcast(), or when interrupted by delivery of a signal or a fork(). Any change in value of a
condition associated with the condition variable cannot be inferred by the return of cond_wait()
and any such condition must be re-evaluated.
cond_timedwait() is similar to cond_wait(), except that the calling thread will not block past the
time of day specified by abstime. If the time of day becomes greater than abstime then
cond_timedwait() returns with the error code ETIME.
cond_wait() and cond_timedwait() always return with the mutex locked and owned by the calling
thread even when returning an error.
cond_signal() unblocks one thread that is blocked on the condition variable pointed to by cvp.
cond_broadcast() unblocks all threads that are blocked on the condition variable pointed to by cvp.
If no threads are blocked on the condition variable then cond_signal() and cond_broadcast() have
no effect.
Both functions should be called under the protection of the same mutex that is used with the
condition variable being signaled. Otherwise the condition variable may be signaled between the
test of the associated condition and blocking in cond_wait(). This can cause an infinite wait.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, these functions fail and return the corresponding
value:
EINVAL Invalid argument. For cond_init(), type is not a recognized type. For

cond_timedwait(), the specified number of seconds, abstime, is greater
than some implementation dependent time that is at least the start time of
the application plus 50,000,000, or the number of nanoseconds is greater
than or equal to 1,000,000,000.

If any of the following conditions are detected, cond_wait() or cond_timedwait() fails and returns
the corresponding value:
EINTR The wait was interrupted by a signal or fork().
If any of the following conditions are detected, cond_timedwait() fails and returns the
corresponding value:
ETIME The time specified by abstime has passed.

EXAMPLES
cond_wait() is normally used in a loop testing some condition, as follows:
(void) mutex_lock(mp);

while (cond == FALSE) {
 (void) cond_wait (cvp, mp);
}

(void) mutex_unlock(mp);

cond_timedwait() is also normally used in a loop testing some condition. It uses an absolute

__ libthread

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 9-3

timeout value as follows:
timestruc_t to;

...

(void) mutex_lock(mp);
to.tv_sec = time(NULL) + TIMEOUT;
to.tv_nsec = 0;

while (cond == FALSE) {
 err = cond_timedwait (cvp, mp, &to);
 if (err == ETIME) {
 /* timeout, do something */
 break;
}
}

(void) mutex_unlock(mp);

This sets a bound on the total wait time even though cond_timedwait() may return several times
due to the condition being signaled or the wait being interrupted.

NOTES
These interfaces also available via: #include <thread.h>
By default, there is no defined order of unblocking if multiple threads are waiting for a condition
variable.

libthread ___

9-4 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

fork1

NAME
fork1 - create a new process

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
pid_t fork1 (void);

DESCRIPTION
fork1()causes creation of a new process. It differs from fork() in that fork() duplicates all the threads
in the parent process in the child process, while fork1() duplicates only the calling thread in the
child process.

RETURN VALUES
Upon successful completion, fork1() returns a value of 0 to the child process and returns the process
ID of the child process to the parent process. Otherwise, a value of (pid_t)-1 is returned to the
parent process, no child process is created, and errno is set to indicate the error.

ERRORS
Same as fork().

NOTES
When calling fork1() the thread in the child must not depend on any resources that are held by
threads that no longer exist in the child. In particular, locks held by these threads will not be
released.

__ libthread

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 9-5

mutex_destroy
mutex_init
mutex_lock
mutex_trylock
mutex_unlock

NAME
mutex, mutex_init, mutex_destroy, mutex_lock, mutex_trylock, mutex_unlock - mutual exclusion
locks

SYNOPSIS
#include <synch.h>
int mutex_init (mutex_t *mp, int type, void *arg);
int mutex_destroy (mutex_t *mp);
int mutex_lock (mutex_t *mp);
int mutex_trylock (mutex_t *mp);
int mutex_unlock (mutex_t *mp);

DESCRIPTION
Mutual exclusion locks (mutexes) are used to serialize the execution of threads. They are typically
used to ensure that only one thread executes a critical section of code at any one time (mutual
exclusion).
Mutexes can be used to synchronize threads in this process and other processes if they are allocated
in memory that is writable and shared among the cooperating processes (see mmap(KE_OS)) and
have been initialized for this behavior.
Mutexes must be initialized before use. mutex_init() initializes the mutex pointed to by mp. A
mutex can potentially have several different types of behavior, specified by type. No current type
uses arg although a future type may specify additional behavior parameters via arg. type may be
one of the following:
USYNC_PROCESS The mutex can be used to synchronize threads in this process and other

processes. Only one process should initialize the mutex. arg is ignored.
USYNC_THREAD The mutex can be used to synchronize threads in this process, only. arg is

ignored.
Mutexes may also be initialized by allocation in zeroed memory. In this case a type of
USYNC_THREAD is assumed. Multiple threads must not initialize the same mutex
simultaneously. A mutex lock must not be re-initialized while other threads may be using it.
mutex_destroy() destroys any state associated with the mutex pointed to by mp. The space for
storing the mutex is not freed. A mutex lock must not be destroyed while other threads may be
using it.
mutex_lock() locks the mutex pointed to by mp. If the mutex is already locked, the calling thread
blocks until the mutex becomes available. When mutex_lock() returns, the mutex is locked and the
calling thread is the owner.
mutex_trylock() attempts to lock the mutex pointed to by mp. If the mutex is already locked it
returns with an error. Otherwise the mutex is locked and the calling thread is the owner.

libthread ___

9-6 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

mutex_unlock() unlocks the mutex pointed to by mp. The mutex must be locked and the calling
thread must be the one that last locked the mutex (the owner). If any other threads are waiting for
the mutex to become available, one of them is unblocked. If the calling thread is not the owner of
the lock, the behavior of the program is undefined.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, these functions fail and return the corresponding
value:
EINVAL Invalid argument.
If any of the following conditions are detected, mutex_trylock() fails and returns the corresponding
value:
EBUSY The mutex pointed to by mp was already locked.

NOTES
In the current implementation, mutex_lock(), mutex_unlock(), and mutex_trylock() do not validate
the mutex type. Therefore, EINVAL is not returned for an uninitialized mutex or for a mutex with
an invalid type. The behavior of these interfaces for mutexes containing an invalid type is
unspecified.
For example, the following call to mutex_lock() might hang. Since mutex is allocated from the stack
and is not initialized, it may have junk data in it. mutex needs to be initialized using mutex_init().
int global;
main()
{
 mutex_t mutex;

 /*
 * The address of this mutex is passed to threads
 * created from main(). NOTE: this is not recommended
 * style.
 */

...

 if (mutex_lock(&mutex) == 0) {
 /* this call may hang */
 global++;
 mutex_unlock(&mutex);

}

else printf (“mutex_lock() failed\n”);

...

}

Instead, mutex should first be initialized using mutex_init().
int global;

main()
{

__ libthread

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 9-7

 mutex_t mutex;

...

 mutex_init (&mutex, USYNC_THREAD, NULL);
 mutex_lock(&mutex);
 /* This call is now guaranteed to work */
 global++;
 mutex_unlock(&mutex);

}

By default, there is no defined order of acquisition if multiple threads are waiting for a mutex.
These interfaces are also available via: #include <thread.h>

libthread ___

9-8 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

rwlock_destroy
rwlock_init
rw_rdlock
rw_tryrdlock
rw_trywrlock
rw_unlock
rw_wrlock

NAME
rwlock, rwlock_init, rwlock_destroy, rw_rdlock, rw_wrlock, rw_tryrdlock, rw_trywrlock,
rw_unlock - multiple readers, single writer locks

SYNOPSIS
#include <synch.h>
int rwlock_init (rwlock_t *rwlp, int type, void *arg);
int rwlock_destroy (rwlock_t *rwlp);
int rw_rdlock (rwlock_t *rwlp);
int rw_wrlock (rwlock_t *rwlp);
int rw_unlock (rwlock_t *rwlp);
int rw_tryrdlock (rwlock_t *rwlp);
int rw_trywrlock (rwlock_t *rwlp);

DESCRIPTION
Multiple readers, single writer (readers/writer) locks allow many threads to have simultaneous
read-only access to data while allowing only one thread to have write access at any given time.
They are typically used to protect data that is searched more frequently than it is changed.
Readers/writer locks can be used to synchronize threads in this process and other processes if they
are allocated in memory that is writable and shared among the cooperating processes (see
mmap(KE_OS)) and have been initialized for this behavior.
Readers/writer locks must be initialized before use. rwlock_init() initializes the readers/writer
lock pointed to by rwlp. A readers/writer lock can potentially have several different types of
behavior, specified by type. No current type uses arg although a future type may specify additional
behavior parameters via arg. type may be one of the following:
USYNC_PROCESS The readers/writer lock can be used to synchronize threads in this process

and other processes. Only one process should initialize the readers/writer
lock. arg is ignored.

USYNC_THREAD The readers/writer lock can be used to synchronize threads in this
process, only. arg is ignored.

Readers/writer locks may also be initialized by allocation in zeroed memory. In this case a type of
USYNC_THREAD is assumed. Multiple threads must not initialize the same readers/writer lock
simultaneously. A readers/writer lock must not be re-initialized while other threads may be using
it.
rwlock_destroy() destroys any state associated with the readers/writer lock pointed to by rwlp. The
space for storing the readers/writer lock is not freed. A readers/writer lock must not be destroyed
while other threads may be using it.

__ libthread

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 9-9

rw_rdlock() acquires a read lock on the readers/writer lock pointed to by rwlp. If the readers/writer
lock is already locked for writing, the calling thread blocks until the write lock is released. More
than one thread may hold a read lock on a readers/writer lock at any one time.
rw_tryrdlock() attempts to acquire a read lock on the readers/writer lock pointed to by rwlp. If the
readers/writer lock is already locked for writing, it returns an error.
rw_wrlock() acquires a write lock on the readers/writer lock pointed to by rwlp. If the
readers/writer lock is already locked for reading or writing, the calling thread blocks until all the
read locks and write locks are released. Only one thread may hold a write lock on a readers/writer
lock at any one time.
rw_trywrlock() attempts to acquire a write lock on the readers/writer lock pointed to by rwlp. If the
readers/writer lock is already locked for reading or writing, it returns an error.
rw_unlock() unlocks a readers/writer lock pointed to by rwlp. The readers/writer lock must be
locked and the calling thread must hold the lock either for reading or writing. If any other threads
are waiting for the readers/writer lock to become available, one of them is unblocked. If the calling
thread does not hold the lock for either reading or writing, the behavior of the program is
undefined.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, these functions fail and return the corresponding
value:
EINVAL Invalid argument.
If any of the following conditions are detected, rw_tryrdlock() or rw_trywrlock() fails and returns
the corresponding value:
EBUSY The readers/writer lock pointed to by rwlp was already locked.

NOTES
These interfaces also available via: #include <thread.h>
By default, there is no defined order of acquisition if multiple threads are waiting for a
readers/writer lock. However, implementations usually bias acquisition order in some way so as
to avoid writer starvation.

libthread ___

9-10 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

sema_destroy
sema_init
sema_post
sema_trywait
sema_wait

NAME
semaphore, sema_init, sema_destroy, sema_wait, sema_trywait, sema_post - semaphores

SYNOPSIS
#include <synch.h>
int sema_init (sema_t *sp, unsigned int count, int type, void * arg);
int sema_destroy (sema_t *sp);
int sema_wait (sema_t *sp);
int sema_trywait (sema_t *sp);
int sema_post (sema_t *sp);

DESCRIPTION
Conceptually, a semaphore is a non-negative integer count. Semaphores are typically used to
coordinate access to resources. The semaphore count is initialized to the number of free resources.
Threads then atomically increment the count when resources are added and atomically decrement
the count when resources are removed. When the semaphore count becomes zero, indicating no
more resources are present, threads trying to decrement the semaphore will block until the count
becomes greater than zero.
Semaphores can be used to synchronize threads in this process and other processes if they are
allocated in memory that is writable and is shared among the cooperating processes (see
mmap(KE_OS)) and have been initialized for this behavior.
Semaphores must be initialized before use. sema_init() initializes the semaphore pointed to by sp
to count. A semaphore can potentially have several different types of behavior, specified by type. No
current type uses arg although a future type may specify additional behavior parameters via arg.
type may be one of the following:
USYNC_PROCESS The semaphore can be used to synchronize threads in this process and

other processes. Only one process should initialize the semaphore. arg is
ignored.

USYNC_THREAD The semaphore can be used to synchronize threads in this process, only.
arg is ignored.

Multiple threads must not initialize the same semaphore simultaneously. A semaphore must not be
re-initialized while other threads may be using it.
sema_destroy() destroys any state associated with the semaphore pointed to by sp. The space for
storing the semaphore is not freed. A semaphore must not be destroyed while other threads may
be using it.
sema_wait() blocks the calling thread until the count in the semaphore pointed to by sp becomes
greater than zero and then atomically decrements it.
sema_trywait() atomically decrements the count in the semaphore pointed to by sp if the count is
greater than zero. Otherwise it returns an error.

__ libthread

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 9-11

sema_post() atomically increments the count semaphore pointed to by sp. If there are any threads
blocked on the semaphore, one is unblocked.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, these functions fail and return the corresponding
value:
EINVAL Invalid argument.
If any of the following conditions are detected, sema_wait() fails and returns the corresponding
value:
EINTR The wait was interrupted by a signal.
If any of the following conditions are detected, sema_trywait() fails and returns the corresponding
value:
EBUSY The semaphore pointed to by sp has a zero count.

NOTES
These interfaces also available via: #include <thread.h>
By default, there is no defined order of unblocking if multiple threads are waiting for a semaphore.

libthread ___

9-12 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

thr_continue
thr_suspend

NAME
thr_suspend, thr_continue - suspend or continue thread execution

SYNOPSIS
#include <thread.h>
int thr_suspend (thread_t target_thread);
int thr_continue (thread_t target_thread);

DESCRIPTION
thr_suspend() immediately suspends the execution of the thread specified by target_thread. On
successful return from thr_suspend(), the suspended thread is no longer executing. Once a thread
is suspended, subsequent calls to thr_suspend() have no effect.
thr_continnue() resumes the execution of a suspended thread. Once a suspended thread is
continued, subsequent calls to thr_continue() have no effect.
A suspended thread will not be awakened by a signal. The signal stays pending until the execution
of the thread is resumed by thr_continue().

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, thr_suspend() or thr_continue() fails and returns the
corresponding value:
ESRCH target_thread cannot be found in the current process.

__ libthread

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 9-13

thr_create

NAME
thr_create - create a new thread of control

SYNOPSIS
#include <thread.h>
int thr_create (void *stack_base, size_t stack_size,
 void *(*start_routine) (void *), void *arg,
 long flags, thread_t *new_thread);

DESCRIPTION
thr_create() adds a new thread of control to the current process. The new thread begins execution
by calling the function specified by start_routine with a single argument, arg. If start_routine returns,
the thread exits with the exit status set to the value returned by start_routine (see thr_exit).
The new thread will use the stack starting at the address specified by stack_base and continuing for
stack_size bytes. stack_size must be greater than the value returned by thr_min_stack(). If stack_base is
NULL then thr_create() allocates a stack for the new thread with at least stack_size bytes. If stack_size
is zero then a default size is used. If stack_size is not zero then it must be greater than the value
returned by thr_min_stack(). A stack of minimum size may not accommodate the stack frame for
start_function. If a stack size is specified, it must take into account the requirements start_function
and the functions that it may call in turn, in addition to the minimum requirement.
flags specifies additional attributes for the created thread. The value in flags is constructed from the
bitwise inclusive OR of the following:
THR_SUSPENDED The new thread is created suspended and will not execute start_routine

until it is started by thr_continue().
THR_DETACHED The new thread is created detached. Its thread ID and other resources may

be reused as soon as the thread terminates. A detached thread cannot be
waited for via thr_join().

THR_BOUND The new thread is created permanently bound to an LWP (i.e. it is a bound
thread).

THR_NEW_LWP The desired concurrency level for unbound threads is increased by one.
This is similar to incrementing concurrency by one via
thr_setconcurrency). Typically, this adds a new LWP to the pool of LWPs
running unbound threads.

THR_DAEMON The thread is marked as a daemon. The process will exit when all non-
daemon threads exit.

If both THR_BOUND and THR_NEW_LWP are specified then, typically, two LWPs are created, one
for the bound thread and another for the pool of LWPs running unbound threads.
When new_thread is not NULL then it points to a location where the ID of the new thread is stored
if thr_create() is successful. The ID is only valid within the calling process.
The new thread inherits the calling thread’s signal mask and priority. Pending signals are not
inherited.

libthread ___

9-14 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, thr_create() fails and returns the corresponding
value:
EAGAIN A system limit is exceeded, e.g., too many LWPs were created.
ENOMEM Not enough memory was available to create the new thread.
EINVAL stack_base is not NULL and stack_size is less than the value returned by

thr_min_stack().
EINVAL stack_base is NULL and stack_size is not zero and is less than the value

returned by thr_min_stack().

EXAMPLES
This example shows how to create a default thread with a new signal mask. new_mask is assumed
to have a different value than the creator’s signal mask (orig_mask). new_mask is set to block all
signals except for SIGINT. The creator’s signal mask is changed so that the new thread inherits a
different mask, and is restored to its original value after thr_create() returns. This examples
assumes that SIGINT is also unmasked in the creator. If it is masked by the creator, then unmasking
the signal opens the creator up to this signal. The other alternative is to have the new thread set its
own signal mask in its start routine.
thread_t tid;
sigset_t new_mask, orig_mask;
int error;

(void)sigfillset(&new_mask);
(void)sigdelset(&new_mask, SIGINT);
(void)thr_sigsetmask(SIG_SETMASK, &new_mask, &orig_mask);
error = thr_create (NULL, 0, do_func, NULL, 0, &tid);
(void)thr_sigsetmask(SIG_SETMASK, NULL, &orig_mask);

NOTES
Typically, thread stacks allocated by thr_create() begin on page boundaries and any specified size
is rounded up to the next page boundary. A page with no access permission is appended to the top
of the stack so that most stack overflows will result in a SIGSEGV signal being sent to the offending
thread. Thread stacks allocated by the caller are used as is.
Using a default stack size for the new thread, instead of passing a user-specified stack size, results
in much better thr_create() performance.
A thread has not terminated until thr_exit() has finished. The only way to determine this is by
thr_join(). When thr_join() returns a departed thread, it means that this thread has terminated and
its resources are reclaimable. For instance, if a user specified a stack to thr_create(), this stack can
only be reclaimed after thr_join() has reported this thread as a departed thread. It is not possible to
determine when a detached thread has terminated. A detached thread disappears without leaving
a trace.
If there is no explicit synchronization, an unsuspended, detached thread can die and have its thread
ID re-assigned to another new thread before its creator returns from thr_create().

__ libthread

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 9-15

thr_exit

NAME
thr_exit - thread termination

SYNOPSIS
#include <thread.h>
void thr_exit (void *status);

DESCRIPTION
thr_exit() terminates the calling thread. All thread-specific data bindings are released (see
thr_keycreate). If the calling thread is not detached, then the thread’s ID and the exit status specified
by status are retained until it is waited for (see thr_join). Otherwise, status is ignored and the
thread’s ID may be reclaimed immediately.
If the calling thread is the last non-daemon thread in the process (see thr_create), then the process
terminates with a status of zero (see exit(BA_OS)). If the initial thread returns from main() then the
process exits with a status equal to the return value.

RETURN VALUE
thr_exit() does not return.

libthread ___

9-16 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

thr_getconcurrency
thr_setconcurrency

NAME
thr_setconcurrency, thr_getconcurrency - get/set thread concurrency level

SYNOPSIS
#include <thread.h>
int thr_setconcurrency (int new_level);
int thr_getconcurrency (void);

DESCRIPTION
Unbound threads in a process (see thr_create) may or may not be required to be simultaneously
active. By default, the threads system ensures that a sufficient number of threads are active so that
the process can continue to make progress. While this conserves system resources, it may not
produce the most effective level of concurrency. thr_setconcurrency() permits the application to
give the threads system a hint, specified by new_level, for the desired level of concurrency. The
actual number of simultaneously active threads may be larger or smaller than this number. The
value for the desired concurrency level may also be affected by creating threads with the
THR_NEW_LWP flag set (see thr_create).
If new_level is zero, the threads system will only ensure that a sufficient number of threads are active
so that the process can continue to make progress.
thr_getconcurrency() returns the current value for the desired concurrency level. The actual
number of simultaneously active threads may be larger or smaller than this number.

RETURN VALUE
thr_setconcurrency() returns zero when successful. A nonzero value indicates an error code.
thr_getconcurrency() always returns the current value for the desired concurrency level.

ERRORS
If any of the following conditions are detected, thr_setconcurrency() fails and returns the
corresponding value:
EAGAIN the specified concurrency level would cause a system resource to be

exceeded.
EINVAL new_level is negative.

__ libthread

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 9-17

thr_getprio
thr_setprio

NAME
thr_setprio, thr_getprio - set/get a thread priority

SYNOPSIS
#include <thread.h>
int thr_setprio (thread_t target_thread, int pri);
int thr_getprio (thread_t target_thread, int *pri);

DESCRIPTION
Each thread has a priority which it inherits from its creator. thr_setprio() changes the priority of the
thread, specified by target_thread, within the current process to the priority specified by pri. By
default, threads are scheduled based on fixed priorities that range from zero, the least significant,
to the largest integer. The target_thread will preempt lower priority threads, and will yield to higher
priority threads.
The function thr_getprio() stores the current priority for the thread specified by target_thread in the
location pointed to by pri.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates error.

ERRORS
If any of the following conditions are detected, thr_setprio() or thr_getprio() fails and returns the
corresponding value:
ESRCH target_thread cannot be found in the current process.
If any of the following conditions are detected, thr_setprio() fails and returns the corresponding
value:
EINVAL The value of pri makes no sense for the scheduling class associated with

the target_thread.

libthread ___

9-18 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

thr_getspecific
thr_keycreate
thr_setspecific

NAME
thr_keycreate, thr_setspecific, thr_getspecific - thread-specific data

SYNOPSIS
#include <thread.h>
int thr_keycreate(thread_key_t *keyp, void (*destructor) (void *value));
int thr_setspecific(thread_key_t key, void *value);
int thr_getspecific(thread_key_t key, void **valuep);

DESCRIPTION
thr_keycreate() allocates a key that is used to identify data that is specific to each thread in the
process. The key is global to all threads in the process. Once a key has been created each thread may
bind a value to the key. The values are specific to the binding thread and are maintained for each
thread independently. All threads initially have the value NULL associated with the key when it is
created. When thr_keycreate() returns successfully the allocated key is stored in the location
pointed to by keyp. The caller must ensure that storage and access to this key are properly
synchronized.
An optional destructor function, specified by destructor, may be associated with each key. If a key
has a non-NULL destructor function and the thread has a non-NULL value associated with that
key, the destructor function is called with the current associated value when the thread exits. The
order in which the destructor functions are called for all the allocated keys is unspecified.
thr_setspecific() binds value to the thread-specific data key, for the calling thread.
thr_getspecific() stores the current value bound to key for the calling thread into the location
pointed to by valuep.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, thr_keycreate() fails and returns the corresponding
value:
EAGAIN The key name space is exhausted.
 If any of the following conditions are detected, thr_keycreate() or thr_setspecific() fails and returns
the corresponding value:
ENOMEM Not enough memory is available.
 If any of the following conditions are detected, thr_setspecific() or thr_getspecific() fails and
returns the corresponding value:
EINVAL key is invalid.

__ libthread

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 9-19

EXAMPLES
This examples shows the use of thread-specific data in a function that can be called from more than
one thread without special initialization.
static mutex_t keylock;
static thread_key_t key;
static int once = 0;

func()
{
 void *ptr;

 if (!once) {
 (void) mutex_lock(&keylock);
 if (!once) {
 (void) thr_keycreate (&key, free);
 once++;

}
 (void) mutex_unlock(&keylock);

}

 (void) thr_getspecific (key, (void *)&ptr);
 if (ptr == NULL) {
 ptr = malloc(SIZE);
 (void) thr_setspecific (key, ptr);

}

}

libthread ___

9-20 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

thr_join

NAME
thr_join - wait for thread termination

SYNOPSIS
#include <thread.h>
int thr_join (thread_t wait_for, thread_t *departed, void **status);

DESCRIPTION
thr_join() blocks the calling thread until the thread specified by wait_for terminates. The specified
thread must be in the current process and must not be detached (see thr_create). If wait_for is
(thread_t)0, then thr_join() waits for any undetached thread in the process to terminate.

If departed is not NULL, it points to a location that is set to the ID of the terminated thread if
thr_join() returns successfully. If status is not NULL, it points to a location that is set to the exit status
of the terminated thread if thr_join() returns successfully.

If thr_join() is not successful, the value of the location pointed to by status is unchanged.

Multiple threads cannot wait for the same thread to terminate; one thread will return successfully
and the others will fail with an error of ESRCH.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, thr_join() fails and returns the corresponding value:

ESRCH wait_for is not a valid, undetached thread in the current process.
EDEADLK wait_for specifies the calling thread.
EDEADLCK wait_for is (thread_t)0 and there is no valid, undetached thread in

the current process which is not the calling thread.

__ libthread

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 9-21

thr_kill

NAME
thr_kill - send a signal to a thread

SYNOPSIS
#include <thread.h>
#include <signal.h>
int thr_kill (thread_t target_thread, int sig);

DESCRIPTION
thr_kill() sends the signal, sig, to the thread specified by target_thread. target_thread must be a thread
within the same process as the calling thread. sig must be one from the list given in signal
(BA_ENV)or zero. If sig is zero, error checking is performed but no signal is actually sent. This can
be used to check the validity of target_thread.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions detected, thr_kill() fails and returns the corresponding value:
EINVAL sig is not a valid signal number.
ESRCH target_thread cannot be found in the current process.

libthread ___

9-22 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

thr_min_stack

NAME
thr_min_stack - minimum stack space for a thread

SYNOPSIS
#include <thread.h>
size_t thr_min_stack(void);

DESCRIPTION
When a thread is created with a user-supplied stack, the user must reserve enough space to run this
thread. In a dynamically linked execution environment, it is very hard to know what the minimum
stack requirements are for a thread. The function thr_min_stack() returns the amount of space
needed to execute a null thread. This is a thread that was created to execute a null procedure. A
thread that does something useful should have a stack size that is thr_min_stack() + <some
increment>.
Most users should not be creating threads with user-supplied stacks. This functionality was
provided to support applications that wanted complete control over their execution environment.
Typically, users should let the threads library manage stack allocation. The threads library provides
default stacks which should meet the requirements of any created thread.

RETURN VALUE
thr_min_stack returns the minimum stack size for a thread.

__ libthread

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 9-23

thr_self

NAME
thr_self - get thread identifier

SYNOPSIS
#include <thread.h>
thread_t thr_self(void)

DESCRIPTION
thr_self() returns the ID of the calling thread.

libthread ___

9-24 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

thr_sigsetmask

NAME
thr_sigsetmask - change and/or examine calling thread’s signal mask

SYNOPSIS
#include <thread.h>
#include <signal.h>
int thr_sigsetmask (int how, const sigset_t *set, sigset_t *oset);

DESCRIPTION
thr_sigsetmask() examines and/or changes the calling thread’s signal mask. If the value of the
argument set is not NULL, it points to a set of signals to be used to change the currently blocked set.
The value of the argument how determines the manner in which the set is changed. how may have
one of the following values:
SIG_BLOCK set represent a set of signals to block. They are added to the current signal

mask.
SIG_UNBLOCK set represents a set of signals to unblock. These signals are deleted from the

current signal mask.
SIG_SETMASK set represents the new signal mask. The current signal mask is replaced by

set.
If the value of oset is not NULL, it points to space where the previous signal mask is stored. If the
value of set is NULL, the value of how is not significant and the thread’s signal mask is unchanged;
thus, thr_sigsetmask() can be used to enquire about the currently blocked signals.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, thr_sigsetmask() fails and returns the corresponding
value:
EINVAL set is not NULL and the value of how is not defined.

NOTES
It is not possible to block those signals that cannot be ignored (see sigaction(BA_OS)). In addition,
if using the threads library, it is not possible to block the signal SIGLWP, reserved by the threads
library, and it is not possible to unblock the signal SIGWAITING, which is always blocked on all
threads. This restriction is silently imposed by the threads library.

__ libthread

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 9-25

thr_main

NAME
thr_main - identify the main thread

SYNOPSIS
#include <thread.h>
int thr_main(void);

DESCRIPTION
thr_main — identifies the calling thread as the main thread or not the main thread.

RETURN VALUES
thr_main() returns:
1 if the calling thread is the main thread.
0 if the calling thread is not the main thread.
-1 if libthread is not linked in or thread initialization has not completed.

libthread ___

9-26 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

thr_yield

NAME
thr_yield - yield execution to another thread

SYNOPSIS
#include <thread.h>
void thr_yield(void);

DESCRIPTION
thr_yield() causes the current thread to yield its execution in favor of another thread with the same
or greater priority.

RETURN VALUE
No value is returned.

__ libthread

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 9-27

sigwait

NAME
 sigwait - wait until a signal is posted

SYNOPSIS
 #include <signal.h>
 int sigwait (sigset_t *set);

DESCRIPTION
sigwait() selects a signal in set that is pending on the calling thread (see thr_create()). If no signal in
set is pending, then sigwait() blocks until a signal in set becomes pending. The selected signal is
cleared from the set of signals pending on the calling thread and the number of the signal is
returned. The selection of a signal in set is independent of the signal mask of the calling thread.
This means a thread can synchronously wait for signals that are being blocked by the signal mask
of the calling thread.
If more than one thread waits for the same signal, only one is unblocked when the signal arrives.

RETURN VALUES
Upon successful completion, a signal number is returned. Otherwise, a value of -1 is returned and
errno is set to indicate error.

ERRORS
If any of the following conditions are detected, sigwait() fails and returns the corresponding value:

EINVAL set contains an unsupported signal number.
EFAULT set points to an invalid address.

NOTES
sigwait() cannot be used to wait for signals that cannot be caught (see sigaction(BA_OS)). This
restriction is silently imposed by the system.

sigwait() is designated as EXPERMIMENTAL since it has an interface which is different from the
one in POSIX 1003.1c. sigwait interface in POSIX is as following:

int sigwait (const sigset_t *setp,
int *signo);

libthread ___

9-28 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

SPARC COMPLIANCE DEFINITION 2.3

Execution Environment

___ Execution Environment

August 1995 SPARC Compliance Definition 2.3 Interface Semantics 10-1

/dev/zero

NAME
/dev/zero

SYNOPSIS
/dev/zero

DESCRIPTION

The device /dev/zero is defined to be a special file which is a source of zeroed, unnamed memory.
Reads from this device always return a buffer full of zeroes. The file is infinite in length. Writes to
this file are always successful, but the data written is ignored. Mapping a zero special file creates a
zero-initialized, unnamed memory object of a length equal to the length of the mapping rounded
up to the nearest page size as returned by sysconf. Multiple processes can share such a zero special
file object provided a common ancestor mapped the object MAP_SHARED

Execution Environment __

10-2 SPARC Compliance Defintion 2.3 Interface Semantics August 1995

SPARC COMPLIANCE DEFINITION 2.3

INDEX

___ Index

August 1995 SPARC Compliance Definition 2.3 Interface Semantics Index-1

Symbols
../mylibs/mylib.so 4-6
/dev 8-29
/dev/zero 10-1
/usr/home/me/mylibs 4-6
/usr/home/me/mylibs/mylib.so 4-6
/usr/home/me/workdir 4-6
/usr/include/netdb.h 7-6
___errno 3-8, 3-9
__div64 8-1
__dtol 8-2
__dtoll 8-2, 8-4
__dtoull 8-3
__ftoll 8-4
__ftoull 8-5, 8-13
__mul64 8-6, 8-9
__rem64 8-7, 8-10
__udiv64 8-8
__umul64 8-9
__urem64 8-10
_cleanup 3-1
_exit() 8-20
_PC_MAX_FILE_SIZE 5-3
_POSIX_PATH_MAX 8-25
_Q_lltoq 8-11
_Q_qtoll 8-12
_Q_qtoull 8-13
_Q_ulltoq 8-14

Numerics
0 (ip) 7-8
1 (icmp) 7-8
128.net.host 6-1, 7-11
17 (udp) 7-8
6 (tcp) 7-8
64-bit file offsets. 5-3

A
a 2-4
accept 7-1
address family 7-3
addseverity 3-2
AF_INET 7-6, 7-16
AIO_INPROGRESS 2-2
aio_result_t 2-1, 2-2, 2-4
aiocancel 2-1
aiocancel() 2-1
aioread 2-2
aioread() 2-2, 2-3
aiowait 2-4
aiowait() 2-4
aiowrite 2-2
aiowrite() 2-3
alarm(BA_OS) 8-19

arpa/inet.h 6-1, 7-11
ASCII 3-6
asctime_r 3-8, 3-9
Asynchronous 2-2
asynchronous 2-1, 2-3, 7-22
asynchronous errors 7-19
asynchronous I/O 2-2, 2-4
atomically 7-17

B
BA_ENV 5-4, 9-21
BA_LIB 3-5
BA_OS 2-2, 3-6, 5-4, 8-27, 8-28, 9-15, 9-24
bind 7-3
bind(3N) 7-1
bytes 7-7

C
C language 6-2, 7-12
caddr_t 5-2, 6-3, 7-14
calling thread 3-9
child process 9-4
Class A network 6-1, 7-11
Class B network 6-1, 7-11
clnt_stat rpc_broadcast_exp 6-3
close(2) 7-4, 7-19
close(BA_OS) 2-2
cond_broadcast 9-1, 9-2
cond_broadcast() 9-2
cond_destroy 9-1
cond_destroy() 9-1
cond_init 9-1
cond_init() 9-1
cond_signal 9-1
cond_signal() 9-2
cond_t 9-1
cond_timedwait 9-1, 9-2, 9-3
cond_timedwait() 9-2
cond_wait 9-1, 9-2
cond_wait(9-2
cond_wait() 9-2
condition variables 9-1
connect 7-4
connect(3N) 7-14, 7-21
connected 7-14
connected peer 7-7
connections 7-13
const char 5-2, 8-25
const int 6-3
const sigset_t 9-24
const struct timeval 2-4
const time_t 3-8
const u_long 6-3
const xdrproc_t 6-3

Index __

Index-2 SPARC Compliance Definition 2.3 Interface Semantics August 1995

context switching 8-27
controlling terminal 8-18
crypt 3-3
cstime 8-19
ctermid_r 3-8
ctime_r 3-8, 3-9
cutime, 8-19

D
d.d.d.d 6-1
datagram 7-19
datagrams 7-19
debugging 7-19
decryption 3-3, 3-4
DEPPRECATED 8-28
DEPRECATED 8-28
dev/zero 8-28
diagnostic 4-4
DIR 8-25
dirent.h 8-25
dlclose 4-2, 4-3, 4-6
dlerror 4-2, 4-4
dlfcn.h 4-2, 4-4, 4-5, 4-8
dlopen 4-2, 4-3, 4-5, 4-6, 4-7, 4-8
dlopen(3X) 4-8
dlsym 4-6, 4-8
double 8-2, 8-3
DT_FINI 4-2
DT_INIT 4-6
DT_NEEDED 4-1, 4-5
dynamic linker 4-7

E
EACCES 2-1, 7-22
EADDRINUSE 7-3, 7-4
EADDRNOTAVAIL 7-3, 7-4
EAFNOSUPPORT 7-4
EAGAIN 2-3, 8-19, 9-14, 9-16, 9-18
EALREADY 7-4
EBADF 2-3, 7-1, 7-3, 7-4, 7-7, 7-10, 7-13, 7-15, 7-16,

7-19, 7-20
EBUSY 9-6, 9-9, 9-11
ECONNREFUSED 7-4, 7-13
EDEADLK 9-20
EFAULT 8-27, 9-27
EINPROGRESS 7-4
EINTR 2-4, 7-4, 7-15, 7-16, 8-20, 9-2, 9-11
EINVAL 2-1, 2-3, 2-4, 3-2, 7-3, 7-5, 7-17, 9-2, 9-6, 9-

9, 9-11, 9-14, 9-16, 9-17, 9-18, 9-21, 9-24, 9-
27

EISCONN 7-5
EIVAL 3-2
EMFILE 7-22
EMSGSIZE 7-16, 7-17

encrypt 3-3
Encryption 3-4
ENETUNREACH 7-5
ENODEV 7-1
ENOMEM 2-3, 7-1, 7-7, 7-10, 7-15, 7-17, 7-19, 7-20,

7-22, 8-19, 8-27, 9-14, 9-18
ENOPROTOOPT 7-19
ENOSR 7-1, 7-3, 7-5, 7-7, 7-10, 7-15, 7-17, 7-19, 7-20,

7-22
ENOSYS 3-3
ENOTCONN 7-7, 7-20
ENOTSOCK 7-2, 7-3, 7-7, 7-10, 7-13, 7-15, 7-17, 7-

19, 7-20
enumeration 8-23
EOPNOTSUPP 7-2, 7-13
EOVERFLOW 5-3, 5-4
EPROTO 7-2
EPROTONOSUPPORT 7-22
ERANGE 3-9, 8-15, 8-16, 8-21, 8-22, 8-24, 8-25, 8-29
errno 5-4, 7-3
errno.h 3-8
ESRCH 9-12, 9-17, 9-20, 9-21
ETIME 9-2, 9-3
ETIMEDOUT 7-22
EWOULDBLOCK 7-2, 7-14, 7-15, 7-17
exec(BA_OS) 2-2, 8-18, 8-19
execve() 2-2
exit 9-15
exit(BA_OS) 2-2, 8-18, 8-19, 8-20, 8-27
exit(BA_OS). 8-20

F
F_FREESP 5-3
F_GETLK 5-3
F_RGETLK, 5-3
F_RSETLK 5-3
F_RSETLKW 5-3
F_SETLK 5-3
F_SETLKW 5-3
FALSE 9-3
fcntl(2) 7-14, 7-16
fcntl(BA_OS) 5-4, 8-19
fcntl.h 5-2
FdTOx 8-2, 8-3
fflush(BA_OS) 3-1
fflush(NULL) 3-1
fgetgrent 8-15
fgetgrent_r 8-15
fgetpwent 8-16
fgetpwent_r 8-16
FILE 3-8, 5-2, 8-15, 8-16
file descriptor 7-15
float 8-4, 8-5
flockfile 3-8, 3-9

___ Index

August 1995 SPARC Compliance Definition 2.3 Interface Semantics Index-3

fmtmsg 3-2
fork 8-18, 9-2, 9-4
fork() 8-19, 9-2, 9-4
fork1 9-4
fork1() 8-19, 9-4
fpathconf(BA_OS) 5-4
FqTOx 8-12, 8-13
fractional 8-5
fstat() 5-4
FsTOx 8-4, 8-5
full-duplex 7-20
funlockfile 3-8, 3-9
FxTOq 8-11, 8-14

G
getc_unclocked 3-8
getc_unlocked 3-9
getchar_unclocked 3-8
getchar_unlocked 3-9
getcontext 8-27
getcontext(BA_OS) 8-27
getgrent 8-21
getgrent_r 8-21, 8-29
getgrgid_r 3-9, 8-25
getgrnam_r 8-25
gethostbyaddr 7-6
gethostbyname 7-6
getitimer(RT_OS) 8-19
getlogin 8-22
getlogin_r 8-22
getopt 3-5
getpeername 7-7
getprotobyname 7-8
getprotobyname(3N) 7-18
getprotobynumber 7-8
getprotoent 7-8
getpwent_r 8-23, 8-24
getpwent_r() 8-23
getpwnam_r 8-22, 8-25
getpwuid_r 8-22, 8-25
getrlimit(BA_OS) 5-4, 8-18, 8-19
getservbyname 7-9
getservbyport 7-9
getsockname 7-10
getsockopt 7-18
getsockopt(3N) 7-22
gid_t 8-15, 8-16, 8-21, 8-23
global errno 7-3
gmtime 3-9
gmtime_r 3-8, 3-9
grp.h 8-15, 8-21, 8-25

H
hardware-specific serial number 3-6

host entry 7-6
HOST_NOT_FOUND 7-6
hostaddress 7-6
hostname 3-6, 7-6
hosts 7-6

I
I/O operation 2-2
icmp 7-8
ID 9-13, 9-20, 9-23
in_addr 6-1
inet_addr 6-1, 6-2
inet_lnaof 7-11, 7-12
inet_makeaddr 7-11
inet_netof 6-1, 6-2
inet_network 7-11, 7-12
inet_ntoa 6-1, 6-2
INT_MAX 5-3
int64_t 5-2, 5-3
Internet address 6-1, 7-11
INTERNET ADDRESSES 6-1, 7-11
ioctl(2) 7-22
it_interval 8-19
it_value 8-19
ITIMER_REAL 8-19

K
KE_OS 5-4, 9-5, 9-8, 9-10
keyloc 9-19

L
l_linger 7-18
l_onoff 7-18
LD_BIND_NOW 4-5
LD_LIBRARY_PATH 4-6
lf_fcntl 5-2, 5-3
lf_fpathconf 5-2
lf_fseek 5-2
lf_fstat 5-2, 5-3
lf_fstatvfs 5-2, 5-3
lf_ftell 5-2
lf_getrlimit 5-2, 5-3
lf_lseek 5-2
lf_lstat 5-2, 5-3
lf_mmap 5-2
lf_off_t 5-2, 5-3
lf_pathconf 5-2, 5-3
lf_setrlimit 5-3
lf_setrlimitlf_statvfs 5-2
lf_stat 5-2, 5-3
lf_statvfs 5-2, 5-3
limits(BA_ENV) 5-4
limits.h 8-22, 8-29
listen 7-13

Index __

Index-4 SPARC Compliance Definition 2.3 Interface Semantics August 1995

listen(3N 7-1
localtime_r 3-8, 3-9
locks 9-5
login 8-17, 8-24
LOGNAME_MAX 8-22
long 3-6
long double 8-11, 8-12, 8-13, 8-14
long long 8-1, 8-2, 8-3, 8-4, 8-5, 8-6, 8-9, 8-10, 8-11,

8-12, 8-14
lseek() 5-4
lseek(BA_OS) 2-2, 5-4
lstat() 5-4
LWP 9-13

M
main 9-15
main thread 3-9
makecontext 8-27
malloc 8-28
MAP_SHARED 10-1
memcntl(RT_OS) 8-19
Memory 2-3
memory 7-22
memory allocation 8-28
memory mappings 8-18
memory segments 8-18
mmap 8-28
mmap(KE_OS 5-4, 9-1
mmap(KE_OS) 8-18, 8-19, 9-5, 9-8, 9-10
MSG_DONTROUTE 7-16
msg_iov 7-15
msg_name 7-15
MSG_OOB 7-14, 7-16, 7-19
MSG_PEEK 7-14
Multiple processes 10-1
multiple protocol levels 7-18
multiple threads 9-7
multi-threaded 8-19
multithreaded applications 8-21, 8-23
multi-threaded process 8-20
multithreading 3-8, 3-9, 8-25
mutex 9-1, 9-5, 9-6, 9-7
mutex_destroy 9-5
mutex_init 9-5, 9-6, 9-7
mutex_lock 9-2, 9-3, 9-5, 9-6, 9-7, 9-19
mutex_t 9-1, 9-5, 9-7, 9-19
mutex_trylock 9-5, 9-6
mutex_unlock 9-2, 9-5, 9-6, 9-7, 9-19
Mutexes 9-5
mutexes 9-6
Mutual exclusion 9-5
mylib.so 4-6

N
name space 7-3
namelen 7-7
netconfig(4) 7-1
netdb.h 7-6, 7-8, 7-9
netinet/in.h 6-1, 7-11
network is not reachable 7-5
new_level 9-16
new_mask 9-14
nice(KE_OS) 8-18, 8-19
NO_ADDRESS 7-6
NO_DATA 7-6
NO_RECOVERY 7-6
non- daemon threads 9-13
non-blocking 7-1, 7-2, 7-4, 7-17
non-blocking I/O 7-22
non-NULL 9-18
non-zero 3-5, 9-11
normative references 1-1
nsigned long long 8-8
NUL 8-24
NULL 2-4, 3-9, 4-4, 4-6, 4-8, 7-8, 7-14, 7-15, 8-16, 8-

23, 8-25, 9-3, 9-13, 9-14, 9-18, 9-19, 9-20, 9-
24

NULL, 7-9, 9-20

O
o ERANG 8-24
off_t 2-2
orig_mask 9-14
oucp 8-27

P
password 8-23
password database 8-23
pcontext 8-27
peer 7-7
PF_INET 7-21
pfmt.h 3-5
pid_t 8-18, 8-19, 9-4
plock(KE_OS) 8-19
poll 7-16
poll(2) 7-1
poll(3C) 7-4
POSIX 1003.1c 8-19, 8-22, 8-26, 8-29, 9-27
POSIX_PATH_MAX 8-29
priocntl(RT_OS) 8-18, 8-19
priority 9-17
Procedure Call domain name 3-7
process 9-4
process group ID 8-18
process ID 9-4
protocol 7-2
protocol name 7-9

___ Index

August 1995 SPARC Compliance Definition 2.3 Interface Semantics Index-5

protoent 7-8
ptrace(KE_OS) 8-19
putc_unclocked 3-8
putc_unlocked 3-9
putchar_unlocked 3-8, 3-9
pwd.h 8-16, 8-25

Q
quad precision 8-11
quad precision value 8-14

R
rand_r 3-8, 8-25
read() 2-2
read(2) 7-15, 7-21
read(BA_OS) 2-2
readdir 8-25
readdir_r 8-25
readers/writer 9-8
readers/writer lock 9-8
Read-Only Memory 3-6
recv 7-14
recv(3N) 7-16, 7-21
recvfrom 7-14
recvmsg 7-14
reentrant 3-9, 8-25
resultproc_t 6-3
rpc/rpc.h 6-3
rpc_broadcast 6-3
rpc_broadcast_exp 6-3
RTLD_LAZY 4-5, 4-6
RTLD_NOW 4-5
rw_rdlock 9-8, 9-9
rw_tryrdlock 9-8, 9-9
rw_trywrlock 9-8, 9-9
rw_unlock 9-8, 9-9
rw_wrlock 9-8, 9-9
rwlock_destroy 9-8
rwlock_init 9-8
rwlock_t 9-8
rwlp 9-9

S
sbrk 8-28
sbrk(0) 8-28
SCD 2.1 3-7
SCD 2.3 1-1, 3-7
SCD2.3 8-19
SCD-conforming 4-2
scheduler class 8-18
sema_destroy 9-10
sema_init 9-10
sema_post 9-10, 9-11
sema_t 9-10

sema_trywait 9-10, 9-11
sema_wait 9-10, 9-11
semadj 8-19
semaphore 9-10
semop(KE_OS) 8-19
send 7-16
send(3N) 7-21
sendmsg 7-16
sendtol 7-16
setcontext 8-27
set-group-ID mode bit 8-18
setkey 3-3
setlabel 3-5
setlabel() 3-5
setsockopt 7-18
set-user-ID mode bit 8-18
shared object 4-2, 4-5, 4-8
shm_nattach 8-18
shmop(KE_OS) 8-18, 8-19
shutdown 7-20
SI_ARCHITECTURE 3-6
SI_HOSTNAME 3-6
SI_HW_PROVIDER 3-6, 3-7
SI_HW_SERIAL 3-6, 3-7
SI_MACHINE 3-6
SI_RELEASE 3-6
SI_SRPC_DOMAIN 3-7
SI_SYSNAME 3-6
SI_VERSION 3-6
SIG_BLOCK 9-24
SIG_DFL 8-18
SIG_HOLD 8-18
SIG_IGN 8-18
SIG_SETMASK 9-14, 9-24
SIG_UNBLOCK 9-24
sigaction 9-24, 9-27
sigaction(BA_OS) 8-27
sigdelset 9-14
sigfillset 9-14
SIGINT 9-14
SIGIO 2-1, 2-2, 2-4
signal 7-22, 9-2, 9-14
signal mask 9-24, 9-27
signal(BA_ENV) 9-21
signal(BA_OS) 8-19
signal.h 9-21, 9-24, 9-27
SIGPIPE 7-19, 7-22
SIGPOLL 7-22
sigprocmask(BA_OS) 8-27
SIGSEGV 9-14
sigset_t 9-14, 9-24, 9-27
SIGURG 7-22
sigwait 9-27
SIGWAITING 9-24

Index __

Index-6 SPARC Compliance Definition 2.3 Interface Semantics August 1995

single precision 8-5
size_t 5-2, 8-22
SO_BROADCAST 7-18, 7-19
SO_DEBUG 7-18, 7-19
SO_DONTROUTE 7-16, 7-18, 7-19
SO_ERROR 7-19
SO_KEEPALIVE 7-18, 7-19
SO_LINGER 7-18, 7-19
SO_OOBINLINE 7-18, 7-19
SO_RCVBUF 7-19
SO_REUSEADDR 7-18, 7-19
SO_SNDBUF 7-19
SO_TYPE 7-19
SOCK_DGRAM 7-4, 7-21, 7-22
SOCK_SEQPACKET 7-13, 7-21, 7-22
SOCK_STREAM 7-1, 7-2, 7-4, 7-13, 7-16, 7-19, 7-21,

7-22
socket 7-1, 7-4, 7-7, 7-10, 7-13, 7-16, 7-19, 7-20, 7-21,

7-22
socket level 7-22
socket(3N) 7-1, 7-3, 7-4, 7-14, 7-16
sockets 7-18, 7-19
SOL_SOCKET 7-18
SPARC 5-1
SPARC Architecture 5-3
stack_size 9-14
stat() 5-4
stat(BA_OS) 5-4
statvfs(BA_OS) 5-4
stdio.h 3-8
stdlib.h 3-8, 8-22, 8-29
stime 8-19
stream 3-9
STREAMS 7-1, 7-2, 7-3, 7-4, 7-5, 7-7, 7-10, 7-15, 7-

17, 7-19, 7-20, 7-22
string.h 3-8
strtok_r 3-8
struct dirent 8-25
struct group 8-15, 8-21, 8-25
struct hostent 7-6
struct in_addr 6-1, 7-6, 7-11
struct iovec 7-14
struct lf_rlimit 5-2, 5-3
struct lf_stat 5-2, 5-3
struct lf_statvfs 5-2, 5-3
struct msghdr 7-14, 7-16
struct passwd 8-16, 8-23, 8-25
struct protoent 7-8
struct servent 7-9
struct sockaddr 7-1, 7-3, 7-7, 7-10, 7-14, 7-16
struct tm 3-8
swapcontext 8-27
synch.h 9-1, 9-5, 9-8, 9-10
synchronize threads 9-1

synchronous 2-4
sys/asynch.h 2-1, 2-2, 2-4
sys/fstatvfs.h 5-2
sys/mman.h 5-2
sys/resource.h 5-2
sys/socket.h 6-1, 7-1, 7-3, 7-4, 7-6, 7-11, 7-14, 7-16,

7-18, 7-21, 7-22
sys/sockets.h 7-10, 7-13
sys/stat.h 5-2, 5-3
sys/statvfs.h 5-3
sys/systeminfo.h 3-6
sys/time.h 2-4, 5-2
sys/types.h 5-2, 5-3, 6-1, 7-1, 7-3, 7-4, 7-6, 7-10, 7-

11, 7-13, 7-14, 7-16, 7-18, 7-21, 8-18, 9-4
sys/uio.h 7-14
sysinfo 3-6
system calls 8-20
system information 3-6
system(BA_OS) 8-19

T
target_thread 9-12, 9-17, 9-21
TCP 7-18
tcp 7-8, 7-9
TCP protocol 7-18
tell 5-2, 5-3
THR_BOUND 9-13
thr_continue 9-12, 9-13
thr_create 8-19, 9-13, 9-14, 9-15, 9-16, 9-20
thr_create) 9-16
THR_DAEMON 9-13
THR_DETACHED 9-13
thr_exit 9-13, 9-14, 9-15
thr_getconcurrency 9-16
thr_getprio 9-17
thr_getspecific 9-18, 9-19
thr_join 9-14, 9-15, 9-20
thr_keycreate 9-15, 9-18, 9-19
thr_kill 9-21
thr_kill() 9-21
thr_main 9-25
thr_min_stack 9-13, 9-14, 9-22
THR_NEW_LWP 9-13, 9-16
thr_self 9-23
thr_self() 9-23
thr_setconcurrency 9-13, 9-16
thr_setprio 9-17
thr_setspecifi 9-19
thr_setspecific 9-18
thr_sigsetmask 9-14, 9-24
thr_suspend 9-12
THR_SUSPENDED 9-13
thr_yield 9-26
thread 9-13, 9-15, 9-16, 9-20, 9-21, 9-22, 9-23, 9-24,

___ Index

August 1995 SPARC Compliance Definition 2.3 Interface Semantics Index-7

9-25, 9-27
thread.h 9-3, 9-7, 9-9, 9-11, 9-12, 9-13, 9-15, 9-16, 9-

17, 9-18, 9-20, 9-21, 9-22, 9-23, 9-24, 9-25, 9-
26

thread_key_t 9-18, 9-19
thread_t 9-12, 9-13, 9-14, 9-17, 9-20, 9-21, 9-23
thread’s ID 9-15
threads 9-3, 9-10, 9-16, 9-17
thread-specific 9-18
time.h 3-8
time_t 3-8
TIMEOUT 9-3
timeout 6-3
times(BA_OS) 8-19
timestruc_t 9-1, 9-3
timeva 2-4
TLD_LAZY 4-8
tms 8-19
tms_utime 8-19
TRY_AGAIN 7-6
ttyname 8-29
ttyname() 8-29
ttyname_r 8-29
tv_sec 2-4
tv_usec 2-4

U
u_long 6-3
ucontext.h 8-27
ucontext_t 8-27
ucp 8-27
udp 7-8, 7-9
uid_t 8-16, 8-23, 8-25
uint64_t 5-3
umask(BA_OS) 8-18, 8-19
uname 3-6
unblock 9-24
unistd.h 8-18, 8-28, 9-4
UNIX 3-6
UNIX_SV 3-6
unnamed socket 7-3
unsigne 8-14
Unsigned 64 bit 8-9
unsigned int 3-8
unsigned long 6-1
unsigned long long 8-3, 8-5, 8-9, 8-10, 8-13, 8-14
USYNC_PROCESS 9-1, 9-5, 9-8, 9-10
USYNC_THREAD 9-1, 9-5, 9-7, 9-8, 9-10

W
wait(BA_OS) 8-19
waittime 6-3
write() 2-2
write(2) 7-21

write(BA_OS) 2-2

X
xdrproc_t 6-3

