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P re face

Introduction

Welcome to SPARC-V8E, the real-time / embedded extension of SPARC, the most preva-
lent RISC architecture for general purpose computing. SPARC-V8E adds instructions for
increased performance and fast interrupt response time, defines critical system features
and provides a reference architecture to support real-time debugging.

SPARC-V8E is a microprocessor specification created by the SPARC Embedded Commit-
tee of EuroSPARC and reviewed by the SPARC Architecture Committee of SPARC Inter-
national. SPARC-V8E is not a specific chip; it is an architectural specification that can be
implemented as a microprocessor by anyone securing a license from SPARC Interna-
tional.

EuroSPARC is an open membership SPARC user group in Europe who counts among its
members real-time / embedded computer makers, semiconductor designers and manufac-
turers, as well as software development tools and operating systems vendors. SPARC
International is a consortium of computer makers with membership open to any company
in the world. The SPARC Embedded Committee has been chartered to enable and support
the use of SPARC as the embedded architecture of choice. The SPARC Architecture Com-
mittee is composed of voting members each of whom represents one of SPARC Interna-
tional’s Executive Member companies.

General purpose architectures are normally evolved to anticipate increasing demands of
applications as well as to take advantage of state-of-the-art technology. SPARC-V8 and
V9 are good examples. The Embedded Committee of EuroSPARC has identified an addi-
tional direction, that of creating a chip architecture that can bring RISC research and expe-
rience to real-time / embedded systems at volume prices. By using SPARC-V8
architecture as the base for enhancement, the Embedded Committee of EuroSPARC
allows both workstations and embedded systems to share the benefits of volume prices and
ongoing research. And the simplicity of V8 implementation has already made it a prefer-
ence for custom modular chips such as the ones being designed for the SMILE project, a
major European investment The resulting real-time/embedded extension of the V8 archi-
tecture creates a processor with high performance suitable for operating systems ranging
from Solaris (tm), down to fully predictable, high speed real-time operation on minimum-
sized executives. It also ensures that this processor, unlike others that were dedicated only
to real-time / embedded use, will be long lived because it will profit from all of the innova-
tion and investment going into the SPARC chips for workstation use.
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Learning from experience obtained from Fujitsu’s “SPARClite” chips, “DIVIDE STEP”
instructions have been introduced to minimize interrupt response time. Additional instruc-
tions such as SCAN and MAC are intended to provide hardware support for high perfor-
mance execution. The MMU has been extended, e.g. it supports global context and
optional protection of a smaller page size. System features have been added: input han-
dlers, interrupt mechanisms, counters, timers, pulsers. Finally, a complete real-time debug
architecture has been defined to support breakpointing, tracing and emulation.

Architecture compatibility for implementations, is based on the common denominator, the
V8 Architecture definition and enhancements. Compliance with the specification can be
obtained either via complete H/W implementation or by instruction emulation.

Audience for this Specification

The audience for this specification includes implementors of the architecture and develop-
ers of SPARC-V8E system software (simulators, compilers, debuggers, and operating sys-
tems, for example). Software developers who need to write SPARC-V8E software in
assembly language will also find this information useful.

Where to Start?

If you are new to the SPARC architecture, read The SPARC Architecture Manual, Version
8 for background. Then look into the subsequent sections and annexes of this document
for more details in areas of interest to you.

If you are already familiar with SPARC-V8, you will want to review the list of new fea-
tures listed below and in the next section, Scope.

Specification Contents

The first section, Scope, describes the overall content of the document, and its relationship
to SPARC-V8E. Section 2, “Instructions,” reviews the Instruction Set Architecture (ISA)
Extensions and enhancements to ASI accessibility. Section 3, “Memory Management
Unit,” is a description of the Memory Management Unit (MMU), Section 4, “Traps”,
describes the single-vector trapping features, Section 5, “Peripheral Extensions”, covers
Timers, Counters, and Interrupt Facilities, and Section 6, “Diagnostic Facilities” includes
instruction tracing, setting and using breakpoints, single stepping and emulation.
Annexes follow the sections and include the following: Annex A, “Programming Tech-
niques”, Annex B, “Alternative Window Usage Models”, and Annex C, “Summary of
Operation codes, ASI’s and ASR’s”.

Acknowledgments

The members of the SPARC- V8 Embedded architecture committee, set up in December
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1991, devoted a great deal of time describing and discussing the design of the SPARC-
V8E architecture. Originators of various sections of the initial draft specification include:
Frits Zandveld (Philips) - Secretary, MMU, Counters, Timers and Interrupts; Bruce
McKeever (Fujitsu)- instructions, counters and timers, interrupt control, diagnostics; Anna
Hedbrant (Ellemtel)- MMU; Patrik Strömblad (Ellemtel)- MMU; Yves Roumazeilles
(SAGEM)- Counters and timers; Cesar Douady (MHS)- general comments and instruc-
tions; Rafael Guzman (TGI)- Chair; Alain Fanet (MHS)- Chair.

Additional contributors and reviewers include: Max Baron (Sun); Edmund Kelly (Sun)-
MMU; Rudolf Usselman (S-I)- instructions; Les Kohn (Sun)- evaluation of bitfield pro-
posals; David Weaver (Sun)- interrupts, counters, timers, and overall editing and review
support.

Others who contributed either via the “Task Force” to get the committee started or through
the SPARC-V8E Architecture Subcommittee to finalize and produce the final specification
include: J.J. Whelan (S-I)- Chair; Bruce McKeever (Fujitsu); Craig Nelson (LSI); Edmund
Kelly (Sun); Mike Rayfield (TI); and Dalibor Vrsalovic (SunSoft).

Final consolidation of draft material and technical editing was provided by Morris Enfield
(Enmor Associates) on contract to SPARC International.
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1   Scope

This supplementary specifica t ion  defines a  32-bit  enhanced SPARC-V8 arch i-
tecture ca lled SPARC-V8E tha t  is upward-compat ible with  the exist ing 32-bit
SPARC-V8 processor  a rch itecture. This specifica t ion  includes, bu t  is not  lim-
ited to, the definit ion  of the enhanced inst ruct ion  set , ASI access, t rap model,
memory management  un it , diagnost ic facilit ies, and t imers and counters. Spe-
cific implementa t ions may select ively include one or  more of the specified sup-
plementary fea tures and funct ions.

1.1   SPARC-V8E Attribu te s

SPARC-V8E is a  CPU in s tru ction  se t arch ite ctu re  (ISA) and a se t o f fac il-
it ie s  to improve programmer  cont rol over  processor  behavior  and to improve
processor  responsiveness to the ou tside wor ld in  the context  of embedded
applica t ions. It  is der ived from SPARC-V8. Both  a rch itectures come from a
reduced inst ruct ion  set  computer  (RISC) lineage. As a rch itectures, SPARC-
V8E and SPARC-V8 provide a  basis for  a  spect rum of ch ip and system imple-
menta t ions a t  a  var iety of pr ice/per formance poin ts. SPARC-V8E may be
employed in  a  range of applica t ions, including most  embedded applica t ions
such  as rea l-t ime, process cont rol, medica l, imaging, digita l t elecommunica-
t ions, loca l a rea  networking (LAN), and other  t ime-cr it ica l and dedica ted or
embedded scien t ific and commercia l applica t ions.

1.1.1   De s ign  Goals

SPARC-V8E, as specified, is a  pla t form for  opt imizing and standardizing soft -
ware systems, diagnost ic tools, and h igh-per formance hardware implementa-
t ions.

1.1.2   Arch ite ctu ral En h an ce m e n ts

SPARC-V8E is der ived from SPARC-V8, which  in  tu rn  is der ived from SPARC,
which  was formula ted a t  Sun  Microsystems in  1985. SPARC is based on  the
RISC I & II designs engineered a t  the University of Ca liforn ia  a t  Berkeley
from 1980 through 1982. Enhancements have been  made based on  require-
ments for  improved per formance and lower  cost  of opera t ion  in  t ime-cr it ica l
and dedica ted processing environments.
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The a rch itecture provides for  a  spect rum of input /ou tput  (I/O) and memory-
management  un it  (MMU) sub-arch itectures. SPARC-V8E assumes tha t  these
elements a re best  defined by the specific requirements of par t icu la r  systems.
Note tha t  they a re invisible to near ly a ll user  programs, and the in ter faces to
them can  be limited to loca lized modules in  an  associa ted opera t ing system.

1.2   SPARC-V8E Fe atu re s

SPARC-V8E includes the following enhanced fea tures:

— Divide Step Inst ruct ion :

The Divide Step inst ruct ion , DIVScc , provides for  implementa t ion
of an  in ter rupt ible divide a lgor ithm.

— Scan Inst ruct ion :

The Scan  inst ruct ion , SCAN, provides the capability for  qu ickly
loca t ing the first  bit  set , clea red, or  differ ing from the sign  in  a  word.
Such  opera t ions occur  frequent ly in  embedded systems, especia lly
for  scheduling and in ter rupt  case detect ion .

— Mult iply Accumula te Inst ruct ion :

The Mult iply Accumula te inst ruct ion , MAC, enhances e.g. (in teger )
fast  Four ier  t ransform opera t ions.

— Alterna te Window Poin ter  Register :

The Alterna te Window Poin ter  Register, AWP, helps reducing the
amount  of t ime a  SPARC-V8E is not  in ter rupt ible dur ing register
save opera t ions.

— Par t ia l Write Program Sta tus Word:

Write Program Sta tus Word, WRP SR , with  a  specia l va lue for  the
rd field a llows a tomic set t ing and reset t ing of the ET field in  the Pro-
gram Sta tus Word.

— Non-Pr ivileged ASI Access:

Allows LOAD and STORE from Alterna te space inst ruct ion  access
to some ASI’s in  user  mode.



SPARC-V8E

1 Scope 7

— MMU:

Improvements have been  made to the Reference MMU to provide
enhanced funct iona lity while reta in ing compat ibility with  the
SPARC-V8 Reference MMU.

The improvements include software table walk, page protect ion
down to 1k bytes, bypass of context  number  checking in  the address
t ransla t ion  phase, and TLB ent ry locking.

— Traps:

A facility suppor t ing single vector  t rapping has been  provided.

— Inter rupt  Handlers:

A set  of fea tures to shape and pr ior it ize in ter rupt  signa ls has been
added.

— Timers/Counters/Pulsers:

Improved t imer /counter /pu lser  facilit ies will be provided as par t  of
the Per iphera l Extensions expanded funct iona lity.

— Diagnost ic Facilit ies:

In it ia l diagnost ic fea tures have been  provided based on  Fujit su’s
SPARCLite Debug Suppor t  Unit  specifica t ion .

1.3   SPARC-V8E De fi n ition
The SPARC Version  8 embedded a rch itecture, SPARC-V8E, is defined by the
sect ions and normat ive annexes of th is document . A cor rect  implementa t ion  of
the a rch itecture provides for  execut ion  of a  program st r ict ly according to the
ru les and a lgor ithms specified in  the sect ions and normat ive annexes. The
informat ive annexes provide supplementary in format ion  such  as program-
ming t ips, expected usage, and assembly language syntax. These annexes a re
not  binding on  an  implementa t ion  or  user  of a  SPARC-V8e system.

The Architecture Commit tee of SPARC In terna t iona l has sole responsibility
for  cla r ifica t ion  of the definit ions in  th is document .
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1.4   SPARC-V8E Com plian ce

Compliance to th is specifica t ion  may be cla imed only by implementa t ions
which  have been  submit ted to SPARC In terna t iona l for  t est ing and which
have been  issued a  cer t ifica te of compliance. Test ing and cer t ifica t ion  of
SPARC-V8E compliance requires tha t  the implementa t ion  a lso be tested and
cer t ified as SPARC-V8 complian t  with  the except ion  of SPARC-V8E funct ion-
a lity which  differs from SPARC-V8.

A complian t  implementa t ion  need not  implement  a ll of the fea tures descr ibed
in  sect ion  1.2 or  Annex D of th is document . Each  of the fea tures iden t ified in
sect ion  1.2 or  Annex D can  be individua lly implemented and cer t ified as com-
plian t . In  order  for  a  fea ture to be so cer t ified it  must  be implemented as
defined in  th is document . Cla ims of compliance to th is specifica t ion  must  have
the form, “Complian t  to SPARC-V8E, Release 1 <fea ture list>” where <fea ture
list> is the list  of fea tures cer t ified as tested to be complian t  by SPARC In ter -
na t iona l. Compliance to SPARC-V8E must  not  be cla imed without  the fea ture
list .

Annex D of th is document  formally list s a ll fea tures and their  lega l combina-
t ions.

Pr ior  to compliance test ing, a  sta tement  must  be submit ted to SPARC In ter -
na t iona l for  each  implementa t ion  tha t :

— specifies the individua l fea tures and funct ions of th is specifica t ion
selected for  implementa t ion  and to be tested for  compliance

— specifies the implementa t ion  choice for  a ll implementa t ion  dependen-
cies

— specifies any subset t ing of funct ion  as a llowed by th is document

This in format ion  becomes the proper ty of SPARC In terna t iona l and may be
released publicly as par t  of a  list  of complian t  implementa t ions.
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2   In stru ction s

The following inst ruct ions and Non-Pr ivileged ASI access have been  added to
SPARC-V8 in  order  to improve per formance and provide addit iona l funct ion-
a lity especia lly for  embedded, t ime cr it ica l applica t ions. Divide Step, Scan ,
and ASI Non-Pr ivileged access may be included individua lly or  in  any combi-
na t ion  for  implementa t ion  in  a  SPARC-V8E implementa t ion .
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2.1   Div ide  Ste p

Format  (3):

De scription :

The DIVScc inst ruct ion  per forms one bit -cycle of a  non-restor ing, sh ift -before-
add, signed or  unsigned division . In it ia lly, the more sign ificant  ha lf of the div-
idend is in  the Y register, the less sign ificant  32 bit s a re in  r [rs1]. The divisor
is in  r [rs2]. Subsequent ly, the more sign ificant  ha lf of the par t ia l remainder  is
in  the Y register, the less sign ificant  ha lf is in  r [rs1], a long with  another  quo-
t ien t  bit .

DIVScc opera tes as follows:

(1) The true sign  is formed using the nega t ive (n) and overflow (v) in teger
condit ion  codes from the Processor  Sta tus Register.

True sign= PSR.n xor PSR.v.

(2) The rem ainder is formed by left  sh ift ing the Y register  (in it ia lly the
more sign ificant  word of the dividend) one bit , and set t ing the least  sig-
n ificant  bit  of the remainder  equa l to the most  sign ificant  bit  of r [rs1]
(in it ia lly the less sign ificant  word of the dividend).

(3) The divisor is r [rs2] if the i field is 0, or sim m 13, sign-extended to 32
bit s, if the i field is 1.

(4) If true sign  = 0 (+), the ALU computes (rem ainder - divisor). If true
sign = 1 (-), the ALU computes (rem ainder + divisor).

(5) Car ry-out  from the ALU opera t ion  is noted as c0. The nega t ive (n) con-
dit ion  code is set  to bit  31 of the ALU resu lt . The zero (z) condit ion  code
is set  if the ALU resu lt  is 0 and the true sign  equa ls Y[31], otherwise it
is cleared.

opcode op3 operation
DIVScc 011101 Divide Step (and modify cc’s)

Suggested Assembly Language Syntax
divscc regrs1, reg_or_imm, regrd

31 141924 18 13 12 5 4 02530 29

10 op3 unused (zero)rd rs1 i=0 rs2

10 op3rd rs1 i=1 simm13
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(6) The new true sign  is formed as (true sign an d n ot Y[31]) or (n ot  c0
an d  (true sign or n ot Y[31]))

(7) The overflow (v) condit ion  code is formed as new true sign xor bit  31 of
the ALU resu lt . The car ry (c) condit ion  code is set  to n ot new true sign .
Y is set  to the 32-bit  ALU resu lt . If r [rd ] is not  0, then  r [rd ] is set  to
r [rs1], left  sh ifted one bit  with n ot new true sign  (the new quot ien t  bit )
in  the least  sign ificant  bit  posit ion .

Note:
Usage of DIVScc in  other  a lgor ithms than  in  a  division  a lgor ithm is not  advised. This
same warn ing applies to MULScc in  SPARC Version  8 and Version  9.

Re gis te r Man ipu lation  De scription :

Divide step per forms one bit  cycle of a  non-restor ing, sh ift -before-add, signed
or  unsigned division . It  opera tes on  a  signed or  unsigned dividend with  an
unsigned divisor. It  uses standard condit ion  code bit s to ca r ry t rue sign ,
remainder, and previous quot ien t  bit  in format ion  from one cycle to the next .
Therefore, standard SPARC inst ruct ions a re sufficien t  for  cor rect  in it ia liza -
t ion  for  signed or  unsigned divide, elimina t ing the need for  a  specia l divide
in it ia lize inst ruct ion . Use of sh ift -before-add and the funct iona l equiva len t  of
33rd- bit  add/subt ract  main ta ins remainder  and quot ien t  in  cor rect  rela t ive
posit ion  with  respect  to their  holding registers, elimina t ing the need for  a  spe-
cia l divide termina te inst ruct ion  to sh ift  the last  quot ien t  without  sh ift ing the
last  remainder.

For  non-overflow divisions, the non-restor ing division  leaves a  last  par t ia l
remainder  bounded by: absolu te divisor - 1 (| divisor | - 1), and, - absolu te divi-
sor  (-| divisor | ). With  t rue sign  last  par t ia l remainder  car r ied by standard
condit ion  code bit s, standard SPARC inst ruct ions a re sufficien t  to produce the
cor rect  remainder, elimina t ing the need for  a  specia l remainder  cor rect ion
inst ruct ion .

Note:
Expected use of divide step will have r [rd ] = r [rs1]. A usefu l except ion  is the first
divide step of 32 by 32 signed division , which  preserves the or igina l dividend for  la ter
test ing by r [rd ] = r [rs1].

Traps:

none
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2.2   Scan

Format  (3):

De scription :

The SCAN inst ruct ion  can  be used to return  the loca t ion  of the first  bit  in
r [rs1] tha t  differs from it s most -sign ificant  bit  or  the loca t ion  of the first  1 bit
or  first  0 bit  of source register  r [rs1].

SCAN works as follows:

(1) The va lue in  r [rs1] is “xore d” on  a  bit -wise basis with  the mask
obta ined by sh ift ing r igh t  by one bit  and sign-extending the va lue in
r [rs2] if the i field is 0, or  with  sign_ext (sim m 13) if the i field is 1.

(2) The number  of the bit  posit ion  of the first  “1” in  the resu lt  from (1)
above is returned to the dest ina t ion  register  r [rd ]. Bit  numbers range
from 0 for  the most  sign ificant  bit  to 31 for  the least  sign ificant  bit . A
“1” in  the most  sign ificant  bit  (MSB) posit ion  returns a  va lue of 0, while
the first  “1” in  the least  sign ificant  bit  (LSB) posit ion  returns a  va lue of
31. If no bit  is set  (the two operands a re iden t ica l), an  implementa t ion
dependent  unsigned va lue grea ter  than  or  equa l to 32 is wr it ten  to
r [rd ].

Implementa t ion  notes:
Use of an  unsigned va lue with  bit  31 set  (bu t  in  any case grea ter  than  or  equa l to 64)
is recommended for  use in  new implementa t ions.The opcode for  Scan  is op=2, op3=
2C. The Scan  inst ruct ion  conflict s with  SPARC Version  9 opcode for  MOVcc.

Programming Note:
For  por tability, software must  per form unsigned compar isons with  the resu lt  produced
by SCAN, since SCAN may return  a  va lue with  bit  31 set  to ‘1’.

Traps:
none

opcode op3 operation
SCAN 101100 scan for first occurrence of ‘1’ or ‘0’ bit

Suggested Assembly Language Syntax
scan regrs1, reg_or_imm, regrd

31 141924 18 13 12 5 4 02530 29

10 op3 unused (zero)rd rs1 i=0 rs2

10 op3rd rs1 i=1 simm13
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2.3   Mac

Format  (3):

De scription :

These inst ruct ions use ASRxx (xx tbd), Y and ASRyy (yy tbd) as an  accumula-
tor, ASRxx being the most  sign ificant  word, Y the middle word and ASRyy the
least  sign ificant  word.

The product  of both  operands is computed as for  the cor responding MUL
inst ruct ions, bu t  the resu lt  is operand1*operand2+ASRxx| Y| ASRyy. This
resu lt  is stored in  ASRxx (most  sign ificant  word), Y (middle word) and both
r [rd] and ASRyy (least  sign ificant  word).

The width  of ASRxx is implementa t ion  dependant . It s size can  be observed
from the software by wr it ing fu ll 1’s in  it  and reading back to see set  bit s. In
par t icu la r, ASRxx may conta ins no bit s a t  a ll, in  which  case RDASRxx will
return  0.

UMAC and SMAC do not  a ffect  the condit ion  code bit s. UMACcc and SMACcc
set  the condit ion  codes the following way :

N, Z : As specified in  V8, bu t  replacing “product” by “resu lt” (i.e. the accumu-
la ted resu lt ).

V, C : The condit ion  out  of the fina l addit ion , i.e. the resu lt  is computed on  1

opcode op3 ope ration
UMAC tbd Mult iply and accumula te unsigned
UMACcc tbd Mult iply and accumula te unsigned

and modify cc
SMAC tbd Mult iply and accumula te signed
SMACcc tbd Mult iply and accumula te signed

and modify cc

Su gge ste d  Asse m bly  Lan gu age  Syn tax
umac regrs1, reg_or_im m , regrd
umaccc regrs1, reg_or_im m , regrd
smac regrs1, reg_or_im m , regrd
smaccc regrs1, reg_or_im m , regrd

31 141924 18 13 12 5 4 02530 29

tbd op3 unused (zero)rd rs1 i=0 rs2

tbd op3rd rs1 i=1 simm13
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more bit  than  the width  of the accumula tor  and :

C is set  if the ext ra  bit  is set  and the opera t ion  is unsigned.

V is set  if the ext ra  bit  is differen t  from the most  sign ificant  bit  of the accumu-
la tor  and the opera t ion  is signed.

ASRzz (zz tbd) conta ins 2 bit s :

AccruedOverflow : Bit  1, set  each  t ime V=1.

AccruedCarry : Bit  0, set  each  t ime C=1.

ASRzz is on ly reset  by wr it ing to it .

ASRzz is upda ted even  for  inst ruct ions which  do not  a ffect  condit ion  codes.

The MUL inst ruct ions a lso set s ASRyy to the same va lue as r [rd] and ASRxx
to 0 or  fu ll 1’s depending on  the resu lt  sign . Note tha t  MUL is equiva len t  to
ASRxx| Y| ASRyy=0 followed by MAC.

Traps:

none
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2.4   Alte rn ate  Win dow  Poin te r

Descr ipt ion :

AWP (Alterna te Window Poin ter ) is a  field of ASRxx (no rela t ion  with  previous
sect ion).

PSR conta ins two addit iona l bit s AW (Alterna te Window, place tbd) and PAW
(Previous AW, place tbd) which  a re reset  on  RESET. The cur ren t  window is the
one poin ted to by CWP when AW=0 and the one poin ted to by AWP when
AW=1.

When a  t rap is t aken , in  addit ion  to the normal behavior, AW is copied to PAW
and AW is reset . Upon execut ion  of RETT, PAW is copied back to AW.

This mechanism a llows rout ines which  manipula te windows other  than  the
cur ren t  window (such  as context  switch ing rou t ines) to run  with  ET=1 thus
reducing the maximum in ter rupt  la tency.

2.5   Partia l WRP SR

Descr ipt ion :

When a  WRPSR inst ruct ion  with  a  non  null rd is executed, on ly some fields of
PSR are wr it ten  ra ther  than  a ll the defined fields of PSR.The mapping “rd =>
fields” is tbd. However :

— rd=0 => a ll fields wr it ten  (for  compat ibility)

— rd=tbd => only ET is wr it ten .

The second poin t  a llows to overcome the explicit ly sta ted weakness of V8 (pro-
gramming note 3 of the WRPSR inst ruct ion):

If t raps a re enabled (ET=1), ca re must  be taken  if software is to disable
them (ET=0) since the “RDPSR, WRPSR” sequence is in ter rupt ible -
a llowing PSR to be changed between  the two inst ruct ions - th is
sequence is not  a  reliable mechanism to disable t raps.

2.6   Non -P riv ile ge d ASI Acce ss

In  SPARC-V8E implementa t ions providing for  non-pr ivileged ASI access func-
t ions, LOAD and STORE from Alterna te space inst ruct ions accessing ASI’s
0016 - 7F16 a re pr ivileged inst ruct ions. LOAD and STORE from Alterna te
space inst ruct ions accessing ASI’s 8016 - FF16 a re non-pr ivileged inst ruct ions.
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3 Me m ory Man age m e n t Un it (MMU)

3.1   Ove rvie w

This specifica t ion  descr ibes a  reference MMU for  SPARC-V8E and a  simple
fea ture to indica te cacheability for  those cases where no fu ll reference MMU is
to be implemented: a  min imal MMU. The SPARC-V8E reference MMU is an
extension  to the exist ing reference MMU as descr ibed in  the SPARC-V8 Archi-
tecture Specifica t ion . This specifica t ion  covers the enhancements and modifi-
ca t ions to the exist ing SPARC-V8 reference MMU to suppor t  embedded
applica t ions. It  assumes an  understanding of the a rch itecture of the SPARC-
V8 reference MMU.

The enhanced fea tures and funct iona lity offered by an  embedded SPARC-V8E
reference MMU are covered in  Sect ion  3.2 below. They include:

— Sub-page protect ion  down to 1k byte level

— Suppor t  for  disabling of context  number  match

— Suppor t  for  software table walk

— Suppor t  for  locking TLB ent r ies

The Minimal MMU cacheability cont rol can  be provided in  the case where no
actua l MMU is to be implemented.

3.2   Re fe re n ce  MMU arch ite ctu re

3.2.1   Ove rvie w

The Embedded SPARC-V8E MMU arch itecture has been  enhanced and/or
modified in  four  pr incipa l a reas:

(1) Memory protect ion  has been  extended down to a  level of 1k bytes. This
is done by split t ing 4k byte pages in to four  subpages and providing pro-
tect ion  for  each  of the four  subpages. However, pages a re a lways
a ligned to 4k byte boundar ies, and, 4k bytes remains the min imum
page size tha t  may be addressed.
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(2) Context  Number  match ing in  the Page Descr iptor  Cache (a .k.a . Trans-
la t ion  Lookaside Buffer, or  TLB) has been  provided with  an  opt iona l
bypass. This provides for  establish ing globa l pages (as opposed to on ly
loca l) tha t  a re accessible across process contexts.

(3) Suppor t  has been  provided for  a  software table walk in  addit ion  to the
hardware table walk of the SPARC-V8 MMU.

(4) Suppor t  has been  provided for  locking TLB ent r ies.

Each  of these enhancements a re descr ibed in  the following sect ions as specific
modifica t ions to the exist ing SPARC-V8 reference MMU. No a t tempt  has been
made to provide a  fu ll descr ipt ion  of the exist ing SPARC-V8 reference MMU,
however, some por t ions of the V8 reference MMU arch itecture a re replica ted
here for  background cla r ifica t ion  of the Embedded V8e enhancements.

Note:
The SPARC-V8E MMU Specifica t ion  uses the term TLB in terchangeably with  the
term PDC (as cur ren t ly used in  the V8 reference MMU Specifica t ion).

3.2.2   Virtu al Addre ss  Form at

As defined in  the reference MMU, the 32 bit  address is subdivided in to the fol-
lowing fields:

The lower  12 bit s a re used as an  offset  with in  the physica l page.

Two bit s of the page offset  may be used dur ing the compar ison  phase to pro-
vide protect ion  for  1k byte pages. However, addressing it self is not  modified
and remains based on  a  min imum of 4k byte pages (see physica l address
below).

The three index fields cor respond to lookup keys in to th ree differen t  t ransla -
t ion  st ructures, mapping 4k, 256k, 16M, or  4G of vir tua l addresses.

Implementa t ion  Note:
When only software table walk is suppor ted, then  the above format  does not  have to
be followed in  fu ll and the deta iled st ructure of the tables and their  conten ts a re
purely a  software mat ter. If hardware table walk is suppor ted, t able st ructures and
table elements a re as specified in  a  sect ion  below.

31 1724 18 1112 023

Index 2Index 1 Index 3 Page offset

10 9



SPARC-V8E

3 Memory Management Unit (MMU) 19

3.2.3   P h ys ica l Addre ss  Form at

The physica l address is a  36 bit  field:

Note tha t  the lower  12 bit s of the physica l address a re the same as the lower
12 bit s of the vir tua l address: they a re not  t ransla ted. This a llows the imple-
menta t ion  of vir tua lly addressed, physica lly tagged caches with  set  sizes up to
4k bytes.

Implementa t ion  Note:
Implementa t ion  of a ll 36 physica l address bit s is not  required.

3.2.4   Addre ss  Tran s lation

The vir tua l address a long with  the context  number  a re compared with  the vir -
tua l address tags stored in  the TLB. A match  indica tes tha t  the t ransla t ion
from vir tua l to physica l address is a lready in  the TLB.

When a  miss occurs, system hardware and/or  software (See sect ion  on  Hard-
ware and Software Table Walk), will cause a  t rap tha t  fetches the required
PTE from the st ructures in  memory. Due to sparse popula t ion  and the use of
la rge linear  mappings, a  fu ll set  of st ructures in  most  cases is not  needed.

Access permissions a re checked by hardware for  each  t ransla t ion . If the
requested access viola tes those permissions, a  fau lt  is genera ted and the
appropr ia te sta tus in format ion  is stored in  the Fault  Sta tus Register  and the
Fault  Address Register.

3.2.5   Con te xts

Each vir tua l address is associa ted with  a  “context” number. The management
of context  numbers is the responsibility of the memory management  software.
The context  number  of the cur ren t  running process is stored in  the context
register. In  th is a rch itecture, the context  number  has one purpose:

By compar ing the context  number  in  the TLB ent ry field with  the
vir tua l address context , memory protect ion  between  differen t
processes is provided dur ing address t ransla t ion .

The context  number  can  a lso be used as an  index in to a  list  of t ransla t ion
table st ructures.

35 1112 0

Physical page number (PPN) Page offset
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Implementa t ion  Note:
The range of context  numbers is implementa t ion  dependent , bu t  can  not  be grea ter
than  0...127.

The pr imary difference between  SPARC-V8E and the SPARC-V8 reference
MMU, with  respect  to context  number  match ing, is tha t  the context  number
match  can  be disabled in  SPARC-V8E. When disabled, the compar ison  of con-
text  number  is not  per formed dur ing address t ransla t ion .

3.2.6   Table s

Elements of the V8e MMU table st ructure and conten ts have been  enhanced
to provide for :

— protect ion  down to 1k byte pages

— suppor t  for  disabling context  number  match ing on  address t ransla -
t ion ; th is provides suppor t  for  both  “loca l” and “globa l” pages

The following diagram shows the hardware table walk for  a  match ing vir tua l
address. I3 (6 bit s) may be extended by two bit s (tota l 8 bit s) from the VA page
offset  to provide 256 PTE Level-3 Table en t r ies for  1k byte page protect ion .

.

Figu re  1: Page  Table  Se arch

The root  poin ter  is un ique to each  context . It  is found in  the Context  Table (see
SPARC-V8 reference MMU descr ipt ion).

a PTD

a PTD

a PTD

a PTE

...

...

...

...

...

Root Pointer Level-1 Table

Level-2 Table

Level-3 Table

256 entries 64 entries 64/256 entries

PTD=Page Table Descriptor
PTE=Page Table Entry
I= Index Register

+

+

+

I1

I2

I3

8 bits

6 bits

6/8bits
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3.2.7   Page  Table  De scriptor (P TD)

The Page Table Descr iptor  is shown below. It  has been  enhanced to include a
1k byte subpage protect ion  enable flag:

PTP = Page Table Poin ter  va lue:
The PTP appears on  bit s 35 through 8 of the physica l address
bus dur ing miss processing. The page table poin ted to by a  PTP
must  be a ligned on  a  boundary equa l to the size of the page
table. The sizes of the th ree levels of page tables a re the same
as in  the SPARC-V8 MMU

R = R eserved

KE= 1k byte protect ion  enable (on ly a t  level 2):

KE = 0: I3 provides 6 bit s- 64 page table en t r ies;
page offset  provides 12 bit s- 4k bytes per  page

KE= 1: I3 provides 8 bit s- 256 page table en t r ies;
page offset  provides 10 bit s- 1k bytes per  subpage

ET = 01
Other  en t ry types:
00: inva lid
10: va lid PTE (see PTE below)
11: va lid PTE (see PTE below)

3.2.8   Page  Table  En try  (P TE)

The PTE has been  enhanced in  SPARC-V8E to suppor t  bypassing context
number  match ing on  address t ransla t ion . This opt iona lly provides for  two
types of pages:

— loca l pages, loca l to a  par t icu la r  context

— globa l pages, pages shared between  contexts

31 12 0

PTP ET

3

KE

PTD:

R

4
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PPN = Physica l Page Number  va lue:

The h igh-order  24 bit s of the 36-bit  physica l address of the sub-
page. The PPN appears on  bit s 35 through 12 of the physica l
address bus when  t ransla t ion  completes

CMR = C,M and R bit s as in  V8 reference MMU

ACC = ACC bit s as in  V8 reference MMU

ET = 10: va lid PTE for  “loca l” subpage: per form the context  number
check

11: va lid PTE for  “globa l” subpage: do not  per form the context
number  check

Other  en t ry types:
00: inva lid PTD
01: va lid PTD

3.2.9   Tran s lation  Lookas ide  Bu ffe r (TLB)

Miss processing of the TLB on  vir tua l address t ransla t ion  may be provided by
either  hardware or  software mechanisms or  a  combina t ion  of both . As previ-
ously noted, the TLB is refer red to as a  Page Descr iptor  Cache (PDC) in  the
V8 reference MMU specifica t ion . The terminology has been  upda ted in  th is
supplement  to be consisten t  with  the SPARC-V9 specifica t ion  and indust ry
convent ion .

3.2.9.1   Hardw are  an d Softw are  Table  Walk

(1) Software Table Walk:

Software handling of miss processing uses an  openly defined table orga-
n iza t ion  and layout  for  the TLB. Deta ils on  loading a  TLB element  a re
specified in  the sect ions below on  “Writ ing TLB Ent r ies”.

(2) Hardware Table Walk:

In  the case of hardware miss processing of the TLB dur ing vir tua l
address t ransla t ion , the software user  is st ill required to know how to
prepare the tables to be used by hardware address t ransla t ion  and
table walk. However, the exact  format  of the t ransfer  by hardware from
these tables to a  TLB is t ransparen t  to the software implementor.

31 4 12 0

PPN ETACCCMR

78 5

PTE:
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(3) Hardware and Software Table Walk:

Even  in  the case of exclusive hardware miss processing, there exist
requirements for  software visible in ter faces since software must  in i-
t ia lly const ruct  the tables. For  example, locking of TLB elements can
only be provided by software, even  when the table walk is in  hardware.
Consequent ly such  funct ions as en ter ing a  lock bit  in to the hardware
are deta iled in  the specifica t ion  below. Moreover, even  in  a  fu lly hard-
ware tablewalk environment , reading and wr it ing of TLB elements by
software for  diagnost ic purposes may be usefu l a long with  other  func-
t iona lity.

3.2.9.2   TLB Con te n ts

TLB ent r ies a re specified for  software miss processing and other  software
access to the TLB. The TLB ent ry consist s of two par t s, an  associa t ive and a
da ta  par t . The associa t ive par t  is used dur ing compar ison  match ing with  the
vir tua l address. If an  en t ry matches the vir tua l page address, then  a  physica l
page number  (PPN) is direct ly provided by the da ta  par t  of the TLB to gener -
a te the physica l address. The TLB is composed of the following fields:

• PPN: Physica l Page Number  (up to 24 bit s, implementa t ion  defined)
• C, M, R and ACC bit s (as in  V8)
• OL: Offset  Length  Indica tor :

11: use 12 bit s offset  (1k subpages or  4k byte pages)
10: use 18 bit s offset  (256k byte pages)
01: use 24 bit s offset  (16M byte pages)
00: use 32 bit s offset  (4G byte pages

• VPN: Vir tua l Page Number, 20 vir tua l address bit s compr ised of
Indexes: I1, I2, and I3

• K: 1k byte subpage ident ifier- equa ls two most  sign ificant  bit s of
unt ransla ted 12 bit  VA page offset

• CN: Context  Number
• KE: 1k byte subpage protect ion  indica tor :

KE =1: 1k byte subpage protect ion  is enabled. Match  20 bit s of
VPN plus 2 bit s from K (tota l 22 bit s)

KE = 0: 4k byte page. Match  only 20 bit s of VPN
• V: Valid bit ,

V=1: va lid en t ry.
• G: Globa l bit , enabling switch  for  context  field,

G = 1: do not  check Context  Number  (globa l page)
G = 0: do compare Context  Number  (loca l page)

•TLB- Lock Bit : Locks the TLB ent ry- not  to be changed by tablewalk
hardware; can  only be handled by software.
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3.2.9.3   Addre ss  Tran s lation

The following diagram illust ra tes the compar ison  and match ing of TLB fields
dur ing t ransla t ion  of a  vir tua l address in to a  physica l address:

Figu re  2: TLB Addre ss  Tran s lation

3.2.9.4   Writin g  TLB En trie s -Hardw are  Table  Walk

When hardware miss processing is implemented, the required da ta  elements
can  be der ived from the following sources:

element Source

PPN from the PTE being loaded

C,M,R,ACC from the PTE being loaded

OL (offset length ind) From table walk

VPN-virt page number Virtual Address

CN-Context Number Context Register

KE- protect enable PTD- Level 2 (last read)

V-Valid Bit Set to 1 if Table Walk ok (otherwise not entered)

G-Global Bit from the PTE being loaded (least significant bit of ET)

LB-Lock Bit Only manipulated by Software (can not be changed by hardware)

Table 1: TLB Entry Sources-H/W Table Walk

Index 2Index 1 Index 3 Context Number KE G OL

31 1724 18 1112 023

Index 2Index 1 Index 3 Page offset

910

TLB HIT

Virtual Address

TLB

comcompare compare compare compare

K
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3.2.9.5   Writin g  TLB En trie s - Softw are  Table  Walk

When software miss processing is implemented, the required TLB elements
are ava ilable as a  set  of page descr iptors loca ted in  a  4k byte a rea  in  an  imple-
menta t ion  defined loca t ion  in  ASI space (see TLB Mapping below).

16 bytes a re a lloca ted to each  page descr iptor, hence a  maximum of 256 page
descr iptors can  be suppor ted. Page descr iptor n  is mapped on  the 4 word a rea
sta r t ing a t  byte address 16x n  with in  the 4k byte space.

(1) Word 0 of a  page descr iptor  is the physica l address page descr iptor
word; it  conta ins (in  ASI address space):

(2) Word 1 of a  page descr iptor  is the TLB page descr iptor  word; It  con-
ta ins:

(3) Word 2 of a  page descr iptor  conta ins the Lock Bit ;

(4) Word 3 of a  page descr iptor  is not  used.

Page Descriptor Word 0: Physical Address Data and Control Bits

31 2 1

PPN OLACCCMR

58 047

Page Descriptor Word 1: VA Tag and Control Bits

31 1112 0

Context Number KE V G

123910

VPN •K

31 0

Page Descriptor Word 2: Lock Bit

LB

31 0

Page Descriptor Word 3: NA

Not Used
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3.2.9.6   TLB Mappin g

The following is an  example of a  reference implementa t ion  of MMU fea tures
for  page descr iptor  mapping with in  the implementa t ion  dependent  a lterna te
address space.

With in  th is address space, TLB page descr iptors may be accessed as shown in
the following table:

Implementa t ion  note:
For  software por tability across implementa t ions, 1k byte subpages a re assumed to be
referenced by the same Physica l Page Number  (PPN). However, th is does not  preclude
individua l implementa t ions with  1k byte mapping.

3.3   Cach e ability  Con trol (Min im al MMU)

If the reference MMU is not  implemented, it  may be desirable to cont rol cach-
ing of memory accesses, e.g. to prevent  caching da ta  from blocks where DMA
is in  progress. In  such  cases, the following funct ion  may be implemented:

When the most  sign ificant  bit  (MSB) of an  inst ruct ion  address or  da ta
address equa ls one, the it em referenced is not  cacheable. The remain ing
31 vir tua l address bit s a re used, without  t ransla t ion , as physica l
address bit s.

Word No. Bytes Address

0 4 16n to 16n+3
1 4 16n+4 to 16n+7
2 4 16n+8 to 16n+11
3 4 16n+12 to 16n+15- Not Used

Table 2: TLB Page Descriptor Mapping
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4 Traps

4.1   Overview

This section contains enhancements to the SPARC-V8 trap specifications. Vectoring all
traps through a single vector, single-vector trapping, can improve performance and mem-
ory utilization if all trap service routines can fit into cache memory.

4.2   Single-Vector Trapping

As an alternative to the standard SPARC-V8 trap mechanism, a single vector trap mecha-
nism is provided in SPARC-V8E. When this mechanism is implemented:

•t rap type = 0: reset - vectors to a  fixed physica l address, 0x0
•t rap type > 0: a ll other  t raps- vector  to Trap Base Address + 0

After a trap has been taken, its Trap Type can be determined by reading the Trap Type
field, TT, of the Trap Base Register (TBR). This can be used by software to determine sub-
sequent processing of the trap. The trap base register has the same layout as in SPARC-
V8:

Single vector trapping can save code space and improve the response time of traps, since
the most frequent trap service routines for a given application may fit and be locked in
cache as needed.

Single vector trapping is enabled by setting the SVT flag, bit 0 of ASR 17, to a 1. A reset
trap clears the SVT flag, making V8e implementations consistent with the SPARC-V8
specification.

All other trap features are as specified in the SPARC-V8 specification and the reader is
referred to that document for their detailed description.

Trap Base Address (high order 20 bits) 0 0 0 0

Trap Base Register

Trap Type (tt)

31 12 03411
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5 Pe riph e ral Exte n s ion s

5.1   Overview

This section supplements the SPARC-V8 features and functions in areas peripheral to the
basic processor such as: input handlers, interrupt mechanisms, timers, counters and
pulsers. The peripheral extensions may be included individually in specific implementa-
tions.

The input handler described in 5.2 can be used to shape, buffer, mask and reduce noise on
any inputs. Control of the features (polarity, noise immunity, buffering, masking) is con-
trolled on an input - by - input basis: one register controls all such features for one input.

The interrupt prioritizer as in 5.3 makes use of input handlers as in 5.2; it furthermore
merely prioritizes interrupts in one or more levels.

The integrated interrupt request controller as in 5.4 combines functions comparable to
those of of input handlers as in 5.2 and prioritizer as in 5.3; furthermore control is on a
function - by - function basis: one register controls polarity and noise reduction for all
inputs; one register controls all masks, etc. This difference in control philosophy reflects
two sets of user desires.

The counter-timer-pulser as in 5.5 standardizes a rather simple but nevertheless versatile
counter, prescaler and counter output control construction.

The simple counters as in 5.6 support routine capabilities such as DRAM refresh signal-
ing. The simple timers as in 5.6 support more demanding tasks such as periodic interrupt,
simple and watchdog timeout signaling and square wave generation.

5.2   Input Handler

A generalized Input Handler for SPARC-V8E is specified. An Input Handler can drive the
interrupt handling circuitry or drive or control a timer or counter. Input signals are first
handled by a standardized edge control, noise immunity control, buffer and enable circuit.
Noise immunity is attained by synchronizing the input sample clock with the processor
clock. The input sample clock may have the same period as the processor clock or it may
be divided down. The ratio of processor clock to input sample clock is an implementation
parameter. The number of samples taken can be controlled.

Control of each separate input line is done via one control register, controlling edge as
well as number of samples, buffering and masking.
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5.2.1   Input Handler Circuit

The following diagram shows the basic Input Handler Circuit:

Figure 3: Input Handler Circuitry

• IN:  the input  signa l to be handled
• INV: cont rol signa l:

0 = do not  inver t  IN
1 = inver t  IN

• INP: IN xor INV
• SHIFT: a  6 bit  sh ift  register  with  INP as it s input  and sh ifted by the

system clock.
• WIDTH: cont rol signa l:

00 => set  BUF to 1 when  INP = 1
01 => set  BUF to 1 when  INP = 1 an d  SHIFT[5] = 1
10 => set  BUF to 1 when  INP = 1 an d  SHIFT[5:3] = 111
11 => set  BUF to 1 when  INP = 1 an d  SHIFT[5:0] = 111111

• EN: cont rol signa l; which  enables BUF to the ou tput  of the input
handler.

• BUF: output  signa l; the la tched resu lt

o

INV WIDTH PULS MSK

OUT

M U X

Delay shift register

BUFIN
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Control signals INV, WIDTH, EN and the buffered result BUF can all be read and written
by software. Reading will usually be done for diagnostic reasons only; BUF may be
polled. IN, INP, and SHIFT can not be read or written by software. Each set of 5 signals
(INV, WIDTH, EN and BUF) is mapped to one ASI word (see below).

Note:
An output should be disabled before its INV control or its WIDTH control are changed, otherwise
an output signal change not reflecting an input signal change may occur. This mechanism may be
used to produce a desired interrupt on a selected line.

5.2.2   ASI Mapping for Input Handler

All circuitry for one input is mapped on one ASI as follows:

— ASI 116 or C116 is used for Input Handlers.

— Input Handlers are mapped in the 4k byte page starting at address 100016 (4k
bytes).

— each Input Handler is mapped onto a full word in the alternate address space (this
permits up to 1024 input handlers). The bits are mapped as specified in the follow-
ing table:

Input handlers come in groups of 15. The outputs, OUT (16n + 1 through 16n + 15), are
mapped on the word at address (16n + 0)�4; this allows reading (polling) all outputs of a
group and finding the leftmost ‘1’ using the SCAN instruction.

Bit Description

32:5 unused

4 INV

3:2 WIDTH

1 EN

0 BUF

Table 3: Input Handler Mapping
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5.3   Interrupts

This section contains enhancements to the basic SPARC-V8 interrupt specification.

5.3.1   Overview:

The interrupt handler, when combined with a sufficient number of input mechanisms as
described in 5.2, constructs a 15 channel programmable trigger input controller that arbi-
trates pending unmasked interrupt requests, encodes the highest priority interrupt request
into a 4 bit code compatible with the SPARC-V8 defined Interrupt Request Level (IRL),
and applies this code to IRL[3:0].

On top of this, a way is described to extend the number of interrupts handled over 15.

The following extensions are made to the SPARC-V8 interrupt specification:

— deriving the 4-bit IRL signal, as defined in V8, from (15) separate interrupt signals

— buffering of pulse-shaped interrupt signals

— establishing the polarity of interrupt signals

— supporting more than 15 interrupt sources

— masking interrupts

The basic mechanism contains up to 15 Input Handlers (as previously described). The
Input Handlers are in turn connected to a priority circuit, thus generating a 4 bit code to be
used as the Interrupt Request Level (IRL). The basic interrupt circuit is shown below.

5.3.2   The basic circuitry

Figure 4: Basic Interrupt Mechanism

•
•
•
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Each set of flip-flops, INV, BUF, WIDTH, and EN can be separately read and written by
software. Reading will usually only be done for diagnostic (or polling) purposes. Reset-
ting the actual input signals is not part of the interrupt mechanism.

Note:
An interrupt INT should be disabled before its INV or its WIDTH controls are changed, otherwise
an output signal change not reflecting an input signal change may occur.

5.3.3   Extended Interrupt Mechanism

If more than 15 interrupts are to be provided, then the outputs of the Input Handlers can be
grouped together by means of an or gate replacing the priority encoder in order to imple-
ment an extended interrupt mechanism. This extended interrupt mechanism is depicted
below.

Figure 5: Extended Interrupt Mechanism (example configuration)

The exact interrupt within the inputs to such an or circuit must be detected by software
scanning all BUF flip-flops driving those inputs. There is no limit to the number of
“branches” in the extended circuit.

IRL
•
•

15

14

2

1
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5.4   Integrated Interrupt Request Controller

5.4.1   Block Diagram and Overview

The Integrated Interrupt Request Controller(IIRC) is a 15 channel, programmable trigger
interrupt controller that arbitrates pending unmasked interrupt requests, encodes the high-
est priority interrupt request into a 4 bit code compatible with SPARC-V8 defined Inter-
rupt Request Level(IRL), and applies this code to IRL<3:0>. If traps are enabled and the
code on IRL<3:0> is greater than the processor interrupt level set in the processor state
register or the code is 15, then the processor is interrupted. The processor responds by ser-
vicing the interrupt and clearing the latched interrupt request in IIRC. Figure 6 shows a
block diagram of the IIRC.

Control of the IIRC is on a feature-by-feature basis: all inputs share the input control reg-
ister, the latch register and the mask register.

Figure 6: IIRC Block Diagram

Trigger Mode Control logic selects one of four trigger modes for each channel: high level,
low level, rising edge or falling edge. The program sets the selection code by writing to the
Trigger Mode registers.

Each Interrupt Request that satisfies the trigger mode conditions is captured in the IRQ
latch. The program may read the latch through the Request Sense register and may clear
the latch by writing to the Request Clear register.

Individual Interrupt Requests may be blocked by the IRQ Mask logic. The program con-
trols the masking by writing to the Mask register.
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•
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•
•

•
•
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All unmasked Interrupt Requests are examined by the Priority Encoder. The highest prior-
ity is encoded. IRQ15 has the highest priority and IRQ1 the lowest.

That encoded interrupt level from the Priority Encoder is captured in the IRL Latch.

The IRL Mask logic can block all interrupt requests by forcing the output of the IRL Latch
going to the IRL lines to zero. The program controls IRL masking by writing to a reserved
bit in the Mask register. Even if the IRL Latch is masked off, programs may poll for pend-
ing interrupts by reading the Request Sense register.

5.4.2   IIRC Registers

The IIRC has six internal registers that allow the program to control IIRC operation and to
monitor interrupt requests that may be pending. Registers are mapped, aligned by func-
tion, into ASI 1 at successive word addresses as shown in Table X.

5.4.2.1   Trigger Modes Register Operation

Trigger Mode registers control the trigger mode for each interrupt channel. Trigger Mode
Register 0 controls modes for channels 8-15. Trigger Mode Register 1 controls modes for
channels 1-7.

Address Register Required Access

IRC-REG + 0 Trigger Mode 0 Write

IIRC-REG + 4 Trigger Mode 1 Write

IIRC-REG + 8 Request Sense Read

IIRC-REG + C Request Clear Write

IIRC-REG +10 Mask Write

IIRC-REG +14 IRL Latch/Clear Read/Write

Table 4: IIRC Register Memory Map
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Each two bit field in the registers selects one of four trigger modes for each channel as fol-
lows:

Reset clears the Trigger Mode registers, initializing high level triggering for all interrupt
channels.

Trigger modes will be explained in 5.4.3.3.

Note:
 Changing trigger mode of an unmasked channel may result in a false interrupt.

5.4.2.2   Request Sense Register Operation

The program reads the state of the IRQ Latch through the Request Sense Register. Each
one bit indicates a pending interrupt.

MDx Trigger Mode

0 high level

1 low level

2 rising edge

3 falling edge

Table 5: Trigger Mode

31 16 1112 010 9 12345678131415

md8md9md10md11md12md13md14md15reserved

Trigger Mode Register 0

31 16 1112 010 9 12345678131415

md 1md 2md 3md 4md 5md 6md 7reserved

Trigger Mode Register 1

r
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.

Reset clears the Request Sense Register.

5.4.2.3   Request Clear Register Operation

Writing one's to selected bits of the Request Clear Register clears corresponding elements
of the IRQ Latch. The program typically uses this register to clear the latch element asso-
ciated with the interrupt channel that it has begun to service.

Reset clears the Request Clear Register.

Note:
When changing trigger mode for an interrupt channel, its IRQ Latch element may be set and if not
cleared after the change in trigger mode, may result in a false interrupt.

5.4.2.4   Mask Register Operation

Ones in the Mask Register block corresponding outputs of the IRQ Latch from examina-
tion by Priority Encoder, or, alternatively with a one in bit zero of the Mask Register,
block the output of the IRL Latch from driving the IRL<3:0> lines. Using the Mask Regis-
ter, the program may mask unused interrupt channels, temporarily mask individual active
interrupt channels or mask all interrupt channels.

Reset clears the Mask Register.

31 16 0115

reserved

Request Sense Register

rRequest Sense

31 16 0115

reserved

Request Clear Register

rRequest Clear

31 16 0115

reserved

Mask Register

Mask MKIRL



SPARC-V8E SPARC-V8E Release 1  Architecture Specification

38 5 Peripheral Extensions

5.4.2.5   IRL Latch/Clear Register Operation

The program uses the IRL Latch/Clear register to read or clear the IRL Latch. Reading this
register will return the IRL code on bits 3:0. Writing one to bit 4 of this register will clear
the IRL Latch. These capabilities permit optionally handling interrupt requests by polling
rather than vectored interrupts.

Reset clears the IRL Latch/Clear Register

5.4.3   IIRC Operation

The IIRC latches interrupt requests into the IRQ Latch according to the trigger mode
option selected for each interrupt channel. The Priority Encoder prioritizes unmasked
interrupts and generates an encoded interrupt level code for the highest priority interrupt.
The IRL Latch holds that code which is transferred through the IRL Mask logic to the
IRL<3:0> lines for processor interrupt. If an interrupt occurs, the response program ser-
vices the interrupt request identified on IRL<3:0> and clears both the IRL Latch and the
latched interrupt request in the IRQ Latch.

5.4.3.1   Polling

The processor can poll interrupts by reading either the IRQ Latch via the Request Sense
register or the IRL Latch via the IRL Latch/Clear register.

The processor may mask interrupts that it polls via the Request Sense Register by masking
individual elements of the IRQ Latch or by masking the entire IRL Latch. Typically the
processor periodically reads the IRQ Latch and clears interrupts from the latch as they are
serviced. In case of multiple entries in the IRQ Latch, the SCAN instruction can be used to
identify the one entry in the highest bit position. The IRL Latch may remain unmasked to
allow vectored interrupt servicing of some interrupt requests if polled interrupts are
masked in the IRQ Latch field of the Mask Register so that they are blocked from the Pri-
ority Encoder.

The processor may mask all interrupts when it polls via the IRL Latch/Clear Register by
masking the IRL Latch, Mask Register bit 0 = 1. Typically, the processor periodically
reads the IRL Latch for the highest level pending interrupt and clears both the IRL Latch
and the interrupt from the IRQ Latch once the interrupt is serviced.

31 16 0415

reserved

IRL Latch/Clear Register

reserved int. level

35

Cl

Cl= clear
int. level= interrupt

level
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5.4.3.2   Initialization

All IIRC registers are cleared to 0 by Reset. This results in high level trigger mode for all
interrupts and all masks disabled.

After reset, the interrupt trigger should be changed after the interrupts are masked with the
IRQ mask to eliminate false interrupts. Following this, the IRQ Latches should be cleared,
then the masks can be disabled.

5.4.3.3   Noise Immunity

The interrupt sample clock is synchronized with the processor clock and it is used to
examine IRL<3:0> and engage the trap mechanism. The interrupt sample clock may have
the same period as the processor clock or may be divided down. The ratio of processor
clock to interrupt sample clock is an implementation parameter. Sampling of the incoming
interrupt request signals takes place at the rising or falling edge of the interrupt sample
clock. This is also an implementation parameter.

For level mode triggering, a number of successive samples at the required level must
occur. That number is also an implementation parameter.

For edge mode triggering, the signal must currently satisfy high level conditions for rising
edge or low level conditions for falling edge. Additionally, prior to the signal satisfying
the appropriate current conditions, it must have satisfied the opposite level condition for
another number of successive samples. That second number is an implementation parame-
ter. Figure 7 shows an example of level detection for processor to interrupt sample clock
ratio = 2, sample on clock rising edge and number of successive clocks at required level =
2.

Figure 7: IRC Level Mode Trigger Sample Timing
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Figure 8 shows an example of edge detection with the same implementation parameters
plus number of prior opposite level samples = 1.

Figure 8: Edge Mode Trigger Sample Timing

5.4.4   Extension for Additional Interrupt Sources

SPARC-V8 provides for 15 interrupt request levels. If there are more than 15 interrupt
sources, then a multi-stage interrupt processor must be constructed, with inputs of compa-
rable priority being latched and grouped together into a single IRQ line of the Integrated
Interrupt Request Controller. After interrupt servicing begins, the program must read the
register of the grouped inputs and determine which one within the group has the highest
priority. With appropriate conventions of bit position mapping, this can be done efficiently
using the SCAN instruction.

5.4.4.1   Use of Input Handlers

Signals at a second or higher stage, that are grouped into a single first stage IRQ line, may
be conditioned through Input Handlers as described in 5.2.1 and the grouping may be done
through the ORing as described in Section 5.3.3. When resolution of specific individual
inputs to be serviced is required, the grouped Input Handler Outputs can be read and
scanned.
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5.4.4.2   Use of Externally Latched and Buffered Signals

Signals at a second or higher stage, that are grouped into a single first stage IRQ line, may
be conditioned through a reduced IIRC. This consists of the Trigger Mode Control, IRQ
Latch and IRQ Mask. The 15 outputs are ORed to a single value which is masked by bit 0
of the IRQ Mask and then connected to a single group input. This is a single first stage
IRQ line or input to another stage. When resolution of specific individual inputs to be ser-
viced is required, the grouped Input Handler Outputs can be read and scanned.



SPARC-V8E SPARC-V8E Release 1  Architecture Specification

42 5 Peripheral Extensions

5.5   Timers and Counters

5.5.1   Programmable Pulse Generators

5.5.1.1   Overview

The following extended timer and counter features and functions are specified for SPARC-
V8E. This specification provides, in addition to a generalized counter mechanism, a two
stage counter mechanism for setting the step size in which actual time counts are per-
formed. It also provides increased flexibility in implementing various types of signals gen-
erated when a counter overflows.

SPARC-V8E timers and counters are designed to deliver a pulse of a certain shape to be
used, for example, as an interrupt. Hence, a timer/counter is actually a pulse generator that
produces a pulse after a specified delay.

For example, a pulse generator is required for slow I/O (as in actuator signals and slow
serial output ports) or to reset an interrupt source, regardless of whether it originates on- or
off-chip. This specification describes a bank of general purpose timer/counter pulse gener-
ators that may be employed in varying implementation contexts.

This specification does not stipulate what is to be counted, as that is left to specific imple-
mentations of the general mechanism(s). Examples of elements that can be implemented
include:

— processor clock pulses

— processor clock pulses divided by n (where n=16, for example)

— input pulses for an on-chip device or an off-chip device (possibly handled first by
an input handler as specified in the section on Input Handlers).

This specification does not stipulate the destinations for generated counter/timer pulse val-
ues as that is left to specific implementations. Examples of generated pulse destinations
include:

— interrupt line(s) (see interrupt specification)

— on-chip device(s)

— off-chip device(s) (output via a chip output pin)



SPARC-V8E

5 Peripheral Extensions 43

5.5.1.2   Timer/Counter Mapping

A bank of n general purpose timer/counter pulse generators is defined. Each timer,
counter, and generator consists of three parts:

— (step-) pre-SCALER

— (step-) COUNTER

— (pulse-) SHAPER

The timer/counter pulse generators are mapped on an alternate address space (ASI 116 or
8116) (see below). A bank of 4096 addresses is reserved for timer/counters. Each timer/
counter occupies 32 bytes within this bank, although not every byte is used. A maximum
of 128 timer/counter pulse generators can be mapped.

5.5.1.3   SCALER

SCALER is a counter to adjust the value by which COUNTER is incremented. It is the
first stage of a two-stage general counting mechanism. An important example of its usage
is to compensate for differences in clock frequency among various implementations of
SPARC-V8E. The SCALER counts processor clock cycles (or other inputs to the counting
circuitry, such as clock cycle/16).

For example, for COUNTER to count in milliseconds in an application where the clock
frequency is 100 MHz, SCALER would be set to 100,000 (or to 100,000/16 when clock
cycle/16 is used as input to the counting circuitry). Frequently, all SCALERs will hold the
same value (e.g. corresponding to 1 msec) which can be written at system start-up time
and never changed. Software executing after SCALER is set could then be written to be
portable across SPARC-V8E implementations.

SCALER can be controlled by two “external” signals, each provided by an input handler
(see section on Input Handlers).

SCALER consists of s-bit registers, SCALER.set and SCALER.cnt. s is implementation
dependent but within the range of 8 to 32, inclusive.

SCALER.cnt decrements at every count pulse (in a particular reference implementation,
the actual count pulse is an external pulse handled by an input handler; refer to section on
Input Handler).

SCALER has an Enable input signal whose particular reference implementation is typi-
cally provided by an input handler. Counting is enabled when the Enable signal=1. If the
Enable signal is driven by the output of a signal handler:
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• counting can be controlled by an external signal after handling by the
INV, WIDTH, BUF and EN construct (see Input Handler)

• counting can also be controlled by software:

-count when BUF=1 and EN=1

-stop when BUF=0 or EN=0

When SCALER.cnt reaches zero (as controlled by SHAPER) it either:

• stops counting or

• copies SCALER.set and continues decrementing

Which action is taken depends on the associated SHAPER value. When SCALER.cnt con-
tinues after reaching zero, it sends one count pulse to COUNT. The counter mechanism is
started by writing a 1 into the SCALER copy bit (see Shaper below). SCALER.cnt then
copies SCALER.set and starts counting

5.5.1.4   COUNTER

COUNTER is a counter to actually count in steps as set by the value in SCALER.
COUNTER is decremented when SCALER.cnt reaches zero.

COUNTER consists of:

— Two c-bit registers, COUNTER.set and COUNTER.cnt.

c is implementation dependent and may vary from 8 to 32 bits.

COUNTER operates as follows:

— COUNTER.cnt and COUNTER.set are written simultaneously with the same start
value

— COUNTER.cnt can be read; Readability of COUNTER.set is not required

— COUNTER.cnt is decremented by 1 when SCALER.cnt reaches zero

— When COUNTER.cnt reaches zero (as controlled by SHAPER, see section 5.4.5
below):

• Counting stops, or

• The value in COUNTER.set is copied into COUNTER.cnt and count-
ing continues.
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5.5.1.5   SHAPER

When the Counter.cnt reaches zero, the pulse generated may take one of various forms,
including:

— a Positive Step

— a Negative Pulse

— Pulse after delay

— Pulse of specified width

— Series of pulses as depicted in the following figure

:

Figure 9: SHAPER Pulse Generation

The SHAPER controls a generalized pulse generation facility. The SHAPER is imple-
mented as an 8-bit register. The SHAPER register values are mapped on 8 bits as follows
(bit 0 is the least significant bit)

Note: Bits 6:4 of the SHAPER control the values of the output signal;
Bits 3:0 of the SHAPER control counters stopping, starting and continuing.

This is explained in the table below:

shaper=010xx00

shaper=101xx11

EXAMPLE:

Positive
pulse:

Negative
pulse series:

6 5 4Shaper Bit: (see table below)
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:

5.5.1.6   ASI Mapping for Counters and Timers

When mapping counters and timers on an alternate address space, it is recommended that
ASI 116 or 8116 be used. Addresses aligned on 4k byte blocks are available, providing 128
counter/timer/pulsers:

— COUNTER.set[n] is the word at address: 32n to 32n+3

— COUNTER.cnt[n] is the word at address: 32n+4 to 32n+7

— SCALER.set[n] is the word at address: 32n+8 to 32n+11

— SCALER.cnt[n] is the word at address: 32n+12 to 32n+15

— SHAPER[n] is the word at address: 32n+16

Note:
Elements containing less than 32 bits are mapped on the least significant bits (LSB) of these words.
The remaining higher order bits in the word are unused.

Bit Description

31:7 Undefined (may be used for extensions)

6 Start value of the output signal: The value of the output signal when COUNTER is
started by writing a 1 to the start bit-2

5 Value of the output signal when COUNTER reaches zero for the first time after restart

4 Value of the output signal when SCALER reaches zero for the first time after
COUNTER reached 0

3 Reserved

2 When value is written to 1, starts the counter by copying SCALER.set into
SCALER.cnt and COUNTER.set into COUNTER.cnt and outputting a signal- bit 6.
This is used to start a prepared counter at a precise instant. The degree of precision is as
precise as the input (which e.g. may be clock/16)

1 Bit 1=0: when COUNTER reaches 0, stop COUNTER.
Bit 1=1: when COUNTER reaches 0, copy COUNTER.set and restart counting.

0 Bit 0=0: when SCALER and COUNTER reach 0, stop SCALER.
Bit 0=1: when SCALER and COUNTER reach 0, copy SCALER.set; restart counting.

Table 6: Shaper Register Mapping
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5.5.1.7   Examples

A continuous timer with a large capacity can be mapped.

In this example:

— set SCALER to FFFF FFFF16

— set COUNTER to FFFF FFFF16

— set SHAPER to x01x x1xx2 (x= don’t care)

— when:

• SCALER is 16 bits (FFFF) and

• COUNTER is 24 bits (FF FFFF) and

• input is clock/16 then

COUNTER concatenated with SCALER will show FF FFFF FFFF16 minus the number of
input pulses since it was set.

COUNTER, concatenated with SCALER, has, at 100 MHz processor clock frequency, a
“capacity” of 16 x 216 x 224/ 100M = 176k sec = 49 hr = just over 2 days.

An interval or watchdog timer with an interval of X msec.

This can be implemented in many ways. One example follows:

— set SCALER to 100 microsec. (expressed in input pulses) at system start-up. Do
not change after start-up

— set COUNTER to 10 x X

— set SHAPER to x010 x111 (repeated “1” pulses, 100 microseconds wide) which
indicates:

• pulse start value = 0 (see bit 6);

• when COUNTER reaches zero, Output pulse value = 1 and remains 1
until SCALER reaches zero (as indicated by bit 5):

• when SCALER reaches zero, output value = 0 and remains 0 until
changed (as indicated by bit 4 being 0):

• repeat by restarting COUNTER and SCALER when they reach zero (as
indicated by bits 1 and 0 being ‘112’



SPARC-V8E SPARC-V8E Release 1  Architecture Specification

48 5 Peripheral Extensions

Time can be measured in milliseconds:

— set SCALER to 1 msec (expressed in input pulses). Do this at system start-up and
do not change

— set COUNTER to FFFF FFFF FFFF16

— set SHAPER to xxxx x1xx to start it

— start the event timer via the Enable input mechanism

Input handlers may be used to construct counters for counting any input. A counter con-
structed from a general input handler will count the applied input pulses. Such a counter
may also be started and stopped by applying the input handler’s EN bit.

5.5.2   Simple Counters

Simple counters ranging from 8 to 32 bits may be implemented to support routine capabil-
ities. The number of bits and the number of counters is an implementation parameter.

The counters are driven by the processor clock and are mapped into memory at ASI 1 or
C116. Each counter occupies a whole word address. Associated with each counter, at the
next word address in the same ASI, is its preload register. The counter and preload register
must be writable. Readability is an implementation parameter.

When enabled, the counter does one of the following:

— increments and generates an overflow signal when it passes maximum value

— decrements and generates an equal_zero signal when it reaches zero

— decrements and generates an underflow signal when it passes zero

The direction of counting and the form of strobe signal are implementation parameters.
The strobe signal causes the contents of the associated preload register to be loaded into
the counter and the counter continues counting.

If the strobe signal is delivered to an output pin, then it may be used to control periodic
events in the external system such as DRAM refresh. If the strobe signal is delivered to an
interrupt request line, then it may be used to periodically activate service routines such as
polling external requests for service that do not activate vectored priority interrupts. Each
counter is enabled by an associated bit in a system control register field when the bit is set
to one. The counter is disabled by the associated bit being set to zero. The system control
register is mapped into memory at ASI 1 or 0xC1. The address of the system control regis-
ter and the mapping of counters to enable bits are implementation parameters.
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5.5.3   Simple Timers

Timers ranging from 8 to 32 bits may be implemented to support more demanding timing
tasks. The number of bits and the number of timers are implementation parameters.

Clocking of the timers and associated prescalers or reload registers is done with either or
both a timer clock or an asynchronous external signal. Which one or both is an implemen-
tation parameter.

The timer clock is synchronized with the processor clock and may have the same period or
may be divided down. The ratio of processor clock to timer clock is an implementation
parameter. If divided down, transitions of the timer clock may be synchronized with the
rising or falling edge of the processor clock. This is also an implementation parameter.

Asynchronous external signals are gated by the timer clock for internal synchronization.
Therefore, the minimum duration of the asynchronous signal for its zero condition and for
its one condition is some multiple of the timer clock period, which is an implementation
parameter.

Each timer can be independently programmed to operate in one of the following five
modes:

— Mode 0: Periodic Interrupt Mode

— Mode 1: Timeout Interrupt Mode

— Mode 2: Square Wave Generator Mode

— Mode 3: Software Trigger Watchdog Mode

— Mode 4: External Trigger Watchdog mode

Figure 10 below shows a block diagram of timers, prescalers and clock options. Prescalars
and timer counters may be driven by the timer clock or an asynchronous external signal.
Those timer units that have prescalers may also drive their timer counter with the prescaler
output.
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Figure 10: Timer Prescaler Block Diagram

Each timer unit has three or four internal registers that allow the program to control and
monitor its operation. These registers are mapped into ASI 1 or 0xC1 at successive word
addresses as shown in Table 7. Each starting address, TUC-REGn, is aligned on a quad
word boundary (address modulo 16=0).

Determination of timers having prescalers is an implementation parameter. Likewise,
which count values can be written is an implementation parameter.

Address Register Required Access Reset State

TUC-REGn + 0 Prescale control/reserved Read/Write 1

TUC-REGn + 4 Timer control Read/Write 0

TUC-REGn + 8 Reload value Read/Write 0

TUC-REGn + C Count value Read 0

Table 7: Timer Unit Control Register Memory Map

MUX Synchronize Timer 0

MUX Synchronize Timer 1

MUX Synchronize Timer 2

MUX Synchronize Timer 3

•

•

•

•

•

••

MUX Prescaler

MUX Prescaler

PCLK Peripheral clock

ACK1 ACK0 PRSK1 PRSK0
CLK
3 2 1  0
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5.5.3.1   Prescaler Control Registers

Three fields are defined for each prescaler control register.

(1) Prescalar counter value- This determines the frequency of the prescaler counter
output signal. The value of this field is written into the prescaler counter when this
field is written and the timer clock is the prescaler counter clock or when prescaler
timeout (counter reaches zero) occurs. This field must be greater than zero. A
value of one produces the maximum prescaler counter output frequency, on half of
its input frequency. The number of bits for this field is 8 to 16 and is an implemen-
tation parameter.

(2) Prescaler output select- This selects the prescaler output clock rate as the prescaler
counter output frequency divided by the power of two indicated by this field. Zero
means the prescaler output clock rate is the prescaler counter output frequency.
One means the output clock rate is the prescaler counter output frequency divided
by two. Two means the output clock rate is the prescaler counter output frequency
divided by four, etc. Note that the maximum output clock rate is half the prescaler
input frequency. The number of bits for this field is 2 to 14 and is an implementa-
tion parameter.

(3) Enable external clock- This one bit field enables asynchronous external signals
when the prescaler input clock is one. When zero, the timer clock is the prescaler
input clock.

All undefined bits are reserved and one bit is reserved for device test purposes.

5.5.3.2   Timer Control Registers

Eight fields are defined for each timer control register. A three bit Mode field selects which
timer mode is active.

Mode Field Operating Mode

0 Periodic Interrupt

1 Timeout Interrupt

2 Square Wave Generator

3 Software Trigger Watchdog

4 External Trigger Watchdog

5 Reserved

6 Reserved

7 Reserved

Table 8: Timer Control Register Entries
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A three bit event field selects the condition for which the timer event input signal is active
as an event gate or trigger depending on the mode.

A two bit Output Signal field selects the state of the output signals when the timer is
stopped.

A one bit Invert field modifies the output signal. If Invert is one, then the actual output sig-
nal is the normal output signal inverted. If Invert is zero, then the actual output signal is the
normal output signal.

A two bit Clock Select field selects the input clock to the timer counter.

Event Field Active Gate/Trigger Event Applicable Modes

0 Low Level Gate 0,1,2

1 High Level Gate 1.1.2

2 Rising Edge Trigger 4

3 Falling Edge Trigger 4

4 Rising/Falling Edge Triggers 4

5 Reserved

6 Reserved

7 Reserved

Table 9: Timer Event Fields

Output Signal Field Timer Inactive Output State

0 Remains in current state

1 External clock

2 Prescaler output clock

3 Reserved

Table 10: Timer Output Signal Field

Clock Select Field Counter Clock Source

0 Timer clock

1 External Clock

2 Prescaler output clock

3 Reserved

Table 11: Timer Clock Select Field
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A one bit Count Enable field, when one, enables the timer counter for counting. When
Count Enable is zero, the counter stops.  While enabled, the counter will not count until its
specified input occurs. If a timer does not have a prescaler or if its prescaler output clock is
not selected as its counter clock source, then configuring the timer counter and starting it
can be done with a single STA instruction.

If a timer is to use its prescaler output clock as its counter clock source, then the prescaler
configuration, the counter configuration, and starting can be done with a single STDA
instruction since the two control registers are mapped into adjacent memory addresses that
are double word aligned.  Note that the first cycle of the counter action may differ from the
later ones because the prescaler becomes active one store memory time before the timer
counter. If the prescaler uses the timer clock to drive its counter, then the prescaler counter
will be reloaded at the second memory cycle when the timer counter is loaded with its
reload value.

A one bit Input Signal status field, which must be read only, allows the program to exam-
ine the Input Signal. A one bit Output Signal status field, which must be read only, allows
the program to examine the Output Signal.

All undefined bits are reserved and one bit is reserved for device test purposes.

5.5.3.3   Prescaler Operation

Figure 11 shows an example prescaler block diagram consisting of an 8 bit counter, 7-
divide by 2 flip-flops and selector logic

Figure 11: Prescaler Block Diagram

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Prescaler register

BIT

Clock 8 Bit Cnt +2 +2 +2 +2 +2 +2 +2

PRSCK

PRSCK for internal use

+256
Max
Count SELECTOR
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(1) Prescaler Counter:

The prescaler counter is loaded with the prescaler count value field concurrently
with that field being written into the prescaler control register when the timer clock
drives the counter.  The counter then begins to decrement at its clock frequency
and generates an output each time it reaches zero. This output is delivered to the
first flip-flop input in the divide by 2 flip-flop cascade and the output selector. This
output also reloads the counter with the prescaler count value field and continues
the count.

If the associated timer counter uses the prescaler output clock as its input clock and
if the prescaler uses the timer clock as its input, then when the timer reload value is
loaded or reloaded into the timer counter, the prescaler count value is loaded into
the prescaler counter and a fresh prescaler count cycle begins.

When the prescaler counter is driven by the external clock, the count value is
loaded into the counter only when it reaches zero.If the count value is changed in
the prescaler counter register, it will not be loaded into the counter until the
counter reaches zero, finishing the previous count sequence. To reduce this delay,
switch the prescaler counter drive to timer clock, then change the count value and
switch to external clock.

(2) Prescaler Divide by 2 Cascade:

At each flip-flop output in the divide by 2 cascade, the frequency is halved. Each
output is delivered to the next flip-flop input in the chain and the output selector.

The flip-flops in the divide by 2 cascade are cleared whenever the prescaler counter
is loaded or reloaded.

(3) Prescaler Output Selector

The selector logic selects the counter output or one of the flip-flop outputs in the
divide by 2 cascade as determined by the prescaler output select field of the pres-
caler control register. Code 0 selects the counter output. Code 1 selects the first
divide by 2 flip-flop output. Code 2 selects the second divide by 2 flip-flop output,
etc.

When one of the divide by 2 flip-flop outputs is the selected prescaler  output clock
then the duty cycle will be 50%. However, when the counter output is the selected
prescaler output clock, then the output will be one more than zero except at the
highest frequency.

The counter output is one until the counter decrements to one. Then the counter
output is zero for one count cycle. Then when the counter reaches zero, the counter
output returns to one while the counter is reloaded and begins a new count down.
Therefore the prescaler output clock is zero for one count cycle and one all the rest
of the count cycles.

However, if the prescaler count value is one, which selects the maximum prescaler
counter frequency, the counter output is forced to zero at the same time the pres-
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caler count value is loaded into the counter. The next cycle, with the counter at
zero, the counter output goes to one and the counter is reloaded. For this case, the
prescaler output clock has a 50% duty cycle.

5.5.3.4   Timer Operation and Timer Operating Modes

Figure 12 shows a block diagram of a timer.

Figure 12: Timer Block Diagram

The data path to the processor is capable of  both input and output. In addition to the timer
clock, there are two other clock inputs, prescaler output clock and external clock. Also
there is an In Signal that serves as input to count gating logic or event trigger logic.
Finally, there is the timer Out Signal which may be delivered to an output pin and used to
control external system activities or delivered to interrupt request lines and used to period-
ically activate service routines or used to  activate exception routines if events fail to hap-
pen within preset time limits.

The In Signal can be used as a gating signal in Modes 0, 1, 2 and 3 to mask the timer
counter input clock and temporarily stop the timer. It can be used in Mode 4 as a trigger
event to start a new timer count sequence.

To use the In Signal as a gating signal in Modes 0, 1, 2  and 2, the Event field is set to
make In active when one or when zero. When active, clocks to the input of the timer
counter are inhibited and the counter does not count.

To use the In Signal as a triggering signal in Mode 4, the Event field is set to make the trig-
ger event a rising edge, falling edge or both a rising and falling edge. When In Signal gen-
erates a trigger event, timer output is forced to value of Invert bit in timer control register,
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reload value is forced into timer counter and a new timer count sequence begins. At time-
out, timer output changes to not Invert bit value.

The Out Signal is used to indicate timeout, occurrence of an event at the In Signal, or
counter reaching half reload value during the count sequence. The Out Signal control
determines the value of the Out Signal when the timer is stopped. The Invert bit deter-
mines the inactive level of Out Signal when the timer is running.

When the Invert bit is 0, for each mode, the following conditions set and reset the Out Sig-
nal:

Set and Reset are swapped when the Invert bit is 1.

Timers are stopped following processor reset. Timer operation is initialized in all modes
by first writing the timer mode into the Mode field of the Timer Control Register, setting
the Count Enable field to 1 and writing any other appropriate fields of the Timer Control
Register. Timer operation in modes 0, 1, 2 and 3 begins when the reload register is written.
Then the reload value is set in the counter and decrementing begins.

Timer operation in mode 4 begins when a trigger event occurs at In Signal. Then the
reload value is set in the counter and decrementing begins.

Once operating, each timer stops in the various modes as follows:

Note that timers can be stopped in all modes by writing to the Timer Control Register.

Mode Set Out Signal Reset Out Signal

0 Timeout Writing reload register/reading counter

1 Timeout Writing reload register/reading counter

2 Timeout Counter = half reload register

3 Timeout Writing reload register

4 Timeout Trigger event occurs at In Signal

Table 12: Output Signal Conditions

Mode Stop Timer

0 Writing TCR, In Signal active

1 Writing TCR, In Signal active, timeout

2 Writing TCR, In Signal active

3 Writing TCR, In Signal active, timeout

4 Writing TCR, timeout

Table 13: Timer Stop Modes
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With respect to timer operating modes, each timer can be independently programmed to
operate in one of the following five modes:

The selection of a particular operating mode is controlled by the value of the Mode field in
the Timer Control Register.

(1) Periodic Interrupt:

The Out Signal is initially set to the timer stopped state as determined by the Out
Signal control of TCR, Timer is enabled, Count Enable =1 and Mode =0. When the
reload register is written with the reload value, the reload value is set into the
counter, the counter begins decrementing, and Out Signal is driven to the value of
Invert.

When the counter reaches zero, timeout, the Out Signal changes to NOT Invert and
remains at this level until the counter is read or reload register is written.However,
the counter is automatically set with the reload value and continues decrementing.
When the counter is read or reload register is written, Out Signal returns to Invert
level.

(2) Time Out Interrupt:

This mode differs from Mode 0 at timeout. In Mode 1, the timer halts instead of
reloading and decrementing the counter. Then, when the count register is read or
the reload register is written, the Out Signal returns to Invert level, the counter is
set with the reload value and begins decrementing again,

Mode Operation

0 Periodic Interrupt Mode

1 Timeout Interrupt Mode

2 Square Wave Generator Mode

3 Software Trigger Watchdog Mode

4 External Trigger Watchdog Mode

Table 14: Timer Operating Modes
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(3) Square Wave Generator:

This mode differs from Mode 0 in the transition of Out Signal.

The Out Signal is initially set to the timer stopped state as determined by the Out
Signal control of TCR, Timer is enabled, Count Enable =1 and Mode =2. When the
reload register is written with the reload value, the reload value is set into the
counter, the counter  begins decrementing, however, Out Signal remains at the ini-
tial value.

When the counter decrements to half of reload value, Out Signal is driven to Invert
value. When counter reaches 0, timeout, Out Signal changes to NOT Invert value.
The counter is set with the reload value and continues decrementing. After the first
count sequence, Out Signal will be approximately a square wave.

For reload value =1, Out Signal will be at Invert and not Invert level one timer
count cycle each, with a period of two timer count cycles.

For reload value =N, N>1, Out Signal will be at Invert level for Int(N/2) timer
count cycles. Out Signal will be at NOT Invert level for Int((N+1)/2) +1 timer
count cycles. The period will be N+1 timer count cycles.

(4) Software Trigger Watchdog:

The Out Signal is initially set to the timer stopped state as determined by the Out
Signal control of TCR, Timer is enabled, Count Enable =1 and Mode = 3. When
the reload register is written with the reload value, the reload value is set into the
counter, the counter begins decrementing, and Out Signal is driven to the value of
Invert.

When counter = 0, timeout, Out Signal changes to not Invert value and remains at
this value. The timer halts. However, writing to the reload register before timeout,
updates the counter with the reload value and delays timeout.

After the timer halts, it can be restarted by writing to the reload register. The reload
value is set into counter and the watchdog count restarts.

(5) Hardware Trigger Watchdog:

The Out Signal is initially set to the timer stopped state as determined by the Out
Signal control of TCR, Timer is enabled, Count Enable =1 and Mode =4. Then the
reload register is written with the reload value.

When a trigger event occurs at In Signal, the reload value is set into the counter,
the counter begins decrementing, and Out Signal is driven to the value of Invert.

When counter = 0, timeout, Out Signal changes to NOT Invert value and remains
at this value and the timer halts. However, occurrences of another trigger event at
In Signal before timeout, updates the counter with the reload value and delays tim-
eout.

The timer is restarted after halting at timeout by another trigger event at In Signal.
The In Signal trigger event is determined by the Event field in TCR and can be a
rising edge, falling edge or both.
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6 Diagn ostic  Fac ilit ie s

6.1   Introduction

As an option, a V8E SPARC can be equipped with a Debug Support Unit (DSU). This unit
provides functions such as

• setting hardware breakpoints on instruction and data, on address and value;

• single stepping;

• instruction trace generation;

• reading and writing of on chip registers;

• emulation.

They are detailed in the subsequent sections of this chapter.

Two implementations with different emphasis are defined. Both support the above fea-
tures. They are:

• a trace enhancing implementation

• a pin effective implementation.

6.1.1   The trace enhancing implementation.

This implementation makes use of a number of extra pins to allow a sufficient number of
instruction address bits per SPARC instruction to reconstruct a full address trace. The
same pins are used to control the further diagnostic features introduced above and to be
detailed in the subsequent sections of this chapter. Implementor defined further features
may be added to this implementation; these further features are not subject of the V8E
specification.

6.1.2 The pin effective implementation.

This implementation relies an a JTAG interface for control as well as for information
transport to and from the DSU and for control as well as for information transport to and
from any further features that can be reached via the DSU.
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This implementation also relies heavily on DMA; using JTAG and DMA it allows soft-
ware independent access to all DSU functions described in the subsequent sections. Since
the JTAG, in this implementation, is a DMA master and the DSU is a DMA slave, it can
not only reach the DSU functions specified here and any implementor defined further
DSU functions but also: - any (further) DMA mapped sources and destinations, on or off
chip; - any (further) ASI mapped sources and destinations, on or off chip; - any (further)
memory mapped sources and destinations, on or off chip, e.g. . on chip or off chip RAM; .
on chip or off chip ROM. Obviously, all of the above, being mapped on space that can be
reached via software, can also be read, written and controlled via software.

Unlike conventional debuggers, this implementation can be used before system I/O is
available to e.g. load RAM; to access internal address and data buses and to break-point or
single-step through code sequences.

6.2   List of features

The following features will be detailed in subsequent detailed sections in a next release of
this spec.

— BREAK:
•HARDWARE BREAK

INSTRUCTION ADDRESS MATCH BREAK

DATA ADDRESS AND DATA MATCH BREAK

DSU Register Write Exception Break

DSU Register Read/Write Exception Break

External (-EMU_BRK Pin) Break

Hardware Break Request
•Software Break

Hardware/Software Break Request Disable

Ret-Break (Return from Break)

Disable_match_match flag

Trap_Disabled_Break_Point

Break on RETT

— Single Step:
•Single Step genera l behavior
•Single Step behavior  over  t rap
•Single Step behavior  on  RETT
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— ICE Port:

— Debug Mode and State:

— Instruction Trace

— DSU registers:
Obviously, the DSU register sets of the two implementations are not identical.
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Annex A   Programming Techniques
(Informative)

A.1   Overview

This section provides information to assist in programming the SPARC-V8E embedded
processor. It covers the additional instructions, Divide Step and Scan, provided by
SPARC-V8E. Code fragments are provided to illustrate the use of these instructions. This
section presumes familiarity with the SPARC-V8 Programmer’s Model and SPARC
assembly language as specified in The SPARC Architecture Manual, Version 8.

A.2   Division Performance Using DIVScc

A.2.1   divs1 - divide signed, 1 word dividend

Signed division of 32 bit dividend by 32 bit divisor produces a signed 32 bit quotient and a
signed 32 bit remainder (same sign as dividend or zero if exact). Since the only overflow is
divide by zero, this routine does not check for divide by zero, leaving it up to caller to test
and abort just after the call. Division without fault takes 47 to 58 cycles assuming each
instruction takes one cycle, except retl which takes two.

!DIVISION SUBROUTINE - DIVS1
!This subroutine for signed division of 32 bit dividend by 32 bit divisor
!produces 32 bit signed quotient and 32 bit remainder using divide
!step instruction. Remainder is zero if division is exact
!or same sign as original dividend if not. There is no check for divide
!by zero. It is not possible to overflow with non zero divisor. If the
!calling routine knows that divide by zero cannot happen, no test is
!needed. If divide by zero is possible, a simple test just after the call
!can abort the division. Division without fault takes 47 to 58 cycles.
!Exact division with last partial remainder =0 takes 47 cycles. Exact
!division with last partial remainder = +/-divisor, as happens with
!non-restoring division algorithms, takes 51 or 52 cycles.Inexact
!division, with non-zero final remainder, takes 54 to 58 cycles.

!call so:
! mov %l1,%o0!dvdnd->o0
! orcc %g0,%l2,%o2!dvsr->o2 & test
! call divs1!DIVISION SUBROUTINE CALL
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! be dvby0 !abort division if divide by zero
!
! Register Map
!reg#
!out0 dividend/remainder
!out1 quotient
!out2 divisor
!out4 scratch for final remainder calculations
!out5 absolute value of divisor
!y initially sign extension of dividend/successive partial remainders
!call to divs1 must be made with cc indicating sign of divisor
!
.global divs1
divs1:mov %g0,%y!0 -> Y

mov %o2,%o5!copy divisor in o5, D
bl,a 1f
sub %g0,%o5,%o5!if divsr neg, D=-divsr

1: tst %o0 !initialize cc for first divide step
!with sign dividend for signed divide

bl,a 2f
mov -1,%y!-1 -> Y only if dvdnd neg

2: divscc %o0,%o5,%o1!divide step 1
!leave original dividend in o0
!do partial remainders & quotient in o1
!don’t change cc except by divscc until last divide step done

divscc %o1,%o5,%o1!divide step 2
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
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divscc %o1,%o5,%o1
divscc %o1,%o5,%o1!divide step 32
be 6f !if final remainder is zero,

!go fix quotient polarity
mov %y, %o4 !final remainder from Y to o4
bg 4f !skip ahead if rmdr+; continue if rmdr-
addcc %o4,%o5,%g0 !is neg rmdr + abs divsr =0
mov %g0,%o4!clear rmdr. if not, don’t clear
tst %o0 !test original dvdnd
bl 5f !if neg, go check neg Q
tst %o1 !sign Q
ba 5f
add %o4,%o5,%o4!if orig dvdnd pos and final rmdr neg,

!correct rmdr; then go check neg Q
4: subcc %o4,%o5,%g0 !is pos rmdr - abs divsr =0

be,a 6f !if so, go fix quotient polarity and
mov %g0,%o4!clear rmdr. if not, don’t clear
tst %o0 !test original dvdnd
bge 5f !if pos, go check neg Q
tst %o1 !sign Q
sub %o4,%o5,%o4!if orig dvdnd neg and final rmdr pos,

!correct rmdr; then go check neg Q
5: bl,a 6f !skip ahead if Q pos

add %o1,1,%o1!if neg Q, 1’s complement to
!2’s complement; annul if pos Q

6: tst %o2 !check original divisor sign
bl,a 7f
sub %g0,%o1,%o1!if neg divsr, negate quotient

7: retl !exit
mov %o4,%o0!with correct remainder in o0

A.2.2   divs2 - divide signed, 2 word dividend

Signed division of a 64 bit dividend by a 32 bit divisor produces a signed 32 bit quotient
and a signed 32 bit remainder with the same sign as dividend or zero if exact. Division
with divide by zero fault takes 6 cycles. Division with non zero divisor overflow fault takes
17 to 23 cycles. Division without fault takes 49 to 60 cycles. This assumes each instruction
takes one cycle except retl which takes two.

!DIVISION SUBROUTINE - DIVS2 REVA
!This subroutine for signed division of 64 bit dividend by 32 bit divisor
!produces 32 bit signed quotient and 32 bit remainder using divide
!step instruction. Special treatment is given to borderline overflow
!with absolute value quotient = 2^31 to support math operator INTEGER
!PART OF: Q=-2^31 does not overflow; Q=+2^31 overflows as before but
!with different overflow code. Remainder is zero if division is exact
!or same sign as original dividend if not. There is a check for divide
!by zero and a check for overflow with non-zero divisor. Check for divide
!by zero is kept separate to support possible SUN recommended trap for
!divide by zero. In applications where user knows numerical ranges or
!controls them, these checks can be omitted. Division with divide by zero
!fault takes 6 cycles; sets overflow flag in condition code; leaves
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!0xfffff800 in register out3. Division with non-zero divisor overflow
!takes 17 to 23 cycles (17 or 19 if original dividend plus, 18 or 23 if
!original dividend minus); sets overflow flag in condition code; leaves
!0x800 in register out3. Division leading to absolute value quotient =
!2^31 takes 20 cycles if original dividend plus, 23 cycles if original
!dividend minus. It leaves correct remainder in register out0, -2^31 in
!out1 as quotient and 0 in out3. It clears overflow cc if actual quotient
!is -2^31 and sets overflow cc if actual quotient is +2^31. Division
!without fault takes 49 to 60 cycles; clears overflow flag in condition
!code; leaves 0 in register out3. Exact division with last partial
!remainder =0 takes 49 cycles. Exact division with last partial
!remainder=+/-divisor, as happens with non-restoring division
!algorithms, takes 53 or 54 cycles. Inexact division, with non-zero final
!remainder, takes 56 to 60 cycles.
!call so:
! mov %l0,%o0 !msh dvdnd->o0
! mov %l1,%o1 !lsh dvdnd->o1
! call divs2 !DIVISION SUBROUTINE CALL
! orcc %g0,%l2,%o2 !dvsr->o2 & test
!
!Register Map
!reg#
!out0 msh dividend/remainder
!out1 lsh dividend/quotient
!out2 divisor
!out3 overflow indication
!overflowdivide by zero/0xfffff800 and V=1
!overflowdivide by non-zero/0x800 and V=1
!overflowquotient =+2^31/0 and V=1
!no overflow/0 and V=0
!out4 scratch for final remainder calculations
!out5 absolute value of divisor
!y msh dividend/successive partial remainders
!call to divs2 must be made with cc indicating sign of divisor
!
.global divs2
divs2:bne 0f !go on if divisor not zero

mov %o2,%o5!copy divisor in o5, D
sethi 0x1fffff,%o3!divide by zero indicator
retl !exit with
addcc %o3,%o3,%o3 !overflow set

0: bl,a 1f
sub %g0,%o5,%o5!if divsr neg, D=-divsr

1: mov %o0,%y!msh dvdnd->Y
tst %o0 !initialize cc for first divide step

!with sign dividend for signed divide
bl 2f !skip ahead for negative dividend
divscc %o1,%o5,%o1!divide step 1

!don’t change cc except by divscc until last divide step done
bl 3f !ok if different
mov %g0,%o3!clear overflow indicator
srl %o1,1,%o4!get lsh rmdr
bg 8f !if msh rmdr >0 then overflow
subcc %o4,%o5,%g0!if lsh rmdr <D then Q is +/-2^31
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bge 8f !& o4 is correct final rmdr
!check if overflow on Q = +2^31

sethi 0x200000,%o1!set -2^31 -> Q
!else overflow

tst %o2 !if original divisor >0
bg,a 9f !which implies quotient =+2^31
addcc %o1,%o1,%g0!set ovrlfw cc with o3 = 0

9: retl !exit
mov %o4,%o0!with correct remainder in o0

8: sethi 0x200001,%o3!overflow divide by non-zero indicator
retl !exit with
addcc %o3,%o3,%o3 !overflow set

2: bge 3f !ok if different
mov %g0,%o3!clear overflow indicator
mov %y,%o0!get msh rmdr
addcc %o0,1,%g0!is it -1
bne 8f !if <-1 then overflow
srl %o1,1,%o4!get lsh rmdr except for leading 1
sethi 0x200000,%o1!set -2^31 ->Q
or %o1,%o4,%o4!insert leading 1 in lsh rmdr
addcc %o4,%o5,%g0!if lsh rmdr >-D then q is +/-2^31
ble 8f !& o4 is correct final rmdr

!check if overflow on Q = +2^31
!else overflow

tst %o2 !if original divisor <0
bl,a 9f !which implies quotient =+2^31
addcc %o1,%o1,%g0!set ovrlfw cc with o3 = 0

9: retl !exit
mov %o4,%o0!with correct remainder in o0

8: sethi 0x200001,%o3 !overflow divide by non-zero indicator
retl !exit with
addcc %o3,%o3,%o3!overflow set

3: divscc %o1,%o5,%o1!divide step 2
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
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divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1
divscc %o1,%o5,%o1!divide step 32
be 6f !if final remainder is zero,

!go fix quotient polarity
mov %y, %o4 !final remainder from Y to o4
bg 4f !skip ahead if rmdr+; continue if rmdr-
addcc %o4,%o5,%g0!is neg rmdr + abs divsr =0
be,a 6f !if so, go fix quotient polarity and
mov %g0,%o4!clear rmdr. if not, don’t clear
tst %o0 !test original dvdnd
bl 5f !if neg, go check neg Q
tst %o1 !sign Q
ba 5f
add %o4,%o5,%o4!if orig dvdnd pos and final rmdr neg,

!correct rmdr; then go check neg Q
4: subcc %o4,%o5,%g0!is pos rmdr - abs divsr =0

be,a 6f !if so, go fix quotient polarity and
mov %g0,%o4!clear rmdr. if not, don’t clear
tst %o0 !test original dvdnd
bge 5f !if pos, go check neg Q
tst %o1 !sign Q
sub %o4,%o5,%o4!if orig dvdnd neg and final rmdr pos,

!correct rmdr; then go check neg Q
5: bl,a 6f !skip ahead if Q pos

add %o1,1,%o1!if neg Q, 1’s complement to
!2’s complement; annul if pos Q

6: tst %o2 !check original divisor sign
bl,a 7f
sub %g0,%o1,%o1!if neg divsr, negate quotient

7: retl !exit
mov %o4,%o0!with correct remainder in o0

A.2.3   divu1 - divide unsigned, 1 word dividend

Unsigned division of a 32 bit dividend by a 32 bit divisor produces an unsigned 32 bit quo-
tient and an unsigned 32 bit remainder that is positive or zero if exact. Since only overflow
is divide by zero, this routine does not check for divide by zero, leaving it up to caller to
test and abort just after the call. Division without fault takes 39 cycles. If remainder is of
no interest and only the quotient corresponding to INTEGER(dvdnd/dvsr) or
FLOOR(dvdnd/dvsr) for unsigned numbers is wanted then the last steps of this routine can
be modified as indicated and quotient only unsigned division will take 36 cycles. This
assumes each instruction takes one cycle except retl which takes two.
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!DIVISION SUBROUTINE - DIVU1
!This subroutine for unsigned division of 32 bit dividend by 32 bit
!divisor produces 32 bit unsigned quotient and 32 bit remainder using
!divide step instruction. Remainder is zero if division is exact
!or positive if not. There is no check for divide by zero. It is not
!possible to overflow with non zero divisor. If the calling routine
!knows that divide by zero cannot happen, no test is needed. If divide
!by zero is possible, a simple test just after the call can abort the
!division. If not aborted, division takes 39 cycles; clears overflow
!flag; leaves 0 in register out3.
!If remainder is of no interest and only the quotient corresponding to
!INTEGER(dvdnd/dvsr) or FLOOR(dvdnd/dvsr) for unsigned numbers is wanted
!then the last steps of this routine can be modified as indicated and
!quotient only unsigned division will take 36 cycles.
!call so:
! mov %l1,%o1!dvdnd->o1
! orcc %g0,%l2,%o2!dvsr->o2 & test
! call divu1!DIVISION SUBROUTINE CALL
! be dvby0 !abort division if divide by zero
!
!Register Map
!reg#
!out0 remainder
!out1 dividend/quotient
!out2 divisor
!out3 0 if divide by non zero
!y  initially zero/successive partial remainders
!
.global divu1
divu1:mov %g0,%y!0->Y

orcc %g0,0,%o3!initialize cc for first divide step
!with positive sign for unsigned divide
!clear divide by zero indicator

divscc %o1,%o2,%o1!divide step 1
!don’t change cc except by divscc until last divide step done

divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
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divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
! retl !exit for quotient only divide
divscc %o1,%o2,%o1!divide step 32
!ALL the following steps may be omitted for quotient only divide
bl 1f !skip ahead if rmdr-
mov %y,%o0!final rmdr from Y to o0
retl !exit
addcc %o0,0,%o0!clear ovrflw cc if on

1: retl !exit
addcc %o0,%o2,%o0!correct rmdr & clear ovrflw cc if on

A.2.4   divu2 - divide unsigned, 2 word dividend

Unsigned division of a 64 bit dividend by a 32 bit divisor produces an unsigned 32 bit quo-
tient and an unsigned 32 bit remainder that is positive or zero if exact. Division with divide
by zero fault takes 6 cycles. Division with non zero divisor overflow fault takes 9 cycles.
Division without fault takes 42 cycles. This assumes each instruction takes one cycle
except retl which takes two.

!DIVISION SUBROUTINE - DIVU2
!This subroutine for unsigned division of 64 bit dividend by 32 bit
!divisor produces 32 bit unsigned quotient and 32 bit remainder using
!divide step instruction. Remainder is zero if division is exact
!or positive if not. There is a check for divide by zero and a check for
!overflow with non-zero divisor. Check for divide by zero is kept
!separate to support possible SUN recommended trap for divide by zero. In
!applications where user knows numerical ranges or controls them, these
!checks can be omitted. Division with divide by zero fault takes 6
!cycles; sets overflow flag in condition code; leaves 0xfffff800 in
!register out3. Division with non-zero divisor overflow takes 9 cycles;
!sets overflow flag in condition code; leaves 0x800 in register out3.
!Division without fault takes 42 cycles; clears overflow flag in
!condition code; leaves 0 in register out3.
!call so:
! mov %l0,%o0!msh dvdnd->o0
! mov %l1,%o1!lsh dvdnd->o1
! call divu2!DIVISION SUBROUTINE CALL
! orcc %g0,%l2,%o2!dvsr->o2 & test
!
!Register Map
!reg#
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!out0 msh dividend/remainder
!out1 lsh dividend/quotient
!out2 divisor
!out3 overflow indication
!overflow divide by zero/0xfffff800 and V=1
!overflow divide by non-zero/0x800 and V=1
!no overflow/0 and V=0
!y msh dividend/successive partial remainders
!call to divs2 must be made with cc indicating if divisor zero
!
.global divu2
divu2:bne 1f !go on if divisor not zero

mov %o0,%y!msh dvdnd->Y
sethi 0x1fffff,%o3!divide by zero indicator
retl !exit with
addcc %o3,%o3,%o3 !overflow set

1: subcc %o0,%o2,%g0!is msh dvdnd < dvsr
bcs 2f !ok if so
orcc %g0,0,%o3 !initialize cc for first divide step

!with positive sign for unsigned divide
!clear overflow indicator

sethi 0x200001,%o3!overflow divide by non-zero indicator
retl !exit with
addcc %o3,%o3,%o3 !overflow set

2: divscc %o1,%o2,%o1!divide step 1
!don’t change cc except by divscc until last divide step done

divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
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divscc %o1,%o2,%o1
divscc %o1,%o2,%o1
divscc %o1,%o2,%o1!divide step 32
bl 3f !skip ahead if rmdr-
mov %y,%o0!final remdr from Y to o0
retl !exit
addcc %o0,0,%o0!clear ovrflw cc if on

3: retl !exit
addcc %o0,%o2,%o0!correct rmdr & clear ovrflw cc if on

A.3   SCAN Instruction Examples

A.3.1   Software floating point with SCAN

The following code fragment shows post normalization of floating point add or subtract
for the case where the result requires calculating the difference of the magnitudes of the
numbers. The IEEE754 format, which is used in SPARC-V8 architecture is assumed. This
uses sign, offset exponent, hidden leading bit when normalized and fraction. Only the
logic of normalize numbers is shown here. Number values are in sign and magnitude form
rather than two’s complement.

bit 31| 30 23| 22 0normalized values
fields | e| f 0<e<255

x = (-1)^s * 2^(e-127) * (1 + f*2^-23)

The operation is x+y=z or x<y=z. If subtract, then sign y is complemented. The magni-
tudes of the numbers have to be compared and the one with the lesser exponent right
shifted to align its decimal point with the greater exponent. If exponents are equal, magni-
tudes must be compared if signs differ to determine what the sign of the result will be.
This is assumed to have taken place before the code fragment shown here, which shows
the logic of handling numbers with different signs and different exponents. Symbol x
points to the larger number; y to smaller.

sethi 0x3fe, %g5!mask for sign and exponent with and
!or for fraction with andn

sll %g5,1,%g4
xor %g4,%g5,%g4!single one at bit 23 for hidden bit
srl x,23,%g2
and %g2,0xff,%g2!x exponent
srl y,23,%g3
and %g3,0xff,%g3!y exponent
sub %g2,%g3,%g1!alignment difference
andn y,%g5,%g3!y fraction
or %g3,%g4,%g3!y hidden bit
srl %g3,%g1,%g2!downshift y magnitude to g2
sub %g0,%g1,%g1!complement of shift
sll %g3,%g1,%g3!upshift left over y for test
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addcc %g3,%g3,%g0!test left over for rounding
!note: not IEEE754 rounding here

andn x,%g5,%g1!x fraction
or %g1,%g4,%g1!x hidden bit
subx %g1,%g2,%g1!difference of magnitudes with

!simple rounding
scan %g1,0,%g2!scan difference for leading one.

!Use of 0 as the scan mask is because
!of sign magnitude arithmetic assumed
!in this example. Leading 8 bits are
!guaranteed to be zero because of
!format. Question is, how many more
!till the first one?
!If two’s complement arithmetic had
!been assumed, then there could have
!been leading ones or leading zeros
!depending on sign of result. Then
!instead of 0 as mask, scan would have
!used %g1 as mask as well as value.
!Question would have been, how many
!leading bits are the same as the sign?

subcc %g2,32,%g0!test if all significant bits lost
blu 1f !use unsigned compare for future compatibility
sub %g2,8,%g2!remove effect of format’s 8 leading 0’s
!underflow due to loss of significant bits code would follow here

1: sll %g1,%g2,%g1!normalize result
andn %g1,%g4,%g1!hide leading bit
srl x,23,%g3
and %g3,0xff,%g4!x exponent in g4
subcc %g4,%g2,%g0!test exponent underflow
bgu 2f !use unsigned compare for future compatability
sub %g3,%g2,%g3!subtract normalization shift from
!result sign and exponent
!exponent underflow code would follow here

2: sll %g3,23,%g3!place sign and exponent result in
!format position

retl !exit(2 cycles)
or %g1,%g3,z!combine with fraction

Each instruction in this code fragment runs one cycle out of the instruction cache except
for the leaf routine which takes two. That’s 32 cycles for this fragment. Without scan as a
hardware instruction, the function would have to be performed as a software routine that
takes 43 to 52 cycles for the usual cases. The fragment would take 74 to 83 cycles, more
than double the cycles. A software substitute for scan would consume instruction cache
space. Attempts to speed up the binary tree search in the software routine by look up tables
based on leading bits would consume data cache space.
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A.3.2   Run length encoding with SCAN

The following code fragment shows compression of long binary strings by looking for
runs of all ones or all zeros and coding these so that lossless reconstruction is possible. For
the example, runs less than four in length are ignored and directly transmitted and runs
greater than sixteen are broken up for coding efficiency and coding simplification. Best
compression occurs for low information content long binary strings such as background
sections of black and white raster lines.

code value
00000reserved
00001“
00010“
00011“
------------------------------
0010000001... or 11110...
00101000001... or 111110...
001100000001... or 1111110...
...
011110000 0000 0000 0001... or 1111 1111 1111 1110...
100000000 0000 0000 0000 1... or 1111 1111 1111 1111 0...
-------------------------------------------------------
100010001...
100100010...
100110011...
...
111101110...
-----------------
11111toggle

The code fragment omits starting up the loop, reloading buffers with new data, storing
code and terminating the loop. Symbol x points to data segment in some register ready for
compression and symbol y points to its immediate successor. Symbol z points to some reg-
ister that will hold code for compression data.

0: scan x,x,%g1!scan for how many bits are same as msb.
!g1 = 1 to 31 or >32 if all in x register.
!x is used as both the value to be scanned(rs1)
!and the mask(rs2).

subcc %g1,4,%g0!test if run at least length 4
bgeu 1f !use unsigned compare for future compatability
subcc %g1,16,%g0!test if run greater than length 16

!handle fixed length code, g1<4
srl x,28,%g2!extract leading 4 bits of x as compression code
or %g2,16,%g2!insert leading bit of code for fixed length
sll x,3,x!shift rest of x in 2 steps
addcc x,x,x!complete x shift and test last of 4 bits
bcs 2f !separate cases for 1 or 0
addcc x,x,%g0!test without shifting first of remaining bits
bcs 3f !if last out bit =0 and first remaining bit =1
mov 1,%g4!set new low priority toggle indicator
ba 3f
mov 0,%g4!otherwise clear toggle indicator

!fixed length code overwrites any pending toggle
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2: bcc 3f !if last out bit =1 and first remaining bit =0
mov 1,%g4!set new low priority toggle indicator
mov 0,%g4!otherwise clear toggle indicator

!fixed length code overwrites any pending toggle
3: srl y,28,%g3!extract leading 4 bits of y

or x,%g3,x!move them to right end of x
sll y,4,y!shift rest of y with incoming trailing zeros
ba 5f
subcc %g5,4,%g5!decrement counter of how many bits of x left

!handle run length code
1: blu 4f !skip ahead if run less than 16

!use unsigned compare for future compatability
sll %g4,1,%g4!shift incomming toggle indicator to higher

!priority; handle runs at least 16
mov 16,%g2!set compression code to 16
sll x,16,x!ignore leading 16 bits of x and shift rest of x
srl y,16,%g3!extract leading 16 bits of y
or x,%g3,x!move them to right end of x
sll y,16,y!shift rest of y with incomming trailing zeros
ba 5f
subcc %g5,16,%g5!decrement counter of how many bits of x left

!handle runs of length 4 to 15
4: mov %g1,%g2!set compression code to scan result

sub %g0,%g1,%g1!complement scan result
sll x,%g2,x!ignore leading g2 bits of x and shift rest of x
srl y,%g1,%g3!extract leading 32-g1 bits of y
or x,%g3,x!move them to right end of x
sll y,%g2,y!shift rest of y with incomming trailing zeros
subcc %g5,%g2,%g5!decrement counter of how many bits of x left
or %g4,1,%g4!toggle following compression code too

!one compression code to go
5: bgu 6f !skip ahead if there are still bits of x left

!use unsigned compare for future compatability
subcc %g6,1,%g6!decrement counter of code fields left

!code for reloading y and shifting part of it into x if the old y had
!trailing zeros and resetting g5 to 32-#trailing zeros.
 ...
6: bg 7f !skip ahead if room for more codes

andcc %g4,2,%g0!test if toggle has priority
!code for storing codes and reinitializing g6

 ...
7: sll z,5,z!make room for new code

be,a 0b !if g4 bit1 off then no additional code
!if g4 bit1 on then insert toggle code first

or z,%g2,z!insert new data code
andn %g4,2,%g4!clear high priority toggle indicator

!without disturbing low priority toggle indicator
ba 5b!check on how much code space left and append toggle
or z,0x1f,z!back through 5,6,7 just once

 ...

Each instruction in this code fragment runs one cycle out of the instruction cache if it is in
the active path for a particular case. Scan is in the active path for all cases. Without hard-
ware implementation of Scan, the function would require a software subroutine taking 43
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to 52 cycles instead of only 1. Additionally, that routine would consume instruction cache
space. Alternate versions that might attempt to speed up the binary tree search with table
look up using leading bits as an index would consume data cache space.
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Annex B   Alternative Window Usage Models
(Informative)

B.1   Overview

This section provides an alternative to the standard SPARC programming model for the
SPARC-V8E processor. SPARC-V8 processors provide a large number of general purpose
registers. At any instant, the SPARC CPU has 32 working registers available. They are
divided into 8 global registers, and 24 registers that compose a current overlapped “regis-
ter window”. The SPARC Architecture Manual, Version 8 requires that the number of reg-
ister windows on any implementation fall between 2 and 32.

The abundance of registers and the window register model provided by SPARC-V8 incurs
several drawbacks and performance penalties when implemented in high performance,
real-time applications associated with embedded systems such as SPARC-V8E. One such
problem encountered is the large number of registers that may need to be saved at context
switch time leading to high context switch overhead. Another, is the difficulty in predict-
ing the number of registers that will need to be saved at context switch time. This results in
all registers being saved with associated performance penalties.

In embedded applications, the following factors take precedence:

— Reduced average context-switch times

— Constant (or small worst-case deterministic) context-switch and procedure-call
times

There are several alternatives known to accommodate the above criteria.

Note:
See Section D.8 of the SPARC Architecture Manual, Version 8, for descriptions of other register-
window usage models. (Note that model “[C]” in D.8 is the one described in more detail below.)
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B.2   Single Register Window Model

An alternate mechanism for the SPARC-V8E window register programming model, The
Single Register Window Model, is described. This Model:

— Avoids the typical window “overflow” processing overhead

— Reduces the number of registers that need to be saved on a context switch

This model avoids using the standard SPARC-V8 register windowing mechanism; instead,
it treats the SPARC processor as a conventional CPU with a flat set of 32 general purpose
registers. The compiler generates code to save registers around procedure calls when nec-
essary. Dedicating a register window to a single process is possible. If a process has a win-
dow dedicated to it, the context of a process is always available without reference to
memory. Thus, little memory access is required for a context switch. In the example illus-
trated in Figure 3, four of the eight register windows are dedicated to four processes.
When an interrupt or another context switching event is detected, the SPARC processor
automatically switches to a new window (which is not shown in diagram). Thus, the local
registers between the reserved windows are reserved for interrupt handling.

Figure 13: Alternative Window Model for Machine with 8 Register Windows

Table3 below shows how a Single Register Window Model compiler will use registers.
Notice that the “in,” “local,” and “out” grouping have been replaced by a flat register file
%r0 through %r31. Even with two registers reserved for future use, 11 registers are now
available for local variables, thereby minimizing expensive load/store operations.

Single Register
Window

r8 - r31

•
•
•

Stack

Process 3

Process 4

Process 1

Process 2

Global
r0 - r7

r8 - r31

r8 - r31

r8 - r31

•
•
•

Stack

•
•
•

Stack

•
•
•

Stack

r0 - r7      Global Register
r8 - r31    Local Registers

Working Registers
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B.3   Conclusion

The above alternative window register model, The Single Window Register Model, pro-
vides enhanced functionality for the SPARC-V8E processor. Both improvements in the
speed of procedure calls and returns and the guaranteeing of constant or worst-case deter-
ministic context switch times are accommodated by the enhanced window register model.
Other solutions have been proposed and may be equally efficient.

Compatibility Note:
Assembly language or computer output from SPARC-V8 ABI conforming programs will not run
on the single register window model.

Register Use Comments

r31 Stack Pointer also referred to as sp

r30 Frame Pointer also referred to as fp

r25 - r29 Scratch Registers used by the compiler for temporary values

r24 Return value start of quad precision value or address of
struct

r16 - r23 Input Parameters additional parameters placed on the stack

r15 Return Address address of the procedure call instruction

r4 - r14 Register Variables local variables

r3 Special Use reserved for the user

r1 - r2 Reserved reserved for future (position-independent
code)

r0 Zero Value always contains the value zero

Table 15: Register Usage in the Single Register Window Model
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Annex C   Summary of Operation Codes, ASIs and ASRs
(Normative)

C.1   Operation Codes

— Divide Step-DIVScc: op=2, op3= 0111012 /(1D16)

— Scan-SCAN: op=2, op3=1011002/ (2C16)

Compatibility Note
The SCAN operation code, op3= 2C16, conflicts with the SPARC-V9 opcode for MOVcc.

C.2   ASI Assignments

The following revision is made to the recommended ASI assignments for ASI’s 3016-FF16
from Table I-1 in the SPARC-V8 Architecture Manual:

C.3   ASRs

— ASR-17: Trap SVT Flag, bit 0

ASI Function

30-6F unassigned

70-7F reserved for diagnostic facility

80-BF reserved*

C0-EF unassigned*

F0-FF reserved for diagnostic facility*

*may be accessible in user mode

Table 16: ASI Assignments
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Annex D   List of options
(Normative)

D.1   Introduction

The list included in this annex shows which V8E extensions to the SPARC-V8 architec-
ture there are, in which combinations they are allowed or advised, and where in the
SPARC-V8E spec they are described.

The options are numbered according to the chapters in the SPARC-V8E spec in which
they are described; the sub numbering does, though, not necessarily follow the section
numbering and subsection numbering as in the SPARC-V8E spec..

D.2   Instructions

The following options are defined.
They can be implemented not at all, separately or in any combination:

2.1. Divide Step: See Chapter 2.1
2.2. Scan See Chapter 2.2
2.3. Multiply Accumulate See Chapter 2.3
2.4. Alternate Window Pointer See Chapter 2.4
2.5. Partial WRPSR See Chapter 2.5
2.6. Non Privileged ASI Access See Chapter 2.6

D.3   MMU

None or just one of the options below can be implemented:

3.1. Basic reference MMU See SPARC-V8 spec
3.2. Embedded Reference MMU See Chapter 3.2
3.3. Cacheability Control See Chapter 3.3
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D.4   Traps

The option below may or may not be supported:

4.1. Single Vector Trapping See Chapter 4.

D.5   Peripheral Extensions

5.1. Input Handler: See Chapter 5.2
 Any number of input handlers can be supported. They will usually but not necessarily
be used as inputs to other options as described in chapter 5.

5.2. Interrupt Controller: See Chapter 5.3.1 and 5.3.2.
 One or more such controllers may be implemented. They will usually be preceded by
Input Handlers <5.1>, and if more than one Interrupt Controller <5.2> is implemented,
then their outputs are combined as an Extended Interrupt Controller <5.3>.

5.3. Extended Interrupt Controller: See Chapter 5.3.3.
If more than one Interrupt Controller <5.2> is implemented then they should be com-
bined into an Extended Interrupt Controller <5.3>.

5.4. Integrated Interrupt Request Controller: See Chapter 5.4.
None or one “IIRC” <5.4> can be implemented.
<5.4> can not be implemented together with circuitry <5.2> or <5.3>.

5.5. Programmable Pulse Generators: See Chapter 5.5.1.
Any number of such Counter/Timer/Pulsers may be implemented. They will usually
be preceded by Input Handlers <5.1>; their outputs will usually be connected to Inter-
rupt Controllers <5.2> but they can also be otherwise connected; that is implementor
defined.

5.6. Simple Counters See Chapter 5.5.2.
Any number of Simple Counters may be implemented. They may be preceded by
Input Handlers <5.1>; their outputs may be connected to Interrupt circuitry <5.2> or
<5.4>

5.7. Simple Timers See Chapter 5.5.3.
Any number of Simple Timers may be implemented. They may be preceded by Input
Handlers <5.1>; their outputs may be connected to Interrupt circuitry <5.2> or <5.4>.

D.6   Diagnostics

None or just one of the options below may be implemented: They share functionality; their
implementation is optimized for different desires.

6.1. Trace enhancing DSU: See Chapter 6.1.1.
A next version of the SPARC-V8E spec will contain more details.

6.2. Pin effective DSU: See Chapter 6.1.2.
 A next version of the SPARC-V8E spec will contain more details.


