
SPARC COMPLIANCE DEFINITION 2.4
Interface Semantics

SCD 2.4
IS

SPARC INTERNATIONAL

August 1998

© 1990-1998 SPARC International Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior
permission of the copyright owners.

The manual pages for socket functions are
¶ 1992, 1993 The Regents of the University of California. All rights reserved

Includes material copyrighted by UNIX System Laboratories, Inc., a subsidiary of Novell, Inc. Reprinted with
permission.

The SPARC Compliance Interface Definition 2.3 is published and printed by SPARC International.

Any comments relating to the material contained herein may be submitted to:

SPARC International Inc.

3333 Bowers Ave., Suite 280

Santa Clara, CA 95054-2913

ATTN: Ghassan Abbas (abbas@sparc.org)

Trademarks

SPARC® is a registered trademark of SPARC International, Inc.

SPARCstation™ is a trademark of SPARC International, Inc.

Products bearing SPARC® trademarks are based on an architecture developed by Sun Microsystems, Inc.

ONC™ and SunOS™ are trademarks of Sun Microsystems, Inc.

NFS® is a registered trademark of Sun Microsystems, Inc.

UNIX® and OPEN LOOK® are registered trademarks of UNIX System Laboratories, Inc.

The X-Window System™ is a trademark of Massachusetts Institute of Technology.

OSF/Motif™ is a trademark of the Open Software Foundation, Inc.

All other products or services mentioned in this document are identified by the trademarks or service marks
of their respective companies or organizations. SPARC International, Inc. disclaims any responsibility for
specifying which trademarks are owned by which companies or organizations.

This product contains intellectual property of Sun Microsystems, Inc., and any user of this product will be
required to obtain a license from Sun Microsystems, Inc., prior to use.

SPARC COMPLIANCE DEFINITION 2.4 IS

TABLE OF CONTENTS

__ table of contents

1998 SPARC Compliance Definition 2.4 Interface Semantics table-1

TABLE OF CONTENTS

Introduction
Introduction .. 1-1

libaio
aiocancel .. 2-1
aioread, aiowrite ... 2-2
aiowait .. 2-4

libc
_cleanup ... 3-1
addseverity .. 3-2
crypt, encrypt, setkey ... 3-3
setlabel ... 3-4
sysinfo .. 3-5
___errno, asctime_r , ctime_r , flockfile ... 3-7
funlockfile, getc_unlocked, getchar_unlocked .. 3-7
gmtime_r , localtime_r, putc_unlocked .. 3-7
putchar_unlocked, rand_r, strtok_r ... 3-7
priocntl ... 3-9
strftime, cftime, ascftime ... 3-16
syslog, openlog, closelog, setlogmask ... 3-19
dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch 3-21
dbm_firstkey, dbm_nextkey, dbm_open, dbm_store ... 3-21
decimal_to_floating, decimal_to_single, decimal_to_double 3-23
decimal_to_extended, decimal_to_quadruple ... 3-23
floating_to_decimal, single_to_decimal, double_to_decimal, 3-24
extended_to_decimal, quadruple_to_decimal ... 3-24
string_to_decimal, file_to_decimal, func_to_decimal ... 3-25
econvert, fconvert, gconvert, seconvert, sfconvert .. 3-27
sgconvert, qeconvert, qfconvert, qgconvert ... 3-27
ecvt, fcvt, gcvt ... 3-27
getspnam, getspnam_r, getspent, getspent_r, setspent .. 3-29
endspent, fgetspent, fgetspent_r .. 3-29
gettimeofday, settimeofday .. 3-32
getutxent, getutxid, getutxline, pututxline, setutxent ... 3-34
endutxent, utmpxname, getutmp, getutmpx ... 3-34
updwtmp, updwtmpx ... 3-34
ffs .. 3-37
isnan, isnand, isnanf, finite, fpclass, unordered ... 3-38
fpgetround, fpsetround, fpgetmask .. 3-39
fpsetmask, fpgetsticky, fpsetsticky .. 3-39
truncate, ftruncate .. 3-41
getdents .. 3-43
getmntent, getmntany, hasmntopt, putmntent ... 3-44
getpw .. 3-46
getvfsent, getvfsfile, getvfsspec, getvfsany .. 3-47
iconv ... 3-49
iconv_close .. 3-51
iconv_open .. 3-52

table of contents __

table-2 SPARC Compliance Definition 2.4 Interface Semantics 1998

insque, remque ... 3-53
madvise .. 3-54
malloc, calloc, realloc, valloc, alloca .. 3-56
free, memalign .. 3-56
mincore .. 3-58
modf, modff .. 3-59
p_online ... 3-60
read, readv, pread .. 3-61
processor_bind .. 3-65
processor_info ... 3-66
psignal, psiginfo ... 3-67
write, pwrite, writev .. 3-68
realpath .. 3-72
select, FD_SET, FD_CLR, FD_ISSET, FD_ZERO ... 3-74
setuid, setegid, seteuid, setgid .. 3-76
string, strcasecmp, strncasecmp, strcat .. 3-77
strncat, strchr, strrchr, strcmp, strncmp ... 3-77
strcpy, strncpy, strcspn, strspn, strdup ... 3-77
strlen, strpbrk, strstr, strtok, strtok_r ... 3-77
strsignal .. 3-79
sysfs .. 3-80
ttyslot .. 3-81
uadmin ... 3-82
vfork ... 3-84
vhangup ... 3-86
syslog .. 3-87
__div64 ... 3-88
__dtoll .. 3-89
__dtoull .. 3-90
__ftoll .. 3-91
__ftoull ... 3-92
__mul64 .. 3-93
__rem64 .. 3-94
__udiv64 .. 3-95
__umul64 ... 3-96
__urem64 ... 3-97
_Q_lltoq .. 3-98
_Q_qtoll .. 3-99
_Q_qtoull ... 3-100
_Q_ulltoq ... 3-101
fgetgrent_r ... 3-102
fgetpwent_r ... 3-104
fork ... 3-106
getgrent_r .. 3-109
getlogin_r ... 3-111
getpwent_r .. 3-112
getgrgid_r .. 3-114
getgrnam_r .. 3-114
getpwnam_r .. 3-114
getpwuid_r .. 3-114
readdir_r .. 3-114
makecontext .. 3-116
swapcontext .. 3-116
sbrk ... 3-117

__ table of contents

1998 SPARC Compliance Definition 2.4 Interface Semantics table-3

swapctl ... 3-118
ttyname .. 3-121
ttyname_r ... 3-121
sync_instruction_memory .. 3-122

libc 64 psABI
__align_cpy_1, __align_cpy_2, __align_cpy_3 ... 3P-1
__align_cpy_8, __align_cpy_16 .. 3P-1
__sparc_utrap_install ... 3P-2
_Qp_add .. 3P-3
_Qp_cmp, _Qp_cmpe .. 3P-3
_Qp_div, _Qp_dtoq .. 3P-3
_Qp_feq, _Qp_fge, _Qp_fgt, _Qp_fle, _Qp_flt, _Qp_fne .. 3P-3
_Qp_itoq, _Qp_mul, _Qp_neg, _Qp_qtod,_Qp_qtoi .. 3P-3
_Qp_qtos, _Qp_qtoui, _Qp_qtoux, _Qp_qtox, _Qp_sqr ... 3P-3
_Qp_stoq _Qp_sub ... 3P-3
_Qp_uitoq, _Qp_uxtoq, _Qp_xtoq ... 3P-3
 __dtoul, __ftoul .. 3P-3

libdl
Introduction .. 4-1
dladdr ... 4-2
dlclose .. 4-4
dlerror .. 4-6
dlopen .. 4-7
dlsym .. 4-10

libelf
elf32_size .. 5-1
elf32_getehdr ... 5-2
elf32_newehdr .. 5-2
elf32_getphdr .. 5-3
elf32_newphdr .. 5-3
elf32_getshdr ... 5-4
elf32_xlatetof ... 5-5
elf32_xlatetom ... 5-5
elf_begin .. 5-7
elf_cntl .. 5-8
elf_end .. 5-9
elf_errmsg .. 5-10
elf_errno ... 5-10
elf_fill ... 5-11
elf_flagdata .. 5-12
elf_flagehdr ... 5-12
elf_flagelf ... 5-12
elf_flagphdr ... 5-12
elf_flagscn .. 5-12
elf_flagshdr .. 5-12
elf_getarhdr ... 5-13
elf_getarsym .. 5-14
elf_getbase ... 5-15
elf_getdata ... 5-16
elf_newdata ... 5-16

table of contents __

table-4 SPARC Compliance Definition 2.4 Interface Semantics 1998

elf_rawdata .. 5-16
elf_getident .. 5-19
elf_hash .. 5-20
elf_kind .. 5-21
elf_getscn ... 5-22
elf_ndxscn .. 5-22
elf_newscn ... 5-22
elf_nextscn ... 5-22
elf_next ... 5-23
elf_rand .. 5-24
elf_rawfile .. 5-25
elf_strptr .. 5-26
elf_update .. 5-27
elf_version ... 5-30

libintl
gettext, dgettext, dcgettext .. 6-1
textdomain, bindtextdomain .. 6-1

libm
copysign ... 7-1
expm1 ... 7-2
ilogb .. 7-3
log1p ... 7-4
rint .. 7-5
 scalbn ... 7-6
significand ... 7-7

libnisdb
db_table_exists, db_unload_table, db_free_result .. 8-1
db_initialize, db_create_table, db_destroy_table, db_first_entry 8-2
db_next_entry, db_reset_next_entry, db_list_entries, db_remove_entry 8-2
db_add_entry, db_table_exists, db_unload_table, db_checkpoint, 8-2
db_standby, db_free_result .. 8-2

libnsl
inet_addr .. 9-1
inet_netof ... 9-1
inet_ntoa .. 9-1
authdes_create .. 9-2
authunix_create, authunix_create_default ... 9-2
callrpc ... 9-2
clnt_broadcast ... 9-2
clntraw_create ... 9-2
clnttcp_create,clntudp_bufcreate, clntudp_create ... 9-2
get_myaddress .. 9-2
getrpcport .. 9-2
pmap_getmaps ... 9-2
pmap_getport ... 9-2
pmap_rmtcall .. 9-2
pmap_set, pmap_unset ... 9-2
registerrpc .. 9-2
rpc_soc ... 9-2

__ table of contents

1998 SPARC Compliance Definition 2.4 Interface Semantics table-5

svc_fds ... 9-2
svc_getcaller, svc_getreq ... 9-2
svc_register, svc_unregister .. 9-2
svcfd_create, svcraw_create, svctcp_create .. 9-2
svcudp_bufcreate, svcudp_create .. 9-2
xdr_authunix_parms ... 9-2
clnt_control .. 9-9
clnt_create .. 9-9
clnt_create_timed ... 9-9
clnt_create_vers .. 9-9
clnt_create_vers_timed .. 9-9
clnt_destroy ... 9-9
clnt_dg_create ... 9-9
clnt_pcreateerror .. 9-9
clnt_raw_create ... 9-9
clnt_spcreateerror ... 9-9
clnt_tli_create .. 9-9
clnt_tp_create .. 9-9
clnt_tp_create_timed .. 9-9
clnt_vc_create .. 9-9
rpc_clnt_create .. 9-9
rpc_createerr ... 9-9
dial .. 9-13
undial ... 9-13
doconfig ... 9-15
getrpcbyname ... 9-17
getrpcbyname_r .. 9-17
getrpcbynumber ... 9-17
getrpcbynumber_r .. 9-17
getrpcent .. 9-17
getrpcent_r .. 9-17
setrpcent .. 9-17
getnetconfig ... 9-19
setnetconfig ... 9-19
endnetconfig ... 9-19
getnetconfigent ... 9-19
freenetconfigent .. 9-19
nc_perror ... 9-19
nc_sperror .. 9-19
netdir_free ... 9-21
netdir_getbyaddr .. 9-21
netdir_getbyname .. 9-21
netdir_mergeaddr .. 9-21
netdir_options ... 9-21
netdir_perror ... 9-21
netdir_sperror ... 9-21
taddr2uaddr .. 9-21
uaddr2taddr .. 9-21
rpc_reg ... 9-24
rpc_svc_reg ... 9-24
svc_auth_reg ... 9-24
svc_reg ... 9-24
svc_unreg ... 9-24
xprt_register .. 9-24

table of contents __

table-6 SPARC Compliance Definition 2.4 Interface Semantics 1998

xprt_unregister ... 9-24
rpc_svc_calls ... 9-26
svc_dg_enablecache ... 9-26
svc_done .. 9-26
svc_exit ... 9-26
svc_fdset .. 9-26
svc_freeargs ... 9-26
svc_getargs .. 9-26
svc_getreq_common .. 9-26
svc_getreq_poll ... 9-26
svc_getreqset ... 9-26
svc_getrpccaller .. 9-26
svc_pollset ... 9-26
svc_run ... 9-26
svc_sendreply ... 9-26
t_strerror .. 9-29
xdr_bool ... 9-30
xdr_char ... 9-30
xdr_double .. 9-30
xdr_enum .. 9-30
xdr_float ... 9-30
xdr_free .. 9-30
xdr_hyper .. 9-30
xdr_int .. 9-30
xdr_long, xdr_longlong_t .. 9-30
xdr_quadruple .. 9-30
xdr_short .. 9-30
xdr_simple ... 9-30
xdr_u_char ... 9-30
xdr_u_hyper .. 9-30
xdr_u_int ... 9-30
xdr_u_long, xdr_u_longlong_t ... 9-30
xdr_u_short ... 9-30
xdr_void ... 9-30
xdr_admin ... 9-33
xdr_control .. 9-33
xdr_getpos ... 9-33
xdr_inline ... 9-33
xdr_setpos ... 9-33
xdr_sizeof .. 9-33
xdrrec_endofrecord .. 9-33
xdrrec_eof .. 9-33
xdrrec_readbytes .. 9-33
xdrrec_skiprecord .. 9-33
rpc_broadcast_exp ... 9-35

libposix4
aio_cancel .. 10-1
aio_error ... 10-3
aio_return .. 10-3
aio_fsync .. 10-5
aio_read ... 10-7
aio_write .. 10-7

__ table of contents

1998 SPARC Compliance Definition 2.4 Interface Semantics table-7

aio_suspend .. 10-9
clock_settime ... 10-10
clock_gettime .. 10-10
clock_getres ... 10-10
fdatasync .. 10-11
lio_listio .. 10-12
mq_close .. 10-15
mq_getattr ... 10-16
mq_setattr .. 10-16
mq_notify .. 10-17
mq_open .. 10-18
mq_receive .. 10-21
mq_send ... 10-22
mq_unlink ... 10-23
nanosleep ... 10-24
sched_get_priority_max .. 10-25
sched_get_priority_min .. 10-25
sched_rr_get_interval .. 10-25
sched_getparam, sched_setparam ... 10-26
sched_getscheduler, sched_setscheduler .. 10-27
sched_yield .. 10-28
sem_close ... 10-29
sem_destroy .. 10-30
sem_getvalue .. 10-31
sem_init .. 10-32
sem_open ... 10-33
sem_post .. 10-35
sem_wait .. 10-36
sem_trywait ... 10-36
sem_unlink .. 10-37
shm_open .. 10-38
shm_unlink .. 10-40
sigqueue ... 10-41
sigwaitinfo ... 10-42
sigtimedwait ... 10-42
timer_create ... 10-43
timer_delete ... 10-44
timer_gettime .. 10-45
timer_settime .. 10-45
timer_getoverrun .. 10-45

libsocket
accept .. 11-1
bind ... 11-3
connect ... 11-4
gethostbyname, gethostbyaddr .. 11-6
getpeername .. 11-7
getprotobyname, getprotobynumber, getprotoent ... 11-8
getservbyname, getservbyport ... 11-9
getsockname .. 11-10
inet_lnaof. inet_makeaddr, inet_network ... 11-11
listen ... 11-12
recv , recvfrom , recvmsg .. 11-13

table of contents __

table-8 SPARC Compliance Definition 2.4 Interface Semantics 1998

send, sendto, sendmsg ... 11-15
getsockopt , setsockopt .. 11-17
shutdown ... 11-19
socket .. 11-20
endnetent, getnetbyaddr, getnetbyaddr_r, getnetbyname 11-22
getnetbyname_r, getnetent, getnetent_r, setnetent ... 11-22
endprotoent, getprotobyname, getprotobyname_r ... 11-24
getprotobynumber, getprotobynumber_r, getprotoent ... 11-24
getprotoent_r, setprotoent .. 11-24
endservent, getservbyname, getservbyname_r ... 11-26
getservbyport, getservbyport_r, getservent ... 11-26
getservent_r, setservent ... 11-26
ether_ntoa, ether_aton, ether_ntohost ... 11-29
ether_hostton, ether_line ... 11-29
byteorder, htonl .. 11-30
htons, ntohl, ntohs .. 11-30
rcmd, rresvport, ruserok ... 11-31
rexec ... 11-33
getsockopt, setsockopt ... 11-34
socketpair .. 11-37

libthread
cond_broadcast, cond_destroy ... 12-1
cond_init, cond_timedwait ... 12-1
cond_signal, cond_wait ... 12-1
fork1 ... 12-3
mutex_destroy, mutex_init, mutex_lock .. 12-4
mutex_trylock, mutex_unlock .. 12-4
rwlock_destroy, rwlock_init, rw_rdlock, rw_tryrdlock ... 12-6
rw_trywrlock, rw_unlock, rw_wrlock .. 12-6
sema_destroy, sema_init, sema_post .. 12-8
sema_trywait, sema_wait .. 12-8
thr_continue, thr_suspend .. 12-10
thr_create ... 12-11
thr_exit ... 12-13
thr_getconcurrency, thr_setconcurrency .. 12-14
thr_getprio, thr_setprio ... 12-15
thr_getspecific, thr_keycreate, thr_setspecific ... 12-16
thr_join ... 12-17
thr_kill .. 12-18
thr_min_stack ... 12-19
thr_self ... 12-20
thr_sigsetmask .. 12-21
thr_main .. 12-22
thr_yield ... 12-23
sigwait .. 12-24

libucb
nice .. 13-1
setjmp ... 13-2
longjmp .. 13-2
_setjmp ... 13-2
_longjmp .. 13-2

__ table of contents

1998 SPARC Compliance Definition 2.4 Interface Semantics table-9

scandir .. 13-3
alphasort .. 13-3
fopen ... 13-4
gettimeofday ... 13-5
settimeofday .. 13-5
mctl ... 13-6
psignal .. 13-8
sys_siglist ... 13-8
rand .. 13-9
srand ... 13-9
sigblock .. 13-10
sigmask .. 13-10
sigpause ... 13-10
sigsetmask ... 13-10
siginterrupt .. 13-11
signal .. 13-12
sigstack ... 13-13
sigvec .. 13-14
sleep .. 13-18
printf ... 13-19
fprintf ... 13-19
sprintf ... 13-19
vprintf .. 13-19
vfprintf ... 13-19
vsprintf ... 13-19
times ... 13-22
wait ... 13-23
reboot ... 13-27
bcopy .. 13-28
bcmp ... 13-28
bzero ... 13-28
ftime ... 13-29
getdtablesize ... 13-30
gethostid .. 13-31
gethostname .. 13-32
sethostname .. 13-32
getpagesize .. 13-33
getpriority .. 13-34
setpriority .. 13-34
getrusage ... 13-36
getwd ... 13-39
index ... 13-40
random ... 13-41
srandom ... 13-41
initstate ... 13-41
setstate .. 13-41
killpg .. 13-43
re_comp ... 13-44
re_exec .. 13-44
setbuffer ... 13-45
setlinebuf ... 13-45
setregid .. 13-46
setreuid .. 13-47
ualarm .. 13-48

__ table of contents

1998 SPARC Compliance Definition 2.4 Interface Semantics table-10

usleep ... 13-49

libw
fgetwc ... 14-1
getws, fgetws .. 14-2
fputwc .. 14-3
fputws .. 14-5
getwidth ... 14-6
isenglish, isideogram, isnumber .. 14-7
isphonogram, isspecial, iswalnum .. 14-7
iswalpha, iswascii, iswcntrl .. 14-7
iswdigit, iswgraph, iswlower, iswprint .. 14-7
iswpunct, iswspace, iswupper, iswxdigit ... 14-7
putws .. 14-9
towlower .. 14-10
towupper ... 14-11
ungetwc ... 14-12
wscasecmp, wscol, wsdup, wsncasecmp .. 14-13
wcstring, wcscat, wscat ... 14-14
wcsncat, wsncat, wcscmp, wscmp ... 14-14
wcsncmp, wsncmp, wcscpy, wscpy .. 14-14
wcsncpy, wsncpy, wcslen, wslen ... 14-14
wcschr, wschr, wcsrchr, wsrchr ... 14-14
windex, wrindex, wcspbrk, wspbrk .. 14-14
wcswcs, wcsspn, wsspn, ... 14-14
wcscspn, wscspn, wcstok, wstok ... 14-14
wcscoll, wscoll .. 14-18
wsprintf .. 14-19
wsscanf ... 14-20
wcstod, wstod, watof ... 14-21
wcstol, wstol, watol, watoll, watoi .. 14-23
wcsxfrm, wsxfrm .. 14-25

Large Files Interfaces
Large File Support Interfaces ... 15-1

 15-1
Overview ... 15-1
creat64 (libc, libthread) .. 15-3
fopen64 (libc), freopen64 (libc) ... 15-5
fseeko64 (libc) ... 15-7
fgetpos64 (libc), fsetpos64 (libc) ... 15-8
stat64 (libc), lstat64 (libc), fstat64 (libc) ... 15-9
fstatvfs64 (libc), statvfs64 (libc) .. 15-12
ftello64 (libc) .. 15-14
ftruncate64 (libc), truncate64 (libc) .. 15-15
ftw64 (libc), nftw64 (libc) .. 15-17
getdents64 (libc) .. 15-19
getrlimit64 (libc), setrlimit64 (libc) ... 15-20
lockf64 (libc) .. 15-23
lseek64 (libc) .. 15-26
mmap64 (libc) ... 15-28
open64 (libc, libthread) .. 15-31
pread64 (libc) .. 15-36

__ table of contents

1998 SPARC Compliance Definition 2.4 Interface Semantics table-11

pwrite64 (libc) ... 15-38
readdir64 (libc), readdir64_r (libc) ... 15-40
tmpfile64 (libc) .. 15-42
scandir64 (libucb), alphasort64 (libucb) .. 15-43
readdir64 (libucb) ... 15-44
mkstemp64(libc) ... 15-46
aio_cancel64 (libposix4) ... 15-47
aio_fsync64 (libposix4) .. 15-49
aio_read64 (libposix4), aio_write64 (libposix4) ... 15-51
aio_return64 (libposix4), aio_error64(libposix4) .. 15-53
aio_suspend64 (libposix4) ... 15-55
lio_listio64 (libposix4) .. 15-57
aioread64 (libaio), aiorwrite64 (libaio) .. 15-60

Execution Environment
/dev/zero .. 16-1

Index

table of contents __

table-12 SPARC Compliance Definition 2.4 Interface Semantics 1998

SPARC COMPLIANCE DEFINITION 2.4 IS

Introduction

__ Introduction

1998 SPARC Compliance Definition 2.4 Interface Semantics 1-1

Introduction
This is the SPARC Compliance Definitions 2.4 Interface Semantics

This book is a companion volume to the SCD 2.4. It defines the interface semantics for those interfaces that are
required by the SCD but are not specified in any other normative reference or whose semantics are different for SCD
from that of a normative reference.

It is expected that many of these semantic definitions will eventually be adopted by the committees responsible for the
SCD normative references. The definitions here will be deleted when and as they are added to the normative references.

Note that the SCD from 2.4 onward describes two separate ABIs, one for the 32-bit ABI and another for the 64-
bit ABI. Not every interface in this document (SCD IS) applies to both ABIs. See the SCD document for
specifics.

Introduction __

1-2 SPARC Compliance Definition 2.4 Interface Semantics 1998

SPARC COMPLIANCE DEFINITION 2.4 IS

libaio

__ libaio

1998 SPARC Compliance Definition 2.4 Interface Semantics 2-1

aiocancel

NAME
aiocancel - cancel an asynchronous operation

SYNOPSIS
#include <sys/asynch.h>
int aiocancel (aio_result_t *resultp);

 DESCRIPTION
aiocancel() cancels the asynchronous operation associated with the result buffer pointed to by
resultp. It may not be possible to immediately cancel an operation which is in progress and in this
case, aiocancel() will not wait to cancel it.
Upon successful completion, aiocancel() returns 0 and the requested operation is cancelled. The
application will not receive the SIGIO completion signal for an asynchronous operation that is
successfully cancelled.

RETURN VALUE
aiocancel() returns 0 on success, and -1 on failure and sets errno to indicate the error.

ERRORS
aiocancel() will fail if any of the following are true:
EACCES The parameter resultp does not correspond to any outstanding asynchronous

operation, although there is at least one currently outstanding.
EINVAL There are not any outstanding requests to cancel.

libaio __

2-2 SPARC Compliance Definition 2.4 Interface Semantics 1998

aioread, aiowrite

NAME
aioread, aiowrite - asynchronous I/O operations.

SYNOPSIS
#include <sys/asynch.h>
int aioread (int fildes, char *bufp, size_t bufs, off_t offset, int whence, aio_result_t *resultp);
int aiowrite (int fildes, const char *bufp, size_t bufs, off_t offset, int whence, aio_result_t *resultp);

DESCRIPTION
aioread() initiates one asynchronous read(BA_OS) and returns control to the calling program. The
read() continues concurrently with other activity of the process. An attempt is made to read bufs
bytes of data from the object referenced by the descriptor fildes into the buffer pointed to by bufp.
aiowrite() initiates one asynchronous write(BA_OS) and returns control to the calling program. The
write() continues concurrently with other activity of the process. An attempt is made to write bufs
bytes of data from the buffer pointed to by bufp to the object referenced by the descriptor fildes.
On objects capable of seeking, the I/O operation starts at the position specified by whence and
offset. These parameters have the same meaning as the corresponding parameters to the lseek
(BA_OS) function. On objects not capable of seeking the I/O operation always start from the
current position and the parameters whence and offset are ignored. The seek pointer for objects
capable of seeking is not updated by aioread() or aiowrite(). Sequential asynchronous operations on
these devices must be managed by the application using the whence and offset parameters.
The result of the asynchronous operation is stored in the structure pointed to by resultp:
 int aio_return; /* return value of read() or write() */
 int aio_errno; /* value of errno for read() or write() */
Upon completion of the operation both aio_return and aio_errno are set to reflect the result of the
operation. AIO_INPROGRESS is not a value used by the system so the client may detect a change
in state by initializing aio_return to this value.
The application supplied buffer bufp should not be referenced by the application until after the
operation has completed. While the operation is in progress, this buffer is in use by the operating
system.
Notification of the completion of an asynchronous I/O operation may be obtained synchronously
through the aiowait function, or asynchronously by installing a signal handler for the SIGIO signal.
Asynchronous notification is accomplished by sending the process a SIGIO signal. If a signal
handler is not installed for the SIGIO signal, asynchronous notification is disabled. The delivery of
this instance of the SIGIO signal is reliable in that a signal delivered while the handler is executing
is not lost. If the client ensures that aiowait returns nothing (using a polling timeout) before
returning from the signal handler, no asynchronous I/O notifications are lost. The aiowait function
is the only way to dequeue an asynchronous notification. Note: SIGIO may have several meanings
simultaneously: for example, that a descriptor generated SIGIO and an asynchronous operation
completed. Further, issuing an asynchronous request successfully guarantees that space exists to
queue the completion notification.
close(BA_OS), exit(BA_OS) and execve() (see exec(BA_OS)) will block until all pending
asynchronous I/O operations can be canceled by the system.

__ libaio

1998 SPARC Compliance Definition 2.4 Interface Semantics 2-3

It is an error to use the same result buffer in more than one outstanding request. These structures
may only be reused after the system has completed the operation.

RETURN VALUE
aioread() and aiowrite() return 0 on success, and -1 on failure and set errno to indicate the error.

ERRORS
EAGAIN The number of asynchronous requests that the system can handle at any one time

has been exceeded
EBADF fildes is not a valid file descriptor open for reading.
EINVAL The parameter resultp is currently being used by an outstanding asynchronous

request.
ENOMEM Memory resources are unavailable to initiate request.

libaio __

2-4 SPARC Compliance Definition 2.4 Interface Semantics 1998

aiowait

NAME
aiowait - wait for completion of asynchronous I/O operation

SYNOPSIS
#include <sys/asynch.h>
#include <sys/time.h>
aio_result_t *aiowait (const struct timeval *timeout);

 DESCRIPTION
aiowait() suspends the calling process until one of its outstanding asynchronous I/O operations
completes. This provides a synchronous method of notification.
If timeout is a non-NULL pointer, it specifies a maximum interval to wait for the completion of an
asynchronous I/O operation. If timeout is a NULL pointer, then aiowait() blocks indefinitely. To
effect a poll, the timeout parameter should be non-zero, pointing to a zero-valued timeval structure.
The timeval structure is defined in <sys/time.h> and contains the following members:
 long tv_sec; /* seconds */
 long tv_usec; /* and microseconds */
The value of tv_usec is restricted to the range [0:1000000].

RETURN VALUE
On success, aiowait() returns a pointer to the result structure used when the completed
asynchronous I/O operation was requested, or a NULL pointer if the time limit expires. On failure,
it returns (aio_result_t *)-1 and sets errno to indicate the error.

ERRORS
EINTR A signal was delivered before an asynchronous I/O operation completed.
EINVAL There are no outstanding asynchronous I/O requests (or, all outstanding

asynchronous EINVAL. There are no outstanding asynchronous I/O requests (or,
all outstanding /O requests were cancelled via aiocancel.); or tv_usec is outside of
the range [0:1000000].

 NOTES
aiowait() is the only way to dequeue an asynchronous notification. It may be used either inside a
SIGIO signal handler or in the main program. One SIGIO signal may represent several queued
events.

SPARC COMPLIANCE DEFINITION 2.4 IS

libc

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-1

_cleanup

NAME
_cleanup - flush all open files for writing

SYNOPSIS
void _cleanup();

DESCRIPTION
_cleanup is used to flush all open files for writing, functionally it is equivalent to fflush(NULL).

SEE ALSO
fflush(BA_OS)

libc __

3-2 SPARC Compliance Definition 2.4 Interface Semantics 1998

addseverity

NAME
addseverity - build a list of severity levels for an application for use with fmtmsg

SYNOPSIS
int addseverity(int value, const char *string)

DESCRIPTION

The function addseverity adds a new severity level of value. value must be greater than 4.

The function associates string with the level value so that string is produced with messages of that
value yielded by fmtmsg(). If a severity of value already exists it is replaced by the new description.
If string is (char *)0 then the severity level is deleted.
If string is a NULL string ““ then the severity level is deleted.

DIAGNOSTICS
Under the following conditions, addseverity fail by returning -1, and setting errno to:

EINVAL Using a value smaller or equal to 4.

EIVAL If an attempt is made to delete a currently undefined severity level.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-3

crypt, encrypt, setkey

NAME
 crypt, setkey, encrypt - generate string encoding

SYNOPSIS
char *crypt (char *key, char *salt);
void setkey (char *key);
void encrypt (char *block, int edflag);

DESCRIPTION
The function crypt is a string-encoding function. The argument key is a string to be encoded. The
argument salt is a two-character string chosen from the set [a-zA-Z0-9./]; this string is used to
perturb the encoding algorithm, after which the string that key points to is used as the key to
repeatedly encode a constant string. The returned value points to the encoded string. The first two
characters are the salt itself, the remaining characters shall not be identical to the original value of
key. The functions setkey and encrypt provide (rather primitive) access to the encoding algorithm.
The argument to setkey is a 64-bit string represented by a character array of length 64 containing
only the characters with numerical value 0 and 1. The string is divided into groups of 8 and the low-
order bit in each group is ignored; this gives a 56-bit key. This is the key that may be used with the
above mentioned algorithm to encode the string block with the function encrypt; the encryption
algorithm provided by the system may not actually use key. The argument block to encrypt is a
character array of length 64 containing only the characters with numerical value 0 and 1. The
argument array is modified in place to a similar array representing the bits of the argument after
having been subjected to the encoding algorithm using the key set by setkey. If the argument edflag
is zero, the string block is encoded. If the edflag is non-zero and the implementation supports
decryption then the string block is decoded. If the edflag is non-zero and the implementation does
not support decryption then errno is set to ENOSYS.

DIAGNOSTICS
Under the following conditions, these functions fail, and set errno to:
ENOSYS encrypt was called with a non-zero value for edflag on a system that does not

support decryption.
USAGE

The return value of the function crypt points to static data that are overwritten by each call. A
portable application shall not depend on portability of encrypted data, nor assume that decryption
is supported on all SCD conforming platforms. Also, portable applications must set errno to zero
before calling any of the functions since there are no function return values for setkey or encrypt.

RATIONALE
Encryption capability is often needed by an application that wants to provide some of its own
license protection. The application needs to be able to depend on the system to provide an
encryption service to do this even if the system does not provide a mechanism for decryption. This
standard does not require any particular underlying encryption algorithm, but only requires that
the crypt function return a value that is not identical to the original. This leaves it to the system
vendors to chose whatever algorithm they find to be appropriate, and alleviates any requirement
for a system vendor to choose one that has export restrictions.

libc __

3-4 SPARC Compliance Definition 2.4 Interface Semantics 1998

setlabel

NAME
setlabel - define the label for standard format messages.

SYNOPSIS
#include <pfmt.h>
int setlabel (const char *label);

DESCRIPTION
The routine setlabel() defines the label for messages produced in standard format.

label is a character string no more than 25 characters in length.

No label is defined before setlabel() is called. A NULL pointer or an empty string passed as argument will
reset the definition of the label.

RETURN VALUE
setlabel() returns 0 in case of success, non-zero otherwise.

USAGE
The label should be set once at the beginning of a utility and remain constant.

SEE ALSO
getopt(BA_LIB)

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-5

sysinfo

NAME
sysinfo - get system information strings

SYNOPSIS
#include <sys/systeminfo.h>
long sysinfo (int command, char *buf, long count);

DESCRIPTION
sysinfo copies information relating to the UNIX system on which the process is executing into the
buffer pointed to by buf. count is the size of the buffer.
The commands available are:
SI_SYSNAME Copy into the array pointed to by buf the string that would be returned by

uname [see uname(BA_OS)] in the sysname field. This is the name of the
implementation of the operating system, for example, UNIX_SV.

SI_HOSTNAME Copy into the array pointed to by buf a string that names the present host
machine. This is the string that would be returned by uname in the
nodename field. This hostname or nodename is often the name the machine
is known by locally.

The hostname is the name of this machine as a node in some network; different networks may have
different names for the node, but presenting the nodename to the appropriate network Directory
or name-to-address mapping service should produce a transport end point address. The name may
not be fully qualified.
Internet host names may be up to 256 bytes in length (plus the terminating null).
SI_RELEASE Copy into the array pointed to by buf the string that would be returned by

uname in the release field. Typical values might be 4.2, 4.0, 3.2.
SI_VERSION Copy into the array pointed to by buf the string that would be returned by

uname in the version field. The syntax and semantics of this string are
defined by the system provider.

SI_MACHINE Copy into the array pointed to by buf the string that would be returned by
uname in the machine field.

SI_ARCHITECTURE Copy into the array pointed to by buf a string describing the instruction set
architecture of the current system, for example, sparc. These names may
not match predefined names in the C language compilation system.

SI_HW_PROVIDER Copies the name of the hardware manufacturer into the array pointed to
by buf.

SI_HW_SERIAL Copy into the array pointed to by buf a string which is the ASCII
representation of the hardware-specific serial number of the physical
machine on which the system call is executed. Note that this may be
implemented in Read-Only Memory, via software constants set when
building the operating system, or by other means, and may contain non-
numeric characters. It is anticipated that manufacturers will not issue the
same “serial number” to more than one physical machine. The pair of
strings returned by SI_HW_PROVIDER and SI_HW_SERIAL is likely to

libc __

3-6 SPARC Compliance Definition 2.4 Interface Semantics 1998

be unique across all vendors’ System V implementations.
SI_SRPC_DOMAIN Copies the Secure Remote Procedure Call domain name into the array

pointed to by buf.

DIAGNOSTICS
Upon successful completion, the value returned indicates the buffer size in bytes required to hold
the complete value and the terminating null character. If this value is no greater than the value
passed in count, the entire string was copied; if this value is greater than count, the string copied into
buf has been truncated to count-1 bytes plus a terminating null character. Otherwise, a value of -1
is returned and errno is set to indicate the error.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-7

___errno, asctime_r , ctime_r , flockfile
funlockfile, getc_unlocked, getchar_unlocked
gmtime_r , localtime_r, putc_unlocked
putchar_unlocked, rand_r, strtok_r

NAME
___errno, asctime_r, ctime_r, gmtime_r, localtime_r, flockfile, funlockfile, getc_unlocked,
getchar_unlocked, putc_unlocked, putchar_unlocked, rand_r, strtok_r - Support routines for
multithreading added to libsys and libc.

SYNOPSIS
#include <errno.h>
int *___errno(void);
#include <time.h>
char *asctime_r (const struct tm *tm, char *buf, int buflen);
char *ctime_r (const time_t *clock, char *buf, int buflen);
struct tm *gmtime_r (const time_t *clock, struct tm *res);
struct tm *localtime_r (const time_t *clock, struct tm *res);
#include <stdio.h>
void flockfile (FILE *stream);
void funlockfile (FILE *stream);
int getc_unlocked (FILE *stream);
int getchar_unlocked (void);
int putc_unlocked (int c, FILE *stream);
int putchar_unlocked (int c);
#include <stdlib.h>
int rand_r(unsigned int *seed);
#include <string.h>
char *strtok_r(char *s1, const char *s2, char **lasts);

DESCRIPTION and RETURN VALUES
These functions are “reentrant” versions of existing functions. They exist as the definition of the
existing functions prevents the transparent implementation of multithreading, usually because of
the use of a static storage area. In general, these functions are exactly equivalent to the non-
reentrant versions in terms of function and results, but differ in providing for the implementation
the necessary storage for completion of the function.
___errno returns the address of errno for the “calling thread”. The location labelled errno provides
the storage for the “main thread” in the process. In all references to “errno” which follow, it is
implied that the storage used will be that for the thread invoking the operation.
asctime_r is equivalent to asctime, however the caller must supply a buffer buf in which to store the
resulting string. buflen indicates the length which must be at least 26 bytes. The return value of
asctime_r is a pointer to buf on success. On failure, NULL is returned and errno is set. If the

libc __

3-8 SPARC Compliance Definition 2.4 Interface Semantics 1998

operation fails because buflen is not large enough, errno will be set to ERANGE.
ctime_r is equivalent to ctime, however the caller must supply a buffer buf in which to store the
resulting string. buflen indicates the length of buf which must be at least 26 bytes. If the operation
fails because buflen is not long enough, ctime_r will return NULL and errno will be set to ERANGE.
flockfile and funlockfile are new functions which allow the caller to gain or release exclusive access,
respectively, to stream. They can be used in conjunction with a sequence of calls to getc et al. so as
to avoid the overhead of locking the stream on each access to the buffers managed by stream.
getc_unlocked, getchar_unlocked, putc_unlocked, and putchar_unlocked implement an unlocked
access to stream (or, for getchar the standard input and for putchar the standard output). gmtime_r
is equivalent to gmtime but the caller must supply a result buffer res, which is the return value of
the function. localtime_r is equivalent to localtime but the caller must supply a result buffer res,
which is the return value of the function. rand_r is equivalent to rand except that a pointer to a seed
seed must be supplied by the caller strtok_r is equivalent to strtok except that a pointer to a string
place holder lasts must be supplied by the caller. The lasts pointer is to keep track of the next
substring in which to search for the next token.

NOTES
asctime_r and ctime_r are designated as EXPERMIMENTAL since they have interfaces which are different
from the ones in POSIX 1003.1c. The interfaces of these functions are in POSIX as following:

char *asctime_r (const struct tm *tm,

char *buf);

char *ctime_r (const time_t *clock,

char *buf);

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-9

priocntl

NAME
priocntl - process scheduler control

SYNOPSIS
#include <sys/types.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>
long priocntl(idtype_t idtype, id_t id, int cmd, /* arg */ ...);

DESCRIPTION
priocntl() provides for control over the scheduling of an active light weight process (LWP). LWPs fall into
distinct classes with a separate scheduling policy applied to each class. The two classes currently supported
are the real-time class and the time-sharing class.The characteristics of these classes are described under the
corresponding headings below. The class attribute of an LWP is inherited across the fork(), exec() and
_lwp_create() system calls.priocntl() can be used to dynamically change the class and other scheduling
parameters associated with a running LWP or set of LWPs given the appropriate permissions as explained
below. In the default configuration, a runnable real-time LWP runs before any other LWP.Therefore,
inappropriate use of real-time LWP can have a dramatic negative impact on system performance. priocntl()
provides an interface for specifying a process, set of processes or an LWP to which the function is to apply.
The priocntlset() system call provides the same functions as priocntl(), but allows a more general interface
for specifying the set of LWPs to which the function is to apply. For priocntl(), the idtype and id arguments
are used together to specify the set of LWPs. The interpretation of id depends on the value of idtype. The
possible values for idtype and corresponding interpretations of id are as follows:

P_LWPID id is an LWP ID. The priocntl() system call applies to the LWP with the specified ID within
the calling process.

P_PID id is a process ID specifying a single process.The priocntl() system call applies to all LWPs
currently associated with the specified process.

P_PPID id is a parent process ID. The priocntl() system call applies to all LWPs currently associated
with processes with the specified parent process ID.

P_PGID id is a process group ID. The priocntl() system call applies to all LWPs currently associated
with processes in the specified process group.

P_SID id is a session ID.The priocntl() system call applies to all LWPs currently associated with
processes in the specified session.

P_CID id is a class ID (returned by priocntl() PC_GETCID as explained below). The priocntl()
system call applies to all LWPs in the specified class.

P_UID id is a user ID. The priocntl() system call applies to all LWPs with this effective user ID.

P_GID id is a group ID. The priocntl() system call applies to all LWPs with this effective group ID.

P_ALL The priocntl() system call applies to all existing LWPs.The value of id is ignored. The
permission restrictions described below still apply.

An id value of P_MYID can be used in conjunction with the idtype value to specify the calling LWP's LWP
ID, parent process ID, process group ID, session ID, class ID, user ID, or group ID. In order to change the

libc __

3-10 SPARC Compliance Definition 2.4 Interface Semantics 1998

scheduling parameters of an LWP (using the PC_SETPARMS command as explained below) the real or
effective user ID of the LWP calling priocntl() must match the real or effective user ID of the receiving LWP
or the effective user ID of the calling LWP must be super-user. These are the minimum permission
requirements enforced for all classes. An individual class may impose additional permissions requirements
when setting LWPs to that class and/or when setting class-specific scheduling parameters. A special sys
scheduling class exists for the purpose of scheduling the execution of certain special system processes (such
as the swapper process). It is not possible to change the class of any LWP to sys. In addition, any processes
in the sys class that are included in a specified set of processes are disregarded by priocntl(). For example, an
idtype of P_UID and an id value of zero would specify all processes with a user ID of zero except processes
in the sys class and (if changing the parameters using PC_SETPARMS) the init() process. The init process
is a special case.In order for a priocntl() call to change the class or other scheduling parameters of the init
process (process ID 1), it must be the only process specified by idtype and id. The init process may be assigned
to any class configured on the system, but the time-sharing class is almost always the appropriate choice. The
data type and value of arg are specific to the type of command specified by cmd. A structure with the
following members is used by the PC_GETCID and PC_GETCLINFO commands.

id_t pc_cid; /* Class id */

char pc_clname[PC_CLNMSZ]; /* Class name */

long pc_clinfo[PC_CLINFOSZ]; /* Class information */

pc_cid is a class ID returned by priocntl() PC_GETCID. pc_clnameis a buffer of size PC_CLNMSZ
(defined in <sys/priocntl.h>) used to hold the class name (RT for realtime or TS for time-sharing). pc_clinfo
is a buffer of size PC_CLINFOSZ (defined in <sys/priocntl.h>) used to return data describing the attributes
of a specific class.The format of this data is class-specific and is described under the appropriate heading
(REAL-TIME CLASS or TIME-SHARING CLASS) below. A structure with the following elements is
used by the PC_SETPARMS and PC_GETPARMS commands.

id_t pc_cid; /* LWP class */

long pc_clparms[PC_CLPARMSZ]; /* Class-specific params */

pc_cid is a class ID (returned by priocntl() PC_GETCID). The special class ID PC_CLNULL can also be
assigned to pc_cid when using the PC_GETPARMS command as explained below. The pc_clparms buffer
holds class-specific scheduling parameters.The format of this parameter data for a particular class is described
under the appropriate heading below. PC_CLPARMSZ is the length of the pc_clparms buffer and is defined
in <sys/priocntl.h>.

Commands
Available priocntl() commands are:

PC_GETCID
Get class ID and class attributes for a specific class given class name.The idtype and id arguments are ignored.
If arg is non-null, it points to a structure of type pcinfo_t. The pc_clname buffer contains the name of the class
whose attributes you are getting. On success, the class ID is returned in pc_cid, the class attributes are returned
in the pc_clinfo buffer, and the priocntl() call returns the total number of classes configured in the system
(including the sys class). If the class specified by pc_clname is invalid or is not currently configured the
priocntl() call returns -1 with errno set to EINVAL. The format of the attribute data returned for a given class
is defined in the <sys/rtpriocntl.h> or <sys/tspriocntl.h> header file and described under the appropriate
heading below. If arg is a NULL pointer, no attribute data is returned but the priocntl() call still returns the

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-11

number of configured classes.

PC_GETCLINFO
Get class name and class attributes for a specific class given class ID. The idtype and id arguments are ignored.
If arg is non-null, it points to a structure of type pcinfo_t.pc_cid is the class ID of the class whose attributes
you are getting. On success, the class name is returned in the pc_clname buffer, the class attributes are
returned in the pc_clinfo buffer, and the priocntl() call returns the total number of classes configured in the
system (including the sys class). The format of the attribute data returned for a given class is defined in the
<sys/rtpriocntl.h> or <sys/tspriocntl.h> header file and described under the appropriate heading below. If arg
is a NULL pointer, no attribute data is returned but the priocntl() call still returns the number of con figured
classes.

PC_SETPARMS
Set the class and class-specific scheduling parameters of the specified LWP(s) associated with the specified
process(es). When this command is used with the idtype of P_LWPID, it will set the class and class-specific
scheduling parameters of the LWP. arg points to a structure of type pcparms_t. pc_cid specifies the class you
are setting and the pc_clparms buffer contains the class-specific parameters you are setting. The format of the
class-specific parameter data is defined in the <sys/rtpriocntl.h>or<sys/tspriocntl.h> header and described
under the appropriate class heading below. When setting parameters for a set of LWPs, priocntl() acts on the
LWPs in the set in an implementation-specific order. If priocntl() encounters an error for one or more of the
target processes, it may or may not continue through the set of LWPs, depending on the nature of the error.If
the error is related to permissions (EPERM), priocntl() continues through the LWP set, resetting the
parameters for all target LWPs for which the calling LWP has appropriate permissions. priocntl() then
returns -1 with errno set to EPERM to indicate that the operation failed for one or more of the target LWPs.
If priocntl() encounters an error other than permissions, it does not continue through the set of target LWPs
but returns the error immediately.

PC_GETPARMS
Get the class and/or class-specific scheduling parameters of an LWP. arg points to a structure of type
pcparms_t. If pc_cid specifies a configured class and a single LWP belonging to that class is specified by the
idtype and id values or the procset structure, then the scheduling parameters of that LWP are returned in the
pc_clparms buffer. If the LWP specified does not exist or does not belong to the specified class, the
priocntl() call returns -1 with errno set to ESRCH. If pc_cid specifies a configured class and a set of LWPs
is specified, the scheduling parameters of one of the specified LWP belonging to the specified class are
returned in the pc_clparms buffer and the priocntl() call returns the process ID of the selected LWP. The
criteria for selecting an LWP to return in this case is class dependent. If none of the specified LWPs exist
or none of them belong to the specified class the priocntl() call returns -1 with errno set to ESRCH. If pc_cid
is PC_CLNULL and a single LWP is specified the class of the specified LWP is returned in pc_cid and its
scheduling parameters are returned in the pc_clparms buffer.

PC_ADMIN
This command provides functionality needed for the implementation of the dispadmin() command.It is
not intended for general use by other applications.

REAL-TIME CLASS
The real-time class provides a fixed priority preemptive scheduling policy for those LWPS requiring fast
and deterministic response and absolute user/application control of scheduling priorities. If the real-time

libc __

3-12 SPARC Compliance Definition 2.4 Interface Semantics 1998

class is configured in the system it should have exclusive control of the highest range of scheduling
priorities on the system. This ensures that a runnable real-time LWP is given CPU service before any LWP
belonging to any other class. The real-time class has a range of real-time priority (rt_pri) values that
may be assigned to an LWP within the class. Real-time priorities range from 0 to x, where the value of x
is configurable and can be determined for a specific installation by using the priocntl() PC_GETCID or
PC_GETCLINFO command. The real-time scheduling policy is a fixed priority policy. The scheduling
priority of a real-time LWP is never changed except as the result of an explicit request by the
user/application to change the rt_pri value of the LWP. For an LWP in the real-time class, the rt_pri value
is, for all practical purposes, equivalent to the scheduling priority of the LWP. The rt_pri value completely
determines the scheduling priority of a real-time LWP relative to other LWPs within its class.Numerically
higher rt_pri values represent higher priorities. Since the real-time class controls the highest range of
scheduling priorities in the system it is guaranteed that the runnable real-time LWP with the highest rt_pri
value is always selected to run before any other LWPs in the system.

In addition to providing control over priority, priocntl() provides for control over the length of the time
quantum allotted to the LWP in the real-time class. The time quantum value specifies the maximum amount
of time an LWP may run assuming that it does not complete or enter a resource or event wait state
(sleep).Note that if another LWP becomes runnable at a higher priority, the currently running LWP may be
preempted before receiving its full time quantum. The system's process scheduler keeps the runnable real-
time LWPs on a set of scheduling queues. There is a separate queue for each configured real-time priority
and all realtime LWPs with a given rt_pri value are kept together on the appropriate queue. The LWPs on
a given queue are ordered in FIFO order (that is, the LWP at the front of the queue has been waiting longest
for service and receives the CPU first).Real-time LWPs that wake up after sleeping, LWPs which change
to the real-time class from some other class, LWPs which have used their full time quantum, and runnable
LWPs whose priority is reset by priocntl() are all placed at the back of the appropriate queue for their
priority. An LWP that is preempted by a higher priority LWP remains at the front of the queue (with
whatever time is remaining in its time quantum) and runs before any other LWP at this priority. Following
a fork() or _lwp_create() system call by a real-time LWP, the parent LWP continues to run while the child
LWP (which inherits its parent's rt_pri value) is placed at the back of the queue. A structure with the
following members (defined in <sys/rtpriocntl.h>) defines the format used for the attribute data for the real-
time class.

short rt_maxpri; /* Maximum real-time priority */

The priocntl() PC_GETCID and PC_GETCLINFO commands return real-time class attributes in the
pc_clinfo buffer in this format. rt_maxpri specifies the configured maximum rt_pri value for the real-time
class (if rt_maxpri is x, the valid real-time priorities range from 0 to x). A structure with the following
members (defined in <sys/rtpriocntl.h>) defines the format used to specify the

real-time class-specific scheduling parameters of an LWP.

short rt_pri; /* Real-Time priority */

ulong rt_tqsecs; /* Seconds in time quantum */

long rt_tqnsecs; /* Additional nanoseconds in quantum */

When using the priocntl() PC_SETPARMS or PC_GETPARMS commands, if pc_cid specifies the
realtime class, the data in the pc_clparms buffer is in this format. The above commands can be used to set
the real-time priority to the specified value or get the current rt_pri value. Setting the rt_pri value of an
LWP that is currently running or runnable (not sleeping) causes the LWP to be placed at the back of the
scheduling queue for the specified priority. The LWP is placed at the back of the appropriate queue
regardless of whether the priority being set is different from the previous rt_pri value of the LWP. Note that
a running LWP can voluntarily release the CPU and go to the back of the scheduling queue at the same
priority by resetting its rt_pri value to its current real-time priority value. In order to change the time
quantum of an LWP without setting the priority or affecting the LWP's position on the queue, the rt_pri

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-13

field should be set to the special value RT_NOCHANGE (defined in <sys/rtpriocntl.h>). Specifying
RT_NOCHANGE when changing the class of an LWP to real-time from some other class results in the
real-time priority being set to zero.

For the priocntl() PC_GETPARMS command, if pc_cid specifies the real-time class and more than one
real-time LWP is specified, the scheduling parameters of the real-time LWP with the highest rt_pri value
among the specified LWPs are returned and the LWP ID of this LWP is returned by the priocntl() call.
If there is more than one LWP sharing the highest priority, the one returned is implementation-dependent.

The rt_tqsecs and rt_tqnsecs fields are used for getting or setting the time quantum associated with an LWP
or group of LWPs. rt_tqsecs is the number of seconds in the time quantum and rt_tqnsecs is the number of
additional nanoseconds in the quantum. For example setting rt_tqsecs to 2 and rt_tqnsecs to 500,000,000
(decimal) would result in a time quantum of two and one-half seconds. Specifying a value of 1,000,000,000
or greater in the rt_tqnsecs field results in an error return with errno set to EINVAL.Although the resolution
of the tq_nsecs field is very fine, the specified time quantum length is rounded up by the system to the next
integral multiple of the system clock's resolution. The maximum time quantum that can be specified is
implementation-specific and equal to LONG_MAX ticks (defined in <limits.h>). Requesting a quantum
greater than this maximum results in an error return with errno set to ERANGE (although infinite quantum
may be requested using a special value as explained below).Requesting a time quantum of zero (setting both
rt_tqsecs and rt_tqnsecs to 0) results in an error return with errno set to EINVAL. The rt_tqnsecs field can
also be set to one of the following special values (defined in <sys/rtpriocntl.h>), in which case the value of
rt_tqsecs is ignored.

RT_TQINF Set an infinite time quantum.

RT_TQDEF Set the time quantum to the default for this priority (see rt_dptbl()).
RT_NOCHANGE Do not set the time quantum.This value is useful when you wish to change the

real-time priority of an LWP without affecting the time quantum.Specifying this
value when changing the class of an LWP to real-time from some other class
is equivalent to specifying RT_TQDEF.

In order to change the class of an LWP to real-time (from any other class) the LWP invoking priocntl()
must have super-user privileges. In order to change the priority or time quantum setting of a real-time
LWP, the LWP invoking priocntl() must have super-user privileges or must itself be a real-time LWP whose
real or effective user ID matches the real of effective user ID of the target LWP. The real-time priority and
time quantum are inherited across the fork() and exec() system calls.

TIME-SHARING CLASS
The time-sharing scheduling policy provides for a fair and effective allocation of the CPU resource among
LWPs with varying CPU consumption characteristics. The objectives of the time-sharing policy are to
provide good response time to interactive LWPs and good throughput to CPU-bound jobs while providing a
degree of user/application control over scheduling. The time-sharing class has a range of time-sharing user
priority (see ts_upri below) values that may be assigned to LWPs within the class. A ts_upri value of zero
is defined as the default base priority for the time-sharing class. User priorities range from -x to +x where
the value of x is configurable and can be determined for a specific installation by using the priocntl()
PC_GETCID or PC_GETCLINFO command.

The purpose of the user priority is to provide some degree of user/application control over the scheduling
of LWPs in the time-sharing class. Raising or lowering the ts_upri value of an LWP in the time-sharing
class raises or lowers the scheduling priority of the LWP. It is not guaranteed however, that an LWP with
a higher ts_upri value will run before one with a lower ts_upri value. This is because the ts_upri value is

libc __

3-14 SPARC Compliance Definition 2.4 Interface Semantics 1998

just one factor used to determine the scheduling priority of a time-sharing LWP. The system may
dynamically adjust the internal scheduling priority of a time-sharing LWP based on other factors such as
recent CPU usage. In addition to the system-wide limits on user priority (returned by the PC_GETCID
and PC_GETCLINFO commands) there is a per LWP user priority limit (see ts_uprilim below), which
specifies the maximum ts_upri value that may be set for a given LWP; by default, ts_uprilim is zero. A
structure with the following members (defined in <sys/tspriocntl.h>) defines the format used for the
attribute data for the time-sharing class.

short ts_maxupri; /* Limits of user priority range */

The priocntl() PC_GETCID and PC_GETCLINFO commands return time-sharing class attributes in
the pc_clinfo buffer in this format. ts_maxupri specifies the configured maximum user priority value for
the time-sharing class. If ts_maxupri is x, the valid range for both user priorities and user priority limits is
from -x to +x. A structure with the following members (defined in <sys/tspriocntl.h>) defines the format
used to specify the time-sharing class-specific scheduling parameters of an LWP.

short ts_uprilim; /* Time-Sharing user priority limit */

short ts_upri; /* Time-Sharing user priority */

When using the priocntl() PC_SETPARMS or PC_GETPARMS commands, if pc_cid specifies the time-
sharing class, the data in the pc_clparms buffer is in this format. For the priocntl() PC_GETPARMS
command, if pc_cid specifies the time-sharing class and more than one time-sharing LWP is specified, the
scheduling parameters of the time-sharing LWP with the highest ts_upri value among the specified LWPs
is returned and the LWP ID of this LWP is returned by the priocntl() call. If there is more than one LWP
sharing the highest user priority, the one returned is implementation-dependent.

Any time-sharing LWP may lower its own ts_uprilim (or that of another LWP with the same user ID). Only
a time-sharing LWP with super-user privileges may raise a ts_uprilim. When changing the class of an LWP
to time-sharing from some other class, super-user privileges are required in order to set the initial ts_uprilim
to a value greater than zero. Attempts by a non-super-user LWP to raise a ts_uprilim or set an initial
ts_uprilim greater than zero fail with a return value of -1 and errno set to EPERM. Any time-sharing LWP
may set its own ts_upri (or that of another LWP with the same user ID) to any value less than or equal to
the LWP's ts_uprilim. Attempts to set the ts_upri above the ts_uprilim (and/or set the ts_uprilim below the
ts_upri) result in the ts_upri being set equal to the ts_uprilim.

Either of the ts_uprilim or ts_upri fields may be set to the special value TS_NOCHANGE (defined in
<sys/tspriocntl.h>) in order to set one of the values without affecting the other. Specifying
TS_NOCHANGE for the ts_upri when the ts_uprilim is being set to a value below the current ts_upri causes
the ts_upri to be set equal to the ts_uprilim being set. Specifying TS_NOCHANGE for a parameter when
changing the class of an LWP to time-sharing (from some other class) causes the parameter to be set to a
default value. The default value for the ts_uprilim is 0 and the default for the ts_upri is to set it equal to
the ts_uprilim which is being set. The time-sharing user priority and user priority limit are inherited across
the fork and exec functions.

RETURN VALUES
Unless otherwise noted above, priocntl() returns a value of 0 on success.priocntl() returns -1 on failure and
sets errno to indicate the error.

ERRORS
priocntl() fails if one or more of the following are true :

EAGAIN An attempt to change the class of an LWP failed because of insufficient resources other

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-15

than memory (for example, class-specific kernel data structures).

EFAULT One of the arguments points to an illegal address.

EINVAL The argument cmd was invalid, an invalid or unconfigured class was specified, or one of
the parameters specified was invalid.

EFAULT
ENOMEM An attempt to change the class of an LWP failed because of insufficient memory. The

effective user of the calling LWP is not super-user.

ERANGE The requested time quantum is out of range.

ESRCHN one of the specified LWPs exist.

SEE ALSO
priocntl(), dispadmin(), init(), _lwp_create(), exec(), fork(), nice(), priocntlset(), rt_dptbl()

libc __

3-16 SPARC Compliance Definition 2.4 Interface Semantics 1998

strftime, cftime, ascftime

NAME
strftime, cftime, ascftime - convert date and time to string

SYNOPSIS
#include <time.h>
size_t strftime(const char *s, size_t maxsize, const char *format, const struct tm *timeptr);
int cftime(char *s, char *format, const time_t *clock);
int ascftime(char *s, const char *format, const struct tm *timeptr);

DESCRIPTION
strftime(), ascftime(), and cftime() place bytes into the array pointed to by s as controlled by the string
pointed to by format. The format string consists of zero or more conversion specifications and ordinary
characters.A conversion specification consists of a '%' (percent) character and one or two terminating
conversion characters that determine the conversion specification's behavior.All ordinary characters
(including the terminating null byte) are copied unchanged into the array pointed to by s.If copying takes
place between objects that overlap, the behavior is undefined. For strftime(), no more than maxsize bytes
are placed into the array. If format is (char *)0, then the locale's default format is used.For strftime() the
default format is the same as %c; for cftime() and ascftime() the default format is the same as %C.cftime()
and ascftime() first try to use the value of the environment variable CFTIME, and if that is undefined or
empty, the default format is used. Each conversion specification is replaced by appropriate characters as
described in the following list.The appropriate characters are determined by the LC_TIME category of
the program's locale and by the values contained in the structure pointed to by timeptr for strftime() and
ascftime(), and by the time represented by clock for cftime().
%% same as %

%a locale's abbreviated weekday name

%A locale's full weekday name

%b locale's abbreviated month name

%B locale's full month name

%c locale's appropriate date and time representation Default

%C locale's date and time representation as produced by date()

Standard-conforming
%C century number (the year divided by 100 and truncated to an integer as a decimal number [1,99]);

single digits are preceded by 0; see standards()
%d day of month [1,31]; single digits are preceded by 0

%D date as %m/%d/%y

%e day of month [1,31]; single digits are preceded by a space

%h locale's abbreviated month name

%H hour (24-hour clock) [0,23]; single digits are preceded by 0

%I hour (12-hour clock) [1,12]; single digits are preceded by 0

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-17

%j day number of year [1,366]; single digits are preceded by 0

%k hour (24-hour clock) [0,23]; single digits are preceded by a blank

%l hour (12-hour clock) [1,12]; single digits are preceded by a blank

%m month number [1,12]; single digits are preceded by 0

%M minute [00,59]; leading zero is permitted but not required

%n insert a newline

%p locale's equivalent of either a.m. or p.m.

%r appropriate time representation in 12-hour clock format with %p

%R time as %H:%M

%S seconds [00,61]

%t insert a tab

%T time as %H:%M:%S

%u weekday as a decimal number [1,7], with 1 representing Sunday

%U week number of year as a decimal number [00,53], with Sunday as the first day of week 1

%V week number of the year as a decimal number [01,53], with Monday as the first day of the week.
If the week containing 1 January has four or more days in the new year, then it is considered week
1; otherwise, it is week 53 of the previous year, and the next week is week 1.

%w weekday as a decimal number [0,6], with 0 representing Sunday

%W week number of year as a decimal number [00,53], with Monday as the first day of week 1

%x locale's appropriate date representation

%X locale's appropriate time representation

%y year within century [00,99]

%Y year, including the century (for example 1993)

%Z time zone name or abbreviation, or no bytes if no time zone information exists

If a conversion specification does not correspond to any of the above or to any of the modified conversion
specifications listed below, the behavior is undefined and 0 is returned. The difference between %U and
%W (and also between modified conversion specifications %OU and %OW) lies in which day is counted as
the first of the week.Week number 1 is the first week in January starting with a Sunday for %U or a
Monday for %W. Week number 0 contains those days before the first Sunday or Monday in January for
%U and %W, respectively.

Modified Conversion Specifications
Some conversion specifications can be modified by the E and O modifiers to indicate that an alternate format
or specification should be used rather than the one normally used by the unmodified conversion
specification. If the alternate format or specification does not exist in the current locale, the behavior will
be as if the unmodified specification were used.

%Ec locale's alternate appropriate date and time representation

%EC name of the base year (period) in the locale's alternate representation

%Ex locale's alternate date representation

libc __

3-18 SPARC Compliance Definition 2.4 Interface Semantics 1998

%EX locale's alternate time representation

%Ey offset from %EC (year only) in the locale's alternate representation

%EY full alternate year representation

%Od day of the month using the locale's alternate numeric symbols

%Oe same as %Od

%OH hour (24-hour clock) using the locale's alternate numeric symbols

%OI hour (12-hour clock) using the locale's alternate numeric symbols

%Om month using the locale's alternate numeric symbols

%OM minutes using the locale's alternate numeric symbols

%OS seconds using the locale's alternate numeric symbols

%Ou weekday as a number in the locale's alternate numeric symbols

%OU week number of the year (Sunday as the first day of the week) using the locale's alternate numeric
symbols

%Ow number of the weekday (Sunday=0) using the locale's alternate numeric symbols

%OW week number of the year (Monday as the first day of the week) using the locale's alternate numeric
symbols

%Oy year (offset from %C) in the locale's alternate representation and using the locale's alternate
numeric symbols

Selecting the Output Language
By default, the output of strftime(), cftime(), and ascftime() appear in U.S. English. The user can request
that the output of strftime(), cftime(), or ascftime() be in a specific language by setting the LC_TIME
category using setlocale().

Time Zone
Local time zone information is used as though tzset() were called.

RETURN VALUES
strftime(), cftime(), and ascftime() return the number of characters placed into the array pointed to by
s, not including the terminating null character.If the total number of resulting characters including the
terminating null character is more than maxsize, strftime() returns 0 and the contents of the array are
indeterminate.

SEE ALSO
date(), ctime(), mktime(), setlocale(), strptime(), tzset(), TIMEZONE(), attributes(), environ()

NOTES
The range of values for %S is [00,61] rather than [00,59] to allow for the occasional leap second and even
more occasional double leap second.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-19

syslog, openlog, closelog, setlogmask

NAME
syslog, openlog, closelog, setlogmask - control system log

SYNOPSIS
#include <syslog.h>
void openlog(const char *ident, int logopt, int facility);
void syslog(int priority, const char *message,... /* arguments */);
void closelog(void);
int setlogmask(int maskpri);

DESCRIPTION
The syslog() function sends a message to syslogd(), which, depending on the configuration of
/etc/syslog.conf, logs it in an appropriate system log, writes it to the system console, forwards it to a list of
users, or forwards it to syslogd on another host over the network. The logged message includes a message
header and a message body. The message header consists of a facility indicator, a severity level indicator,
a timestamp, a tag string, and optionally the process ID. The message body is generated from the message
and following arguments in the same manner as if these were arguments to printf(), except that occurrences
of %m in the format string pointed to by the message argument are replaced by the error message string
associated with the current value of errno. A trailing NEWLINE character is added if needed. Values of
the priority argument are formed by ORing together a severity level value and an optional facility value. If
no facility value is specified, the current default facility value is used. Possible values of severity level
include:

LOG_EMERG A panic condition.This is normally broadcast to all users.

LOG_ALERT A condition that should be corrected immediately, such as a corrupted system
database.

LOG_CRIT Critical conditions, such as hard device errors.

LOG_ERR Errors.

LOG_WARNING Warning messages.

LOG_NOTICE Conditions that are not error conditions, but that may require special handling.

LOG_INFO Informational messages.

LOG_DEBUG Messages that contain information normally of use only when debugging a
program.

The facility indicates the application or system component generating the message. Possible facility values
include:

LOG_KERN Messages generated by the kernel. These cannot be generated by any user
processes.

LOG_USER Messages generated by random user processes. This is the default facility
identifier if none is specified.

LOG_MAIL The mail system.

LOG_DAEMON System daemons, such as in.ftpd().

libc __

3-20 SPARC Compliance Definition 2.4 Interface Semantics 1998

LOG_AUTH The authorization system: login(), su(), getty().
LOG_LPR The line printer spooling system: lpr(1B), lpc(1B).

LOG_NEWS Reserved for the USENET network news system.

LOG_UUCP Reserved for the UUCP system; it does not currently use syslog.

LOG_CRON The cron/at facility; crontab(), at(),cron().
LOG_LOCAL0-7 Reserved for local use.

The openlog() function sets process attributes that affect subsequent calls to syslog().The ident argument
is a string that is pre-appended to every message. The logopt argument indicates logging options. Values for
logopt are constructed by a bitwise-inclusive OR of zero or more of the following:

LOG_PID Log the process ID with each message. This is useful for identifying specific
daemon processes (for daemons that fork).

LOG_CONS Write messages to the system console if they cannot be sent to syslogd(). This
option is safe to use in daemon processes that have no controlling terminal,
since syslog() forks before opening the console.

LOG_NDELAY Open the connectiontosyslogd() immediately. Normally the open is delayed
until the first message is logged.This is useful for programs that need to manage
the order in which file descriptors are allocated.

LOG_ODELAY Delay open until syslog() is called.

LOG_NOWAIT Do not wait for child processes that have been forked to log messages onto the
console. This option should be used by processes that enable notification of child
termination using SIGCHLD, since syslog() may otherwise block waiting for a
child whose exit status has already been collected.

The facility argument encodes a default facility to be assigned to all messages that do not have an explicit
facility already encoded.The initial default facility is LOG_USER. The openlog() and syslog() functions
may allocate a file descriptor.It is not necessary to call openlog() prior to calling syslog(). The closelog()
function closes any open file descriptors allocated by previous calls to openlog() or syslog(). The
setlogmask() function sets the log priority mask for the current process to maskpri and returns the previous
mask. If the maskpri argument is 0, the current log mask is not modified.Calls by the current process to
syslog() with a priority not set in maskpri are rejected. The mask for an individual priority pri calculated
by the macro LOG_MASK(pri); the mask for all priorities up to and including toppri is given by the
macro LOG_UPT(toppri). The default log mask allows all priorities to be logged. Symbolic constants for
use as values of the logopt, facility, priority, and maskpri arguments are defined in the <syslog.h> header.

RETURN VALUES
The setlogmask() function returns the previous log priority mask.The closelog(), openlog() and syslog()
functions return no value.

SEE ALSO
at(), crontab(), logger(), login(), lpc(), lpr(), cron(),getty(),in.ftpd(), su(), syslogd(), printf(), syslog.conf()

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-21

dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch
dbm_firstkey, dbm_nextkey, dbm_open, dbm_store

NAME
dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey, dbm_nextkey, dbm_open,
dbm_store - database functions

SYNOPSIS
#include <ndbm.h>
int dbm_clearerr(DBM *db);
void dbm_close(DBM *db);
int dbm_delete(DBM *db, datum key);
int dbm_error(DBM *db);
datum dbm_fetch(DBM *db, datum key);
datum dbm_firstkey(DBM *db);
datum dbm_nextkey(DBM *db);
DBM *dbm_open(const char *file, int open_flags, mode_t file_mode);
int dbm_store(DBM *db, datum key, datum content, int store_mode);

DESCRIPTION
These functions create, access and modify a database.They maintain key/content pairs in a database. The
functions will handle large databases (up to a billion blocks) and will access a keyed item in one or two file
system accesses. This package replaces the earlier dbm() library, which managed only a single database.
keys and contents are described by the datum typedef. A datum consists of at least two members, dptr and
dsize. The dptr member points to an object that is dsize bytes in length.Arbitrary binary data, as well as
ASCII character strings, may be stored in the object pointed to by dptr. The database is stored in two files.
One file is a directory containing a bit map of keys and has .dir as its suffix. The second file contains all
data and has .pag as its suffix.

The dbm_open() function opens a database. The file argument to the function is the pathname of the
database. The function opens two files named file.dir and file.pag.The open_flags argument has the same
meaning as the flags argument of open() except that a database opened for write-only access opens the files
for read and write access. The file_mode argument has the same meaning as the third argument of open().
The dbm_close() function closes a database. The argument db must be a pointer to a dbm structure that has
been returned from a call to dbm_open(). The dbm_fetch() function reads a record from a database. The
argument db is a pointer to a database structure that has been returned from a call to dbm_open().The
argument key is a datum that has been initialized by the application program to the value of the key that
matches the key of the record the program is fetching. The dbm_store() function writes a record to a database.
The argument db is a pointer to a database structure that has been returned from a call to dbm_open(). The
argument key is a datum that has been initialized by the application program to the value of the key that
identifies (for subsequent reading, writing or deleting) the record the program is writing. The argument
content is a datum that has been initialized by the application program to the value of the record the program
is writing. The argument store_mode controls whether dbm_store() replaces any pre-existing record that
has the same key that is specified by the key argument. The application program must set store_mode to
either DBM_INSERT or DBM_REPLACE.If the database contains a record that matches the key

libc __

3-22 SPARC Compliance Definition 2.4 Interface Semantics 1998

argument and store_mode is DBM_REPLACE, the existing record is replaced with the new record.If the
database contains a record that matches the key argument and store_mode is DBM_INSERT, the existing
record is not replaced with the new record. If the database does not contain a record that matches the key
argument and store_mode is either DBM_INSERT or DBM_REPLACE, the new record is inserted in
the database.

The dbm_delete() function deletes a record and its key from the database.The argument db is a pointer to a
database structure that has been returned from a call to dbm_open(). The argument key is a datum that has
been initialized by the application program to the value of the key that identifies the record the program is
deleting. The dbm_firstkey() function returns the first key in the database. The argument db is a pointer
to a database structure that has been returned from a call to dbm_open(). The dbm_nextkey() function returns
the next key in the database.The argument db is a pointer to a database structure that has been returned from
a call to dbm_open().The dbm_firstkey() function must be called before calling. Subsequent calls to
dbm_nextkey() return the next key until all of the keys in the database have been returned. The dbm_error()
function returns the error condition of the database. The argument db is a pointer to a database structure that
has been returned from a call to dbm_open(). The dbm_clearerr() function clears the error condition of the
database.The argument db is a pointer to a database structure that has been returned from a call to
dbm_open(). These database functions support key/content pairs of at least 1024 bytes.

RETURN VALUES
The dbm_store() and dbm_delete() functions return 0 when they succeed and a negative value when they
fail. The dbm_store() function returns 1 if it is called with a flags value of DBM_INSERT and the function
finds an existing record with the same key. The dbm_error() function returns 0 if the error condition is not
set and returns a non-zero value if the error condition is set. The return value of dbm_clearerr() is unspecified.
The dbm_firstkey() and dbm_nextkey() functions return a key datum.When the end of the database is
reached, the dptr member of the key is a null pointer.If an error is detected, the dptr member of the key
is a null pointer and the error condition of the database is set. The dbm_fetch() function returns a content
datum.If no record in the database matches the key or if an error condition has been detected in the database,
the dptr member of the content is a null pointer. The dbm_open() function returns a pointer to a database
structure.If an error is detected during the operation, dbm_open() returns a (DBM *)0.

SEE ALSO
ar(), cat(), cp(), tar(), open(), dbm(), netconfig()

NOTES
The .pag file will contain holes so that its apparent size may be larger than its actual content. Older versions
of the UNIX operating system may create real file blocks for these holes when touched. These files cannot
be copied by normal means (cp(), cat(), tar(), ar()) without filling in the holes. The sum of the sizes of a
key/content pair must not exceed the internal block size (currently 1024 bytes). Moreover all key/content
pairs that hash together must fit on a single block.dbm_store() will return an error in the event that a disk
block fills with inseparable data. The order keys represented by dbm_firstkey() and dbm_nextkey() depends
on a hashing function. There are no interlocks and no reliable cache flushing; thus concurrent updating and
reading is risky. The database files (file.dir and file.pag) are binary and are architecture-specific (for
example, they depend on the architecture's byte order.) These files are not guaranteed to be portable across
architectures.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-23

decimal_to_floating, decimal_to_single, decimal_to_double
decimal_to_extended, decimal_to_quadruple

NAME
decimal_to_floating, decimal_to_single, decimal_to_double, decimal_to_extended,
decimal_to_quadruple - convert decimal record to floating-point value

SYNOPSIS
#include <floatingpoint.h>
void decimal_to_single(single *px, decimal_mode *pm, decimal_record *pd,

fp_exception_field_type *ps);
void decimal_to_double(double *px, decimal_mode *pm, decimal_record *pd,

fp_exception_field_type *ps);
void decimal_to_extended(extended *px, decimal_mode *pm, decimal_record *pd,

fp_exception_field_type *ps);
void decimal_to_quadruple(quadruple *px, decimal_mode *pm, decimal_record *pd,

fp_exception_field_type *ps);

DESCRIPTION
The decimal_to_floating() functions convert the decimal record at *pd into a floating-point value at *px,
observing the modes specified in *pm and setting exceptions in *ps. If there are no IEEE exceptions, *ps
will be zero. pd->sign and pd->fpclass are always taken into account. pd->exponent, pd->ds and pd-
>ndigits are used when pd->fpclass is fp_normal or fp_subnormal. In these cases pd->ds must contain one
or more ascii digits followed by a NULL and pd->ndigits is assumed to be the length of the string pd-
>ds.Notice that for efficiency reasons, the assumption that pd->ndigits == strlen(pd->ds) is NEVER verified.

On output, *px is set to a correctly rounded approximation to (pd->sign)*(pd->ds)*10**(pd->exponent)
Thus if pd->exponent == -2 and pd->ds == "1234", *px will get 12.34 rounded to storage precision. pd-
>ds cannot have more than DECIMAL_STRING_LENGTH-1 significant digits because one character is
used to terminate the string with a NULL. If pd->more != 0 on input then additional nonzero digits follow
those in pd->ds; fp_inexact is set accordingly on output in *ps.

*px is correctly rounded according to the IEEE rounding modes in pm->rd.*ps is set to contain
fp_inexact, fp_underflow, or fp_overflow if any of these arise. decimal_to_floating() C Library Functions
decimal_to_floating()pm->df and pm->ndigits are not used. strtod(), scanf(), fscanf(), and sscanf() all use
decimal_to_double().

SEE ALSO
fscanf(), scanf(), sscanf(), strtod()

libc __

3-24 SPARC Compliance Definition 2.4 Interface Semantics 1998

floating_to_decimal, single_to_decimal, double_to_decimal,
extended_to_decimal, quadruple_to_decimal

NAME
floating_to_decimal, single_to_decimal, double_to_decimal, extended_to_decimal,
quadruple_to_decimal - convert floating-point value to decimal record

SYNOPSIS
#include <floatingpoint.h>
void single_to_decimal(single *px, decimal_mode *pm, decimal_record *pd,

fp_exception_field_type *ps);
void double_to_decimal(double *px, decimal_mode *pm, decimal_record *pd,

fp_exception_field_type *ps);
void extended_to_decimal(extended *px, decimal_mode *pm, decimal_record *pd,

fp_exception_field_type *ps);
void quadruple_to_decimal(quadruple *px, decimal_mode *pm, decimal_record *pd,

fp_exception_field_type *ps);

DESCRIPTION
The floating_to_decimal() functions convert the floating-point value at *px into a decimal record at *pd,
observing the modes specified in *pm and setting exceptions in *ps. If there are no IEEE exceptions, *ps
will be zero. If *px is zero, infinity, or NaN, then only pd->sign and pd->fpclass are set. Otherwise pd-
>exponent and pd->ds are also set so that (pd->sign)*(pd->ds)*10**(pd->exponent) is a correctly rounded
approximation to *px. pd->ds has at least one and no more than DECIMAL_STRING_LENGTH-1
significant digits because one character is used to terminate the string with a NULL. pd->ds is correctly
rounded according to the IEEE rounding modes in pm->rd. *ps has fp_inexact set if the result was inexact,
and has fp_overflow set if the string result does not fit in pd->ds because of the limitation
DECIMAL_STRING_LENGTH. If pm->df == floating_form, then pd->ds always contains pm->ndigits
significant digits. Thus if *px == 12.34 and pm->ndigits == 8, then pd->ds will contain 12340000 and
pd->exponent will contain -6. If pm->df == fixed_form and pm->ndigits >= 0, then pd->ds always
contains pm->ndigits after the point and as many digits as necessary before the point. Since the latter is
not known in advance, the total number of digits required is floating_to_decimal() C Library Functions
floating_to_decimal() returned in pd->ndigits; if that number >= DECIMAL_STRING_LENGTH, then
ds is undefined. pd->exponent always gets -pm->ndigits. Thus if *px == 12.34 and pm->ndigits == 1,
then pd->ds gets 123, pd->exponent gets -1, and pd->ndigits gets 3. If pm->df == fixed_form and pm-
>ndigits < 0, then pd->ds always contains -pm->ndigits trailing zeros; in other words, rounding occurs -
pm->ndigits to the left of the decimal point, but the digits rounded away are retained as zeros. The total
number of digits required is in pd->ndigits.pd->exponent always gets 0. Thus if *px == 12.34 and pm-
>ndigits == -1, then pd->ds gets 10, pd->exponent gets 0, and pd->ndigits gets 2. pd->more is not used.
econvert(), fconvert(), gconvert() ,printf(), and sprintf() all use double_to_decimal().

SEE ALSO
econvert(), fconvert(), gconvert(), printf(), sprintf(), attributes()

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-25

string_to_decimal, file_to_decimal, func_to_decimal

NAME
string_to_decimal, file_to_decimal, func_to_decimal - parse characters into decimal record

SYNOPSIS
#include <floatingpoint.h>
void string_to_decimal(char **pc, int nmax, int fortran_conventions, decimal_record *pd,

enum decimal_string_form *pform, char **pechar);
void func_to_decimal(char **pc, int nmax, int fortran_conventions, decimal_record *pd,

enum decimal_string_form *pform, char **pechar,
int (*pget)(void), int *pnread, int (*punget)(int c));

#include <stdio.h>
void file_to_decimal(char **pc, int nmax, int fortran_conventions, decimal_record *pd,

enum decimal_string_form *pform,
char **pechar, FILE *pf, int *pnread);

DESCRIPTION
The char_to_decimal functions parse a numeric token from at most nmax characters in a string **pc or file
*pf or function (*pget)() into a decimal record *pd, classifying the form of the string in *pform and *pechar.
The accepted syntax is intended to be sufficiently flexible to accommodate many languages: whitespace
value or whitespace sign value where whitespace is any number of characters defined by isspace in
<ctype.h>, sign is either of [+-], and value can be number, nan, or inf. inf can be INF (inf_form) or INFINITY
(infinity_form) without regard to case. nan can be NAN (nan_form) or NAN(nstring) (nanstring_form)
without regard to case; nstring is any string of characters not containing ')' or NULL; nstring is copied to pd-
>ds and, currently, not used subsequently. number consists of significand or significand efield where
significand must contain one or more digits and may contain one point; possible forms are

digits (int_form)

digits.(intdot_form)

.digits(dotfrac_form)

digits.digits (intdotfrac_form)

efield consists of echar digits or echar sign digits where echar is one of [Ee], and digits contains one or more
digits.

When fortran_converstion is nonzero, additional input forms are accepted according to various Fortran
conventions:

0 no Fortran conventions

1 Fortran list-directed input conventions

2 Fortran formatted input conventions, ignore blanks (BN)

3 Fortran formatted input conventions, blanks are zeros (BZ)

libc __

3-26 SPARC Compliance Definition 2.4 Interface Semantics 1998

When fortran_conventions is nonzero, echar may also be one of [DdQq], and efield may also have the form
sign digits. When fortran_conventions>= 2, blanks may appear in the digits strings for the integer,
fraction, and exponent fields and may appear between echar and the exponent sign and after the infinity
and NaN forms. If fortran_conventions== 2, the blanks are ignored.When fortran_conventions== 3, the
blanks that appear in digits strings are interpreted as zeros, and other blanks are ignored.

When fortran_conventions is zero, the current locale's decimal point character is used as the decimal
point; when fortran_conventions is nonzero, the period is used as the decimal point. The form of the
accepted decimal string is placed in *pform. If an efield is recognized, *pechar is set to point to the echar.

On input, *pc points to the beginning of a character string buffer of length >= nmax. On output, *pc points
to a character in that buffer, one past the last accepted character. string_to_decimal() gets its characters
from the buffer; file_to_decimal() gets its characters from *pf and records them in the buffer, and places a
null after the last character read. func_to_decimal() gets its characters from an int function (*pge)()

The scan continues until no more characters could possibly fit the acceptable syntax or until nmax characters
have been scanned. If the nmax limit is not reached then at least one extra character will usually be scanned
that is not part of the accepted syntax. file_to_decimal() and func_to_decimal() set *pnread to the number
of characters read from the file; if greater than nmax, some characters were lost.If no characters were lost,
file_to_decimal() and func_to_decimal() attempt to push back, with ungetc() or (*punget)() as many as
possible of the excess characters read, adjusting *pnread accordingly. If all unget calls are successful, then
**pc will be NULL. No push back will be attempted if (*punget)() is NULL.

Typical declarations for *pget() and *punget() are:

int xget(void)

{ ... }

int (*pget)(void) = xget;

int xunget(int c)

{ ... }

int (*punget)(int) = xunget;

If no valid number was detected, pd->fpclass is set to fp_signaling, *pc is unchanged, and *pform is
set to invalid_form. atof() and strtod() use string_to_decimal().scanf() uses file_to_decimal().

SEE ALSO
ctype(), localeconv(), scanf(), setlocale(), strtod(), ungetc()

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-27

econvert, fconvert, gconvert, seconvert, sfconvert
sgconvert, qeconvert, qfconvert, qgconvert
ecvt, fcvt, gcvt

NAME
econvert, fconvert, gconvert, seconvert, sfconvert, sgconvert, qeconvert, qfconvert, qgconvert, ecvt, fcvt,
gcvt - output conversion

SYNOPSIS
#include <floatingpoint.h>
char *econvert(double value, int ndigit, int *decpt, int *sign, char *buf);
char *fconvert(double value, int ndigit, int *decpt, int *sign, char *buf);
char *gconvert(double value, int ndigit, int trailing, char *buf);
char *seconvert(single *value, int ndigit, int *decpt, int *sign, char *buf);
char *sfconvert(single *value, int ndigit, int *decpt, int *sign, char *buf);
char *sgconvert(single *value, int ndigit, int trailing, char *buf);
char *qeconvert(quadruple *value, int ndigit, int *decpt, int *sign, char *buf);
char *qfconvert(quadruple *value, int ndigit, int *decpt, int *sign, char *buf);
char *qgconvert(quadruple *value, int ndigit, int trailing, char *buf);
char *ecvt(double value, int ndigit, int *decpt, int *sign);
char *fcvt(double value, int ndigit, int *decpt, int *sign);
char *gcvt(double value, int ndigit, char *buf);

DESCRIPTION
The econvert() function converts the value to a null-terminated string of ndigit ASCII digits in buf and
returns a pointer to buf. buf should contain at least ndigit+1 characters.The position of the decimal point
relative to the beginning of the string is stored indirectly through decpt. Thus buf == "314" and *decpt ==
1 corresponds to the numerical value 3.14, while buf == "314" and *decpt == -1 corresponds to the
numerical value .0314. If the sign of the result is negative, the word pointed to by sign is nonzero;
otherwise it is zero. The least significant digit is rounded.

The fconvert() function works much like econvert(), except that the correct digit has been rounded as if
for sprintf(%w.nf) output with n=ndigit digits to the right of the decimal point.ndigit can be negative to
indicate rounding to the left of the decimal point. The return value is a pointer to buf.buf should contain
at least 310+max(0,ndigit) characters to accommodate any double-precision value.

The gconvert() function converts the value to a null-terminated ASCII string in buf and returns a pointer
to buf. It produces ndigit significant digits in fixed-decimal format, like sprintf(%w.nf), if possible, and
otherwise in floating-decimal format, like sprintf(%w.ne); in either case buf is ready for printing, with sign
and exponent. The result corresponds to that obtained by (void) sprintf(buf,``%w.ng'',value) ; If trailing= 0,
trailing zeros and a trailing point are suppressed, as in sprintf(%g). If trailing!= 0, trailing zeros and a
trailing point are retained, as in sprintf(%#g).

libc __

3-28 SPARC Compliance Definition 2.4 Interface Semantics 1998

The seconvert(), sfconvert(), and sgconvert() functions are single-precision versions of these functions, and
are more efficient than the corresponding double-precision versions. pointer rather than the value itself is
passed to avoid C's usual conversion of single-precision arguments to double.

The qeconvert(), qfconvert(), and qgconvert() functions are quadruple-precision versions of these functions.
The qfconvert() function can overflow the decimal_record field ds if value is too large. In that case, buf[0]
is set to zero.

The ecvt() and fcvt() functions are versions of econvert() and fconvert() that create a string in a static data
area, overwritten by each call, and return values that point to that static data. These functions are therefore
not reentrant.

The gcvt() function is an version of gconvert() that always suppresses trailing zeros and point.

IEEE Infinities and NaNs are treated similarly by these functions.``NaN'' is returned for NaN, and ``Inf''
or ``Infinity'' for Infinity. The longer form is produced when ndigit >= 8.

SEE ALSO
sprintf()

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-29

getspnam, getspnam_r, getspent, getspent_r, setspent
endspent, fgetspent, fgetspent_r

NAME
getspnam, getspnam_r,getspent,getspent_r,setspent, endspent, fgetspent, fgetspent_r - get password entry

SYNOPSIS
#include <shadow.h>
struct spwd *getspnam(const char *name);
struct spwd *getspnam_r(const char *name, struct spwd *result, char *buffer, int buflen);
struct spwd *getspent(void);
struct spwd *getspent_r(struct spwd *result, char *buffer, int buflen);
void setspent(void);
void endspent(void);
struct spwd *fgetspent(FILE *fp);
struct spwd *fgetspent_r(FILE *fp, struct spwd *result, char *buffer, int buflen);

DESCRIPTION
These functions are used to obtain shadow password entries. An entry may come from any of the sources
for shadow specified in the /etc/nsswitch.conf file (see nsswitch.conf()). getspnam() searches for a shadow
password entry with the login name specified by the character string parameter name. The functions
setspent(), getspent(), and endspent() are used to enumerate shadow password entries from the database.
setspent() sets (or resets) the enumeration to the beginning of the set of shadow password entries. This
function should be called before the first call to getspent().Calls to getspnam() leave the enumeration
position in an indeterminate state. Successive calls to getspent() return either successive entries or NULL,
indicating the end of the enumeration. endspent() may be called to indicate that the caller expects to do no
further shadow password retrieval operations; the system may then close the shadow password file, de-
allocate resources it was using, and so forth. It is still allowed, but possibly less efficient, for the process to
call more shadow password functions after calling endspent(). fgetspent(), unlike the other functions above,
does not use nsswitch.conf; it reads and parses the next line from the stream f, which is assumed to have
the format of the shadow file (see shadow()).

Reentrant Interfaces
The functions getspnam(), getspent(), and fgetspent() use static storage that is re-used in each call, making
these routines unsafe for use in multithreaded applications. The functions: getspnam_r(), getspent_r(), and
fgetspent_r() provide reentrant interfaces for these operations. Each reentrant interface performs the same
operation as its non-reentrant counterpart, named by removing the ``_r'' suffix. The reentrant interfaces,
however, use buffers supplied by the caller to store returned results, and are safe for use in both single-
threaded and multithreaded applications. Each reentrant interface takes the same parameters as its non-
reentrant counterpart, as well as the following additional parameters. The parameter result must be a
pointer to a struct spwd structure allocated by the caller. On successful completion, the function returns the
shadow password entry in this structure.The parameter buffer must be a pointer to a buffer supplied by the
caller. This buffer is used as storage space for the shadow password data. All of the pointers within the
returned struct spwd result point to data stored within this buffer. The buffer must be large enough to hold
all of the data associated with the shadow password entry. The parameter buflen should give the size in

libc __

3-30 SPARC Compliance Definition 2.4 Interface Semantics 1998

bytes of the buffer indicated by buffer. For enumeration in multithreaded applications, the position within
the enumeration is a process-wide property shared by all threads. setspent() may be used in a multithreaded
application but resets the enumeration position for all threads.If multiple threads interleave calls to
getspent_r(), the threads will enumerate disjoint subsets of the shadow password database. Like its non-
reentrant counterpart, getspnam_r() leaves the enumeration position in an indeterminate state.

RETURN VALUES
Password entries are represented by the struct spwd structure defined in <shadow.h>:

struct spwd{

char *sp_namp; /* login name */

char *sp_pwdp; /* encrypted passwd */

long sp_lstchg; /* date of last change */

long sp_min; /* min days to passwd change */

long sp_max; /* max days to passwd change*/

long sp_warn; /* warning period */

long sp_inact; /* max days inactive */

long sp_expire; /* account expiry date */

unsigned long sp_flag; /* not used */

};

See shadow() for more information on the interpretation of this information. The functions getspnam() and
getspnam_r() each return a pointer to a struct spwd if they successfully locate the requested entry;
otherwise they return NULL. The functions getspent(), getspent_r(), fgetspent(), and fgetspent() each
return a pointer to a struct spwd if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration. The functions getspnam(), getspent(), and fgetspent() use static
storage, so returned data must be copied before a subsequent call to any of these functions if the data is to
be saved. When the pointer returned by the re-entrant functions getspnam_r(), getspent_r(), and
fgetspent_r() is non-NULL, it is always equal to the result pointer that was supplied by the caller.

ERRORS
The reentrant functions getspnam_r(), getspent_r(), and fgetspent_r() will return NULL and set errno
to ERANGE if the length of the buffer supplied by caller is not large enough to store the result. See
intro() for the proper usage and interpretation of errno in multithreaded applications.

FILES
/etc/shadow, /etc/nsswitch.conf, /etc/passwd

SEE ALSO
nispasswd(), passwd(), yppasswd(), intro() getlogin(), getpwnam(), nsswitch.conf(), passwd(), shadow(),

WARNINGS
The reentrant interfaces getspnam_r(), getspent_r(), and fgetspent_r() are included in this release on an
uncommitted basis only, and are subject to change or removal in future minor releases.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-31

NOTES
Programs that use the interfaces described in this manual page cannot be linked statically since the
implementations of these functions employ dynamic loading and linking of shared objects at run time.
When compiling multithreaded applications, see intro(), Notes On Multithread Applications, for
information about the use of the _REENTRANT flag. Use of the enumeration interfaces getspent() and
getspent_r() is not recommended; enumeration is supported for the shadow file, NIS, and NIS+, but in
general is not efficient and may not be supported for all database sources. The semantics of enumeration
are discussed further in nsswitch.conf(). Access to shadow password information may be restricted in a
manner depending on the database source being used. Access to the /etc/shadow file is generally restricted
to processes running as the super-user (root). Other database sources may impose stronger or less stringent
restrictions. When NIS is used as the database source, the information for
theshadowpasswordentriesisobtained from the ``passwd.byname'' map. This map stores only the
information for the sp_namp and sp_pwdp fields of the struct spwd structure. Shadow password entries
obtained from NIS will contain the value -1 in the remainder of the fields. When NIS+ is used as the database
source, and the caller lacks the permission needed to retrieve the encrypted password from the NIS+
``passwd.org_dir'' table, the NIS+ service returns the string ``*NP*'' instead of the actual encrypted
password string. The functions described on this page will then return the string ``*NP*'' to the caller as
the value of the member sp_pwdp in the returned shadow password structure.

libc __

3-32 SPARC Compliance Definition 2.4 Interface Semantics 1998

gettimeofday, settimeofday

NAME
gettimeofday, settimeofday - get or set the date and time

SYNOPSIS
 #include <sys/time.h>
 int gettimeofday(struct timeval *tp, void *);
 int settimeofday(struct timeval *tp, void *);

DESCRIPTION
The gettimeofday() function gets and the settimeofday() function sets the system’s notion of the current
time. The current time is expressed in elapsed seconds and microseconds since 00:00 Universal
Coordinated Time, January 1, 1970. The resolution of the system clock is hardware dependent; the time
may be updated continuously or in clock ticks.

The tp argument points to a timeval structure, which includes the following members:

 long tv_sec; /* seconds since Jan. 1, 1970 */

 long tv_usec; /* and microseconds */

If tp is a null pointer, the current time information is not returned or set.

The TZ environment variable holds time zone information.

The second argument to gettimeofday() and settimeofday() should be a pointer to NULL.

Only the super-user may set the time of day.

RETURN VALUES
Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS
The gettimeofday() function will fail if:

EINVAL The structure pointed to by tp specifies an invalid time.

EPERM A user other than the privileged user attempted to set the time or time zone.

Additionally, the gettimeofday() function will fail for 32-bit interfaces if:

EOVERFLOW The system time has progressed beyond 2038, thus the size of the tv_sec

member of the timeval structure pointed to by tp is insufficient to hold the current

time in seconds.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-33

USAGE
If the tv_usec member of tp is > 500000, settimeofday() rounds the seconds upward. If the time needs to
be set with better than one second accuracy, call settimeofday() for the seconds and then adjtime() for finer
accuracy.

SEE ALSO
adjtime, asctime, TIMEZONE

libc __

3-34 SPARC Compliance Definition 2.4 Interface Semantics 1998

getutxent, getutxid, getutxline, pututxline, setutxent
endutxent, utmpxname, getutmp, getutmpx
updwtmp, updwtmpx

NAME
getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname, getutmp, getutmpx,
updwtmp, updwtmpx - access utmpx file entry

SYNOPSIS
#include <utmpx.h>
struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx *id);
struct utmpx *getutxline(const struct utmpx *line);
struct utmpx *pututxline(const struct utmpx *utmpx);
void setutxent(void);
void endutxent(void);
int utmpxname(const char *file);
void getutmp(struct utmpx *utmpx, struct utmp *utmp);
void getutmpx(struct utmp *utmp, struct utmpx *utmpx);
void updwtmp(char *wfile, struct utmp *utmp);
void updwtmpx(char *wfilex, struct utmpx *utmpx);

DESCRIPTION
getutxent(), getutxid(), and getutxline() each return a pointer to a utmpx structure with the following
members:

char ut_user[32]; /* user login name */

char ut_id[4]; /* /etc/inittab id */

/* (usually line #) */

char ut_line[32]; /* device name (console, lnxx) */

pid_t ut_pid; /* process id */

short ut_type;/* type of entry */

struct exit_status ut_exit;/* exit status of a process */

/* marked as DEAD_PROCESS */

struct timeval ut_tv; /* time entry was made */

long ut_session; /* session ID, used for windowing */

long pad[5]; /* reserved for future use */

short ut_syslen;/* significant length of ut_host */

/* including terminating null */

char ut_host[257];/* host name, if remote */

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-35

The structure exit status includes the following members:

short e_termination; /* termination status */

short e_exit; /* exit status */

getutxent()
Reads in the next entry from a utmpx-like file. If the file is not already open, it opens it. If it reaches the end
of the file, it fails.

getutxid()
Searches forward from the current point in the utmpx file until it finds an entry with a ut_type matching id-
>ut_type if the type specified is RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME.If the type
specified in id is INIT_PROCESS, LOGIN_PROCESS,USER_PROCESS, or DEAD_PROCESS, then
getutxid() will return a pointer to the first entry whose type is one of these four and whose ut_id field
matches id->ut_id.If the end of file is reached without a match, it fails.

getutxline()
Searches forward from the current point in the utmpx file until it finds an entry of the type
LOGIN_PROCESS or USER_PROCESS which also has a ut_line string matching the line->ut_line
string. If the end of file is reached without a match, it fails.

pututxline()
Writes out the supplied utmpx structure into the utmpx file. It uses getutxid() to search forward for the proper
place if it finds that it is not already at the proper place. It is expected that normally the user of pututxline()
will have searched for the proper entry using one of the getutx() routines.If so, pututxline() will not search.
If pututxline() does not find a matching slot for the new entry, it will add a new entry to the end of the file.
It returns a pointer to the utmpx structure. When called by a non-root user, pututxline() invokes a setuid()
root program to verify and write the entry, since /etc/utmpx is normally writable only by root.In this event,
the ut_name field must correspond to the actual user name associated with the process; the ut_type field
must be either USER_PROCESS or DEAD_PROCESS; and the ut_line field must be a device special file
and be writable by the user.

setutxent()
Resets the input stream to the beginning of the file.This should be done before each search for a new entry
if it is desired that the entire file be examined.

endutxent()
Closes the currently open file.

utmpxname()
Allows the user to change the name of the file examined, from /var/adm/utmpx to any other file. It is
most often expected that this other file will be /var/adm/wtmpx.If the file does not exist, this will not be
apparent until the first attempt to reference the file is made.utmpxname() does not open the file. It just
closes the old file if it is currently open and saves the new file name. The new file name must end with the
``x'' character to allow the name of the corresponding utmp file to be easily obtainable; otherwise, an error
code of 1 is returned.

getutmp()
Copies the information stored in the fields of the utmpx structure to the corresponding fields of the utmp
structure. If the information in any field of utmpx does not fit in the corresponding utmp field, the data is
truncated. (See getutent() for utmp structure)

libc __

3-36 SPARC Compliance Definition 2.4 Interface Semantics 1998

getutmpx()
Copies the information stored in the fields of the utmp structure to the corresponding fields of the utmpx
structure. (See getutent() for utmp structure)

updwtmp()
Checks the existence of wfile and its parallel file, whose name is obtained by appending an ``x'' to wfile.
If only one of them exists, the second one is created and initialized to reflect the state of the existing file.
utmp is written to wfile and the corresponding utmpx structure is written to the parallel file.

updwtmpx()
Checks the existence of wfilex and its parallel file, whose name is obtained by truncating the final ``x'' from
wfilex. If only one of them exists, the second one is created and initialized to reflect the state of the existing
file. utmpx is written to wfilex, and the corresponding utmp structure is written to the parallel file.

RETURN VALUES
A null pointer is returned upon failure to read, whether for permissions or having reached the end of file,
or upon failure to write.

FILES
/var/adm/utmp contains current user access and administrative information (old format)

/var/adm/utmpx contains current user access and administration information (new format)

/var/adm/wtmp contains a history of user access and administrative information.

/var/adm/wtmpx contains a history of user access and administrative information.

SEE ALSO
getutent(), ttyslot(), utmp(), utmpx()

NOTES
The most current entry is saved in a static structure. Multiple accesses require that it be copied before
further accesses are made. On each call to either getutxid() or getutxline(), the routine examines the
static structure before performing more I/O. If the contents of the static structure match what it is
searching for, it looks no further. For this reason, to use getutxline() to search for multiple occurrences it
would be necessary to zero out the static after each success, or getutxline() would just return the same
structure over and over again. There is one exception to the rule about emptying the structure before further
reads are done. The implicit read done by pututxline() (if it finds that it is not already at the correct place in
the file) will not hurt the contents of the static structure returned by the getutxent(), getutxid(), or
getutxline() routines, if the user has just modified those contents and passed the pointer back to pututxline().
These routines use buffered standard I/O for input, but pututxline() uses an unbuffered write to avoid race
conditions between processes trying to modify the utmpx and wtmpx files.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-37

ffs

NAME
ffs - find first set bit

SYNOPSIS
#include <strings.h>
int ffs(const int i);

DESCRIPTION
The ffs() function finds the first bit set (beginning with the least significant bit) and returns the index of that

bit. Bits are numbered starting at one (the least significant bit).

RETURN VALUES
The ffs() function returns the index of the first bit set. If i is 0, then ffs() returns 0.

libc __

3-38 SPARC Compliance Definition 2.4 Interface Semantics 1998

isnan, isnand, isnanf, finite, fpclass, unordered

NAME
isnan, isnand, isnanf, finite, fpclass, unordered - determine type of floating-point number

SYNOPSIS
#include <ieeefp.h>
int isnand(double dsrc);
int isnanf(float fsrc);
int finite(double dsrc);
fpclass_t fpclass(double dsrc);
int unordered(double dsrc1, double dsrc2);
#include <math.h>
int isnan(double dsrc);

DESCRIPTION
The functionality of isnan() is identical to that of isnand(). isnanf() is implemented as a macro
included in the <ieeefp.h> header. fpclass() returns the class the dsrc belongs to.The 10 possible classes are
as follows:

FP_SNAN signaling NaN

FP_QNAN quiet NaN

FP_NINF negative infinity

FP_PINF positive infinity

FP_NDENORM negative de-normalized non-zero

FP_PDENORM positive de-normalized non-zero

FP_NZERO negative zero

FP_PZERO positive zero

FP_NNORM negative normalized non-zero

FP_PNORM positive normalized non-zero

None of these routines generate any exception, even for signaling NaNs.

RETURN VALUES
isnan(), isnand(), and isnanf() return true () if the argument dsrc or fsrc is a NaN; otherwise they return false
(0). finite() returns true () if the argument dsrc is neither infinity nor NaN; otherwise it returns false (0).
isnan isnan()unordered() returns true () if one of its two arguments is unordered with respect to the other
argument. This is equivalent to reporting whether either argument is NaN. If neither of the arguments is NaN,
false (0) is returned.

SEE ALSO
fpgetround()

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-39

fpgetround, fpsetround, fpgetmask
fpsetmask, fpgetsticky, fpsetsticky

NAME
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky - IEEE floating-point environment
control

SYNOPSIS
#include <ieeefp.h>
fp_rnd fpgetround(void);
fp_rnd fpsetround(fp_rnd rnd_dir);
fp_except fpgetmask(void);
fp_except fpsetmask(fp_except mask);
fp_except fpgetsticky(void);
fp_except fpsetsticky(fp_except sticky);

DESCRIPTION
There are five floating-point exceptions: divide-by-zero, overflow, underflow, imprecise (inexact) result, and
invalid operation. When a floating-point exception occurs, the corresponding sticky bit is set, and if the
mask bit is enabled, the trap takes place. These routines let the user change the behavior on occurrence
of any of these exceptions, as well as change the rounding mode for floating-point operations.

The following floating-point exception masks are OR-ed together to form mask.

FP_X_INV /* invalid operation exception */

FP_X_OFL /* overflow exception */

FP_X_UFL /* underflow exception */

FP_X_DZ /* divide-by-zero exception */

FP_X_IMP /* imprecise (loss of precision) */

The following floating-point rounding modes are passed to fpsetround() and returned by fpgetround().
FP_RN /* round to nearest representative number */

FP_RP /* round to plus infinity */

FP_RM /* round to minus infinity */

FP_RZ /* round to zero (truncate) */

The default environment is rounding mode set to nearest (FP_RN) and all traps disabled. Individual bits
may be examined using the constants defined in <ieeefp.h>.

RETURN VALUES
fpgetround() returns the current rounding mode.

fpsetround() sets the rounding mode and returns the previous rounding mode.

fpgetmask() returns the current exception masks.

fpsetmask() sets the exception masks and returns the previous setting.

libc __

3-40 SPARC Compliance Definition 2.4 Interface Semantics 1998

fpgetsticky() returns the current exception sticky flags.

fpsetsticky() sets (clears) the exception sticky flags and returns the previous setting.

SEE ALSO
isnan()

NOTES
fpsetsticky() modifies all sticky flags. fpsetmask() changes all mask bits. fpsetmask() clears the sticky bit
corresponding to any exception being enabled. C requires truncation (round to zero) for floating point to
integral conversions.The current rounding mode has no effect on these conversions. One must clear the
sticky bit to recover from the trap and to proceed.If the sticky bit is not cleared before the next trap occurs,
a wrong exception type may be signaled.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-41

truncate, ftruncate

NAME
truncate, ftruncate - set a file to a specified length

SYNOPSIS
#include <unistd.h>
int truncate(const char *path, off_t length);
int ftruncate(int fildes, off_t length);

DESCRIPTION
The truncate() function causes the regular file named by path to have a size of length bytes. The ftruncate()
function causes the regular file referenced by fildes to have a size of length bytes. The effect of ftruncate()
and truncate() on other types of files is unspecified.If the file previously was larger than length, the extra
data is lost. If it was previously shorter than length, bytes between the old and new lengths are read as
zeroes. With ftruncate(), the file must be open for writing; for truncate(), the process must have write
permission for the file. If the request would cause the file size to exceed the soft file size limit for the
process, the request will fail and the implementation will generate the SIGXFSZ signal for the process.
These functions do not modify the file offset for any open file descriptions associated with the file. On
successful completion, if the file size is changed, these functions will mark for update the st_ctime and
st_mtime fields of the file, and if the file is a regular file, the S_ISUID and S_ISGID bits of the file mode
may be cleared.

RETURN VALUES
Upon successful completion, ftruncate() and truncate() return 0.Otherwise, -1 is returned and errno is set
to indicate the error.

ERRORS
The ftruncate() and truncate() functions will fail if:

EINTRA signal was caught during execution.

EINVAL The length argument was less than 0.

EFBIG or EINVAL The length argument was greater than the maximum file size.truncate truncate()
EIO An I/O error occurred while reading from or writing to a file system.

The truncate() function will fail if:

EACCES A component of the path prefix denies search permission, or write permission is
denied on the file.

EFAULT The path argument points outside the process' allocated address space.

EINVAL The path argument is not an ordinary file.

EISDIR The named file is a directory.

ELOOP Too many symbolic links were encountered in resolving path.

EMFILE The maximum number of file descriptors available to the process has been
reached.

libc __

3-42 SPARC Compliance Definition 2.4 Interface Semantics 1998

EMULTIHOP Components of path require hopping to multiple remote machines and file system
type does not allow it.

ENAMETOOLONG The length of the specified pathname exceeds PATH_MAX bytes, or the length
of a component of the pathname exceeds NAME_MAX bytes.

ENOENT A component of path does not name an existing file or path is an empty string.

ENFILE Additional space could not be allocated for the system file table.

ENOTDIRA component of the path prefix of path is not a directory.

ENOLINK The path argument points to a remote machine and the link to that machine is
no longer active.

EROFS The named file resides on a read-only file system.

The ftruncate() function will fail if:

EAGAIN The file exists, mandatory file/record locking is set, and there are outstanding
record locks on the file (see chmod()).

EBADF or EINVAL The fildes argument is not a file descriptor open for writing.

EFBIG The file is a regular file and length is greater than the offset maximum
established in the open file description associated with fildes.

EINVAL The fildes argument references a file that was opened without write permission.

EINVAL The fildes argument does not correspond to an ordinary file.

ENOLINK The fildes argument points to a remote machine and the link to that machine
is no longer active.

The truncate() function may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result whose

SEE ALSO
chmod(), fcntl(), open()

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-43

getdents

NAME
getdents - read directory entries and put in a file system independent format

SYNOPSIS
#include <sys/dirent.h>
int getdents(int fildes, struct dirent *buf, size_t nbyte);

DESCRIPTION
The getdents() function attempts to read nbyte bytes from the directory associated with the file descriptor
fildes and to format them as file system independent directory entries in the buffer pointed to by buf. Since
the file system independent directory entries are of variable length, in most cases the actual number of
bytes returned will be strictly less than nbyte. See dirent() to calculate the number of bytes. The file system
independent directory entry is specified by the dirent structure.For a description of this see dirent(). On
devices capable of seeking, getdents() starts at a position in the file given by the file pointer associated with
fildes. Upon return from getdents(), the file pointer is incremented to point to the next directory entry. This
function was developed in order to implement the readdir routine (for a description, see opendir()), and
should not be used for other purposes.

RETURN VALUES
Upon successful completion a non-negative integer is returned indicating the number of bytes actually
read. A value of 0 indicates the end of the directory has been reached.If the function failed, -1 is returned
and errno is set to indicate the error.

ERRORS
The getdents() function will fail if one or more of the following are true:

EBADF fildes is not a valid file descriptor open for reading.

EFAULT buf points to an illegal address.

EINVAL nbyte is not large enough for one directory entry.

EIO An I/O error occurred while accessing the getdents() System Calls getdents() file system.

ENOENT The current file pointer for the directory is not located at a valid entry.

ENOLINK fildes points to a remote machine and the link to that machine is no longer active.

ENOTDIR fildes is not a directory.

EOVERFLOW The value of the dirent structure member d_ino or d_off cannot be represented in an
ino_t or off_t.

SEE ALSO
opendir(), dirent()

libc __

3-44 SPARC Compliance Definition 2.4 Interface Semantics 1998

getmntent, getmntany, hasmntopt, putmntent

NAME
getmntent, getmntany, hasmntopt, putmntent - get mnttab file information

SYNOPSIS
#include <stdio.h>
#include <sys/mnttab.h>
int getmntent(FILE *fp, struct mnttab *mp);
int getmntany(FILE *fp, struct mnttab *mp, struct mnttab *mpref);
char *hasmntopt(struct mnttab *mnt, char *opt);
int putmntent(FILE *iop, struct mnttab *mp);

DESCRIPTION
getmntent() and getmntany() each fill in the structure pointed to by mp with the broken-out fields of a line
in the /etc/mnttab file. Each line in the file contains a mnttab structure, which is declared in the
<sys/mnttab.h> header. The structure contains the following members:

char *mnt_special;

char *mnt_mountp;

char *mnt_fstype;

char *mnt_mntopts;

char *mnt_time;

The fields have meanings described in mnttab().

getmntent() returns a pointer to the next mnttab structure in the file; so successive calls can be used to search
the entire file. getmntany() searches the file referenced by fp until a match is found between a line in the file
and mpref. mpref matches the line if all non-null entries in mpref match the corresponding fields in the file.
Note that these routines do not open, close, or rewind the file.

hasmntopt() scans the mnt_mntopts field of the mnttab structure mnt for a sub-string that matches opt. It
returns the address of the sub-string if a match is found, otherwise it returns 0.

The putmntent() macro formats the contents of the mnttab structure according to the layout required for
the /etc/mnttab file and writes the entry to the file.Note: the file should be opened in append mode (fopen()
with an "a" mode) so that the entry is appended to the file.

RETURN VALUES
If the next entry is successfully read by getmntent() or a match is found with getmntany(), 0 is returned.
If an EOF is encountered on reading, these functions return -1. If an error is encountered, a value greater
than 0 is returned. The possible error values are:

MNT_TOOLONG A line in the file exceeded the internal buffer size of MNT_LINE_MAX.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-45

MNT_TOOMANY A line in the file contains too many fields.

MNT_TOOFEW A line in the file contains too few fields.

On success, putmntent() returns the number of bytes printed to the specified file and on failure returns EOF.

FILES
/etc/mnttab

SEE ALSO
mnttab()

NOTES
The members of the mnttab structure point to information contained in a static area, so it must be copied if
it is to be saved.

libc __

3-46 SPARC Compliance Definition 2.4 Interface Semantics 1998

getpw

NAME
getpw - get passwd entry from UID

SYNOPSIS
#include <stdlib.h>
int getpw(uid_t uid, char *buf);

DESCRIPTION
getpw() searches the user data base for a user id number that equals uid, copies the line of the password
file in which uid was found into the array pointed to by buf, and returns 0. getpw() returns non-zero if uid
cannot be found. This routine is included only for compatibility with prior systems and should not be used;
see getpwnam() for routines to use instead.

RETURN VALUES
getpw() returns non-zero on error.

FILES
/etc/passwd

SEE ALSO
getpwnam(), passwd()

NOTES
If the /etc/passwd and the /etc/group files have the ``+'' for the NIS entry, then getpwent() and getgwent()
will not return NULL when the end of file is reached.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-47

getvfsent, getvfsfile, getvfsspec, getvfsany

NAME
getvfsent, getvfsfile, getvfsspec, getvfsany - get vfstab file entry

SYNOPSIS
#include <stdio.h>
#include <sys/vfstab.h>
int getvfsent(FILE *fp, struct vfstab *vp);
int getvfsfile(FILE *fp, struct vfstab *vp, char *file);
int getvfsspec(FILE *, struct vfstab *vp, char *spec);
int getvfsany(FILE *, struct vfstab *vp, vfstab *vref);

DESCRIPTION
getvfsent(), getvfsfile(), getvfsspec(), and getvfsany() each fill in the structure pointed to by vp with
the broken-out fields of a line in the /etc/vfstab file.Each line in the file contains a vfstab structure, declared
in the <sys/vfstab.h> header:

char *vfs_special;

char *vfs_fsckdev;

char *vfs_mountp;

char *vfs_fstype;

char *vfs_fsckpass;

char *vfs_automnt;

char *vfs_mntopts;

The fields have meanings described in vfstab(). getvfsent() returns a pointer to the next vfstab structure in
the file; so successive calls can be used to search the entire file. getvfsfile() searches the file referenced by
fp until a mount point matching file is found and fills vp with the fields from the line in the file.getvfsspec()
searches the file referenced by fp until a special device matching spec is found and fills vp with the fields
from the line in the file.spec will try to match on device type (block or character special) and major and
minor device numbers.If it cannot match in this manner, then it compares the strings. getvfsany() searches
the file referenced by fp until a match is found between a line in the file and vref. vref matches the line if all
non-null entries in vref match the corresponding fields in the file. Note that these routines do not open, close,
or rewind the file.

RETURN VALUES
If the next entry is successfully read by getvfsent() or a match is found with getvfsfile(), getvfsspec(), or
getvfsany(), 0 is returned. If an end-of-file is encountered on reading, these functions return -1. If an error
is encountered, a value greater than 0 is returned. The possible error values are:

VFS_TOOLONG A line in the file exceeded the internal buffer size of VFS_LINE_MAX.

VFS_TOOMANY A line in the file contains too many fields.

VFS_TOOFEW A line in the file contains too few fields.

libc __

3-48 SPARC Compliance Definition 2.4 Interface Semantics 1998

NOTES
The members of the vfstab structure point to information contained in a static area, so it must be copied if
it is to be saved.

FILES
/etc/vfstab

SEE ALSO
vfstab()

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-49

iconv

NAME
iconv - code conversion function

SYNOPSIS
#include <iconv.h>
size_t iconv(iconv_t cd, const char **inbuf, size_t *inbytesleft, char **outbuf, size_t *out-
bytesleft);

DESCRIPTION
The iconv() function converts the sequence of characters from one codeset, in the array specified by inbuf,
into a sequence of corresponding characters in another codeset, in the array specified by outbuf.The
codesets are those specified in the iconv_open() call that returned the conversion descriptor, cd. The inbuf
argument points to a variable that points to the first character in the input buffer and inbytesleft indicates the
number of bytes to the end of the buffer to be converted. The outbuf argument points to a variable that points
to the first available byte in the output buffer and outbytesleft indicates the number of the available bytes
to the end of the buffer.

For state-dependent encoding, the conversion descriptor cd is placed into its initial shift state by a call for
which inbuf is a null pointer, or for which inbuf points to a null pointer.When iconv() is called in this way, and
if outbuf is not a null pointer or a pointer to a null pointer, and outbytesleft points to a positive value, iconv()
will place, into the output buffer, the byte sequence to change the output buffer to its initial shift state. If the
output buffer is not large enough to hold the entire reset sequence, iconv() will fail and set errno to E2BIG.
Subsequent calls with inbuf as other than a null pointer or a pointer to a null pointer cause the conversion
to take place from the current state of the conversion descriptor. If a sequence of input bytes does not form a
valid character in the specified codeset, conversion stops after the previous successfully converted character.
If the input buffer ends with an incomplete character or shift sequence, conversion stops after the previous
successfully converted bytes. If the output buffer is not large enough to hold the entire converted input,
conversion stops just prior to the input bytes that would cause the output buffer to overflow. The variable
pointed to by inbuf is updated to point to the byte following the last byte successfully used in the conversion.
The value pointed to by inbytesleft is decremented to reflect the number of bytes still not converted in the
input buffer. The variable pointed to by outbuf is updated to point to the byte following the last byte of
converted output data. The value pointed to by outbytesleft is decremented to reflect the number of bytes still
available in the output buffer. For state-dependent encodings, the conversion descriptor is updated to
reflect the shift state in effect at the end of the last successfully converted byte sequence. If iconv()
encounters a character in the input buffer that is legal, but for which an identical character does not exist
in the target code set, iconv() performs an implementation-defined conversion on this character.

RETURN VALUES
The iconv() function updates the variables pointed to by the arguments to reflect the extent of the
conversion and returns the number of non-identical conversions performed. If the entire string in the input
buffer is converted, the value pointed to by inbytesleft will be 0.If the input conversion is stopped due to any
conditions mentioned above, the value pointed to by inbytesleft will be non-zero and errno is set to indicate
the condition. If an error occurs iconv() returns (size_t) -1 and sets errno to indicate the error.

libc __

3-50 SPARC Compliance Definition 2.4 Interface Semantics 1998

ERRORS
The iconv() function will fail if:

EILSEQ Input conversion stopped due to an input byte that does not belong to the input codeset.

E2BIG Input conversion stopped due to lack of space in the output buffer.

EINVAL Input conversion stopped due to an incomplete character or shift sequence at the end of the
input buffer.

The iconv() function may fail if:

EBADF The cd argument is not a valid open conversion descriptor.

FILES
/usr/lib/iconv/*.so conversion modules

SEE ALSO
iconv(), iconv_close(), iconv_open()

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-51

iconv_close

NAME
iconv_close - code conversion de-allocation function

SYNOPSIS
#include <iconv.h>
int iconv_close(iconv_t cd);

DESCRIPTION
The iconv_close() function de-allocates the conversion descriptor cd and all other associated resources
allocated by the iconv_open() function.

If a file descriptor is used to implement the type iconv_t, that file descriptor will be closed.

RETURN VALUES
Upon successful completion, iconv_close() returns 0; otherwise, it returns -1 and sets errno to indicate the
error.

ERRORS
The iconv_close() function may fail if:

EBADF The conversion descriptor is invalid.

SEE ALSO
iconv(), iconv_open()

libc __

3-52 SPARC Compliance Definition 2.4 Interface Semantics 1998

iconv_open

NAME
iconv_open - code conversion allocation function

SYNOPSIS
#include <iconv.h>
iconv_t iconv_open(const char *tocode, const char *fromcode);

DESCRIPTION
The iconv_open() function returns a conversion descriptor that describes a conversion from the codeset
specified by the string pointed to by the fromcode argument to the codeset specified by the string pointed
to by the tocode argument. For state-dependent encodings, the conversion descriptor will be in a codeset-
dependent initial shift state, ready for immediate use with the iconv() function. Settings of fromcode and
tocode and their permitted combinations are implementation-dependent.

A conversion descriptor remains valid in a process until that process closes it.

RETURN VALUES
Upon successful completion iconv_open() returns a conversion descriptor for use on subsequent calls to
iconv(). Otherwise, iconv_open() returns (iconv_t) -1 and sets errno to indicate the error.

ERRORS
The iconv_open function may fail if:

EMFILE {OPEN_MAX} files descriptors are currently open in the calling process.

ENFILE Too many files are currently open in the system.

ENOMEM Insufficient storage space is available.

EINVAL The conversion specified by fromcode and tocode is not supported.

SEE ALSO
iconv(), iconv_close(), malloc()

NOTES
iconv_open() uses malloc() to allocate space for internal buffer areas.iconv_open() may fail if there is
insufficient storage space to accommodate these buffers. Portable applications must assume that conversion
descriptors are not valid after a call to one of the exec functions.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-53

insque, remque

NAME
insque, remque - insert/remove element from a queue

SYNOPSIS
include <search.h>
void insque(struct qelem *elem, struct qelem *pred);
void remque(struct qelem *elem);

DESCRIPTION
insque() and remque() manipulate queues built from doubly linked lists. Each element in the queue must
be in the following form:

struct qelem {

struct qelem *q_forw;

struct qelem *q_back;

char q_data[];

};

insque() inserts elem in a queue immediately after pred. remque() removes an entry elem from a queue.

libc __

3-54 SPARC Compliance Definition 2.4 Interface Semantics 1998

madvise

NAME
madvise - provide advice to VM system

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>
int madvise(caddr_t addr, size_t len, int advice);

DESCRIPTION
madvise() advises the kernel that a region of user mapped memory in the range [addr, addr + len) will be
accessed following a type of pattern. The kernel uses this information to optimize the procedure for
manipulating and maintaining the resources associated with the specified mapping range.

Values for advice are defined in <sys/mman.h> as:

#define MADV_NORMAL 0x0 /* No further special treatment */

#define MADV_RANDOM 0x1 /* Expect random page references */

#define MADV_SEQUENTIAL 0x2 /* Expect sequential page references */

#define MADV_WILLNEED 0x3 /* Will need these pages */

#define MADV_DONTNEED 0x4 /* Don't need these pages */

MADV_NORMAL
The default system characteristic where accessing memory within the address range causes the system to
read data from the mapped file. The kernel reads all data from files into pages which are retained for a
period of time as a "cache." System pages can be a scarce resource, so the kernel steals pages from other
mappings when needed. This is a likely occurrence, but adversely affects system performance only if a large
amount of memory is accessed.

MADV_RANDOM
Tells the kernel to read in a minimum amount of data from a mapped file on any single particular access.
If MADV_NORMAL is in effect when an address of a mapped file is accessed, the system tries to read
in as much data from the file as reasonable, in anticipation of other accesses within a certain locality.

MADV_SEQUENTIAL
Tells the system that addresses in this range are likely to be accessed only once, so the system will free
the resources mapping the address range as quickly as possible.This is used in the cat() and cp() utilities.

MADV_WILLNEED
Tells the system that a certain address range definitely needed so the kernel will start reading the specified
range into memory. This can benefit programs wanting to minimize the time needed to access memory the
first time, as the kernel would need to read in from the file.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-55

MADV_DONTNEED
Tells the kernel that the specified address range is no longer needed, so the system starts to free the
resources associated with the address range.

madvise() should be used by programs with specific knowledge of their access patterns over a memory
object, such as a mapped file, to increase system performance.

RETURN VALUES
madvise() returns:

0 on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EINVAL addr is not a multiple of the page size as returned by sysconf().
The length of the specified address range is less than or equal to 0, or the advice was invalid.

EIO An I/O error occurred while reading from or writing to the file system.

ENOMEM Addresses in the range [addr, addr + len) are outside the valid range for the address space
of a process, or specify one or more pages that are not mapped.

ESTALE Stale NFS file handle.

SEE ALSO
cat(), cp(), mmap(), sysconf()

libc __

3-56 SPARC Compliance Definition 2.4 Interface Semantics 1998

malloc, calloc, realloc, valloc, alloca
free, memalign

NAME
malloc, calloc, free, memalign, realloc, valloc, alloca - memory allocator

SYNOPSIS
#include <stdlib.h>
void *malloc(size_t size);
void *calloc(size_t nelem, size_t elsize);
void free(void *ptr);
void *memalign(size_t alignment, size_t size);
void *realloc(void *ptr, size_t size);
void *valloc(size_t size);
#include <alloca.h>
void *alloca(size_t size);

DESCRIPTION
malloc() and free() provide a simple general-purpose memory allocation package.malloc() returns a pointer
to a block of at least size bytes suitably aligned for any use.

The argument to free() is a pointer to a block previously allocated by malloc() , calloc() or realloc(). After
free() is performed this space is made available for further allocation. If ptr is a NULL pointer, no action
occurs. Undefined results will occur if the space assigned by malloc() is overrun or if some random
number is handed to free(). calloc() allocates space for an array of nelem elements of size elsize. The space
is initialized to zeros.

memalign() allocates size bytes on a specified alignment boundary, and returns a pointer to the allocated
block. The value of the returned address is guaranteed to be an even multiple of alignment. Note: the value
of alignment must be a power of two, and must be greater than or equal to the size of a word.

realloc() changes the size of the block pointed to by ptr to size bytes and returns a pointer to the (possibly
moved) block. The contents will be unchanged up to the lesser of the new and old sizes. If ptr is NULL,
realloc() behaves like malloc() for the specified size. If size is zero and ptr is not a null pointer, the object
pointed to is freed. valloc() is equivalent to memalign (sysconf(_SC_PAGESIZE), size).

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer coercion)
for storage of any type of object.

malloc(), realloc(), memalign(), and valloc() will fail if there is not enough available memory.

alloca() allocates size bytes of space in the stack frame of the caller, and returns a pointer to the allocated

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-57

block. This temporary space is automatically freed when the caller returns. If the allocated block is beyond
the current stack limit, the resulting behavior is undefined.

RETURN VALUES
If there is no available memory, malloc(), realloc(), memalign(), valloc(), and calloc() return a null
pointer. When realloc() returns NULL, the block pointed to by ptr is left intact.If size, nelem, or elsize is
0, a unique pointer to the arena is returned.

ERRORS
If malloc(), calloc(), or realloc() returns unsuccessfully, errno will be set to indicate the following:

ENOMEM size bytes of memory exceeds the physical limits of your system, and cannot be
allocated.

EAGAIN There is not enough memory available at this point in time to allocate size bytes of
memory; but the application could try again later.

SEE ALSO
brk(),getrlimit(),bsdmalloc(),malloc(), mapmalloc(), watchmalloc(), attributes()

WARNINGS
Undefined results will occur if the size requested for a block of memory exceeds the maximum size of
a process's heap, which may be obtained with getrlimit().

alloca() is machine-, compiler-, and most of all, system-dependent. Its use is strongly discouraged.

NOTES
Comparative Features of malloc(), bsdmalloc(), and malloc():

* The bsdmalloc() routines afford better performance, but are space-inefficient.

* The malloc() routines are space-efficient, but have slower performance.

* The standard, fully SCD-compliant malloc routines are a trade-off between performance and space-
efficiency.

free() does not set errno.

libc __

3-58 SPARC Compliance Definition 2.4 Interface Semantics 1998

mincore

NAME
mincore - determine residency of memory pages

SYNOPSIS
#include <sys/types.h>
int mincore(caddr_t addr, size_t len, char *vec);

DESCRIPTION
mincore() determines the residency of the memory pages in the address space covered by mappings in the
range [addr, addr + len]. The status is returned as a character-per-page in the character array referenced by
*vec (which the system assumes to be large enough to encompass all the pages in the address range). The
least significant bit of each character is set to 1 to indicate that the referenced page is in primary memory, 0
if it is not. The settings of other bits in each character are undefined and may contain other information in
future implementations.

Because the status of a page can change after mincore() checks it, but before mincore() returns the
information, returned information might be outdated. Only locked pages are guaranteed to remain in
memory; see mlock().

RETURN VALUES
mincore() returns 0 on success, -1 on failure and sets errno to indicate the error.

ERRORS
mincore() fails if:

EFAULT vec points to an illegal address.

EINVAL addr is not a multiple of the page size as returned by sysconf().
EINVAL The argument len has a value less than or equal to 0.

ENOMEM Addresses in the range [addr, addr + len] are invalid for the address space of a process, or
specify one or more pages which are not mapped.

SEE ALSO
mmap(), mlock(), sysconf()

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-59

modf, modff

NAME
modf, modff - decompose floating-point number

SYNOPSIS
#include <math.h>
double modf(double x, double *iptr);
float modff(float x, float *iptr);

DESCRIPTION
The modf() and modff() functions break the argument x into integral and fractional parts, each of which
has the same sign as the argument. modf() stores the integral part as a double in the object pointed to by iptr.
modff() stores the integral part as a float in the object pointed to by iptr.

RETURN VALUES
Upon successful completion, modf() and modff() return the signed fractional part of x.

If x is NaN, NaN is returned and *iptr is set to NaN.

If the correct value would cause underflow to 0.0, modf() returns 0 and errno may be set to ERANGE.

ERRORS
The modf() function may fail if:

ERANGE The result underflows.

USAGE
An application wishing to check for error situations should set errno to 0 before calling modf(). If errno is
non-zero on return, or the return value is NaN, an error has occurred.

SEE ALSO
frexp(), isnan(), ldexp()

libc __

3-60 SPARC Compliance Definition 2.4 Interface Semantics 1998

p_online

NAME
p_online - change processor operational status

SYNOPSIS
#include <sys/types.h>
#include <sys/processor.h>
int p_online(processorid_t processorid, int flag);

DESCRIPTION
The processor specified by the first argument is set on-line or off-line or is unchanged, depending on whether
the flag argument is P_ONLINE, P_OFFLINE, or P_STATUS. When P_ONLINE is specified and the
processor is off-line, the processor is brought on-line and allowed to process LWPs (lightweight processes)
and perform system activities.

When P_ONLINE or P_OFFLINE is specified and the processor is powered off, it is powered on. In the
P_ONLINE case, the processor is also brought on-line and allowed to process LWPs (lightweight
processes) and perform system activities. When P_OFFLINE is specified and the processor is on-line, it is
taken off-line and not allowed to process LWPs. The processor will become as inactive as possible.

When P_STATUS is specified, no change occurs, but the current status is returned.

RETURN VALUES
On successful completion, the value returned is the previous state of the processor, P_ONLINE,
P_OFFLINE, or P_POWEROFF. Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
EPERM The effective user of the calling process is not super user.

EINVAL A non-existent processor ID was specified or flag was invalid.

EBUSY The flag was P_OFFLINE and the specified processor is the only on-line processor, there
are currently LWPs bound to the processor, or the processor performs some essential
function that cannot be performed by another processor.

EBUSY The specified processor is powered off and cannot be powered on because some platform
specific resource is not available.

ENOTSUP The specified processor is powered off, and the platform does not support power on of
individual processors.

SEE ALSO
psradm(), psrinfo(), processor_bind(), processor_info(), pset_create(), sysconf()

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-61

read, readv, pread

NAME
read, readv, pread - read from file

SYNOPSIS
#include <unistd.h>
ssize_t read(int fildes, void *buf, size_t nbyte);
ssize_t pread(int fildes, void *buf, size_t nbyte,off_t offset);
#include <sys/uio.h>
ssize_t readv(int fildes, const struct iovec *iov, int iovcnt);

DESCRIPTION
The read() function attempts to read nbyte bytes from the file associated with the open file descriptor, fildes,
into the buffer pointed to by buf. If nbyte is 0, read() will return 0 and have no other results. On files that
support seeking (for example, a regular file), the read() starts at a position in the file given by the file offset
associated with fildes.The file offset is incremented by the number of bytes actually read. Files that do not
support seeking, for example, terminals, always read from the current position. The value of a file offset
associated with such a file is undefined. No data transfer will occur past the current end-of-file. If the
starting position is at or after the end-of-file, 0 will be returned. If the file refers to a device special file, the
result of subsequent read() requests is implementation-dependent. If the value of nbyte is greater than
SSIZE_MAX, the result is implementation-dependent. When attempting to read from a regular file with
mandatory file/record locking set (see chmod()), and there is a write lock owned by another process on the
segment of the file to be read:

* If O_NDELAY or O_NONBLOCK is set, read() returns -1 and sets errno to EAGAIN.

* If O_NDELAY and O_NONBLOCK are clear, read() sleeps until the blocking record lock is removed.

When attempting to read from an empty pipe (or FIFO):

* If no process has the pipe open for writing, read() returns 0 to indicate end-of-file.

* If some process has the pipe open for writing and O_NDELAY is set, read() returns 0.

* If some process has the pipe open for writing and O_NONBLOCK is set, read() returns -1 and sets
errno to EAGAIN.

* If O_NDELAY and O_NONBLOCK are clear, read() blocks until data is written to the pipe or the pipe
is closed by all processes that had opened the pipe for writing.

When attempting to read a file associated with a terminal that has no data currently available:

* If O_NDELAY is set, read() returns 0.

* If O_NONBLOCK is set, read() returns -1 and sets errno to EAGAIN.

* If O_NDELAY and O_NONBLOCK are clear, read() blocks until data become available.

When attempting to read a file associated with a socket or a stream that is not a pipe, a FIFO, or a terminal,
and the file has no data currently available:

* If O_NDELAY or O_NONBLOCK is set, read() returns -1 and sets errno to EAGAIN.

* If O_NDELAY and O_NONBLOCK are clear, read() blocks until data becomes available.

The read() function reads data previously written to a file. If any portion of a regular file prior to the end-

libc __

3-62 SPARC Compliance Definition 2.4 Interface Semantics 1998

of-file has not been written, read() returns bytes with value 0. For example, lseek() allows the file offset
to be set beyond the end of existing data in the file.If data is later written at this point, subsequent reads
in the gap between the previous end of data and the newly written data will return bytes with value 0 until
data is written into the gap. For regular files, no data transfer will occur past the offset maximum
established in the open file description associated with fildes. Upon successful completion, where nbyte is
greater than 0, read() will mark for update the st_atime field of the file, and return the number of bytes read.
This number will never be greater than nbyte. The value returned may be less than nbyte if the number of
bytes left in the file is less than nbyte, if the read() request was interrupted by a signal, or if the file is a pipe
or FIFO or special file and has fewer than nbyte bytes immediately available for reading. For example, a
read() from a file associated with a terminal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it will return -1 with errno set to EINTR. If a
read() is interrupted by a signal after it has successfully read some data, it will return the number of bytes
read. A read() from a STREAMS file can read data in three different modes: byte-stream mode, message-
nondiscard mode, and message-discard mode. The default is byte-stream mode. This can be changed using
the I_SRDOPT ioctl() request, and can be tested with the I_GRDOPT ioctl().In byte-stream mode, read()
retrieves data from the STREAM until as many bytes as were requested are transferred, or until there is no
more data to be retrieved. Byte-stream mode ignores message boundaries. In STREAMS message-
nondiscard mode, read() retrieves data until as many bytes as were requested are transferred, or until a
message boundary is reached.If read() does not retrieve all the data in a message, the remaining data is
left on the STREAM, and can be retrieved by the next read() call.Message-discard mode also retrieves data
until as many bytes as were requested are transferred, or a message boundary is reached.However, unread
data remaining in a message after the read() returns is discarded, and is not available for a subsequent
read(), readv() or getmsg() call. How read() handles zero-byte STREAMS messages is determined by the
current read mode setting. In byte-stream mode, read() accepts data until it has read nbyte bytes, or until
there is no more data to read, or until a zero-byte message block is encountered. The read() function then
returns the number of bytes read, and places the zero-byte message back on the STREAM to be retrieved
by the next read(), readv() or getmsg().In message-nondiscard mode or message-discard mode, a zero-byte
message returns 0 and the message is removed from the STREAM. When a zero-byte message is read
as the first message on a STREAM, the message is removed from the STREAM and 0 is returned,
regardless of the read mode.

A read() from a STREAMS file returns the data in the message at the front of the STREAM head read
queue, regardless of the priority band of the message. By default, STREAMs are in control-normal mode, in
which a read() from a STREAMS file can only process messages that contain a data part but do not contain
a control part.The read() fails if a message containing a control part is encountered at the STREAM head.
This default action can be changed by placing the STREAM in either control-data mode or control-discard
mode with the I_SRDOPT ioctl() command.In control-data mode, read() converts any control part to data
and passes it to the application before passing any data part originally present in the same message. In
control-discard mode, read() discards message control parts but returns to the process any data part in the
message. In addition, read() and readv() will fail if the STREAM head had processed an asynchronous
error before the call. In this case, the value of errno does not reflect the result of read() or readv() but reflects
the prior error. If a hang-up occurs on the STREAM being read, read() continues to operate normally until
the STREAM head read queue is empty. Thereafter, it returns 0.

readv()
The readv() function is equivalent to read(), but places the input data into the iovcnt buffers specified by the
members of the iov array: iov0, iov1, ..., iov[iovcnt-1].The iovcnt argument is valid if greater than 0 and
less than or equal to IOV_MAX.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-63

The iovec structure contains the following members:

caddr_t iov_base;

int iov_len;

Each iovec entry specifies the base address and length of an area in memory where data should be placed.
The readv() function always fills an area completely before proceeding to the next. Upon successful
completion, readv() marks for update the st_atime field of the file.

pread()
The pread() function performs the same action as read(), except that it reads from a given position in
the file without changing the file pointer. The first three arguments to pread() are the same as read() with
the addition of a fourth argument offset for the desired position inside the file. pread() will read up to the
maximum offset value that can be represented in an off_t for regular files.An attempt to perform a pread()
on a file that is incapable of seeking results in an error.

RETURN VALUES
Upon successful completion, read() and readv() return a non-negative integer indicating the number of
bytes actually read. Otherwise, the functions return -1 and set errno to indicate the error.

ERRORS
These functions will fail if:

EAGAIN Mandatory file/record locking was set, O_NDELAY or O_NONBLOCK was set, and
there was a blocking record lock.

EAGAIN Total amount of system memory available when reading using raw I/O is temporarily
insufficient.

EAGAIN No data is waiting to be read on a file associated with a tty device and O_NONBLOCK
was set.

EAGAIN No message is waiting to be read on a stream and O_NDELAY or O_NONBLOCK was
set.

EBADF fildes is not a valid file descriptor open for reading.

EBADMSG Message waiting to be read on a stream is not a data message.

EDEADLK The read was going to go to sleep and cause a deadlock to occur.

EFAULT buf points to an illegal address.

EINTRA signal was caught during the read operation and no data was transferred.

EINVAL Attempted to read from a stream linked to a multiplexor.

EIO A physical I/O error has occurred, or the process is in a background process group and
is attempting to read from its controlling terminal, and either the process is ignoring or
blocking the SIGTTIN signal or the process group of the process is orphaned.

EISDIR fildes refers to a directory on a file system type that does not support read operations on
directories.

ENOLCK The system record lock table was full, so the read() or readv() could not go to sleep until
the blocking record lock was removed.

libc __

3-64 SPARC Compliance Definition 2.4 Interface Semantics 1998

ENOLINK fildes is on a remote machine and the link to that machine is no longer active.

ENXIO The device associated with fildes is a block special or character special file and the value
of the file pointer is out of range.

The read() and readv() functions will fail if:

EOVERFLOW The file is a regular file, nbyte is greater than 0, the starting position is before the end-of-
file, and the starting position is greater than or equal to the offset maximum established
in the open file description associated with fildes.

In addition, readv() may return one of the following errors:

EFAULT iov points outside the allocated address space.

EINVAL iovcnt was less than or equal to 0, or greater than or equal to {IOV_MAX}. (See
intro() for a definition of {IOV_MAX}).

EINVAL The sum of the iov_len values in the iov array overflowed an int.

In addition, pread() fails and the file pointer remains unchanged if the following is true:

ESPIPE fildes is associated with a pipe or FIFO.

SEE ALSO
Intro(), chmod(), creat(), dup(), fcntl(), getmsg(), ioctl(), lseek(), open(), pipe(), streamio, termio

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-65

processor_bind

NAME
processor_bind - bind LWPs to a processor

SYNOPSIS
#include <sys/types.h>
#include <sys/processor.h>
#include <sys/procset.h>
int processor_bind(idtype_t idtype, id_t id, processorid_t processorid, processorid_t *obind);

DESCRIPTION
The LWP (lightweight process) or set of LWPs specified by idtype and id are bound to the processor
specified by processorid.Additionally, if obind is not NULL, the processorid_t variable pointed to by obind
will be set to the previous binding of one of the specified LWPs, or to PBIND_NONE if the selected LWP
was not bound.

If idtype is P_PID, the binding effects all LWPs of the process with process ID (PID) id.

If idtype is P_LWPID, the binding effects the LWP of the current process with LWP ID id.

If id is P_MYID, the specified LWP or process is the current one.

If processorid is PBIND_NONE, the processor bindings of the specified LWPs are cleared.

If processorid is PBIND_QUERY, the processor bindings are not changed.

The effective user of the calling process must be super user, or its real or effective user ID must match the
real or effective user ID of the LWPs being bound. If the calling process does not have permission to change
all of the specified LWPs, the bindings of the LWPs for which it does have permission will be changed even
though an error is returned.

RETURN VALUES
processor_bind returns 0 if successful; otherwise, -1 is returned and errno is set to reflect the error.

ERRORS
ESRCH No processes or LWPs were found to match the criteria specified by idtype and id.

EINVAL The specified processor is not on-line.

EINVAL idtype was not P_PID or P_LWPID.

EFAULT The location pointed to by obind was not NULL and not writable by the user.

EPERM The effective user of the calling process is not super user, and its real or effective user ID
does not match the real or effective user ID of one of the LWPs being bound.

SEE ALSO
psradm(), psrinfo(), p_online(), pset_bind(), sysconf()

libc __

3-66 SPARC Compliance Definition 2.4 Interface Semantics 1998

processor_info

NAME
processor_info - determine type and status of a processor

SYNOPSIS
#include <sys/types.h>
#include <sys/processor.h>
int processor_info(processorid_t processorid, processor_info_t *infop);

DESCRIPTION
The status of the processor specified by processorid is returned in the processor_info_t structure pointed
to by infop. The structure contains the following members:

int pi_state; /* P_ONLINE, P_OFFLINE or P_POWEROFF*/

char pi_processor_type[PI_TYPELEN];

char pi_fputypes[PI_FPUTYPE];

int pi_clock; /* CPU clock freq in MHz */

The fields have the following meanings:

pi_state is the current state of the processor, either P_ONLINE, P_OFFLINE or
P_POWEROFF.

pi_processor_type is a NULL-terminated ASCII string specifying the type of the processor.

pi_fputypes is a NULL-terminated ASCII string containing the comma-separated types of
floating-point units (FPUs) attached to the processor. This string will be empty
if no FPU is attached.

pi_clock is the processor clock frequency rounded to the nearest megahertz. It may be 0
if not known.

RETURN VALUES
processor_info() returns 0 if successful.Otherwise -1 is returned and errno is set to reflect the error.

ERRORS
EINVAL An non-existent processor ID was specified.

EFAULT The processor_info_t structure pointed to by infop was not writable by the user.

SEE ALSO
psradm(), psrinfo(), p_online(), sysconf(

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-67

psignal, psiginfo

NAME
psignal, psiginfo - system signal messages

SYNOPSIS
#include <siginfo.h>
void psignal(int sig, const char *s);
void psiginfo(siginfo_t *pinfo, char *s);

DESCRIPTION
psignal() and psiginfo() produce messages on the standard error output describing a signal. sig is a signal
that may have been passed as the first argument to a signal handler. pinfo is a pointer to a siginfo structure
that may have been passed as the second argument to an enhanced signal handler (see sigaction()). The
argument string s is printed first, then a colon and a blank, then the message and a newline.

SEE ALSO
sigaction(), gettext(), perror(), setlocale(), siginfo(), signal()

NOTES
If the application is linked with -lintl, then messages printed from these functions are in the native
language specified by the LC_MESSAGES locale category; see setlocale().

libc __

3-68 SPARC Compliance Definition 2.4 Interface Semantics 1998

write, pwrite, writev

NAME
write, pwrite, writev - write on a file

SYNOPSIS
#include <unistd.h>
ssize_t write(int fildes, const void *buf, size_t nbyte);
ssize_t pwrite(int fildes, const void *buf, size_t nbyte,off_t offset);
#include <sys/uio.h>
int writev(int fildes, const struct iovec *iov, int iovcnt);

DESCRIPTION
The write() function attempts to write nbyte bytes from the buffer pointed to by buf to the file associated
with the open file descriptor, fildes. If nbyte is 0, write() will return 0 and have no other results if the
file is a regular file; otherwise, the results are unspecified. On a regular file or other file capable of seeking,
the actual writing of data proceeds from the position in the file indicated by the file offset associated with
fildes. Before successful return from write(), the file offset is incremented by the number of bytes actually
written.On a regular file, if this incremented file offset is greater than the length of the file, the length of
the file will be set to this file offset. If the O_SYNC flag of the file status flags is set and fildes refers to
a regular file, a successful write() does not return until the data is delivered to the underlying hardware. On
a file not capable of seeking, writing always takes place starting at the current position.The value of a file
offset associated with such a device is undefined. If the O_APPEND flag of the file status flags is set, the
file offset will be set to the end of the file prior to each write and no intervening file modification operation
will occur between changing the file offset and the write operation. For regular files, no data transfer will
occur past the offset maximum established in the open file description with fildes.

A write() to a regular file is blocked if mandatory file/record locking is set (see chmod()), and there is
a record lock owned by another process on the segment of the file to be written:

* If O_NDELAY or O_NONBLOCK is set, write() returns -1 and sets errno to EAGAIN.

* If O_NDELAY and O_NONBLOCK are clear, write() sleeps until all blocking locks are removed or
the write() is terminated by a signal.

If a write() requests that more bytes be written than there is room for-for example, if the write would exceed
the process file size limit (see getrlimit() and ulimit()), the system file size limit, or the free space on the
device-only as many bytes as there is room for will be written.For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write() of 512-bytes returns 20. The next write() of a non-
zero number of bytes gives a failure return (except as noted for pipes and FIFO below). If write() is
interrupted by a signal before it writes any data, it will return -1 with errno set to EINTR.

If write() is interrupted by a signal after it successfully writes some data, it will return the number of bytes
written. If the value of nbyte is greater than SSIZE_MAX, the result is implementation-dependent. After a
write() to a regular file has successfully returned:

* Any successful read() from each byte position in the file that was modified by that write will return the
data specified by the write() for that position until such byte positions are again modified.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-69

* Any subsequent successful write() to the same byte position in the file will overwrite that file data. Write
requests to a pipe or FIFO are handled the same as a regular file with the following exceptions:

* There is no file offset associated with a pipe, hence each write request appends to the end of the pipe.

* Write requests of {PIPE_BUF} bytes or less are guaranteed not to be interleaved with data from other
processes doing writes on the same pipe.Writes of greater than {PIPE_BUF} bytes may have data
interleaved, on arbitrary boundaries, with writes by other processes, whether or not the O_NONBLOCK
or O_NDELAY flags are set.

* If O_NONBLOCK and O_NDELAY are clear, a write request may cause the process to block, but on
normal completion it returns nbyte.

* If O_NONBLOCK and O_NDELAY are set, write() does not blocktheprocess.If a write() request for
{PIPE_BUF} or fewer bytes succeeds completely write() returns nbyte.Otherwise, if O_NONBLOCK is
set, it returns -1 and sets errno to EAGAIN or if O_NDELAY is set, it returns 0. A write() request for
greater than {PIPE_BUF} bytes transfers what it can and returns the number of bytes written or it
transfers no data and, if O_NONBLOCK is set, returns -1 with errno set to EAGAIN or if O_NDELAY
is set, it returns 0. Finally, if a request is greater than {PIPE_BUF} bytes and all data previously written
to the pipe has been read, write() transfers at least {PIPE_BUF} bytes. When attempting to write to a
file descriptor (other than a pipe, a FIFO, a socket, or a STREAM) that supports non-blocking writes and
cannot accept the data immediately:

* If O_NONBLOCK and O_NDELAY are clear, write() blocks until the data can be accepted.

* If O_NONBLOCK or O_NDELAY is set, write() does not block the process.If some data can be
written without blocking the process, write() writes what it can and returns the number of bytes written.
Otherwise, if O_NONBLOCK is set, it returns -1 and sets errno to EAGAIN or if O_NDELAY is set, it
returns 0. Upon successful completion, where nbyte is greater than 0, write() will mark for update the
st_ctime and st_mtime fields of the file, and if the file is a regular file, the S_ISUID and S_ISGID bits of the
file mode may be cleared. For STREAMS files (see intro() and streamio()), the operation of write() is
determined by the values of the minimum and maximum nbyte range ("packet size") accepted by the
STREAM.These values are contained in the topmost STREAM module, and can not be set or tested from
user level. If nbyte falls within the packet size range, nbyte bytes are written. If nbyte does not fall within the
range and the minimum packet size value is zero, write() breaks the buffer into maximum packet size
segments prior to sending the data downstream (the last segment may be smaller than the maximum If nbyte
does not fall within the range and the minimum value is non-zero, write() fails and sets errno to ERANGE.
Writing a zero-length buffer (nbyte is zero) to a STREAMS device sends a zero length message with zero
returned. However, writing a zero-length buffer to a pipe or FIFO sends no message and zero is returned.
The user program may issue the I_SWROPT ioctl() to enable zero-length messages to be sent across
the pipe or FIFO.

When writing to a STREAM, data messages are created with a priority band of zero.When writing to a
socket or to a STREAM that is not a pipe or a FIFO:

* If O_NDELAY and O_NONBLOCK are not set, and the STREAM cannot accept data (the STREAM
write queue is full due to internal flow control conditions), write() blocks until data can be accepted.

* If O_NDELAY or O_NONBLOCK is set and the STREAM can not accept data, write() returns -1 and
sets errno to EAGAIN.

* If O_NDELAY or O_NONBLOCK is set and part of the buffer has already been written when a
condition occurs in which the STREAM cannot accept additional data, write() terminates and returns
the number of bytes written.

In addition, write() and writev() will fail if the STREAM head had processed an asynchronous error before

libc __

3-70 SPARC Compliance Definition 2.4 Interface Semantics 1998

the call. In this case, the value of errno does not reflect the result of write() or writev() but reflects the prior
error.

pwrite()
The pwrite() function performs the same action as write(), except that it writes into a given position without
changing the file pointer. The first three arguments to pwrite() are the same as write() with the addition of
a fourth argument offset for the desired position inside the file.

writev()
The writev() function performs the same action as write(), but gathers the output data from the iovcnt buffers
specified by the members of the iov array: iov[0], iov[1], ..., iov[iovcnt-1]. The iovcnt buffer is valid if greater
than 0 and less than or equal to {IOV_MAX}.See intro() for a definition of {IOV_MAX}.

The iovec structure contains the following members:

caddr_t iov_base;

int iov_len;

Each iovec entry specifies the base address and length of an area in memory from which data should be
written. writev() always writes all data from an area before proceeding to the next. If fildes refers to a regular
file and all of the iov_len members in the array pointed to by iov are 0, writev() will return 0 and have no
other effect. For other file types, the behavior is unspecified. If the sum of the iov_len values is greater than
SSIZE_MAX, the operation fails and no data is transferred.

RETURN VALUES
Upon successful completion, write() returns the number of bytes actually written to the file associated with
fildes. This number is never greater than nbyte. Otherwise, -1 is returned and errno is set to indicate the error.

Upon successful completion, writev() returns the number of bytes actually written.Otherwise, it returns -
1, the file-pointer remains unchanged, and errno is set to indicate an error.

ERRORS
The write(), pwrite(), and writev() function fail and the file pointer remains unchanged if one or more of the
following are true:

EAGAIN Mandatory file/record locking is set, O_NDELAY or O_NONBLOCK is set, and there is
a blocking record lock; total amount of system memory available when reading using raw
I/O is temporarily insufficient; an attempt is made to write to a STREAM that can not
accept data with the O_NDELAY or O_NONBLOCK flag set; or a write to a pipe
or FIFO of {PIPE_BUF} bytes or less is requested and less than nbytes of free space
is available.

EBADF fildes is not a valid file descriptor open for writing.

EDEADLK The write was going to go to sleep and cause a deadlock situation to occur.

EDQUOT The user's quota of disk blocks on the file systemcontainingthefilehasbeen exhausted.

EFAULT buf points to an illegal address.

EFBIG An attempt is made to write a file that exceeds the process' file size limit or the

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-71

maximum file size (see getrlimit() and ulimit()).
EFBIG The file is a regular file, nbyte is greater than 0, and the starting position is greater than or

equal to the offset maximum established in the file description associated with fildes.

EINTR A signal was caught during the write operation and no data was transferred.

EIO The process is in the background and is attempting to write to its controlling terminal
whose TOSTOP flag is set, or the process is neither ignoring nor blocking SIGTTOU
signals and the process group of the process is orphaned.

ENOLCK Enforced record locking was enabled and {LOCK_MAX} regions are already locked
in the system, or the system record lock table was full and the write could not go to
sleep until the blocking record lock was removed.

ENOLINK fildes is on a remote machine and the link to that machine is no longer active.

ENOSPC During a write to an ordinary file, there is no free space left on the device.

ENOSR An attempt is made to write to a STREAMS with insufficient STREAMS memory
resources available in the system.

ENXIO A hang-up occurred on the STREAM being written to.

EPIPE An attempt is made to write to a pipe or a FIFO that is not open for reading by any
process, or that has only one end open (or to a file descriptor created by socket(), using
type SOCK_STREAM that is no longer connected to a peer endpoint). A SIGPIPE
signal will also be sent to the process.The process dies unless special provisions were
taken to catch or ignore the signal.

ERANGE The transfer request size was outside the range supported by the STREAMS file
associated with fildes.

The pwrite() function fails and the file pointer remains unchanged if:

ESPIPE fildes is associated with a pipe or FIFO.

The writev() function will fail if:

EINVAL The sum of the iov_len values in the iov array would overflow an ssize_t.

The write() and writev() functions may fail if:

EINVAL The STREAM or multiplexer referenced by fildes is linked (directly or indirectly)
downstream from a multiplexer.

ENXIO A request was made of a non-existent device, or the request was outside the capabilities
of the device.

ENXIO A hang-up occurred on the STREAM being written to.

A write to a STREAMS file may fail if an error message has been received at the STREAM head. In this
case, errno is set to the value included in the error message.

The writev() function may fail and set errno to:

EINVAL iovcnt was less than or equal to 0 or greater than {IOV_MAX}; one of the iov_len values
in the iov array was negative; or the sum of the iov_len values in the iov array overflowed
an int.

SEE ALSO
chmod(), creat(), dup(), fcntl(), getrlimit(), ioctl(), lseek(), open(), pipe(), ulimit(), socket(), streamio()

libc __

3-72 SPARC Compliance Definition 2.4 Interface Semantics 1998

realpath

NAME
realpath - resolve pathname

SYNOPSIS
#include <stdlib.h>
char *realpath(const char *file_name, char *resolved_name);

DESCRIPTION
The realpath() function derives, from the pathname pointed to by file_name, an absolute pathname that
names the same file, whose resolution does not involve ".", "..", or symbolic links. The generated pathname
is stored, up to a maximum of {PATH_MAX} bytes, in the buffer pointed to by resolved_name.

The realpath() function can handle both relative and absolute path names. For absolute path names and
the relative names whose resolved name cannot be expressed relatively (for example, ../../reldir), it returns
the resolved absolute name. For the other relative path names, it returns the resolved relative name.

RETURN VALUES
On successful completion, realpath() returns a pointer to the resolved name.Otherwise, realpath() returns
a null pointer and sets errno to indicate the error, and the contents of the buffer pointed to by resolved_name
are undefined.

ERRORS
The realpath() function will fail if:

EACCES Read or search permission was denied for a component of file_name.

EINVAL Either the file_name or resolved_name argument is a null pointer.

EIO An error occurred while reading from the file system.

ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG The file_name argument is longer than {PATH_MAX} or a pathname
component is longer than NAME_MAX.

ENOENT A component of file_name does not name an existing file or file_name points to an
empty string. realpath() ENOTDIRA component of the path prefix is not a
directory.

The realpath() function may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result whose
length exceeds {PATH_MAX}.

ENOMEM Insufficient storage space is available.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-73

SEE ALSO
getcwd(), sysconf()

NOTES
realpath() operates on null-terminated strings. One should have execute permission on all the directories in
the given and the resolved path. realpath() may fail to return to the current directory if an error occurs.

libc __

3-74 SPARC Compliance Definition 2.4 Interface Semantics 1998

select, FD_SET, FD_CLR, FD_ISSET, FD_ZERO

NAME
select, FD_SET, FD_CLR, FD_ISSET, FD_ZERO - synchronous I/O multiplexing

SYNOPSIS
#include <sys/time.h>
int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *errorfds, struct timeval *timeout);
void FD_SET(int fd, fd_set *fdset);
void FD_CLR(int fd, fd_set *fdset);
int FD_ISSET(int fd, fd_set *fdset);
void FD_ZERO(fd_set *fdset);

DESCRIPTION
The select() function indicates which of the specified file descriptors is ready for reading, ready for writing,
or has an error condition pending. If the specified condition is false for all of the specified file descriptors,
select() blocks, up to the specified timeout interval, until the specified condition is true for at least one of
the specified file descriptors. The select() function supports regular files, terminal and pseudo-terminal
devices, STREAMS-based files, FIFOs and pipes. The behavior of select() on file descriptors that refer
to other types of file is unspecified. The nfds argument specifies the range of file descriptors to be tested. The
select() function tests file descriptors in the range of 0 to nfds-1. If the readfs argument is not a null pointer,
it points to an object of type fd_set that on input specifies the file descriptors to be checked for being ready
to read, and on output indicates which file descriptors are ready to read.

If the writefs argument is not a null pointer, it points to an object of type fd_set that on input specifies the
file descriptors to be checked for being ready to write, and on output indicates which file descriptors are
ready to write. If the errorfds argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for error conditions pending, and on output indicates which file
descriptors have error conditions pending. On successful completion, the objects pointed to by the readfs,
writefs, and errorfds arguments are modified to indicate which file descriptors are ready for reading, ready
for writing, or have an error condition pending, respectively. For each file descriptor less than nfds, the
corresponding bit will be set on successful completion if it was set on input and the associated condition is
true for that file descriptor. If the timeout argument is not a null pointer, it points to an object of type struct
timeval that specifies a maximum interval to wait for the selection to complete.If the timeout argument
points to an object of type struct timeval whose members are 0, select() does not block.If the timeout
argument is a null pointer, select() blocks until an event causes one of the masks to be returned with a valid
(non-zero) value.If the time limit expires before any event occurs that would cause one of the masks to be
set to anon-zero value, select() completes successfully and returns 0. If the readfs, writefs, and errorfds
arguments are all null pointers and the timeout argument is not a null pointer, select() blocks for the time
specified, or until interrupted by a signal. If the readfs, writefs, and errorfds arguments are all null pointers
and the timeout argument is a null pointer, select() blocks until interrupted by a signal. File descriptors
associated with regular files always select true for ready to read, ready to write, and error conditions. On
failure, the objects pointed to by the readfs, writefs, and errorfds arguments are not modified. If the timeout
interval expires without the specified condition being true for any of the specified file descriptors, the
objects pointed to by the readfs, writefs, and errorfds arguments have all bits set to 0. Selecting true for
reading on a socket descriptor upon which a listen() call has been performed indicates that a subsequent
accept() call on that descriptor will not block.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-75

File descriptor masks of type fd_set can be initialized and tested with the macros FD_CLR(), FD_ISSET(),
FD_SET(), and FD_ZERO(). FD_CLR (fd, &fdset) Clears the bit for the file descriptor fd in the file
descriptor set fdset. FD_ISSET (fd, &fdset) Returns a non-zero value if the bit for the file descriptor fd is
set in the file descriptor set pointed to by fdset, and 0 otherwise. FD_SET(fd, &fdset) Sets the bit for the file
descriptor fd in the file descriptor set fdset. FD_ZERO (&fdset) initializes the file descriptor set fdset to
have zero bits for all file descriptors. The behavior of these macros is undefined if the fd argument is less
than 0 or greater than or equal to FD_SETSIZE.

RETURN VALUES
FD_CLR(), FD_SET(), and FD_ZERO() return no value. FD_ISSET() returns a non-zero value if the bit
for the file descriptor fd is set in the file descriptor set pointed to by fdset, and 0 otherwise. On successful
completion, select() returns the total number of bits set in the bit masks. Otherwise, -1 is returned, and
errno is set to indicate the error.

ERRORS
Under the following conditions, select() fails and sets errno to:

EBADF One or more of the file descriptor sets specified a file descriptor that is not a valid open
file descriptor.

EINTR The select() function was interrupted before any of the selected events occurred and
before the timeout interval expired.

If SA_RESTART has been set for the interrupting signal, it is implementation-dependent whether select()
restarts or returns with EINTR.

EINVAL An invalid timeout interval was specified.

EINVAL The nfds argument is less than 0, or greater than or equal to FD_SETSIZE.

EINVAL One of the specified file descriptors refers to a STREAM or multiplexer that is linked
(directly or indirectly) downstream from a multiplexer.

EINVAL A component of the pointed-to time limit is outside the acceptable range: t_sec must be
between 0 and 10^8, inclusive. t_usec must be greater than or equal to 0, and less than 10^6.

USAGE
The poll() function is preferred over this function, particularly when the number of file descriptors
exceeds FD_SETSIZE. The use of a timeout does not affect any pending timers set up by alarm(), ualarm()
or setitimer(). On successful completion, the object pointed to by the timeout argument may be modified.

SEE ALSO
alarm(), fcntl(), poll(), read(), setitimer(), write(), accept(), listen(), ualarm()

NOTES
The default value for FD_SETSIZE (currently 1024) is larger than the default limit on the number of open
files. In order to accommodate programs that may use a larger number of open files with select(), it is
possible to increase this size within a program by providing a larger definition of FD_SETSIZE before the
inclusion of <sys/types.h>.

libc __

3-76 SPARC Compliance Definition 2.4 Interface Semantics 1998

setuid, setegid, seteuid, setgid

NAME
setuid, setegid, seteuid, setgid - set user and group IDs

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
int setuid(uid_t uid);
int setegid(gid_t egid);
int seteuid(uid_t euid);
int setgid(gid_t gid);

DESCRIPTION
The setuid() function sets the real user ID, effective user ID, and saved user ID of the calling process. The
setgid() function sets the real group ID, effective group ID, and saved group ID of the calling process.
The setegid() and seteuid() functions set the effective group and user ID's respectively for the calling
process. At login time, the real user ID, effective user ID, and saved user ID of the login process are set
to the login ID of the user responsible for the creation of the process. The same is true for the real,
effective, and saved group IDs; they are set to the group ID of the user responsible for the creation of the
process. When a process calls exec() to execute a file (program), the user and/or group identifiers
associated with the process can change. If the file executed is a set-user-ID file, the effective and saved
user IDs of the process are set to the owner of the file executed. If the file executed is a set-group-ID file, the
effective and saved group IDs of the process are set to the group of the file executed.If the file executed is not
a set-user-ID or set-group-ID file, the effective user ID, saved user ID, effective group ID, and saved group
ID are not changed. The following subsections describe the behavior of setuid() and setgid() with respect
to the three types of user and group IDs. If the effective user ID of the process calling setuid() is the super-
user, the real, effective, and saved user IDs are set to the uid parameter. If the effective user ID of the calling
process is not the super-user, but uid is either the real user ID or the saved user ID of the calling process,
the effective user ID is set to uid. If the effective user ID of the process calling setgid() is the super-user, the
real, effective, and saved group IDs are set to the gid parameter. If the effective user ID of the calling process
is not the super-user, but gid is either the real group ID or the saved group ID of the calling process, the
effective group ID is set to gid.

RETURN VALUES
Upon successful completion, a value of 0 is returned.Otherwise, a value of -1 is returned and errno is set to
indicate the error.

ERRORS
setuid() and setgid() fail if one or more of the following is true:

EINVAL The uid or gid is out of range.

EPERM For setuid() and seteuid() the effective user of the calling process is not super-user, and
the uid parameter does not match either the real or saved user IDs.For setgid() and
setegid() the effective user of the calling process is not the super-user, and the gid
parameter does not match either the real or saved group IDs.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-77

string, strcasecmp, strncasecmp, strcat
strncat, strchr, strrchr, strcmp, strncmp
strcpy, strncpy, strcspn, strspn, strdup
strlen, strpbrk, strstr, strtok, strtok_r

NAME
string, strcasecmp, strncasecmp, strcat, strncat, strchr, strrchr, strcmp, strncmp, strcpy, strncpy, strcspn,
strspn, strdup, strlen, strpbrk, strstr, strtok, strtok_r - string operations

SYNOPSIS
#include <strings.h>
int strcasecmp(const char *s1, const char *s2);
int strncasecmp(const char *s1, const char *s2, int n);
#include <string.h>
char *strcat(char *dst, const char *src);
char *strncat(char *dst, const char *src, size_t n);
char *strchr(const char *s, int c);
char *strrchr(const char *s, int c);
int strcmp(const char *s1, const char *s2);
int strncmp(const char *s1, const char *s2, size_t n);
char *strcpy(char *dst, const char *src);
char *strncpy(char *dst, const char *src, size_t n);
size_t strcspn(const char *s1, const char *s2);
size_t strspn(const char *s1, const char *s2);
char *strdup(const char *s1);
size_t strlen(const char *s);
char *strpbrk(const char *s1, const char *s2);
char *strstr(const char *s1, const char *s2);
char *strtok(char *s1, const char *s2);
char *strtok_r(char *s1, const char *s2, char **lasts);

DESCRIPTION
The arguments s, s1, s2, src, and dst point to strings (arrays of characters terminated by a null character).
The functionsstrcat(),strncat(),strcpy(), strncpy(), strtok(), and strtok_r() all alter their first argument.
These functions do not check for overflow of the array pointed to by the first argument. strcasecmp() and
strncasecmp() are case-insensitive versions of strcmp() and strncmp() respectively, described
below.strcasecmp() and strncasecmp() assume the ASCII character set and ignore differences in case when
comparing lower and upper case characters.

strcat() appends a copy of string src, including the terminating null character, to the end of string dst.
strncat() appends at most n characters .Each returns a pointer to the null-terminated result. The initial

libc __

3-78 SPARC Compliance Definition 2.4 Interface Semantics 1998

character of src overrides the null character at the end of dst. strchr() returns a pointer to the first occurrence
of c (converted to a char) in string s, or a null pointer if c does not occur in the string. strrchr() returns a
pointer to the last occurrence of c. The null character terminating a string is considered to be part of the string.

strcmp() compares two strings byte-by-byte, according to the ordering of your machine's character set.
The function returns an integer greater than, equal to, or less than 0, if the string pointed to by s1 is greater
than, equal to, or less than the string pointed to by s2 respectively. The sign of a non-zero return value is
determined by the sign of the difference between the values of the first pair of bytes that differ in the strings
being compared. strncmp() makes the same comparison but looks at a maximum of n bytes. Bytes
following a null byte are not compared.strcpy() copies string src to dst including the terminating null
character, stopping after the null character has been copied. strncpy() copies exactly n bytes, truncating src
or adding null characters to dst if necessary. The result will not be null-terminated if the length of src is n or
more.

Each function returns dst. strcspn() returns the length of the initial segment of string s1 that consists
entirely of characters not from string s2. strspn() returns the length of the initial segment of string s1 that
consists entirely of characters from string s2. strdup() returns a pointer to a new string that is a duplicate of
the string pointed to by s1. The space for the new string is obtained using malloc(). If the new string cannot
be created, a null pointer is returned. strlen() returns the number of bytes in s, not including the terminating
null character. strpbrk() returns a pointer to the first occurrence in string s1 of any character from string
s2, or a null pointer if no character from s2 exists in s1. strstr() locates the first occurrence of the string
s2 (excluding the terminating null character) in string s1. strstr() returns a pointer to the located string, or
a null pointer if the string is not found. If s2 points to a string with zero length (that is, the string ""), the
function returns s1.

strtok() can be used to break the string pointed to by s1 into a sequence of tokens, each of which is delimited
by one or more characters from the string pointed to by s2. strtok() considers the string s1 to consist of
a sequence of zero or more text tokens separated by spans of one or more characters from the separator
string s2. The first call (with pointer s1 specified) returns a pointer to the first character of the first token,
and will have written a null character into s1 immediately following the returned token. The function keeps
track of its position in the string between separate calls, so that subsequent calls (which must be made with
the first argument being a null pointer) will work through the string s1 immediately following that token. In
this way subsequent calls will work through the string s1 until no tokens remain. The separator string s2 may
be different from call to call. When no token remains in s1, a null pointer is returned. strtok_r() has the
same functionality as strtok() except that a pointer to a string place holder lasts must be supplied by the
caller. The lasts pointer is to keep track of the next sub-string in which to search for the next token.

SEE ALSO
malloc(), setlocale(), strxfrm()

NOTES
The strtok_r() interface is as proposed in the POSIX.4a Draft #6 document, and is subject to change to
be compliant to the standard when it is accepted. When compiling multi-thread applications, the
_REENTRANT flag must be defined on the compile line. This flag should only be used in multi-thread
applications. All of these functions assume the default locale ``C.'' For some locales, strxfrm() should be
applied to the strings before they are passed to the functions. strtok() is unsafe in multi-thread applications.
strtok_r() should be used instead. string(), strcasecmp(),strcat(),strchr(),strcmp(), strcpy(), strcspn(),
strdup(), strlen(), strncasecmp(), strncat(), strncmp(), strncpy(), strpbrk(), strrchr(), strspn(), and strstr(),
are MT-Safe in multi-thread applications.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-79

strsignal

NAME
strsignal - get error message string

SYNOPSIS
#include <string.h>
char *strsignal(int sig);

DESCRIPTION

strsignal() maps the signal number in sig to a string describing the signal, and returns a pointer to that
string. strsignal() uses the same set of the messages as psignal(). The returned string should not be
overwritten.

RETURN VALUES
strsignal() returns NULL if sig is not a valid signal number.

SEE ALSO
gettext(), psignal(), setlocale(), str2sig()

NOTES
If the application is linked with -lintl, then messages returned from this function are in the native
language specified by the LC_MESSAGES locale category; see setlocale().

libc __

3-80 SPARC Compliance Definition 2.4 Interface Semantics 1998

sysfs

NAME
sysfs - get file system type information

SYNOPSIS
#include <sys/fstyp.h>
#include <sys/fsid.h>
int sysfs(int opcode, const char *fsname);
int sysfs(int opcode, int fs_index, char *buf);
int sysfs(int opcode);

DESCRIPTION

sysfs() returns information about the file system types configured in the system. The number of arguments
accepted by sysfs() varies and depends on the opcode.The currently recognized opcodes and their functions
are:

GETFSIND Translate fsname, a null-terminated file system type identifier, into a file-system type
index.

GETFSTYP Translate fs_index, a file-system type index, into a null-terminated file-system type
identifier and write it into the buffer pointed to by buf; this buffer must be at least of size
FSTYPSZ as defined in <sys/fstyp.h>.

GETNFSTYP Return the total number of file system types configured in the system.

RETURN VALUES
Upon successful completion, sysfs() returns the file-system type index if the opcode is GETFSIND, a value
of 0 if the opcode is GETFSTYP, or the number of file system types configured if the opcode is
GETNFSTYP. Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
sysfs() fails if one or more of the following are true:

EFAULT buf or fsname points to an illegal address.

EINVAL fsname points to an invalid file-system identifier; fs_index is zero, or invalid; opcode is
invalid.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-81

ttyslot

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
#include <stdlib.h>
int ttyslot(void);

DESCRIPTION
ttyslot() returns the index of the current user's entry in the /var/adm/utmp file. The returned index is
accomplished by scanning files in /dev for the name of the terminal associated with the standard input, the
standard output, or the standard error output (0, 1, or 2).

RETURN VALUES
A value of -1 is returned if an error was encountered while searching for the terminal name or if none of the
above file descriptors are associated with a terminal device.

FILES
/var/adm/utmp

SEE ALSO
getutent(), ttyname(), attributes()

libc __

3-82 SPARC Compliance Definition 2.4 Interface Semantics 1998

uadmin

NAME
uadmin - administrative control

SYNOPSIS
#include <sys/uadmin.h>
int uadmin(int cmd, int fcn, int mdep);

DESCRIPTION
uadmin() provides control for basic administrative functions.This function is tightly coupled to the
system administrative procedures and is not intended for general use.The argument mdep is provided for
machine-dependent use and is not defined here. As specified by cmd, the following commands are available:

A_SHUTDOWN The system is shut down. All user processes are killed, the buffer cache is
flushed, and the root file system is unmounted.The action to be taken after the
system has been shut down is specified by fcn. The functions are generic; the
hardware capabilities vary on specific machines.

AD_HALT Halt the processor(s).

AD_POWEROFF Halt the processor(s) and turn off the power.

AD_BOOT Reboot the system, using the kernel file.

AD_IBOOT Interactive reboot; user is prompted for bootable program name.

A_REBOOT The system stops immediately without any further processing.The action to be
taken next is specified by fcn as above.

A_REMOUNT The root file system is mounted again after having been fixed. This should be
used only during the startup process.

A_FREEZE Suspend the whole system. The system state is preserved in the state file. The
following three subcommands are available.

AD_COMPRESS Save the system state to the state file with compression of data.

AD_CHECK Check if your system supports suspend and resume. Without performing a
system suspend/resume, this command checks if this feature is currently
available on your system.

AD_FORCE Force AD_COMPRESS even when threads of drivers are not suspendable.

RETURN VALUES
Upon successful completion, the value returned depends on cmd as follows:

A_SHUTDOWN Never returns.

A_REBOOT Never returns.

A_FREEZE 0 upon resume.

A_REMOUNT 0 Upon unsuccessful completion, -1 is returned and errno is set to indicate the
error.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-83

ERRORS
uadmin() fails if any of the following are true:

EPERM The effective user of the calling process is not super-user.

ENOMEM Suspend/resume ran out of physical memory.

ENOSPC Suspend/resume could not allocate enough space on the root file system to store system
information.

ENOTSUP Suspend/resume not supported on this platform.

ENXIO Unable to successfully suspend system.

EBUSY Suspend already in progress.

SEE ALSO
kernel(), uadmin()

libc __

3-84 SPARC Compliance Definition 2.4 Interface Semantics 1998

vfork

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
#include <unistd.h>
pid_t vfork(void);

DESCRIPTION
vfork() can be used to create new processes without fully copying the address space of the old process. It
is useful when the purpose of fork() would have been to create a new system context for an execve(). vfork()
differs from fork() in that the child borrows the parent's memory and thread of control until a call to
execve() or an exit (either by a call to _exit() (see exit()) or abnormally).The parent process is suspended
while the child is using its resources. In a multi-threaded application, vfork() borrows only the thread of
control which called vfork() in the parent; that is, the child contains only one thread. In that sense, in a multi-
threaded application vfork() behaves like fork(). vfork() can normally be used just like fork(). It does not
work, however, to return while running in the child's context from the procedure which called vfork() since
the eventual return from vfork() would then return to a no longer existent stack frame. Be careful, also, to
call _exit() rather than exit() if you cannot execve(), since exit() will flush and close standard I/O channels,
and thereby corrupt the parent processes standard I/O data structures. Even with fork() it is wrong to call
exit() since buffered data would then be flushed twice.

RETURN VALUES
Upon successful completion, vfork() returns a value of 0 to the child process and returns the process ID of
the child process to the parent process. Otherwise, a value of -1 is returned to the parent process, no child
process is created, and the global variable errno is set to indicate the error.

ERRORS
vfork() will fail and no child process will be created if one or more of the following are true:

EAGAIN The system-imposed limit on the total number of processes under execution would be
exceeded. This limit is determined when the system is generated.

EAGAIN The system-imposed limit on the total number of processes under execution by a single
user would be exceeded. This limit is determined when the system is generated.

ENOMEM There is insufficient swap space for the new process.

SEE ALSO
exec(), exit(), fork(), ioctl(), wait()

NOTES
The use of vfork() for any purpose except as a prelude to an immediate call to a function from the exec
family, or to _exit(), is not advised. vfork() is unsafe in multi-thread applications. This function will be
eliminated in a future release.The memory sharing semantics of vfork() can be obtained through other

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-85

mechanisms. To avoid a possible deadlock situation, processes that are children in the middle of a vfork()
are never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and input attempts result
in an EOF indication. On some systems, the implementation of vfork() causes the parent to inherit register
values from the child. This can create problems for certain optimizing compilers if <unistd.h> is not
included in the source calling vfork().

libc __

3-86 SPARC Compliance Definition 2.4 Interface Semantics 1998

vhangup

NAME
vhangup - virtually "hangup" the current controlling terminal

SYNOPSIS
void vhangup(void);

DESCRIPTION
vhangup() is used by the initialization process init() (among others) to arrange that users are given "clean"
terminals at login, by revoking access of the previous users' processes to the terminal.To effect this,
vhangup() searches the system tables for references to the controlling terminal of the invoking process,
revoking access permissions on each instance of the terminal that it finds. Further attempts to access
the terminal by the affected processes will yield I/O errors (EBADF or EIO). Finally, a SIGHUP (hangup
signal) is sent to the process group of the controlling terminal.

SEE ALSO
init()

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-87

syslog

NAME
vsyslog - log message with a varargs argument list

SYNOPSIS
#include <syslog.h>
#include <varargs.h>
int vsyslog(int priority, const char *message, va_list ap);

DESCRIPTION
vsyslog() is the same as syslog() except that instead of being called with a variable number of arguments,
it is called with an argument list as defined by varargs().

SEE ALSO
syslog(), varargs()

libc __

3-88 SPARC Compliance Definition 2.4 Interface Semantics 1998

__div64

NAME
__div64 - 64 bit division function

SYNOPSIS
long long __div64(long long a, long long b);

DESCRIPTION
The function __div64() computes the quotient of the division of the numerator “a” by the
denominator “b”, truncates any fractional part, and return the signed long long results.

This function returns 0 if “b” is 0.

Trap handling, when the divisor is zero, is intentionally not present in this specification, since it is
considered SPARC architecture version dependent.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-89

__dtoll

NAME
__dtoll - convert double to long long

SYNOPSIS
long long __dtoll (double d)

DESCRIPTION
This function converts the double precision value of “d” to a signed long long (integer result) by
truncating (discarding) any fractional part and returns the signed long long value.

__dtoll() raises an invalid exception if the integer portion is outside of the range:
-263) d < 263

and returns the negative number in the inequality expression above if “d” is negative, otherwise
returning the positive number in the inequality.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FdTOx instruction.

libc __

3-90 SPARC Compliance Definition 2.4 Interface Semantics 1998

__dtoull
NAME

__dtoull - convert double to unsigned long long

SYNOPSIS
unsigned long long __dtoull (double d);

DESCRIPTION
This function converts the double precision value of “d” to an unsigned long long (integer result)
by truncating (discarding) any fractional part and returns the unsigned long long value.

__dtoull raises an invalid exception if the integer portion of “d” is outside of the range:
0) abs(d) < 264.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FdTOx instruction.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-91

__ftoll

NAME
__ftoll - convert float to long long

SYNOPSIS
long long __ftoll (float f);

DESCRIPTION
This function converts the single precision value of “f” to a signed long long (integer result) by
truncating (discarding) any fractional part and returns the signed long long value.

__ftoll() raises an invalid exception if the integer portion is outside of the range:
-263) f < 263

and returns the negative number in the inequality expression above if “f” is negative, otherwise
returning the positive number in the inequality.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FsTOx instruction.

libc __

3-92 SPARC Compliance Definition 2.4 Interface Semantics 1998

__ftoull

NAME
__ftoull - convert float to unsigned long long

SYNOPSIS
unsigned long long __ftoull(float f);

DESCRIPTION
This function converts the single precision value of “f” to an unsigned long long (integer result) by
truncating (discarding) any fractional part and returns the unsigned long long value.

__ftoull raises an invalid exception if the integer portion of “f” is outside of the range:
 0) abs(f) < 264.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FsTOx instruction.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-93

__mul64

NAME
__mul64 - 64 bit multiplication function

SYNOPSIS
long long __mul64(long long a, long long b);

DESCRIPTION
This function implements the multiplication of “a” and “b” (“a * b”).

This function returns p - 264 if p * 263; it returns “p” otherwise. Where “p” denote the mathematical
product modulo 264 of “a” and “b”; “p” is in the range:
0) p < 264

Overflow handling is intentionally not present in this specification, since it is considered SPARC
architecture version dependent.

libc __

3-94 SPARC Compliance Definition 2.4 Interface Semantics 1998

__rem64

NAME
__rem64 - 64 bit remain function

SYNOPSIS
long long __rem64(long long a, long long b);

DESCRIPTION

The function __rem64() computes the remainder of the division of the numerator “a” by the
“denominator “b” and returns the signed long long result.

This function returns 0 if “b” is 0.

Trap handling, if the divisor is zero, is intentionally not present in this specification, since it is
considered SPARC architecture version dependent.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-95

__udiv64

NAME
__udiv64 - Unsigned 64 bit division function

SYNOPSIS
unsigned long long __udiv64(unsigned long long a, unsigned long long b);

DESCRIPTION
The function __udiv64() computes the quotient of the division of the numerator “a” by the
denominator “b”, truncates any fractional part, and return the unsigned long long result.

This function returns 0 if “b” is 0.

Trap handling, if the divisor is zero, is intentionally not present in this specification, since it is
considered SPARC architecture version dependent.

libc __

3-96 SPARC Compliance Definition 2.4 Interface Semantics 1998

__umul64

NAME
__umul64 - Unsigned 64 bit multiplication function

SYNOPSIS
unsigned long long __umul64(unsigned long long a, unsigned long long b);

DESCRIPTION
This function implements the multiplication of “a” and “b” (“a * b”).

It returns the product modulo 264 of “a” and “b”. The result is in unsigned long long.

Overflow handling is intentionally not present in this specification, since it is considered SPARC
architecture version dependent.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-97

__urem64

NAME
__urem64 - unsigned 64 bits remain function

SYNOPSIS
unsigned long long __urem64(unsigned long long a, unsigned long long b);

DESCRIPTION
The function __urem64() computes the remainder of the division of the numerator “a” by the
“denominator “b” and returns the unsigned long long result.

This function returns 0 if “b” is 0.

Trap handling is intentionally not present in this specification, since it is considered SPARC
architecture version dependent.

libc __

3-98 SPARC Compliance Definition 2.4 Interface Semantics 1998

_Q_lltoq

NAME
_Q_lltoq - Convert long long to long double

SYNOPSIS
long double _Q_lltoq (long long a);

DESCRIPTION
This function converts the long long value of “a” to quad precision (floating result) and returns the
quad precision value.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FxTOq instruction.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-99

_Q_qtoll

NAME
_Q_qtoll - convert long double to long long

SYNOPSIS
long long _Q_qtoll(long double a);

DESCRIPTION
This function converts the quad precision value of “a” to a signed long long (integer result) by
truncating (discarding) any fractional part and returns the signed long long value.

__Q_qtoll() raises an invalid exception if the integer portion is outside of the range:
 -263) a < 263

and returns the negative number in the inequality expression above if “a” is negative, otherwise
returning the positive number in the inequality.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FqTOx instruction.

libc __

3-100 SPARC Compliance Definition 2.4 Interface Semantics 1998

_Q_qtoull

NAME
_Q_qtoull - convert double to unsigned long long.

SYNOPSIS
unsigned long long _Q_qtoull (long double a);

DESCRIPTION
This function converts the quad precision value of “a” to an unsigned long long (integer result) by
truncating (discarding) any fractional part and returns the unsigned long long value.

_Q_qtoull raises an invalid exception if the integer portion of “a” is outside of the range:
 0) abs(a) < 264.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FqTOx instruction.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-101

_Q_ulltoq

NAME
_Q_ulltoq - convert unsigned long long to long double

SYNOPSIS
long double _Q_ulltoq (unsigned long long a);

DESCRIPTION
This function converts the unsigned long long value of “a” to quad precision (floating result) and
returns the quad precision value.

Rounding, overflow and exceptions handling are intentionally not present in this specification,
since they are considered SPARC architecture version dependent. There is no guarantee that their
behavior is similar to SPARC Architecture Version 9 FxTOq instruction.

libc __

3-102 SPARC Compliance Definition 2.4 Interface Semantics 1998

fgetgrent_r

NAME
fgetgrent_r - get group entry

SYNOPSIS
#include <grp.h>
struct group *fgetgrent_r (FILE *f, struct group *result, char *buffer, int buflen);

DESCRIPTION

fgetgrent_r() reads and parses the next line from the stream “f”, which is assumed to have the format of the
group file, where each entry is of the form:

groupname: password: gid: user-list

The function fgetgrent_r() provides a reentrant interface for the fgetgrent() function which uses static
storage that is re-used in each call. The use of static storage makes fgetgrent() unsafe for use in multithreaded
applications. fgetgrent_r() performs the same operation as fgetgrent(). fgetgrent_r(), however, uses buffers
supplied by the caller to store returned results, and is safe for use in both single-threaded and multithreaded
applications.

The parameter “result” must be a pointer to a “struct group” structure allocated by the caller. On successful
completion, the function returns the group entry in this structure. The parameter “buffer” must be a pointer to
a buffer supplied by the caller. This buffer is used as storage space for the group data. All of the pointers
within the returned struct group result point to data stored within this buffer (see RETURN VALUES). The
buffer must be large enough to hold all of the data associated with the group entry. The parameter “buflen”
should give the size in bytes of the buffer indicated by buffer.

RETURN VALUES
Group entries are represented by the struct group structure defined in <grp.h>:

struct group {

char *gr_name; /* the name of the group */

char *gr_passwd; /* the encrypted group password */

gid_t gr_gid; /* the numerical group ID */

char **gr_mem; /* vector of pointers to member names */

};

The function fgetgrent_r() returns a pointer to a struct group if it successfully enumerates an entry;
otherwise it returns NULL, indicating the end of the enumeration.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-103

When the pointer returned by fgetgrent_r() is non-NULL, it is always equal to the result pointer that was
supplied by the caller.

ERRORS
ERANGE fgetgrent_r() will return NULL and set errno to ERANGE if the length of the buffer

supplied by caller is not large enough to store the result.

NOTES
Programs that use fgetgrent_r() cannot be linked statically since the implementations of these functions
employ dynamic loading and linking of shared objects at run time.

libc __

3-104 SPARC Compliance Definition 2.4 Interface Semantics 1998

fgetpwent_r

NAME
fgetpwent_r - get password entry

SYNOPSIS
#include <pwd.h>
struct passwd *fgetpwent_r (FILE *f, struct passwd *result, char *buffer, int buflen);

DESCRIPTION
This function is used to obtain password entries. fgetpwent_r() reads and parses the next line from the stream
f, which is assumed to have the format of the passwd file, where each entry is of the form:

username: password: uid: gid: gcos-field: home-dir: login-shell

The function fgetpwent_r() provides a reentrant interface for fgetpwent(). fgetpwent_r() performs the same
operation as fgetpwent(). fgetpwent_r(), however, uses buffers supplied by the caller to store returned results,
and is safe for use in both single-threaded and multithreaded applications. fgetpwent() is not safe for use in
multithreaded applications since it uses static storage that is re-used in each call to this routine.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as the following
additional parameters. The parameter result must be a pointer to a struct passwd structure allocated by the
caller. On successful completion, the function returns the password entry in this structure. The parameter
buffer must be a pointer to a buffer supplied by the caller. This buffer is used as storage space for the password
data. All of the pointers within the returned struct passwd result point to data stored within this buffer. See
RETURN VALUES. The buffer must be large enough to hold all of the data associated with the password
entry. The parameter buflen should give the size in bytes of the buffer indicated by buffer.

RETURN VALUES
Password entries are represented by the struct passwd structure defined in <pwd.h>:

struct passwd {

char *pw_name; /* user's login name */

char *pw_passwd; /* no longer used */

uid_t pw_uid; /* user's uid */

gid_t pw_gid; /* user's gid */

char *pw_age; /* not used */

char *pw_comment; /* not used */

char *pw_gecos; /* typically user's full name */

char *pw_dir; /* user's home dir */

char *pw_shell; /* user's login shell */

};

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-105

The function fgetpwent_r() returns a pointer to a struct passwd if it successfully enumerates an entry;
otherwise it returns NULL, indicating the end of the enumeration.

When the pointer returned by the reentrant function fgetpwent_r() is non-NULL, it is always equal to the
result pointer that was supplied by the caller.

ERRORS
ERANGE fgetpwent_r() will return NULL and set errno to ERANGE if the length of the buffer

supplied by caller is not large enough to store the result.

NOTES
fgetpwent_r() cannot be linked statically since, the implementations of this function employ dynamic
loading and linking of shared objects at run time.

If the shell field is empty, “login” automatically assigns the default shell.

libc __

3-106 SPARC Compliance Definition 2.4 Interface Semantics 1998

fork

NAME
fork - create a new process

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);

DESCRIPTION
fork() causes the creation of a new process. The new process (child process) is an exact copy of the calling
process (parent process). This means the child process inherits the following attributes from the parent
process:

• real user ID, real group ID, effective user ID, effective group ID

• environment

• open file descriptors

• close-on-exec flags (see exec(BA_OS))

• signal handling settings (that is SIG_DFL, SIG_IGN, SIG_HOLD, Function address)

• supplementary group IDs

• set-user-ID mode bit

• set-group-ID mode bit

• profiling on/off status

• nice value (see nice(KE_OS))

• scheduler class (see priocntl(RT_OS))

• all attached shared memory segments (see shmop(KE_OS))

• process group ID -- memory mappings (see mmap(KE_OS))

• session ID (see exit(BA_OS))

• current working directory

• root directory

• file mode creation mask (see umask(BA_OS))

• resource limits (see getrlimit(BA_OS))

• controlling terminal

• saved user ID and group ID

Scheduling priority and any per-process scheduling parameters that are specific to a given scheduling class
may or may not be inherited according to the policy of that particular class (see priocntl(RT_OS)).

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-107

The child process differs from the parent process in the following ways:

• The child process has a unique process ID which does not match any active process group ID.

• The child process has a different parent process ID (that is, the process ID of the parent process).

• The child process has its own copy of the parent’s file descriptors and directory streams. Each of
the child’s file descriptors shares a common file pointer with the corresponding file descriptor of the
parent.

• Each shared memory segment remains attached and shm_nattach is incremented by 1.

• All semadj values are cleared (see semop(KE_OS))).

• Process locks, text locks, data locks, and other memory locks are not inherited by the child (see
plock(KE_OS) and memcntl(RT_OS)).

• The child process’s tms structure is cleared: tms_utime, stime, cutime, and cstime are set to 0 (see
times(BA_OS)).

• The child processes resource utilizations are set to 0; see getrlimit(BA_OS). The it_value and
it_interval values for the ITIMER_REAL timer are reset to 0; see getitimer(RT_OS).

• The set of signals pending for the child process is initialized to the empty set.

• No asynchronous input or asynchronous output operations are inherited by the child.

Record locks set by the parent process are not inherited by the child process (see fcntl(BA_OS)).

fork() duplicates all the threads (see thr_create) and LWPs in the parent process in the child process.

RETURN VALUES
Upon successful completion, fork() returns a value of 0 to the child process and returns the process ID of the
child process to the parent process. Otherwise, a value of (pid_t) - 1 is returned to the parent process, no
child process is created, and errno is set to indicate the error.

ERRORS
fork() will fail and no child process will be created if one or more of the following are true:

EAGAIN There are two conditions that will cause an EAGAIN error.

libc __

3-108 SPARC Compliance Definition 2.4 Interface Semantics 1998

The system-imposed limit on the total number of processes under execution by a single user would be
exceeded.

The total amount of system memory available is temporarily insufficient to duplicate this process.

ENOMEM There is not enough swap space.

SEE ALSO
alarm(BA_OS), exec(BA_OS), exit(BA_OS), fcntl(BA_OS), getitimer(RT_OS), getrlimit(BA_OS),
mmap(KE_OS), nice(KE_OS), plock(KE_OS), priocntl(RT_OS), ptrace(KE_OS), semop(KE_OS),
shmop(KE_OS), times(BA_OS), umask(BA_OS), wait(BA_OS), memcntl(RT_OS), signal(BA_OS),
system(BA_OS), thr_create

NOTES

The semantics of fork() in a multi-threaded application are designated as EXPERIMENTAL. The SCD2.3
definition of the multi-threaded semantics for fork() is that the entire process is duplicated (i.e. all its threads).
This differs from the POSIX 1003.1c specification in which only the thread invoking fork() is duplicated in
an MT application. MT semantics equivalent to the POSIX 1003.1c of fork() are offered by the SCD2.3
fork1() interface.

Be careful to call _exit() rather than exit(BA_OS) if you cannot execve(), since exit(BA_OS) will flush and
close standard I/O channels, and thereby corrupt the parent processes standard I/O data structures. Using
exit(BA_OS) will flush buffered data twice. See exit(BA_OS).

In a multi-threaded process, fork() can cause blocking system calls to be interrupted and return with an error
of EINTR

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-109

getgrent_r

NAME
getgrent_r - get group entry

SYNOPSIS
#include <grp.h>
struct group *getgrent_r (struct group *result, char *buffer, int buflen);

DESCRIPTION
getgrent_r() is used to obtain entries from the system’s groups database. The function getgrent_r() provides
a reentrant interface for the getgrent() function which uses static storage that is re-used in each call. The use
of static storage makes getgrent() unsafe for use in multithreaded applications.

getgrent_r() performs the same operation as getgrent(). getgrent_r() uses a buffer supplied by the caller to
store returned results, and is safe for use in both single-threaded and multithreaded applications.

The parameter result must be a pointer to a struct group structure allocated by the caller. On successful
completion, the function returns the group entry in this structure. The parameter buffer must be a pointer to a
buffer supplied by the caller. This buffer is used as storage space for the group data. All of the pointers within
the returned struct group result point to data stored within this buffer (see RETURN VALUES). The buffer
must be large enough to hold all of the data associated with the group entry. The parameter buflen should give
the size in bytes of the buffer indicated by buffer.

RETURN VALUES
Group entries are represented by the struct group structuredefined in <grp.h>:

struct group {

char *gr_name; /* the name of the group */

char *gr_passwd; /* the encrypted group password */

gid_t gr_gid; /* the numerical group ID */

char **gr_mem; /* vector of pointers to member names */

};

The function getgrent_r() returns a pointer to a struct group if it successfully enumerates an entry; otherwise
it returns NULL, indicating the end of the enumeration.

When the pointer returned by the reentrant function getgrent_r() is non-NULL, it is always equal to the result
pointer that was supplied by the caller.

ERRORS
ERANGE getgrent_r() will return NULL and seterrno to ERANGE if the length of the buffer

libc __

3-110 SPARC Compliance Definition 2.4 Interface Semantics 1998

supplied by caller is not large enough to store the result.

NOTES

Programs that use getgrent_r() cannot be linked statically since the implementations of this function employ
dynamic loading and linking of shared objects at run time.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-111

getlogin_r

NAME
getlogin_r - get login name

SYNOPSIS
#include <stdlib.h>
char *getlogin_r (char *name, int namelen);

DESCRIPTION
getlogin_r() returns a pointer to the login name associated with the controlling terminal. It may be used
in conjunction with getpwnam_r() to locate the correct password file entry when the same user id is shared
by several login names.

If getlogin_r() is called within a process that is not attached to a terminal, it returns a null pointer. The correct
procedure for determining the login name is to call cuserid(), or to call getlogin_r() and if it fails to call
getpwuid_r().

getlogin_r() has the same functionality as getlogin() except that a buffer name with length namelen has to be
supplied by the caller to store the result. name must be at least LOGNAME_MAX bytes in size (defined in
limits.h).

RETURN VALUES
Returns a null pointer if the login name is not found.

ERRORS
getlogin_r() will fail if the following is true:

ERANGE The size of the buffer is smaller than the result to be returned.

NOTES
The getlogin_r() interface is different from the POSIX 1003.1c interface. The function getlogin_r is defined
in POSIX as following:

int getlogin_r(char *name, size_t namelen);

This function is designated as EXPERIMENTAL.

The return values point to static data whose content is overwritten by each call.

getlogin() is unsafe in multi-thread applications. getlogin_r() should be used instead.

libc __

3-112 SPARC Compliance Definition 2.4 Interface Semantics 1998

getpwent_r

NAME
getpwent_r - get password entry

SYNOPSIS
#include <pwd.h>
struct passwd *getpwent_r (struct passwd *result, char *buffer, int buflen);

DESCRIPTION

This function is used to obtain password entries. The function getpwent_r() is used to enumerate password
entries from the system’s passwords database. Successive calls to getpwent_r() return either successive
entries or NULL, indicating the end of the enumeration.

The function getpwent_r() provides a reentrant interface for getpwent(). getpwent_r() performs the same
operation as getpwent(). getpwent_r() uses buffers supplied by the caller to store returned results, and is safe
for use in both single-threaded and multithreaded applications. getpwent() is not safe for use in multithreaded
applications since it uses static storage that is re-used in each call to this routine.

The parameter result must be a pointer to a struct passwd structure allocated by the caller. On successful
completion, getpwent_r() returns the password entry in this structure. The parameter buffer must be a pointer
to a buffer supplied by the caller. This buffer is used as storage space for the password data. All of the pointers
within the returned struct passwd result point to data stored within this buffer. See RETURN VALUES. The
buffer must be large enough to hold all of the data associated with the password entry. The parameter buflen
should give the size in bytes of the buffer indicated by buffer.

For enumeration in multithreaded applications, the position within the enumeration is a process-wide
property shared by all threads. If multiple threads interleave calls to getpwent_r(), the threads will enumerate
disjoint subsets of the password database.

RETURN VALUES
Password entries are represented by the struct passwd structure defined in <pwd.h>:

struct passwd {

char *pw_name; /* user's login name */

char *pw_passwd; /* no longer used */

uid_t pw_uid; /* user's uid */

gid_t pw_gid; /* user's gid */

char *pw_age; /* not used */

char *pw_comment; /* not used */

char *pw_gecos; /* typically user's full name */

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-113

char *pw_dir; /* user's home dir */

char *pw_shell; /* user's login shell */

};

The function getpwent_r() returns a pointer to a struct passwd if it successfully enumerates an entry;
otherwise it returns NULL, indicating the end of the enumeration.

The function getpwent() uses static storage, so returned data must be copied before a subsequent call to this
function if the data is to be saved. When the pointer returned by getpwnam_r() is non-NULL, it is always
equal to the result pointer that was supplied by the caller.

ERRORS

ERANGE getpwent_r() will return NULL and set errno to ERANGE if the length of the buffer
supplied by caller is not large enough to store the result.

NOTES

getpwent_r cannot be linked statically since, the implementations of this function employ dynamic loading
and linking of shared objects at run time.

If the shell field is empty, “login” automatically assigns the default shell.

libc __

3-114 SPARC Compliance Definition 2.4 Interface Semantics 1998

getgrgid_r
getgrnam_r
getpwnam_r
getpwuid_r
readdir_r

NAME
getgrgid_r, getgrnam_r, getpwnam_r, getpwuid_r, readdir_r - Support routines for multithreading
added to libsys and libc.

SYNOPSIS
#include <grp.h>
struct group *getgrgid_r (gid_t gid, struct group *result, char *buffer, int buflen);
struct group *getgrnam_r(const char *name, struct group *result, char *buffer, int buflen);

#include <pwd.h>
struct passwd *getpwnam_r (const char *name, struct passwd *result, char *buffer, int buflen);
struct passwd *getpwuid_r (uid_t uid, struct passwd *result, char *buffer, int buflen);

#include <dirent.h>
struct dirent *readdir_r(DIR *dirp, struct dirent *res);

DESCRIPTION and RETURN VALUES
These functions are “reentrant” versions of existing functions. They exist as the definition of the
existing functions prevents the transparent implementation of multithreading, usually because of
the use of a static storage area. In general, these functions are exactly equivalent to the non-
reentrant versions in terms of function and results, but differ in providing for the implementation
the necessary storage for completion of the function.
getgrgid_r and getgrnam_r are equivalent to getgrgid and getgrnam, respectively. When these
functions succeed, they return the argument result as their value. Otherwise they return NULL.
When successful, the contents of result have been updated to return the group entry associated
with either name or gid, respectively. buf is provided in order to store the strings and pointers
needed to describe a group entry, and is buflen in length. If buflen is not large enough to store the
resulting strings, the functions return NULL with errno set to ERANGE.
getpwuid_r and getpwnam_r are equivalent to getgrgid and getgrnam, respectively. When these
functions succeed, they return the argument result as their value. Otherwise they return NULL.
When successful, the contents of result have been updated to return the password entry associated
with either name or uid, respectively. buf is provided in order to store the strings and pointers
needed to describe a password entry, and is buflen in length. If buflen is not large enough to store
the resulting strings, the functions return NULL with errno set to ERANGE.
readdir_r is equivalent to readdir except that res must be supplied by the caller to store the result.
To allocate res, a block of storage equivalent to sizeof (struct dirent) + _POSIX_PATH_MAX should
be allocated.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-115

NOTES

These functions are designated as EXPERMIMENTAL since they have interfaces which are different from
the ones in POSIX 1003.1c. The interfaces of these functions are in POSIX as following:

int getgrgid_r (gid_t gid,

struct group *grp,

char *buffer,

size_t bufsize,

struct group **result);

int getgrnam_r (const char *name,

struct group *grp,

char *buffer,

size_t bufsize,

struct group **result);

int getpwnam_r (const char *name,

struct passwd *pwd,

char *buffer,

size_t buflen,

struct passwd **result);

int getpwuid_r (uid_t uid,

struct passwd *pwd,

char *buffer,

size_t bufsize,

struct passwd **result);

int readdir_r (DIR *dirp,

struct direct *entry,

struct dirent **result);

libc __

3-116 SPARC Compliance Definition 2.4 Interface Semantics 1998

makecontext
swapcontext

NAME
 makecontext, swapcontext - manipulate user contexts

SYNOPSIS
 #include <ucontext.h>
 void makecontext (ucontext_t *ucp, void(*func)(), int argc,...);
 int swapcontext (ucontext_t *oucp, ucontext_t *ucp);

DESCRIPTION
These functions are useful for implementing user-level context switching between multiple threads
of control within a process.

makecontext() modifies the context specified by ucp, which has been initialized using getcontext();
when this context is resumed using swapcontext() or setcontext() (see getcontext(BA_OS)), program
execution continues by calling the function func, passing it the arguments that follow argc in the
makecontext() call. The integer value of argc must match the number of arguments that follow argc.
Otherwise the behavior is undefined.

swapcontext() saves the current context in the context structure pointed to by oucp and sets the context to the
context structure pointed to by ucp.

RETURN VALUES
On successful completion, swapcontext returns a value of zero. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

ERRORS
These functions will fail if either of the following is true:

EFAULT ucp or oucp points to an invalid address.

ENOMEM ucp does not have enough stack left to complete the operation.

SEE ALSO
exit(BA_OS), getcontext(BA_OS), sigaction(BA_OS), sigprocmask(BA_OS)

NOTES
The size of the ucontext_t structure may change in future releases. To remain binary compatible, users of
these features must always use makecontext() or getcontext() to create new instances of them.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-117

sbrk

NAME
sbrk - query the current break value

SYNOPSIS
#include <unistd.h>
void *sbrk (const int 0);

DESCRIPTION
The function sbrk is used to query the amount of space allocated for the calling process’s data
segment [see exec(BA_OS)].

STATUS
This function is DEPPRECATED effective November 1st, 1993. It may be removed from the SCD
as early as November 1st, 1996.

DIAGNOSTICS
Upon successful completion, sbrk returns the current break value. Otherwise, a value of -1 is
returned and errno is set to indicate the error. If sbrk is called with a non-zero value, the application
is not portable.

RATIONALE
Calling sbrk(0) yields a value that, at one time, had a predictable, well defined interpretation. It has
not had this property for many years, since the wide-spread usage of sparse, demand-paged
address spaces. Its use is deprecated because the interpretation of the value returned is so highly
variable as to be non-portable. It is more appropriately regarded as a function yielding a value
relevant to one of many attributes of memory occupancy. sbrk (non-zero) is not specified in any
relevant standard, as its interactions with and dependencies upon other memory allocation
mechanisms (e.g., malloc) are undefined. The use of sbrk (non-zero) is non-conforming since the
implementation of system supplied functions may freely use such memory allocation mechanisms.

NOTES
Applications desiring memory allocation functionality should use malloc for this purpose. Alternatively,
applications may construct their own memory allocation arenas by building upon mmap and mappings to
/dev/zero

libc __

3-118 SPARC Compliance Definition 2.4 Interface Semantics 1998

swapctl

NAME
swapctl - manage swap space

SYNOPSIS
 #include <sys/stat.h>
 #include <sys/swap.h>
 int swapctl(int cmd, void *arg);

DESCRIPTION
The swapctl() function adds, deletes, or returns information about swap resources. cmd specifies one of the
following options contained in <sys/swap.h>:

SC_ADD /* add a resource for swapping */

SC_LIST /* list the resources for swapping */

SC_REMOVE /* remove a resource for swapping */

SC_GETNSWP /* return number of swap resources */

When SC_ADD or SC_REMOVE is specified, arg is a pointer to a swapres structure containing the
following members:

 char sr_name; /* pathname of resource */

 off_t sr_start; /* offset to start of swap area */

 off_t sr_length; /* length of swap area */

The sr_start and sr_length members are specified in 512-byte blocks. A swap resource can only be removed
by specifying the same values for the sr_start and sr_length members as were specified when it was added.
Swap resources need not be removed in the order in which they were added.

When SC_LIST is specified, arg is a pointer to a swaptable structure containing the following members:

 int swt_n; /* number of swapents following */

 struct swapent swt_ent[]; /* array of swt_n swapents */

A swapent structure contains the following members:

 char *ste_path; /* name of the swap file */

 off_t ste_start; /* starting block for swapping */

 off_t ste_length; /* length of swap area */

 long ste_pages; /* number of pages for swapping */

 long ste_free; /* number of ste_pages free */

 long ste_flags; /* ST_INDEL bit set if swap file is now being deleted */

The SC_LIST function causes swapctl() to return at most swt_n entries. The return value of swapctl()
is the number actually returned. The ST_INDEL bit is turned on in ste_flags if the swap file is in
the process of being deleted. When SC_GETNSWP is specified, swapctl() returns as its value the number
of swap resources in use. arg is ignored for this operation. The SC_ADD and SC_REMOVE functions will

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-119

fail if calling process does not have appropriate privileges.

RETURN VALUES
Upon successful completion, the function swapctl() returns a value of 0 for SC_ADD or SC_REMOVE,
the number of struct swapent entries actually returned for SC_LIST, or the number of swap resources in use
for SC_GETNSWP. Upon failure, the function swapctl() returns a value of -1 and sets errno to indicate an
error.

ERRORS
Under the following conditions, the function swapctl() fails and sets errno to:

EEXIST Part of the range specified by sr_start and sr_length is already being used for

swapping on the specified resource (SC_ADD).

EFAULT Either arg, sr_name, or ste_path points to an illegal address.

EINVAL The specified function value is not valid, the path specified is not a swap

resource (SC_REMOVE), part of the range specified by sr_start and sr_length

lies outside the resource specified (SC_ADD), or the specified swap area is less

than one page (SC_ADD).

EISDIR The path specified for SC_ADD is a directory.

ELOOP Too many symbolic links were encountered in translating the pathname

 provided to SC_ADD or SC_REMOVE.

ENAMETOOLONG The length of a component of the path specified for SC_ADD or

SC_REMOVE exceeds {NAME_MAX} characters or the length of the

path exceeds {PATH_MAX} characters and {_POSIX_NO_TRUNC}

is in effect.

ENOENT The pathname specified for SC_ADD or SC_REMOVE does not exist.

ENOMEM An insufficient number of struct swapent structures were provided to
SC_LIST,

or there were insufficient system storage resources available during an

SC_ADD or SC_REMOVE, or the system would not have enough swap space

after an SC_REMOVE.

libc __

3-120 SPARC Compliance Definition 2.4 Interface Semantics 1998

ENOSYS The pathname specified for SC_ADD or SC_REMOVE is not a file or block

special device.

ENOTDIR Pathname provided to SC_ADD or SC_REMOVE contained a component in

the path prefix that was not a directory.

EPERM The effective user of the calling process is not super-user.

EROFS The pathname specified for SC_ADD is a read only file system.

Additionally, the swapctl() function will fail for 32-bit interfaces if:

EOVERFLOW The amount of swap space configured on the machine is too large to be

represented by a 32-bit quantity.

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-121

ttyname
ttyname_r

NAME
ttyname, ttyname_r - find name of a terminal

SYNOPSIS
#include <stdlib.h>
char *ttyname (int fildes);
char *ttyname_r (int fildes, char *buf, int len);

DESCRIPTION
ttyname() returns a pointer to a string containing the null-terminated path name of the terminal
device associated with file descriptor fildes.

ttyname_r() has the equivalent functionality to ttyname() except that a buffer buf with length len
must be supplied by the caller to store the result. buf must be at least POSIX_PATH_MAX in size
(defined in <limits.h>).

RETURN VALUES
ttyname() and ttyname_r() return a NULL pointer if fildes does not describe a terminal device in
directory /dev.

ERRORS
ttyname_r() will fail if the following is true:
ERANGE The size of the buffer is smaller than the result to be returned.

NOTES

ttyname_r is designated as EXPERMIMENTAL since it has an interface which is different from the one in
POSIX 1003.1c. ttyname_r interface in POSIX is as following:

int ttyname_r (int fildes,

char *name,

size_t namesize);

__ libc

1998 SPARC Compliance Definition 2.4 Interface Semantics 3-122

sync_instruction_memory

NAME
sync_instruction_memory - make modified instructions executable

SYNOPSIS
void sync_instruction_memory (caddr_t addr, size_t len);

DESCRIPTION
sync_instruction_memory() performs whatever steps are required to make instructions
modified by a program executable.

Some processor architectures, including some SPARC processors, have separate and
independent instruction and data caches which are not kept consistent by hardware. For example,
if the instruction cache contains an instruction from some address and the program then stores a
new instruction at that address, the new instruction may not be immediately visible to the
instruction fetch mechanism. Software must explicitly invalidate the instruction cache entries for
new or changed mappings of pages that might contain executable instructions.
sync_instruction_memory() performs this function, and/or any other functions needed to make
modified instructions between addr and addr+len visible. A program should call
sync_instruction_memory() after modifying instructions and before executing them.

On processors with unified caches (one cache for both instructions and data) and pipelines
which are flushed by a branch instruction, the function may do nothing and just return. The
changes are immediately visible to the thread calling sync_instruction_memory() when the call
returns, even if the thread should migrate to another processor during or after the call. The
changes become visible to other threads in the same manner that stores do; that is, they
eventually become visible, but the latency is implementation-dependent.

RETURN VALUES
None

ERRORS
The result of executing sync_instruction_memory() are unpredictable if addr through
addr+len-1 are not valid for the address space of the program making the call.

SPARC COMPLIANCE DEFINITION 2.4 IS

libc 64 psABI

___ libc (64-bit ABI)

1998 SPARC Compliance Definition 2.4 Interface Semantics 3P-1

__align_cpy_1, __align_cpy_2, __align_cpy_3
__align_cpy_8, __align_cpy_16

NAME
__align_cpy_* - copies n bytes

SYNOPSIS
void *__align_cpy_1(void *s1, const void *s2, size_t n)
void *__align_cpy_2(void *s1, const void *s2, size_t n)
void *__align_cpy_4(void *s1, const void *s2, size_t n)
void *__align_cpy_8(void *s1, const void *s2, size_t n)
void *__align_cpy_16(void *s1, const void *s2, size_t n)

DESCRIPTION

The __align_cpy_1 function copies n bytes from memory area s2 to s1. It returns s1. If the memory areas
are partially overlapped, or n is zero, the result of calling this function is undefined.

The __align_cpy_2 function copies n bytes from memory area s2 to s1. It returns s1. If the lower-order
bit of any of s1, s2, or n is non-zero, or the memory areas are partially overlapped, or n is zero, the result
of calling this function is undefined.

The __align_cpy_4 function copies n bytes from memory area s2 to s1. It returns s1. If the lower-order
two bits of any of s1, s2, or n are non-zero, or the memory areas are partially overlapped, or n is zero,
the result of calling this function is undefined.

This __align_cpy_8 function copies n bytes from memory area s2 to s1. It returns s1. If the lower-order
three bits of any of s1, s2, or n are non-zero, or the memory areas are partially overlapped, or n is zero,
the result of calling this function is undefined.

The __align_cpy_16 function copies n bytes from memory area s2 to s1. It returns s1. If the lower-order
four bits of any of s1, s2, or n are non-zero, or the memory areas are partially overlapped, or n is zero,
the result of calling this function is undefined.

SEE ALSO
none

___ libc (64-bit ABI)

1998 SPARC Compliance Definition 2.4 Interface Semantics 3P-2

__sparc_utrap_install

NAME:

__sparc_utrap_install - establish new trap handler

SYNOPSIS
int __sparc_utrap_install(

utrap_entry_t type,
utrap_handler_t new_precise,
utrap_handler_t new_deferred,
utrap_handler_t *old_precise,
utrap_handler_t *old_deferred

);

DESCRIPTION:
This function establishes new values for the user trap handlers for the specified trap type and return the
existing trap handler values in a single atomic operation. A new handler address of NULL means no user
handler of that type will be installed. A new handler address of UTH_NOCHANGE means that the user
handler for that type should not be changed. An old handler pointer of NULL means that the user is not
interested in the old handler address.

SEE ALSO
none

___ libc (64-bit ABI)

1998 SPARC Compliance Definition 2.4 Interface Semantics 3P-3

_Qp_add
_Qp_cmp, _Qp_cmpe
_Qp_div, _Qp_dtoq
_Qp_feq, _Qp_fge, _Qp_fgt, _Qp_fle, _Qp_flt, _Qp_fne
_Qp_itoq, _Qp_mul, _Qp_neg, _Qp_qtod,_Qp_qtoi
_Qp_qtos, _Qp_qtoui, _Qp_qtoux, _Qp_qtox, _Qp_sqr
_Qp_stoq _Qp_sub
_Qp_uitoq, _Qp_uxtoq, _Qp_xtoq
 __dtoul, __ftoul

void _Qp_add(long double *c, const long double *a, const long double *b)
This function sets *c = *a + *b computed to quadruple precision. (Exceptions mimic faddq.)

int _Qp_cmp(const long double *a, const long double *b)
This function compares the quadruple precision values *a and *b and returns an integer value that indicates
their relative ordering as shown in the table below. (Exceptions mimic fcmpq).

int _Qp_cmpe(const long double *a, const long double *b)
This function compares the quadruple precision values *a and *b and returns an integer value that indicates
their relative ordering according to the same convention as _Qp_cmp. (Exceptions mimic fcmpeq.)

void _Qp_div(long double *c, const long double *a, const long double *b)
This function sets *c = *a / *b computed to quadruple precision. (Exceptions mimic fdivq.)

void _Qp_dtoq(long double *c, const double a)
Note: The “a” is passed in an FP register.

This function converts the double precision value of a to quadruple precision and sets *c to the quadruple
precision value. (Exceptions mimic fdtoq.)

int _Qp_feq(const long double *a, const long double *b)
This function compares the quadruple precision values *a and *b and returns a nonzero value if they are
equal, zero otherwise. (Exceptions mimic fcmpq.)

int _Qp_fge(const long double *a, const long double *b)
This function compares the quadruple precision values *a and *b and returns a nonzero value if *a is greater
than or equal to *b, zero otherwise. (Exceptions mimic fcmpeq.)

int _Qp_fgt(const long double *a, const long double *b)
This function compares the quadruple precision values *a and *b and returns a nonzero value if *a is greater
than *b, zero otherwise. (Exceptions mimic fcmpeq.)

relation Value

a equal to b 0

a less than b 1

a greater than b 2

a unordered with
respect to b

3

___ libc (64-bit ABI)

1998 SPARC Compliance Definition 2.4 Interface Semantics 3P-4

int _Qp_fle(const long double *a, const long double *b)
This function compares the quadruple precision values *a and *b and returns a nonzero value if *a is less
than or equal to *b, zero otherwise. (Exceptions mimic fcmpeq.)

int _Qp_flt(const long double *a, const long double *b)
This function compares the quadruple precision values *a and *b and returns a nonzero value if *a is less
than *b, zero otherwise. (Exceptions mimic fcmpeq.)

int _Qp_fne(const long double *a, const long double *b)
This function compares the quadruple precision values *a and *b and returns a nonzero value if they are
unordered or not equal, zero otherwise. (Exceptions mimic fcmpq.)

void _Qp_itoq(long double *c, const int a)
Note: The second argument is passed in an integer register.

This function converts the integer value of a to quadruple precision and sets *c to the quadruple precision value.

void _Qp_mul(long double *c, const long double *a, const long double *b)
This function sets *c = *a * *b computed to quadruple precision. (Exceptions mimic fmulq.)

void _Qp_neg(long double *c, const long double *a)
This function sets *c = -*a without raising any exceptions.

double _Qp_qtod(const long double *a)
Note: The result of this function is returned in an FP register.

This function converts the quadruple precision value of *a to double precision and returns the double precision
value. (Exceptions mimic fqtod.)

int _Qp_qtoi(const long double *a)
Note: The result of this function is returned in an integer register.

This function converts the quadruple precision value of *a to a signed integer by truncating any fractional
part and returns the signed integer value. (Exceptions mimic fqtoi.)

float _Qp_qtos(const long double *a)
Note: The result of this function is returned in an FP register.

This function converts the quadruple precision value of *a to single precision and returns the single precision
value. (Exceptions mimic fqtos.)

unsigned int _Qp_qtoui(const long double *a)
Note: The result of this function is returned in an integer register.

This function converts the quadruple precision value of *a to an unsigned integer by truncating any fractional
part and returns the unsigned integer value. _Qp_qtoui raises exceptions as follows: If -2^31 <= *a < 2^32,
then the operation is successful. If *a is not a whole number, the inexact exception is raised. Note that
negative values of *a are first converted to a signed integer and then cast to an unsigned integer. Otherwise,
the value returned by _Qp_qtoui is unspecified, and the invalid exception is raised. (When any exceptions
are raised, the behavior mimics fqtoi.)

unsigned long _Qp_qtoux(const long double *a)
Note: The result of this function is returned in an integer register.

___ libc (64-bit ABI)

1998 SPARC Compliance Definition 2.4 Interface Semantics 3P-5

This function converts the quadruple precision value of *a to an unsigned extended word by truncating any
fractional part and returns the unsigned extended word value. _Qp_qtoux raises exceptions as follows: If
-2^63 <= *a < 2^64, then the operation is successful. If *a is not a whole number, the inexact exception
is raised. Note that negative values of *a are first converted to a signed extended word and then cast to
an unsigned extended word. Otherwise, the value returned by _Qp_qtoui is unspecified, and the invalid
exception is raised. When any exceptions are raised, the behavior mimics fqtox.)

long _Qp_qtox(const long double *a)
Note: The result of this function is returned in an integer register.

This function converts the quadruple precision value of *a to a signed extended word by truncating any
fractional part and returns the signed extended word value. (Exceptions mimic fqtox.)

void _Qp_sqrt(long double *c, const long double *a)
This function sets *c to the square root of *a computed to quadruple precision. (Exceptions mimic fsqrtq.)

void _Qp_stoq(long double *c, const float a)
Note: "a" is not passed with a pointer, but in an FP register.

This function converts the single precision value of a to quadruple precision and sets *c to the quadruple
precision value. (Exceptions mimic fstoq.)

void _Qp_sub(long double *c, const long double *a, const long double *b)
This function sets *c = *a - *b computed to quadruple precision. (Exceptions mimic fsubq.)

void _Qp_uitoq(long double *c, const unsigned int a)
Note: the second argument “a” is passed in an integer register.

This function converts the unsigned word value of a to quadruple precision and sets *c to the quadruple
precision value.

void _Qp_uxtoq(long double *c, const unsigned long a)
Note: the second argument “a” is passed in an integer register.

This function converts the unsigned extended word value of a to quadruple precision and sets *c to the
quadruple precision value.

void _Qp_xtoq(long double *c, const long a)
Note: the second argument “a” is passed in an integer register.

This function converts the extended word value of a to quadruple precision and sets *c to the quadruple
precision value.

unsigned long __dtoul(const double a)
This function converts the double precision value of a to an unsigned extended word by truncating any
fractional part and returns the unsigned extended word value. __dtoul raises exceptions as follows: If -2^63
<= a < 2^64, then the operation is successful. If a is not a whole number, the inexact exception is raised.
Note that negative values of a are first converted to a signed extended word and then cast to an unsigned
extended word. Otherwise, the value returned by __dtoul is unspecified, and the invalid exception is raised.
(When any exceptions are raised, the behavior mimics fdtoi.)

unsigned long __ftoul(const float a)
This function converts the single precision value of a to an unsigned extended word by truncating any fractional
part and returns the unsigned extended word value. __ftoul raises exceptions as follows: If -2^63 <= a <
2^64, then the operation is successful. If a is not a whole number, the inexact exception is raised. Note

___ libc (64-bit ABI)

1998 SPARC Compliance Definition 2.4 Interface Semantics 3P-6

that negative values of a are first converted to a signed extended word and then cast to an unsigned extended
word. Otherwise, the value returned by __ftoul is unspecified, and the invalid exception is raised. (When
any exceptions are raised, the behavior mimics fstoi.)

NOTE:
The following restrictions apply to all of the functions listed above:

When a function computes a floating point result, that result is rounded in accordance with the setting of the
rounding control (RM) field of the FSR register. If any floating point exceptions occur, the resulting behavior
is identical to that which would be observed as a result of executing a floating point instruction with the same
operands, to the extent that such behavior is defined. The particular instruction is listed in the description of
each function that can incur floating point exceptions.

SPARC COMPLIANCE DEFINITION 2.4 IS

libdl

___ libdl

1998 SPARC Compliance Definition 2.4 Interface Semantics 4-1

Introduction
The following terms are used in this specification:

For a program to reference a symbol means for the program to use the storage value associated with that
symbol. To reference a data symbol means (a) to retrieve the value stored in the location associated with that
symbol, or (b) to store a value into the location associated with that symbol. To reference a function symbol
means to (a) use the value directly by calling that function, or (b) to obtain its value via a call to dlsym,
presumably in order to call the function later.

For a program to contain a reference to a symbol means that the program has been constructed in such a
way that it will reference a symbol that is not defined within it. In the C language, this is done by declaring a
data or function to have the extern attribute. The reference that the program contains is an indication to the
linker and loader of what the name of the symbol is, and the fact that it will be found in some other program.
For details on how this is implemented in a SPARC executable file, see the System V Application Binary
Interface and the System V Application Binary Interface, SPARC Processor Supplement.
Two kinds of objects are mentioned in these specifications. A data object is the storage location associated
with a symbol in an application program. A shared object is (a) a file on disk that was created by linking a
program as a shared object, or (b) such a file that has been loaded into memory and prepared for execution.
When the word “object” is used without qualification in this specification, it means shared object, and usually
the shared object in memory.

For an object to reference another object means that the first object has been link-edited with the second
object in such a way as to create DT_NEEDED entries that cause the second object to be loaded
automatically with the first object. (See Chapter 5 of the SCD 2.4 document.)

libdl ___

4-2 SPARC Compliance Definition 2.4 Interface Semantics 1998

dladdr

NAME
dladdr - translate address to symbolic information.

SYNOPSIS
#include <dlfcn.h>
int dladdr(void * address, dl_info * dlip);

DESCRIPTION
dladdr() is one of a family of routines that give the user direct access to the dynamic linking facilities.
These routines are available to dynamically linked processes ONLY. Dladdr() determines if the
specified address is located within one of the mapped objects that make up the current applications
address space. An address is deemed to fall within a mapped object when it is between the base
address, and the _end address of that object. If a mapped object fits this criteria, the symbol table
made available to the runtime linker is searched to locate the nearest symbol to the specified
address. The nearest symbol is one that has a value less than or equal to the required address. The
dl_info structure must be pre-allocated by the user. The structure members are filled in by dladdr()
based on the specified address. The dl_info includes the following members:

const char *dli_fname;
void *dli_fbase;
const char *dli_sname;
void * dli_saddr;

Descriptions of these members appear below.

dli_fname contains a pointer to the filename of the containing object.
dli_fbase base contains the base address of the containing object.
dli_sname contains a pointer to the nearest symbol name to the specified address. This

symbol either has the same address, or is the nearest symbol with a lower address.
dli_saddr contains the actual address of the above symbol.

RETURN VALUES
If the specified address cannot be matched to a mapped object, a 0 is returned. Otherwise a nonzero
return is made and the associated Dl_info elements are filled.

SEE ALSO
led, dlclose(), dlerror(), dlopen(), dlsym()

___ libdl

1998 SPARC Compliance Definition 2.4 Interface Semantics 4-3

NOTES
The Dl_info pointer elements point to addresses within the mapped objects, these may become
invalid if objects are removed prior to these elements being used (see dlclose()).

If no symbol is found to describe the specified address, both the dli_sname and dli_saddr members
are set to 0.

libdl ___

4-4 SPARC Compliance Definition 2.4 Interface Semantics 1998

dlclose

NAME
dlclose - close a shared object

SYNOPSIS
#include <dlfcn.h>
int dlclose (void *handle);

DESCRIPTION
The function dlclose disassociates from the current process a shared object previously opened by
dlopen.
handle is a value that was returned from a previous call to dlopen. It designates the shared object
whose pathname was specified in that previous call to dlopen.
Once an object has been dissasociated from the process using dlclose, its symbols and those of any
objects that were loaded automatically as a result of opening the object designated by handle are
no longer available to dlsym via handle.
In order for dlclose to dissasociate an object from a process, there must have been exactly one dlclose
executed for each dlopen that was executed. Thus if a dlopen was executed once for a pathname,
dlclose would have to be executed once with the handle that was returned for pathname. If a dlopen
were executed twice for the same pathname, the disassociation would occur only after the second
dlclose.
A successful invocation of dlclose does not guarantee that the objects associated with handle will
actually be removed from the address space of the process, even if the object has been disassociated
from the process and its symbols are no longer available through handle. Objects loaded by one
invocation of dlopen may also be loaded by another invocation of dlopen. The same object may also
be opened multiple times. An object may be removed from the address space by the system only
after all references to that object through an explicit dlopen invocation have been closed and all
other objects that reference that object have also been closed. Even then, however, it is unspecified
in this standard whether the object will actually be removed from the address space.
When the system removes an object from the process address space, the object’s termination
function is executed. The termination function for each object is specified by the DT_FINI entry in
that object’s dynamic section. The exact timing of the execution of termination function relative to
the timing of the dlclose that release the object is unspecified in this standard.
An SCD-conforming application will not have any processing dependencies upon the system’s
removal or non-removal of an object from the process address space following dlclose.

DIAGNOSTICS
If the referenced object was successfully closed, dlclose returns 0. If the object could not be closed,
or if handle does not refer to an open object, dlclose returns a non-0 value. More detailed diagnostic
information will be available through dlerror.

NOTES
The following notes are a consequence of that fact that this standard does not specify whether an

___ libdl

1998 SPARC Compliance Definition 2.4 Interface Semantics 4-5

object ever is actually removed from a process address space:
Once a program has executed a sequence of dlclose operations that would permit the system to
remove an object from the process address space, the result of the program’s executing any
reference to symbols defined in that object are unspecified in this standard.
Once a program has executed a sequence of dlclose operations that would permit the system to
remove an object from the process address space, if the program executes another dlopen for that
object, it is unspecified in this standard whether the object is actually loaded again and whether the
object’s data will be in its initial state.

libdl ___

4-6 SPARC Compliance Definition 2.4 Interface Semantics 1998

dlerror

NAME
dlerror - get diagnostic information

SYNOPSIS
#include <dlfcn.h>
char *dlerror (void);

DESCRIPTION
The function dlerror returns a null-terminated character string (with no trailing newline) that
describes the last error that occurred during dynamic linking processing. If no dynamic linking
errors have occurred since the last invocation of dlerror, dlerror returns NULL. Thus, invoking
dlerror a second time, immediately following a prior invocation, will result in NULL being
returned.

NOTES
The messages returned by dlerror may reside in a static buffer that is overwritten on each call to
dlerror. Application code should not write to this buffer. Programs wishing to preserve an error
message should make their own copies of that message.

___ libdl

1998 SPARC Compliance Definition 2.4 Interface Semantics 4-7

dlopen

NAME
dlopen - open a shared object

SYNOPSIS
#include <dlfcn.h>
void *dlopen (char *pathname, int mode);

DESCRIPTION
The function dlopen is one of a family of routines that give the user direct access to the dynamic
linking facilities.
The function dlopen makes a shared object available to a running process. dlopen returns to the
process a handle the process must use to identify the object on subsequent calls to dlsym and dlclose.
This value must not be interpreted in any way by the process. (See Rationale)
pathname is the path name of the object to be opened; it may be an absolute path or relative to the
current directory. If the value of pathname is 0, dlopen will make the symbols contained in the
original a.out, and all of the objects that were loaded at program startup with the a.out, available
through dlsym.
If the value of pathname is not zero, and no file specified by pathname has already been loaded into
the address space, the file specified by pathname will be loaded. If the file specified by pathname
contains DT_NEEDED entries for other shared objects, those objects will automatically be loaded
by dlopen.
Objects whose names resolve to the same absolute or relative path name may be opened any
number of times either using dlopen or automatically as a result of executing dlopen for an object
that uses them. However, the object referenced is loaded only once into the address space of the
current process. This means that the object only takes up space once; there is only one copy of its
static data; and the static data are initialized only once, when the initial load takes place.
When a shared object is brought into the address space of a process, it may contain references to
symbols whose addresses are not known until the object is loaded. These references must be
relocated before the symbols can be accessed. The mode parameter governs when these relocations
take place and may have the following values:
RTLD_LAZY Under this mode, only references to data symbols are relocated when the object is

loaded. References to functions are not relocated until a given function is
referenced for the first time by the executing program. This mode should result in
better performance, since a process may not reference all of the functions in any
given shared object.

RTLD_NOW Under this mode, all necessary relocations are performed when the object is first
loaded. This may result in some wasted effort, if relocations are performed for
functions that are never referenced, but is useful for applications that need to know
as soon as an object is loaded that all symbols referenced during execution will be
available.

The mode parameter only takes effect when an object is initially loaded. If RTLD_LAZY is specified
in the first dlopen for an object, and RTLD_NOW is specified for the second dlopen of the same
object, the second dlopen will not cause any relocations to be performed.
The mode parameter is required, and always overrides the value of the LD_BIND_NOW

libdl ___

4-8 SPARC Compliance Definition 2.4 Interface Semantics 1998

environment variable.
When the system loads an object for the first time, the object’s initialization function is executed.
The initialization function for each object is specified by the DT_INIT entry in that object’s dynamic
section. If multiple objects are loaded as a result of dlopen, the order initialization functions are
called is unspecified.
Objects loaded by a single invocation of dlopen may import symbols from one another or from any
object loaded automatically with a.out during program startup, but objects loaded by one dlopen
invocation may not directly reference symbols from objects loaded by a different dlopen invocation.
Those symbols may, however, be referenced indirectly using dlsym.

RATIONALE
The functions dlopen and dlclose may not work in a manner consistent with the way the functions
open and close work. For example, if the same file is opened twice, the open function will return
unique file descriptors for each open operation. Using dlopen to open the same file multiple times
may return the same file handle every time. The result is that if the first file handle for a dlopen call
is used more than once as a parameter to dlclose, there may be unexpected side effects.

DIAGNOSTICS
If the file specified by pathname cannot be found, cannot be opened for reading, is not a shared
object, or if an error occurs during the process of loading the file specified by pathname or relocating
its symbolic references, dlopen will return NULL. More detailed diagnostic information will be
available through dlerror.

NOTES
The same object referenced by different path names may be loaded multiple times. For example,
given the object /usr/home/me/mylibs/mylib.so, and assuming the current working directory is
/usr/home/me/workdir,
...
void *handle1;
void *handle2;

handle1 = dlopen (“/mylibs/mylib.so”, RTLD_LAZY);
handle2 = dlopen (“/usr/home/me/mylibs/mylib.so”, RTLD_LAZY);
...
results in mylibs.so being loaded twice for the current process. On the other hand, given the same
object and current working directory, if LD_LIBRARY_PATH=/usr/home/me/mylibs, then
...
void *handle1;
void *handle2;

handle1 = dlopen (“mylib.so”, RTLD_LAZY);
handle2 = dlopen (“/usr/home/me/mylibs/mylib.so”, RTLD_LAZY);
...

___ libdl

1998 SPARC Compliance Definition 2.4 Interface Semantics 4-9

results in mylibs.so being loaded only once.
Users who wish to gain access to the symbol table of the a.out itself using dlopen(0, mode) should be
aware that some symbols defined in the a.out may not be available to the dynamic linker. The
symbol table created by ld for use by the dynamic linker might contain only a subset of the symbols
originally defined in the a.out: specifically, those referenced by the shared objects with which the
a.out is linked.

___ libdl

1998 SPARC Compliance Definition 2.4 Interface Semantics 4-10

dlsym

NAME
dlsym - get the address of a symbol in a shared object

SYNOPSIS
#include <dlfcn.h>
void *dlsym (void *handle, char *name);

DESCRIPTION
The function dlsym allows a process to obtain the address of a symbol defined within a shared object
previously opened by dlopen.
handle is a value returned by a call to dlopen; the corresponding shared object must not have been
disassociated from the executing process using dlclose. name is the symbol’s name as a character
string.
dlsym searches for the named symbol in the shared object designated by handle and in all shared
objects loaded automatically as a result of loading the object referenced by handle [see dlopen(3X)].

EXAMPLES
The following example shows how one can use dlopen and dlsym to access either function or data
objects. For simplicity, error checking has been omitted.
void *handle;
int i, *iptr;
int (*fptr) (int);
/* open the needed object */
handle = dlopen (“/usr/mydir/libx.so”, RTLD_LAZY);
/* find address of function and data objects */
fptr = (int (*)(int)) dlsym (handle, “some_function”);
iptr = (int *) dlsym (handle, “int_object”);
/* invoke function, passing value of integer as a parameter */
i = (*fptr) (*iptr);

DIAGNOSTICS
If handle does not refer to a valid object opened by dlopen, or if the named symbol cannot be found
within any of the objects associated with handle, dlsym will return NULL. More detailed diagnostic
information will be available through dlerror.

SPARC COMPLIANCE DEFINITION 2.4 IS

libelf

__libelf

1998 SPARC Compliance Definition 2.4 Interface Semantics 5-1

elf32_size

NAME
elf32_fsize

SYNOPSIS
#include <libelf.h>
size_t elf32_fsize(Elf_Type type, size_t count, unsigned ver);

DESCRIPTION
elf32_fsize gives the size in bytes of the 32-bit file representation of count data objects with the given
type. The library uses version ver to calculate the size. Constant values are available for the sizes of
fundamental types.

elf32_fsize returns zero if the value of type or ver is unknown.

ELF_T_ADDR File Size Memory Size

ELF_T_ADDR ELF32_FSZ sizeof(Elf32_Addr)

ELF_T_BYTE 1 sizeof(unsigned char)

ELF_T_HALF ELF32_FSZ_HALF sizeof(Elf32_Half)

ELF_T_OFF ELF32_FSZ_OFF sizeof(Elf32_Off)

ELF_T_SWORD ELF32_FSZ_SWORD sizeof(Elf32_Sword)

ELF_T_WORD ELF32_FSZ_WORD sizeof(ELF32_Word)

5-2 SPARC Compliance Defintion 2.4 Interface Semantics 1998

libelf __

elf32_getehdr
elf32_newehdr

NAME
elf32_getehdr, elf32_newehdr

SYNOPSIS
#include <libelf.h>
Elf32_Ehdr *elf32_getehdr(Elf *elf);
Elf32_Ehdr *elf32_newehdr(Elf *elf);

DESCRIPTION
For a 32-bit class file, elf32_getehdr returns a pointer to an ELF header, if one is available for the ELF
descriptor elf. If no header exists for the descriptor, elf32_newehdr allocates a ``clean'' one, but it
otherwise behaves the same as elf32_getehdr. It does not allocate a new header if one exists already.
If no header exists (for elf_getehdr), one cannot be created (for elf_newehdr), a system error occurs,
the file is not a 32-bit class file, or elf is null, both functions return a null pointer.
The header includes the following members.

unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

elf32_newehdr automatically sets the ELF_F_DIRTY bit. A program may use elf_getident to inspect
the identification bytes from a file.

__libelf

1998 SPARC Compliance Definition 2.4 Interface Semantics 5-3

elf32_getphdr
elf32_newphdr

NAME
elf32_getphdr, elf32_newphdr

SYNOPSIS
#include <libelf.h>
Elf32_Phdr *elf32_getphdr(Elf *elf);
Elf32_Phdr *elf32_newphdr(Elf *elf, size_t count);

DESCRIPTION
For a 32-bit class file, elf32_getphdr returns a pointer to the program execution header table, if one
is available for the ELF descriptor elf.

elf32_newphdr allocates a new table with count entries, regardless of whether one existed
previously, and sets the ELF_F_DIRTY bit for the table. Specifying a zero count deletes an existing
table. Note this behavior differs from that of elf32_newehdr, allowing a program to replace or delete
the program header table, changing its size if necessary.

If no program header table exists, the file is not a 32-bit class file, an error occurs, or elf is null, both
functions return a null pointer. Additionally, elf32_newphdr returns a null pointer if count is zero.

The table is an array of Elf32_Phdr structures, each of which includes the following members.

Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

The ELF header's e_phnum member tells how many entries the program header table has. A
program may inspect this value to determine the size of an existing table; elf32_newphdr
automatically sets the member's value to count. If the program is building a new file, it is
responsible for creating the file's ELF header before creating the program header table.

5-4 SPARC Compliance Defintion 2.4 Interface Semantics 1998

libelf __

elf32_getshdr

NAME
elf32_getshdr

SYNOPSIS
#include <libelf.h>
Elf32_Shdr *elf32_getshdr(Elf_Scn *scn);

DESCRIPTION
For a 32-bit class file, elf32_getshdr returns a pointer to a section header for the section descriptor
scn. Otherwise, the file is not a 32-bit class file, scn was null, or an error occurred; elf32_getshdr then
returns NULL.

The header includes the following members.

 Elf32_Word sh_name;
 Elf32_Word sh_type;
 Elf32_Word sh_flags;
 Elf32_Addr sh_addr;
 Elf32_Off sh_offset;
 Elf32_Word sh_size;
 Elf32_Word sh_link;
 Elf32_Word sh_info;
 Elf32_Word sh_addralign;
 Elf32_Word sh_entsize;

If the program is building a new file, it is responsible for creating the file's ELF header before
creating sections.

__libelf

1998 SPARC Compliance Definition 2.4 Interface Semantics 5-5

elf32_xlatetof
elf32_xlatetom

NAME
 elf32_xlatetof, elf32_xlatetom

SYNOPSIS
Elf_Data *elf32_xlatetof(Elf_Data *dst, const Elf_Data *src, unsigned ecode);
Elf_Data *elf32_xlatetom(Elf_Data *dst, const Elf_Data *src, unsigned en code);

DESCRIPTION
elf32_xlatetom translates various data structures from their 32-bit class file representations to their
memory representations; elf32_xlatetof provides the inverse. This conversion is particularly
important for cross development environments. src is a pointer to the source buffer that holds the
original data; dst is a pointer to a destination buffer that will hold the translated copy. encode gives
the byte encoding in which the file objects are (to be) represented and must have one of the
encoding values defined for the ELF header's e_ident[EI_DATA] entry. If the data can be translated,
the functions return dst. Otherwise, they return null because an error occurred, such as
incompatible types, destination buffer overflow, and so forth. elf_getdata describes the Elf_Data
descriptor, which the translation routines use as follows.
d_buf Both the source and destination must have valid buffer pointers.
d_type This member's value specifies the type of the data to which
d_buf points and the type of data to be created in the destination. The program supplies

a d_type value in the source; the library sets the destination's d_type to the same
value. These values are summarized below.

d_size This member holds the total size, in bytes, of the memory occupied by the source
data and the size allocated for the destination data. If the destination buffer is not
large enough, the routines do not change its original contents. The translation
routines reset the destination's d_size member to the actual size required, after the
translation occurs. The source and destination sizes may differ.

d_version This member holds version number of the objects (desired) in the buffer. The
source and destination versions are independent.

Translation routines allow the source and destination buffers to coincide. That is, dst->d_buf may
equal src->d_buf. Other cases where the source and destination buffers overlap give undefined
behavior.

ELF_Type 32-Bit Memory Type

ELF_T_ADDR Elf32_Addr

ELF_T_BYTE unsigned char

ELF_T_DYN Elf32_Dyn

ELF_T_EHDR Elf32_Ehdr

ELF_T_HALF Elf32_Half

5-6 SPARC Compliance Defintion 2.4 Interface Semantics 1998

libelf __

 “Translating” buffers of type ELF_T_BYTE does not change the byte order.

ELF_T_OFF Elf32_Off

ELF_T_PHDR Elf32_Phdr

ELF_T_REL Elf32_Rel

ELF_T_RELA Elf32_Rela

ELF_T_SHDR Elf32_Shdr

ELF_T_SWORD Elf32_Sword

ELF_T_SYM Elf32_Sym

ELF_T_WORD Elf32_Word

ELF_Type 32-Bit Memory Type

__libelf

1998 SPARC Compliance Definition 2.4 Interface Semantics 5-7

elf_begin

NAME
elf_begin

SYNOPSIS
#include <libelf.h>
Elf *elf_begin(int fildes, Elf_Cmd cmd, Elf *ref);

DESCRIPTION
elf_begin, elf_next, elf_rand, and elf_end work together to process ELF object files, either
individually or as members of archives. After obtaining an ELF descriptor from elf_begin, the
program may read an existing file, update an existing file, or create a new file. fildes is an open
file descriptor that elf_begin uses for reading or writing. The initial file offset [see lseek()] is
unconstrained, and the resulting file offset is undefined. cmd may have the following values.
ELF_C_NULL When a program sets cmd to this value, elf_begin returns a null pointer, without

opening a new descriptor. ref is ignored for this command.

ELF_C_READ When a program wishes to examine the contents of an existing file, it should set
cmd to this value. Depending on the value of ref, this command examines archive
members or entire files. Three cases can occur. First, if ref is a null pointer,
elf_begin allocates a new ELF descriptor and prepares to process the entire file.
If the file being read is an archive, elf_begin also prepares the resulting descriptor
to examine the initial archive member on the next call to elf_begin, as if the
program had used elf_next or elf_rand to “move” to the initial member. Second,
if ref is a non-null descriptor associated with an archive file, elf_begin lets a
program obtain a separate ELF descriptor associated with an individual member.
The program should have used elf_next or elf_rand to position ref appropriately
(except for the initial member, which elf_begin prepares;). In this case, fildes
should be the same file descriptor used for the parent archive. Finally, if ref is a
non-null ELF descriptor that is not an archive, elf_begin increments the number
of activations for the descriptor and returns ref, without allocating a new
descriptor and without changing the descriptor's read/write permissions. To
terminate the descriptor for ref, the program must call elf_end once for each
activation. See elf_next and the examples below for more information.

 ELF_C_RDWR This command duplicates the actions of ELF_C_READ and additionally allows
the program to update the file image. That is, using ELF_C_READ gives a read-
only view of the file, while ELF_C_RDWR lets the program read and write the
file. ELF_C_RDWR is not valid for archive members. If ref is non-null, it must
have been created with the ELF_C_RDWR command.

ELF_C_WRITE If the program wishes to ignore previous file contents, presumably to create a new
file, it should set cmd to this value. ref is ignored for this command. elf_begin
“works” on all files (including files with zero bytes), providing it can allocate
memory for its internal structures and read any necessary information from the
file. Programs reading object files thus may call elf_kind or elf_getehdr to
determine the file type (only object files have an ELF header). If the file is an
archive with no more members to process, or an error occurs, elf_begin returns
a null pointer. Otherwise, the return value is a non-null ELF descriptor. Before
the first call to elf_begin, a program must call elf_version to coordinate versions.

5-8 SPARC Compliance Defintion 2.4 Interface Semantics 1998

libelf __

elf_cntl

NAME
elf_cntl

SYNOPSIS
#include <libelf.h>
int elf_cntl(Elf *elf, Elf_Cmd cmd);

DESCRIPTION
elf_cntl instructs the library to modify its behavior with respect to an ELF descriptor, elf. As
elf_begin describes, an ELF descriptor can have multiple activations, and multiple ELF descriptors
may share a single file descriptor. Generally, elf_cntl commands apply to all activations of elf.
Moreover, if the ELF descriptor is associated with an archive file, descriptors for members within
the archive will also be affected as described below. Unless stated otherwise, operations on archive
members do not affect the descriptor for the containing archive.

The cmd argument tells what actions to take and may have the following values.

ELF_C_FDDONE This value tells the library not to use the file descriptor associated with elf.
A program should use this command when it has requested all the
information it cares to use and wishes to avoid the overhead of reading the
rest of the file. The memory for all completed operations remains valid, but
later file operations, such as the initial elf_getdata for a section, will fail if
the data is not in memory already.

ELF_C_FDREAD This command is similar to ELF_C_FDDONE, except it forces the library
to read the rest of the file. A program should use this command when it
must close the file descriptor but has not yet read everything it needs from
the file. After elf_cntl completes the ELF_C_FDREAD command, future
operations, such as elf_getdata, will use the memory version of the file
without needing to use the file descriptor.

RETURN VALUE
If elf_cntl succeeds, it returns zero. Otherwise elf was null or an error occurred, and the function
returns -1.

__libelf

1998 SPARC Compliance Definition 2.4 Interface Semantics 5-9

elf_end

NAME
 elf_end

SYNOPSIS
 #include <libelf.h>
 int elf_end(Elf *elf);

DESCRIPTION
A program uses elf_end to terminate an ELF descriptor, elf, and to de-allocate data associated with
the descriptor. Until the program terminates a descriptor, the data remain allocated. elf should be
a value previously returned by elf_begin; a null pointer is allowed as an argument, to simplify error
handling. If the program wishes to write data associated with the ELF descriptor to the file, it must
use elf_update before calling elf_end. As elf_begin explains, a descriptor can have more than one
activation. Calling elf_end removes one activation and returns the remaining activation count. The
library does not terminate the descriptor until the activation count reaches zero. Consequently, a
zero return value indicates the ELF descriptor is no longer valid.

5-10 SPARC Compliance Defintion 2.4 Interface Semantics 1998

libelf __

elf_errmsg
elf_errno

NAME
elf_errmsg, elf_errno

SYNOPSIS
#include <libelf.h>
const char *elf_errmsg(int err);
int elf_errno(void);

DESCRIPTION
If an ELF library function fails, a program may call elf_errno to retrieve the library's internal error
number. As a side effect, this function resets the internal error number to zero, which indicates no
error.

elf_errmsg takes an error number, err, and returns a null-terminated error message (with no
trailing newline) that describes the problem. A zero err retrieves a message for the most recent
error. If no error has occurred, the return value is a null pointer (not a pointer to the null string).
Using err of -1 also retrieves the most recent error, except it guarantees a non-null return value, even
when no error has occurred. If no message is available for the given number, elf_errmsg returns a
pointer to an appropriate message. This function does not have the side effect of clearing the
internal error number.

__libelf

1998 SPARC Compliance Definition 2.4 Interface Semantics 5-11

elf_fill

NAME
elf_fill

SYNOPSIS
#include <libelf.h>
void elf_fill(int fill);

DESCRIPTION
Alignment constraints for ELF files sometimes require the presence of “holes.” For example, if the
data for one section are required to begin on an eight-byte boundary, but the preceding section is
too “short,” the library must fill the intervening bytes. These bytes are set to the fill character. The
library uses zero bytes unless the application supplies a value. See elf_getdata for more information
about these holes.

5-12 SPARC Compliance Defintion 2.4 Interface Semantics 1998

libelf __

elf_flagdata
elf_flagehdr
elf_flagelf
elf_flagphdr
elf_flagscn
elf_flagshdr

NAME
elf_flagdata, elf_flagehdr, elf_flagelf, elf_flagphdr, elf_flagscn, elf_flagshdr

SYNOPSIS
#include <libelf.h>
unsigned elf_flagdata(Elf_Data *data, Elf_Cmd cmd, unsigned flags);
unsigned elf_flagehdr(Elf *elf, Elf_Cmd cmd, unsigned flags);
unsigned elf_flagelf(Elf *elf, Elf_Cmd cmd, unsigned flags);
unsigned elf_flagphdr(Elf *elf, Elf_Cmd cmd, unsigned flags);
unsigned elf_flagscn(Elf_Scn *scn, Elf_Cmd cmd, unsigned flags);
unsigned elf_flagshdr(Elf_Scn *scn, Elf_Cmd cmd, unsigned flags);

DESCRIPTION
These functions manipulate the flags associated with various structures of an ELF file. Given an
ELF descriptor elf, a data descriptor data, or a section descriptor scn, the functions may set or clear
the associated status bits, returning the updated bits. A null descriptor is allowed, to simplify error
handling; all functions return zero for this degenerate case.
cmd may have the following values.
ELF_C_CLR The functions clear the bits that are asserted in flags. Only the nonzero bits in flags

are cleared; zero bits do not change the status of the descriptor.

ELF_C_SET The functions set the bits that are asserted in flags. Only the nonzero bits in flags
are set; zero bits do not change the status of the descriptor.

Descriptions of the defined flags bits appear below.

ELF_F_DIRTY When the program intends to write an ELF file, this flag asserts the associated
information needs to be written to the file. Thus, for example, a program that
wished to update the ELF header of an existing file would call elf_flagehdr with
this bit set in flags and cmd equal to ELF_C_SET. A later call to elf_update
would write the marked header to the file.

ELF_F_LAYOUT Normally, the library decides how to arrange an output file. That is, it
automatically decides where to place sections, how to align them in the file, etc. If
this bit is set for an ELF descriptor, the program assumes responsibility for
determining all file positions. This bit is meaningful only for elf_flagelf and
applies to the entire file associated with the descriptor.When a flag bit is set for an
item, it affects all the sub-items as well. Thus, for example, if the program sets the
ELF_F_DIRTY bit with elf_flagelf, the entire logical file is ``dirty.''

__libelf

1998 SPARC Compliance Definition 2.4 Interface Semantics 5-13

elf_getarhdr

NAME
elf_getarhdr

SYNOPSIS
#include <libelf.h>
Elf_Arhdr *elf_getarhdr(Elf *elf);

DESCRIPTION
elf_getarhdr returns a pointer to an archive member header, if one is available for the ELF
descriptor elf. Otherwise, no archive member header exists, an error occurred, or elf was null;
elf_getarhdr then returns a null value. The header includes the following members.

char* ar_name;
time_t ar_date;
long ar_uid;
long ar_gid;
long ar_gid;
unsigned long ar_mode;
off_t ar_size;
char* ar_rawname;

An archive member name, available through ar_name, is a null-terminated string, with the ar format
control characters removed. The ar_rawname member holds a null-terminated string that represents
the original name bytes in the file, including the terminating slash and trailing blanks as specified
in the archive format.

In addition to ``regular'' archive members, the archive format defines some special members. All
special member names begin with a slash (/), distinguishing them from regular members (whose
names may not contain a slash). These special members have the names (ar_name) defined below.

/ This is the archive symbol table. If present, it will be the first archive member. A program may
access the archive symbol table through elf_getarsym. The information in the symbol table is useful
for random archive processing.

// This member, if present, holds a string table for long archive member names. An archive
member's header contains a 16-byte area for the name, which may be exceeded in some file systems.
The library automatically retrieves long member names from the string table, setting ar_name to the
appropriate value.
Under some error conditions, a member's name might not be available. Although this causes the
library to set ar_name to a null pointer, the ar_rawname member will be set as usual.

5-14 SPARC Compliance Defintion 2.4 Interface Semantics 1998

libelf __

elf_getarsym

NAME
elf_getarsym

SYNOPSIS
#include <libelf.h>
Elf_Arsym *elf_getarsym(Elf *elf, size_t *ptr);

DESCRIPTION
elf_getarsym returns a pointer to the archive symbol table, if one is available for the ELF descriptor
elf. Otherwise, the archive doesn't have a symbol table, an error occurred, or elf was null;
elf_getarsym then returns a null value. The symbol table is an array of structures that include the
following members.

 char* as_name;
 size_t as_off;
unsigned long as_hash;

These members have the following semantics:

as_name A pointer to a null-terminated symbol name resides here.

as_off This value is a byte offset from the beginning of the archive to the member's header.
The archive member residing at the given offset defines the associated symbol.
Values in as_off may be passed as arguments to elf_rand to access the desired
archive member.

as_hash This is a hash value for the name, as computed by elf_hash. If ptr is non-null, the
library stores the number of table entries in the location to which ptr points. This
value is set to zero when the return value is null. The table's last entry, which is
included in the count, has a null as_name, a zero value for as_off, and ~0UL for
as_hash.

__libelf

1998 SPARC Compliance Definition 2.4 Interface Semantics 5-15

elf_getbase

NAME
elf_getbase

SYNOPSIS
#include <libelf.h>
off32_t elf_getbase(Elf *elf);

DESCRIPTION
elf_getbase returns the file offset of the first byte of the file or archive member associated with elf,

if it is known or obtainable, and -1 otherwise. A null elf is allowed, to simplify error handling; the
return value in this case is -1. The base offset of an archive member is the beginning of the member's
information, not the beginning of the archive member header.

5-16 SPARC Compliance Defintion 2.4 Interface Semantics 1998

libelf __

elf_getdata
elf_newdata
elf_rawdata

 NAME
 elf_getdata, elf_newdata, elf_rawdata

SYNOPSIS
#include <libelf.h>
 Elf_Data *elf_getdata(Elf_Scn *scn, Elf_Data *data);
 Elf_Data *elf_newdata(Elf_Scn *scn);
Elf_Data *elf_rawdata(Elf_Scn *scn, Elf_Data *data);

DESCRIPTION
These functions access and manipulate the data associated with a section descriptor, scn. When
reading an existing file, a section will have a single data buffer associated with it. A program may
build a new section in pieces, however, composing the new data from multiple data buffers. For
this reason, ``the'' data for a section should be viewed as a list of buffers, each of which is available
through a data descriptor. elf_getdata lets a program step through a section's data list. If the
incoming data descriptor, data, is null, the function returns the first buffer associated with the
section. Otherwise, data should be a data descriptor associated with scn, and the function gives the
program access to the next data element for the section. If scn is null or an error occurs, elf_getdata
returns a null pointer.

elf_getdata translates the data from file representations into memory representations and presents
objects with memory data types to the program, based on the file's class. The working library
version specifies what version of the memory structures the program wishes elf_getdata to present.
elf_newdata creates a new data descriptor for a section, appending it to any data elements already
associated with the section. As described below, the new data descriptor appears empty, indicating
the element holds no data. For convenience, the descriptor's type (d_type below) is set to
ELF_T_BYTE, and the version (d_version below) is set to the working version. The program is
responsible for setting (or changing) the descriptor members as needed. This function implicitly
sets the ELF_F_DIRTY bit for the section's data. If scn is null or an error occurs, elf_newdata returns
a null pointer. elf_rawdata differs from elf_getdata by returning only uninterpreted bytes,
regardless of the section type. This function typically should be used only to retrieve a section
image from a file being read, and then only when a program must avoid the automatic data
translation described below. Moreover, a program may not close or disable the file descriptor
associated with elf before the initial raw operation, because elf_rawdata might read the data from
the file to ensure it doesn't interfere with elf_getdata. When elf_getdata provides the right
translation, its use is recommended over elf_rawdata. If scn is null or an error occurs, elf_rawdata
returns a null pointer.

The Elf_Data structure includes the following members.
void *d_buf;
Elf_Type d_type;
size_t d_size;

__libelf

1998 SPARC Compliance Definition 2.4 Interface Semantics 5-17

off_t d_off;
size_t d_align;
unsigned d_version;

These members are available for direct manipulation by the program. Descriptions appear below.

d_buf A pointer to the data buffer resides here. A data element with no data has a null
pointer.

d_type This member's value specifies the type of the data to which d_buf points. A section's
type determines how to interpret the section contents, as summarized below.

d_size This member holds the total size, in bytes, of the memory occupied by the data.
This may differ from the size as represented in the file. The size will be zero if no
data exist. [See the discussion of SHT_NOBITS below for more information.]

d_off This member gives the offset, within the section, at which the buffer resides. This
offset is relative to the file's section, not the memory object's.

d_align This member holds the buffer's required alignment, from the beginning of the
section. That is, d_off will be a multiple of this member's value. For example, if this
member's value is four, the beginning of the buffer will be four-byte aligned within
the section. Moreover, the entire section will be aligned to the maximum of its
constituents, thus ensuring appropriate alignment for a buffer within the section
and within the file.

d_version This member holds the version number of the objects in the buffer. When the
library originally read the data from the object file, it used the working version to
control the translation to memory objects.

DATA ALIGNMENT
As mentioned above, data buffers within a section have explicit alignment constraints.
Consequently, adjacent buffers sometimes will not abut, causing “holes” within a section.
Programs that create output files have two ways of dealing with these holes. First, the program
can use elf_fill to tell the library how to set the intervening bytes. When the library must generate
gaps in the file, it uses the fill byte to initialize the data there. The library's initial fill value is zero,
and elf_fill lets the application change that. Second, the application can generate its own data
buffers to occupy the gaps, filling the gaps with values appropriate for the section being created.
A program might even use different fill values for different sections. For example, it could set text
sections' bytes to no-operation instructions, while filling data section holes with zero. Using this
technique, the library finds no holes to fill, because the application eliminated them.

SECTION AND MEMORY TYPES
elf_getdata interprets sections' data according to the section type, as noted in the section header
available through elf_getshdr. The following table shows the section types and how the library
represents them with memory data types for the 32-bit file class. Other classes would have similar
tables. By implication, the memory data types control translation by elf_xlate.

5-18 SPARC Compliance Defintion 2.4 Interface Semantics 1998

libelf __

elf_rawdata creates a buffer with type ELF_T_BYTE.

As mentioned above, the program's working version controls what structures the library creates for
the application. The library similarly interprets section types according to the versions. If a section
type ``belongs'' to a version newer than the application's working version, the library does not
translate the section data. Because the application cannot know the data format in this case, the
library presents an untranslated buffer of type ELF_T_BYTE, just as it would for an unrecognized
section type.

A section with a special type, SHT_NOBITS, occupies no space in an object file, even when the
section header indicates a nonzero size. elf_getdata and elf_rawdata “work” on such a section,
setting the data structure to have a null buffer pointer and the type indicated above. Although no
data is present, the d_size value is set to the size from the section header. When a program is
creating a new section of type SHT_NOBITS, it should use elf_newdata to add data buffers to
the section. These “empty” data buffers should have the d_size members set to the desired size and
the d_buf members set to null.

Section Type Elf_type 32-Bit Type

SHT_DYNAMIC ELF_T_DYN Elf32_Dyn

SHT_DYNSYM ELF_T_SYM Elf32_Sym

SHT_HASH ELF_T_WORD Elf32_Word

SHT_NOBITS ELF_T_BYTE unsigned char

SHT_NOTE ELF_T_BYTE unsigned char

SHT_Null none none

SHT_PROGBITS ELF_T_BYTE unsigned char

SHT_REL ELF_T_REL Elf32_Rel

SHT_RELA ELF_T_RELA Elf32_Rela

SHT_STRTAB ELF_T_BYTE unsigned char

SHT_SYMTAB ELF_T_SYM Elf32_Sym

other ELF_T_BYTE unsigned char

__libelf

1998 SPARC Compliance Definition 2.4 Interface Semantics 5-19

elf_getident

NAME
elf_getident

SYNOPSIS
 #include <libelf.h>
 char *elf_getident(Elf *elf, size_t *ptr);

DESCRIPTION
ELF provides a framework for various classes of files, where basic objects may have 32 bits, 64 bits,
and so forth. To accommodate these differences, without forcing the larger sizes on smaller
machines, the initial bytes in an ELF file hold identification information common to all file classes.
Every ELF header's e_ident has EI_NIDENT bytes with the following interpretation.

Other kinds of files also may have identification data, though they would not conform to e_ident.
elf_getident returns a pointer to the file's ``initial bytes.'' If the library recognizes the file, a
conversion from the file image to the memory image may occur. In any case, the identification bytes
are guaranteed not to have been modified, though the size of the unmodified area depends on the
file type. If ptr is non-null, the library stores the number of identification bytes in the location to
which ptr points. If no data is present, elf is null, or an error occurs, the return value is a null pointer,
with zero optionally stored through ptr.

e_ident Index Value Purpose

EI_MAG0
EI_MAG1
EI_MAG2
EI_MAG3

ELFMAG0
ELFMAG1
ELFMAG2
ELFMAG3

File Identification

EI_CLASS ELFCLASSNONE
ELFCLASS32
ELFCLASS64

File Class

EI_DATA ELFDATANONE
ELFDATA2LSB
ELFDATA2MSB

Data encoding

EI_VERSION EV_CURRENT File Version

7-15 0 Unused, set to zero

5-20 SPARC Compliance Defintion 2.4 Interface Semantics 1998

libelf __

elf_hash

NAME
elf_hash

SYNOPSIS
#include <libelf.h>
unsigned long elf_hash(const char *name);

DESCRIPTION

elf_hash computes a hash value, given a null terminated string, name. The returned hash value, h,
can be used as a bucket index, typically after computing h mod x to ensure appropriate bounds.

Hash tables may be built on one machine and used on another because elf_hash uses unsigned
arithmetic to avoid possible differences in various machines' signed arithmetic. Although name is
shown as char* above, elf_hash treats it as unsigned char* to avoid sign extension differences. Using
char* eliminates type conflicts with expressions such as elf_hash(“name”).

ELF files' symbol hash tables are computed using this function. The hash value returned is
guaranteed not to be the bit pattern of all ones (~0UL).

__libelf

1998 SPARC Compliance Definition 2.4 Interface Semantics 5-21

elf_kind

NAME
elf_kind

SYNOPSIS
#include <libelf.h>
Elf_Kind elf_kind(Elf *elf);

DESCRIPTION
This function returns a value identifying the kind of file associated with an ELF descriptor elf.
Currently defined values appear below.

ELF_K_AR The file is an archive. An ELF descriptor may also be associated with an archive
member, not the archive itself, and then elf_kind identifies the member's type.

ELF_K_COFF The file is a COFF object file. elf_begin describes the library's handling for
COFF files.

ELF_K_ELF The file is an ELF file. The program may use elf_getident to determine the class.
Other functions, such as elf_getehdr, are available to retrieve other file
information.

ELF_K_NONE This indicates a kind of file unknown to the library. Other values are reserved, to
be assigned as needed to new kinds of files. elf should be a value previously
returned by elf_begin. A null pointer is allowed, to simplify error handling, and
causes elf_kind to return ELF_K_NONE.

5-22 SPARC Compliance Defintion 2.4 Interface Semantics 1998

libelf __

elf_getscn
elf_ndxscn
elf_newscn
elf_nextscn

NAME
elf_getscn, elf_ndxscn, elf_newscn, elf_nextscn

SYNOPSIS
#include <libelf.h>
Elf_Scn *elf_getscn(Elf *elf, size_t index);
size_t elf_ndxscn(Elf_Scn *scn);
Elf_Scn *elf_newscn(Elf *elf);
Elf_Scn *elf_nextscn(Elf *elf, Elf_Scn *scn);

DESCRIPTION
These functions provide indexed and sequential access to the sections associated with the ELF
descriptor elf. If the program is building a new file, it is responsible for creating the file's ELF header
before creating sections. elf_getscn returns a section descriptor, given an index into the file's section
header table. Note the first ``real'' section has index 1. Although a program can get a section
descriptor for the section whose index is 0 (SHN_UNDEF, the undefined section), the section has
no data and the section header is ``empty'' (though present). If the specified section does not exist,
an error occurs, or elf is null, elf_getscn returns a null pointer.

elf_newscn creates a new section and appends it to the list for elf. Because the SHN_UNDEF section
is required and not ``interesting'' to applications, the library creates it automatically. Thus the first
call to elf_newscn for an ELF descriptor with no existing sections returns a descriptor for section 1.
If an error occurs or elf is null, elf_newscn returns a null pointer.elf_newscn creates a new section
and appends it to the list for elf. Because the SHN_UNDEF section is required and not ``interesting''
to applications, the library creates it automatically. Thus the first call to elf_newscn for an ELF
descriptor with no existing sections returns a descriptor for section 1. If an error occurs or elf is null,
elf_newscn returns a null pointer. After creating a new section descriptor, the program can use
elf_getshdr to retrieve the newly created, ``clean'' section header. The new section descriptor will
have no associated data. When creating a new section in this way, the library updates the e_shnum
member of the ELF header and sets the ELF_F_DIRTY bit for the section. If the program is building
a new file, it is responsible for creating the file's ELF header before creating new sections.
Elf_nextscn takes an existing section descriptor, scn, and returns a section descriptor for the next
higher section. One may use a null scn to obtain a section descriptor for the section whose index is
1 (skipping the section whose index is SHN_UNDEF). If no further sections are present or an error
occurs, elf_nextscn returns a null pointer.

elf_ndxscn takes an existing section descriptor, scn, and returns its section table index. If scn is null
or an error occurs, elf_ndxscn returns SHN_UNDEF.

__libelf

1998 SPARC Compliance Definition 2.4 Interface Semantics 5-23

elf_next

NAME
elf_next

SYNOPSIS
#include <libelf.h>
Elf_Cmd elf_next(Elf *elf);

DESCRIPTION
elf_next, elf_rand, and elf_begin manipulate simple object files and archives. elf is an ELF descriptor
previously returned from elf_begin.

elf_next provides sequential access to the next archive member. That is, having an ELF descriptor,
elf, associated with an archive member, elf_next prepares the containing archive to access the
following member when the program calls elf_begin. After successfully positioning an archive for
the next member, elf_next returns the value ELF_C_READ. Otherwise, the open file was not an
archive, elf was null, or an error occurred, and the return value is ELF_C_NULL. In either case, the
return value may be passed as an argument to elf_begin, specifying the appropriate action.

5-24 SPARC Compliance Defintion 2.4 Interface Semantics 1998

libelf __

elf_rand

NAME
elf_rand

SYNOPSIS
#include <libelf.h>
size_t elf_rand(Elf *elf, size_t offset);

DESCRIPTION
elf_rand provides random archive processing, preparing elf to access an arbitrary archive member.
elf must be a descriptor for the archive itself, not a member within the archive. offset gives the byte
offset from the beginning of the archive to the archive header of the desired member. See
elf_getarsym for more information about archive member offsets. When elf_rand works, it returns
offset. Otherwise it returns 0, because an error occurred, elf was null, or the file was not an archive
(no archive member can have a zero offset). A program may mix random and sequential archive
processing.

__libelf

1998 SPARC Compliance Definition 2.4 Interface Semantics 5-25

elf_rawfile

NAME
elf_rawfile

SYNOPSIS
#include <libelf.h>
char *elf_rawfile(Elf *elf, size_t *ptr);

DESCRIPTION
elf_rawfile returns a pointer to an uninterpreted byte image of the file. This function should be used
only to retrieve a file being read. For example, a program might use elf_rawfile to retrieve the bytes
for an archive member.

A program may not close or disable the file descriptor associated with elf before the initial call to
elf_rawfile, because elf_rawfile might have to read the data from the file if it does not already have
the original bytes in memory. Generally, this function is more efficient for unknown file types than
for object files. The library implicitly translates object files in memory, while it leaves unknown files
unmodified. Thus asking for the uninterpreted image of an object file may create a duplicate copy
in memory.

elf_rawdata is a related function, providing access to sections within a file.

If ptr is non-null, the library also stores the file's size, in bytes, in the location to which ptr points. If
no data is present, elf is null, or an error occurs, the return value is a null pointer, with zero
optionally stored through ptr.

5-26 SPARC Compliance Defintion 2.4 Interface Semantics 1998

libelf __

elf_strptr

NAME
elf_strptr

SYNOPSIS
#include <libelf.h>
char *elf_strptr(Elf *elf, size_t section, size_t offset);

DESCRIPTION
This function converts a string section offset to a string pointer. elf identifies the file in which the
string section resides, and section gives the section table index for the strings. elf_strptr normally
returns a pointer to a string, but it returns a null pointer when elf is null, section is invalid or is not
a section of type SHT_STRTAB, the section data cannot be obtained, offset is invalid, or an error
occurs.

__libelf

1998 SPARC Compliance Definition 2.4 Interface Semantics 5-27

elf_update

NAME
elf_update

SYNOPSIS
#include <libelf.h>
off32_t elf_update(Elf *elf, Elf_Cmd cmd);

DESCRIPTION
elf_update causes the library to examine the information associated with an ELF descriptor, elf, and
to recalculate the structural data needed to generate the file's image.

cmd may have the following values.

ELF_C_NULL This value tells elf_update to recalculate various values, updating only the ELF
descriptor's memory structures. Any modified structures are flagged with the
ELF_F_DIRTY bit. A program thus can update the structural information and
then reexamine them without changing the file associated with the ELF descriptor.
Because this does not change the file, the ELF descriptor may allow reading,
writing, or both reading and writing.

ELF_C_WRITE If cmd has this value, elf_update duplicates its ELF_C_NULL actions and also
writes any “dirty” information associated with the ELF descriptor to the file. That
is, when a program has used elf_getdata or the elf_flag facilities to supply new
(or update existing) information for an ELF descriptor, those data will be
examined, coordinated, translated if necessary, and written to the file. When
portions of the file are written, any ELF_F_DIRTY bits are reset, indicating those
items no longer need to be written to the file. The sections' data is written in the
order of their section header entries, and the section header table is written to the
end of the file. When the ELF descriptor was created with elf_begin, it must have
allowed writing the file. That is, the elf_begin command must have been either
ELF_C_RDWR or ELF_C_WRITE.

If elf_update succeeds, it returns the total size of the file image (not the memory image), in bytes. Otherwise
an error occurred, and the function returns -1.

When updating the internal structures, elf_update sets some members itself. Members listed below are the
application's responsibility and retain the values given by the program.

5-28 SPARC Compliance Defintion 2.4 Interface Semantics 1998

libelf __

Table 1: ELF HEADER

Member Notes

e_ident[EI_DATA] Library controls other e_ident values

e_type

e_machine

e_version

e_entry

e_phoff Only when ELF_F_LAYOUT asserted

e_shoff Only when ELF_F_LAYOUT asserted

e_flags

e_shstmdx

Table 2: Section Header

Member Notes

sh_name

sh_type

sh_flags

sh_addr

sh_offset Only when ELF_F_LAYOUT asserted

sh_size Only when ELF_F_LAYOUT asserted

sh_link

sh_info

sh_addralign Only when ELF_F_LAYOUT asserted

sh_entsize

Table 3: Section Header

Member Notes

sh_name

sh_type

sh_flags

sh_addr

sh_offset Only when ELF_F_LAYOUT asserted

sh_size Only when ELF_F_LAYOUT asserted

sh_link

sh_info

__libelf

1998 SPARC Compliance Definition 2.4 Interface Semantics 5-29

Note: the program is responsible for two particularly important members (among others) in the
ELF header. The e_version member controls the version of data structures written to the file. If the
version is EV_NONE, the library uses its own internal version. The e_ident[EI_DATA] entry
controls the data encoding used in the file. As a special case, the value may be ELFDATANONE to
request the native data encoding for the host machine. An error occurs in this case if the native
encoding doesn't match a file encoding known by the library. Further note that the program is
responsible for the sh_entsize section header member. Although the library sets it for sections with
known types, it cannot reliably know the correct value for all sections. Consequently, the library
relies on the program to provide the values for unknown section type. If the entry size is unknown
or not applicable, the value should be set to zero. When deciding how to build the output file,
elf_update obeys the alignments of individual data buffers to create output sections. A section's
most strictly aligned data buffer controls the section's alignment. The library also inserts padding
between buffers, as necessary, to ensure the proper alignment of each buffer.

sh_addralign Only when ELF_F_LAYOUT asserted

sh_entsize

Table 4: Data Descriptor

Member Notes

d_buf

d_type

d_size

d_off Only when ELF_F_LAYOUT asserted

d_align

d_version

Table 3: Section Header

Member Notes

5-30 SPARC Compliance Defintion 2.4 Interface Semantics 1998

libelf __

elf_version

 NAME
elf_version

SYNOPSIS
#include <libelf.h>
unsigned elf_version(unsigned ver);

 DESCRIPTION
The program, the library, and an object file have independent notions of the “latest” ELF version.
elf_version lets a program determine the ELF library's internalversion.It further lets the program
specify what memory types it uses by giving its own working version, ver, to the library. Every
program that uses the ELF library must coordinate versions as described below.

The header file libelf.h supplies the version to the program with the macro EV_CURRENT. If the
library's internal version (the highest version known to the library) is lower than that known by the
program itself, the library may lack semantic knowledge assumed by the program. Accordingly,
elf_version will not accept a working version unknown to the library.

Passing ver equal to EV_NONE causes elf_version to return the library's internal version, without
altering the working version. If ver is a version known to the library, elf_version returns the
previous (or initial) working version number. Otherwise, the working version remains unchanged
and elf_version returns EV_NONE.

SPARC COMPLIANCE DEFINITION 2.4 IS

libintl

___libintl

1998 SPARC Compliance Definition 2.4 Interface Semantics 6-1

gettext, dgettext, dcgettext
textdomain, bindtextdomain

NAME
gettext, dgettext, dcgettext, textdomain, bindtextdomain - message handling functions

SYNOPSIS
#include <libintl.h>
#include <locale.h> /* needed for dcgettext() only */
char *gettext(const char *msgid);
char *dgettext(const char *domainname, const char *msgid);
char *dcgettext(const char *domainname, const char *msgid, int category);
char *textdomain(const char *domainname);
char *bindtextdomain(const char *domainname, const char *dirname);

DESCRIPTION
gettext(), dgettext(), and dcgettext() attempt to retrieve a target string based on the specified msgid argument
within the context of a specific domain and the current locale. The length of strings returned by gettext(),
dgettext(), and dcgettext() is undetermined until the function is called. The msgid argument is a null-
terminated string.

NLSPATH is searched first for the location of the LC_MESSAGES catalogue. The setting of the
LC_MESSAGES category of the current locale determines the locale used by gettext() and dgettext() for
string retrieval. category determines the locale used by dcgettext(). If NLSPATH is not defined and the
current locale is “C”, gettext(), dgettext(), and dcgettext() simply return the message string that was passed.
In a locale other than “C”, if NLSPATH is not defined or if a message catalogue is not found in any of the
components specified by NLSPATH, the routines search for the message catalogue
dirname/locale/category/domainname.mo, after querying bindtextdomain() for dirname.

For gettext(), the domain used is set by the last valid call to textdomain(). If a valid call to textdomain() has
not been made, the default domain (called messages) is used. For dgettext() and dcgettext(), the domain used
is specified by the domainname argument. The domainname argument is equivalent in syntax and meaning
to the domainname argument to textdomain(), except that the selection of the domain is valid only for the
duration of the dgettext() or dcgettext() call.

textdomain() sets or queries the name of the current domain of the active LC_MESSAGES locale category.
The domainname argument is a null-terminated string that can contain only the characters allowed in legal
filenames.

The domainname argument is the unique name of a domain on the system. If there are multiple versions of
the same domain on one system, namespace collisions can be avoided by using bindtextdomain(). If
textdomain() is not called, a default domain is selected. The setting of domain made by the last valid call to
textdomain() remains valid across subsequent calls to setlocale(), and gettext().

libintl ___

6-2 SPARC Compliance Defintion 2.4 Interface Semantics 1998

The domainname argument is applied to the currently active LC_MESSAGES locale. The current setting of
the domain can be queried without affecting the current state of the domain by calling textdomain() with
domainname set to the null pointer. Calling textdomain() with a domainname argument of a null string sets
the domain to the default domain (messages). bindtextdomain() binds the path predicate for a message
domain domainname to the value contained in dirname. If domainname is a non-empty string and has not been
bound previously, bindtextdomain() binds domainname with dirname.

If domainname is a non-empty string and has been bound previously, bindtextdomain() replaces the old
binding with dirname. dirname can be an absolute or relative pathname being resolved when gettext(),
dgettext(), or dcgettext() are called. If domainname is a null pointer or an empty string, bindtextdomain()
returns NULL. User defined domain names cannot begin with the string SYS_. Domain names beginning with
this string are reserved for system use.

RETURN VALUES
The individual bytes of the string returned by gettext(), dgettext(), or dcgettext() can contain any value other
than null. If msgid is a null pointer, the return value is undefined. The string returned must not be modified by
the program, and can be invalidated by a subsequent call to gettext(), dgettext(), dcgettext(), or setlocale(). If
the domainname argument to dgettext() or dcgettext() is a null pointer, the results are undefined. If the target
string cannot be found in the current locale and selected domain, gettext(), dgettext(), and dcgettext() return
msgid. The normal return value from textdomain() is a pointer to a string containing the current setting of the
domain. If domainname is a null pointer, textdomain() returns a pointer to the string containing the
current domain. If textdomain() was not previously called and domainname is a null string, the name of the
default domain is returned. The name of the default domain is messages.

The return value from bindtextdomain() is a null-terminated string containing dirname or the directory
binding associated with domainname if dirname is NULL. If no binding is found, the default return value is
/usr/lib/locale. If domainname is a null pointer or an empty string, bindtextdomain() takes no action and
returns a null pointer. The string returned must not be modified by the caller.

FILES
/usr/lib/locale The default path predicate for message

domain files.

/usr/lib/locale/locale/LC_MESSAGES/domainname.mo system default location for file containing
messages for language locale and
domainname

/usr/lib/locale/locale/LC_XXX/domainname.mo system default location for file containing
messages for language locale and
domainname for dcgettext() calls where
LC_XXX is LC_CTYPE,
LC_NUMERIC, LC_TIME,
LC_COLLATE, LC_MONETARY, or
LC_MESSAGES

dirname/locale/LC_MESSAGES/domainname.mo location for file containing messages for
domain domainname and path predicate
dirname after a successful call to
bindtextdomain()

___libintl

1998 SPARC Compliance Definition 2.4 Interface Semantics 6-3

dirname/locale/LC_XXX/domainname.mo location for files containing messages for
domain domainname, language locale, and
path predicate dirname after a successful call
to bindtextdomain() for dcgettext() calls
where LC_XXX is one of LC_CTYPE,
LC_NUMERIC, LC_TIME,
LC_COLLATE, LC_MONETARY, or
LC_MESSAGES.

SEE ALSO
msgfmt(), xgettext(), setlocale()

NOTES
These routines impose no limit on message length. However, a text domainname is limited to
TEXTDOMAINMAX (256) bytes.

gettext, dgettext, dcgettext, textdomain and bindtextdomain can be used safely in a multithread application,
as long as setlocale() is not being called to change the locale.

libintl ___

6-4 SPARC Compliance Defintion 2.4 Interface Semantics 1998

SPARC COMPLIANCE DEFINITION 2.4 IS

libm

___ libm

1998 SPARC Compliance Definition 2.4 Interface Semantics 7-1

copysign

NAME
copysign - return magnitude of first argument and sign of second argument

SYNOPSIS
#include <math.h>
double copysign(double x, double y);

DESCRIPTION
The copysign() function returns a value with the magnitude of x and the sign of y. It produces a NaN with the
sign of y if x is a NaN.

RETURN VALUES
 The copysign() function returns a value with the magnitude of x and the sign of y.

libm ___

7-2 SPARC Compliance Definition 2.4 Interface Semantics 1998

expm1

NAME
expm1 - computes exponential functions

SYNOPSIS
 #include <math.h>
 double expm1(double x);

DESCRIPTION
 The expm1() function computes ex-1.0.

RETURN VALUES
If x is NaN, then the function returns NaN.

If x is positive infinity, expm1() returns positive infinity.

If x is negative infinity, expm1() returns -1.0.

If the value overflows, expm1() returns HUGE_VAL.

ERRORS
 No errors will occur.

USAGE
The value of expm1(x) may be more accurate than exp(x)-1.0 for small values of x.

The expm1() and log1p() functions are useful for financial calculations of (((1+x)n)-1)/x namely:

expm1(n * log1p(x))/x

when x is very small (for example, when performing calculations with a small daily interest rate). These
functions also simplify writing accurate inverse hyperbolic functions.

SEE ALSO
 exp(), ilogb(), log1p()

___ libm

1998 SPARC Compliance Definition 2.4 Interface Semantics 7-3

ilogb

NAME
ilogb - returns an unbiased exponent

SYNOPSIS
 #include <math.h>
 int ilogb(double x);

DESCRIPTION
The ilogb() function returns the exponent part of x. Formally, the return value is the integral part of log(sub
r) |x| as a signed integral value, for non-zero finite x, where r is the radix of the machine's floating point
arithmetic.

RETURN VALUES
Upon successful completion, ilogb() returns the exponent part of x.

If x is 0, ilogb() returns -INT_MAX.

If x is NaN or +/-Inf, ilogb() returns INT_MAX.

SEE ALSO
logb()

libm ___

7-4 SPARC Compliance Definition 2.4 Interface Semantics 1998

log1p

NAME
log1p - compute natural logarithm

SYNOPSIS
 #include <math.h>
 double log1p(double x);

DESCRIPTION
 The log1p() function computes log e(1.0 + x). The value of x must be greater than -1.0.

RETURN VALUES
Upon successful completion, log1p() returns the natural logarithm of 1.0 + x.

If x is NaN, log1p() returns NaN.

If x is less than -1.0, log1p() returns -HUGE_VAL or NaN and sets errno to EDOM.

If x is -1.0, log1p() returns -HUGE_VAL and may set errno to ERANGE.

For exceptional cases, matherr() tabulates the values to be returned as dictated by Standards other than
XPG4.

ERRORS
 The log1p() function will fail if:

EDOM The value of x is less than -1.0.

 The log1p() function may fail and set errno to:

ERANGE The value of x is -1.0.

SEE ALSO
 log(), matherr()

___ libm

1998 SPARC Compliance Definition 2.4 Interface Semantics 7-5

rint

NAME
rint - round-to-nearest integral value

SYNOPSIS
#include <math.h>
double rint(double x);

DESCRIPTION
The rint() function returns the integral value (represented as a double) nearest x in the direction of the current
IEEE754 rounding mode.

If the current rounding mode rounds toward negative infinity, then rint() is identical to floor(). If the current
rounding mode rounds toward positive infinity, then rint() is identical to ceil().

RETURN VALUES
Upon successful completion, the rint() function returns the integer (represented as a double precision number)
nearest x in the direction of the current IEEE754 rounding mode.

When x is +/-Inf, rint() returns x.

If the value of x is NaN, NaN is returned.

ERRORS
No errors will occur.

SEE ALSO
ceil(), floor(), isnan()

libm ___

7-6 SPARC Compliance Definition 2.4 Interface Semantics 1998

scalbn

NAME
scalbn - load exponent of a radix-independent floating-point number

SYNOPSIS
 #include <math.h>
 double scalbn(double x, int n);

DESCRIPTION
 The scalbn() function computes x * rn, where r is the radix of the machine's floating point arithmetic.

RETURN VALUES
 Upon successful completion, the scalbn() function returns x * rn.

 If the correct value would overflow, scalbn() returns +/-HUGE_VAL (according to the sign of x).

 The scalbn() function returns x when x is +/-Inf.

 If x is NaN, then scalbn() returns NaN.

___ libm

1998 SPARC Compliance Definition 2.4 Interface Semantics 7-7

significand

NAME
significand - significand function

SYNOPSIS
#include <math.h>
double significand(double x);

DESCRIPTION
The significand() function, along with the logb() and scalb() functions, allows users to verify compliance to
ANSI/IEEE Std 754-1985 by running certain test vectors distributed by the University of California.

If x equals sig * 2n with 1 < sig < 2, then significand(x) returns sig for exercising the fraction-part(F) test
vector. significand(x) is not defined when x is either 0, +/-Inf or NaN.

RETURN VALUES
For exceptional cases, matherr() tabulates the values to be returned as dictated by various Standards.

SEE ALSO
logb(), matherr(), scalb()

libm ___

7-8 SPARC Compliance Definition 2.4 Interface Semantics 1998

SPARC COMPLIANCE DEFINITION 2.4 IS

libnisdb

___libnisdb

1998 SPARC Compliance Definition 2.4 Interface Semantics 8-1

db_table_exists, db_unload_table, db_free_result

NAME
db_table_exists, db_unload_table, db_free_result - NIS+ service functions

SYNOPSIS
#include <rpcsvc/nis.h>
#include <rpcsvc/nis_db.h>
db_status db_table_exists(const char *table_name);
db_status db_unload_table(const char *table_name);
void db_free_result(db_result *);

DESCRIPTION
db_table_exists() provides an efficient way for the NIS+ service to detect that a table exists. This increases
response time to the client and lowers the load on the server.

db_unload_table() is used by the service to unload or deactivate tables that are not currently being used.
The service internally keeps track of access patterns to tables and will unload those tables that have not
been accessed for a while. By unloading infrequently accessed tables, the service can minimize the amount
of system resources for efficient operation.

db_free_result() frees up the space allocated by various functions listed on this manual page that return a
db_result structure.

libnisdb ___

8-2 SPARC Compliance Defintion 2.4 Interface Semantics 1998

db_initialize, db_create_table, db_destroy_table, db_first_entry
db_next_entry, db_reset_next_entry, db_list_entries, db_remove_entry
db_add_entry, db_table_exists, db_unload_table, db_checkpoint,
db_standby, db_free_result

NAME
db_initialize, db_create_table, db_destroy_table, db_first_entry, db_next_entry, db_reset_next_entry,
db_list_entries, db_remove_entry, db_add_entry, db_table_exists, db_unload_table, db_checkpoint,
db_standby, db_free_result - NIS+ Database access functions

SYNOPSIS
#include <rpcsvc/nis.h>
#include <rpcsvc/nis_db.h>
bool db_initialize(const char *dictionary_pathname);
db_status db_create_table(const char *table_name, const table_obj *table);
db_status db_destroy_table(const char *table_name);
db_result *db_first_entry(const char *table_name, const int numattrs, const nis_attr *attrs);
db_result *db_next_entry(const char *table_name,const db_next_desc *next_handle);
db_result *db_reset_next_entry(const char *table_name,const db_next_desc *next_handle);
db_result *db_list_entries(const char *table_name,const int numattrs,

const nis_attr *attrs);
db_result *db_remove_entry(const char *table_name, const int numattrs,

const nis_attr *attrs);
db_result *db_add_entry(const char *table_name, const int numattrs,

const nis_attr *attrs, const entry_obj *entry);
db_status db_table_exists(const char *table_name);
db_status db_unload_table(const char *table_name);
db_status db_checkpoint(const char *table_name);
db_status db_standby(const char *table_name);
void db_free_result(db_result *);

DESCRIPTION
These functions describe the interface between the NIS+ server and the underlying database. They are
defined in the shared library /usr/lib/libnisdb.so.

The interface is a simple subset of a complete relational database and provides just those items that are
needed by the NIS+ server daemon. When you replace the database, your interface routines should match
these exactly. Also note that the database is responsible for verifying that the objects passed do not exceed
the internal limits of the database being used.

The database's performance will directly affect the performance of the server. The default information base
that is provided with NIS+ is the Structured Storage Manager (SSM). This is a memory based database that
has been tuned for NIS+.

___libnisdb

1998 SPARC Compliance Definition 2.4 Interface Semantics 8-3

These routines should not be invoked by any NIS+ client. NIS+ clients should use the NIS+ tables API
described in nis_tables().

These routines only use the table_obj, entry_obj and the nis_attr structures defined in <rpcsvc/nis.h>. The
NIS+ directory is itself stored in a table by the service daemon. This table has two columns, one searchable
with the name of the object in it, the other non-searchable with binary XDRed data in it. The NIS+ server
converts directory lookup requests in the namespace into table searches. The table it searches in response to
these requests will have the same name as the directory of the name it is searching for.

The structure returned by the DB access routines is defined as:
enum db_status {

DB_SUCCESS,
DB_NOTFOUND,
DB_NOTUNIQUE,
DB_BADTABLE,
DB_BADQUERY,
DB_BADOBJECT,
DB_MEMORY_LIMIT,
DB_STORAGE_LIMIT,
DB_INTERNAL_ERROR

};
struct db_result {

db_status status; /* Result status */
db_next_desc nextinfo; /* descriptor */
struct {

u_int objects_len;
entry_obj *objects_val;

} objects; /* A variable list of objects */
long ticks; /* execution time in microseconds */

};

The structure db_next_desc should be used as an opaque handle for db_next_entry() and
db_reset_next_entry().

The nis_attr structure used in db_first_entry and other related functions is defined as follows:

struct nis_attr {
char *zattr_ndx;
struct {

u_int zattr_val_len;
char *zattr_val_val;

} zattr_val;
};

zattr_ndx is the name of the attribute. zattr_val_len is the value of the attribute zattr_val_val.

In db_result, the objects array contains objects if and only if the result returned in the status variable is
DB_SUCCESS. A null pointer, instead of a pointer to a db_result structure, is returned if there is
insufficient memory to create the structure.

db_initialize() is called prior to any interaction with the database. It takes as argument the pathname of the
file that contains, or will contain, catalog information associated with the database.

libnisdb ___

8-4 SPARC Compliance Defintion 2.4 Interface Semantics 1998

db_create_table() creates a new table using the given table name and the table object. It returns TRUE if
the table was successfully created; FALSE otherwise.

db_destroy_table() destroys the table of the given name. It returns TRUE if the destruction was successful;
FALSE otherwise.

db_first_entry() returns a copy of the first entry in the specified table that satisfies the given attributes. If no
attributes are supplied, a copy of the first entry in the table is returned. attrs is an array of nis_attr structure
with numattrs number of elements. The returned structure, db_result, contains a structure, db_next_desc, to
be used as an argument to db_next_entry() or db_reset_next_entry(). db_next_desc should only be used
only as an opaque handle. db_free_result() can be used to free up the returned db_result structure.

db_next_entry() returns a copy of the next entry as indicated by the next_handle. An initial call to
db_first_entry(), followed by a sequence of calls to db_next_entry(), can be used to successfully obtain
entries of an entire table or entries that satisfy the attributes supplied to db_first_entry(). db_free_result()
can be used to free up the returned db_result structure.

db_reset_next_entry() terminates the db_first_entry()/db_next_entry() sequence as indicated by
next_handle, freeing any resources that have been used to maintain the sequence. After a call to
db_reset_next_entry(), a call to db_next_entry() using the same next_handle would fail, returning a
DB_BADQUERY reply.

db_free_result() can be used to free up the returned db_result structure.

db_list_entries() returns copies of entries that satisfy the given attributes. db_free_result() can be used to
free up the returned db_result structure. attrs is an array of nis_attr structure with numattrs number of
elements.

db_remove_entry() removes all entries that satisfy the given attributes. db_free_result() can be used to free
up the returned db_result structure. attrs is an array of nis_attr structure with numattrs number of elements.

db_add_entry() adds a copy of the given object to the specified table, replacing the one identified by the
given attributes. If the given attributes identify more than one object, DB_NOTUNIQUE is returned. If no
object is identified by the given attributes, the object is added. attrs is an array of nis_attr structure with
numattrs number of elements. db_free_result() can be used to free up the returned db_result structure.

db_table_exists() provides an efficient way for the NIS+ service to detect that a table exists. This increases
response time to the client and lowers the load on the server.

db_unload_table() is used by the service to unload or deactivate tables that are not currently being used.
The service internally keeps track of access patterns to tables and will unload those tables that have not
been accessed for a while. By unloading infrequently accessed tables, the service can minimize the amount
of system resources for efficient operation.

db_checkpoint() organizes the contents of the table in a more efficient manner. Checkpointing may mean
different things to different types of databases. It does not affect the logical contents of the table -
operations and queries should return the same result before and after a checkpoint. For example, in a log-
based system, checkpointing may mean incorporating log entries of updates accumulated since the previous
checkpoint into the table.

db_free_result() frees up the space allocated by various functions listed on this manual page that return a
db_result structure.

db_standby() is an advisory call to the database manager. This call informs the database that activity has

___libnisdb

1998 SPARC Compliance Definition 2.4 Interface Semantics 8-5

slowed down and it can free up unnecessary resources such as file descriptors.

PROGRAMMING
Most of the routines in this library use an NIS+ name to identify the object that the user desires. The name
must be in canonical form before being passed to the database because one server may be serving several
namespaces and discrimination of the requested objects is accomplished by comparing the domain names.

DIAGNOSTICS
DB_SUCCESS The query or operation completed successfully and returned status.
DB_NOTFOUND The name or entry that was named in the argument did not exist.
DB_NOTUNIQUE An attempt was made to remove an entry from a table that is not

uniquely specified.
DB_BADQUERY The query that was submitted to the database was invalid (for example,

it might name some nonexistent fields).
DB_BADTABLE The table was corrupted.
DB_BADOBJECT The fields of the object does not conform to the fields of the table to

which it is being added.
DB_MEMORY_LIMIT There is insufficient memory to complete the operation requested.
DB_STORAGE_LIMIT There is insufficient file storage available to complete the operation

requested.

DB_INTERNAL_ERROR An internal error was encountered during the execution of the operation
requested (either a programming error or an unrecoverable exception).

libnisdb ___

8-6 SPARC Compliance Defintion 2.4 Interface Semantics 1998

SPARC COMPLIANCE DEFINITION 2.4 IS

libnsl

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-1

inet_addr
inet_netof
inet_ntoa

NAME
inet_addr, inet_netof, inet_ntoa - Internet address manipulation

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
unsigned long inet_addr (char *cp);
int inet_netof (struct in_addr in);
char *inet_ntoa (struct in_addr in);

DESCRIPTION
The inet_addr routines interpret a character string, cp, representing numbers expressed in the
Internet standard “.” notation, returning numbers suitable for use as Internet addresses and
Internet network numbers, respectively. The routines inet_netof breaks apart an Internet host
address, in, returning the network number and local network address part, respectively. The
routine inet_ntoa returns a pointer to a string in the base 256 notation “d.d.d.d” described below.
All Internet addresses are returned in network order (bytes ordered from left to right). All network
numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES
Values specified using the ‘.’ notation take one of the following forms: a.b.c.d, a.b.c, a.b, a. When
four parts are specified, each is interpreted as a byte of data and assigned, from left to right, to the
four bytes of an Internet address. When a three part address is specified, the last part is interpreted
as a 16-bit quantity and placed in the right most two bytes of the network address. This makes the
three part address format convenient for specifying Class B network addresses as “128.net.host”.
When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed in
the right most three bytes of the network address. This makes the two part address format
convenient for specifying Class A network addresses as “net.host”. When only one part is given,
the value is stored directly in the network address without any byte rearrangement. All numbers
supplied as “parts” in a ‘.’ notation may be decimal, octal, or hexadecimal, as specified in the C
language (that is, a leading 0x or 0X implies hexadecimal; otherwise, a leading 0 implies octal;
otherwise, the number is interpreted as decimal).

RETURN VALUES
The value -1 is returned by inet_addr for malformed requests. The routines inet_netof break apart
Internet host addresses, returning the network number and local network address part,
respectively. The routine inet_ntoa returns a pointer to a string in the base 256 notation “d.d.d.d”
described below.

libnsl __

9-2 SPARC Compliance Defintion 2.4 Interface Semantics 1998

authdes_create
authunix_create, authunix_create_default
callrpc
clnt_broadcast
clntraw_create
clnttcp_create,clntudp_bufcreate, clntudp_create
get_myaddress
getrpcport
pmap_getmaps
pmap_getport
pmap_rmtcall
pmap_set, pmap_unset
registerrpc
rpc_soc
svc_fds
svc_getcaller, svc_getreq
svc_register, svc_unregister
svcfd_create, svcraw_create, svctcp_create
svcudp_bufcreate, svcudp_create
xdr_authunix_parms

NAME
rpc_soc, authdes_create, authunix_create, authunix_create_default, callrpc, clnt_broadcast,
clntraw_create, clnttcp_create, clntudp_bufcreate, clntudp_create, get_myaddress, getrpcport,
pmap_getmaps, pmap_getport, pmap_rmtcall, pmap_set, pmap_unset, registerrpc, svc_fds,
svc_getcaller, svc_getreq, svc_register, svc_unregister, svcfd_create, svcraw_create, svctcp_create,
svcudp_bufcreate, svcudp_create, xdr_authunix_parms - obsolete library routines for RPC

SYNOPSIS

#define PORTMAP
#include <rpc/rpc.h>
AUTH *authdes_create (char *name, unsigned window,

struct sockaddr *syncaddr, des_block *ckey);
AUTH *authunix_create (char *host, int uid, int gid,

int grouplen, int gidlistp);
AUTH *authunix_create_default (void)
int callrpc (char *host, u_long prognum,

u_long versnum, u_long procnum,
xdrproc_t inproc, char *in,
xdrproc_t outproc, char *out);

enum clnt_stat clnt_broadcast (u_long prognum, u_long versnum,
u_long procnum, xdrproc_t inproc,
char *in, xdrproc_t outproc,
char *out, resultproc_t eachresult);

CLIENT *clntraw_create (u_long prognum, u_long versnum);
CLIENT *clnttcp_create (struct sockaddr_in *addr,

u_long prognum, u_long versnum,
int *fdp, u_int sendsz, u_int recvsz);

CLIENT *clntudp_bufcreate (struct sockaddr_in *addr,
u_long prognum, u_long versnum,
struct timeval wait, int *fdp,

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-3

u_int sendsz, u_int recvsz);

CLIENT *clntudp_create (struct sockaddr_in *addr,
u_long prognum, u_long versnum,
struct timeval wait, int *fdp);

void get_myaddress (struct sockaddr_in *addr);
void getrpcport (char *host, int prognum, int versnum, int proto)
struct pmaplist *pmap_getmaps (struct sockaddr_in *addr);
u_short pmap_getport (struct sockaddr_in *addr,

u_long prognum, u_long versnum,
u_long protocol);

enum clnt_stat pmap_rmtcall (struct sockaddr_in *addr,
u_long prognum, u_long versnum,
u_long procnum, char *in,
xdrproct_t inproc, char *out,
xdrproct_t outproc, struct timeval tout,
u_long *portp);

bool_t pmap_set (u_long prognum, u_long versnum,
u_long protocol, u_short port);

bool_t pmap_unset (u_long prognum, u_long versnum);
int svc_fds;
struct sockaddr_in *svc_getcaller (SVCXPRT *xprt);
void svc_getreq (int rdfds);
SVCXPRT *svcfd_create (int fd, u_int sendsz, u_int recvsz);
SVCXPRT *svcraw_create (void);
SVCXPRT *svctcp_create (int fd, u_int sendsz, u_int recvsz);
SVCXPRT *svcudp_bufcreate (int fd, u_int sendsz, u_int recvsz);
SVCXPRT *svcudp_create (int fd);
int registerrpc (u_long prognum, u_long versnum,

u_long procnum, char *(*procname)(),
xdrproc_t inproc, xdrproc_t outproc);

int svc_register (SVCXPRT *xprt, u_long prognum,
u_long versnum, void (*dispatch)(),
u_long protocol);

void svc_unregister (u_long prognum, u_long versnum);
int xdr_authunix_parms (XDR *xdrs, struct authunix_parms *aupp);

DESCRIPTION
RPC routines allow C programs to make procedure calls on other machines across the network. First, the
client calls a procedure to send a request to the server. Upon receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends back a reply. Finally, the procedure call
returns to the client. The routines described in this manual page have been superseded by other routines.
The preferred routine is given after the description of the routine. New programs should use the preferred
routines, as support for the older interfaces may be dropped in future releases. Transport independent RPC
uses TLI as its transport interface instead of sockets. Some of the routines described in this section (such as
clnttcp_create()) take a pointer to a file descriptor as one of the parameters. If the user wants the file
descriptor to be a socket, then the application will have to be linked with both librpcsoc and libnsl. If the
user passed RPC_ANYSOCK as the file descriptor, and the application is linked with libnsl only, then the
routine will return a TLI file descriptor and not a socket. The following routines require that the header
<rpc/rpc.h> be included. The symbol PORTMAP should be defined so that the appropriate function
declarations for the old interfaces are included through the header files.

libnsl __

9-4 SPARC Compliance Defintion 2.4 Interface Semantics 1998

authdes_create():
authdes_create() is the first of two routines which interface to the RPC secure authentication system,
known as DES authentication.The second is authdes_getucred(), below. Note: the keyserver daemon
keyserv() must be running for the DES authentication system to work. authdes_create(), used on the
client side, returns an authentication handle that will enable the use of the secure authentication system.
The first parameter name is the network name, or netname, of the owner of the server process. This field
usually represents a hostname derived from the utility routine host2netname(), but could also represent a
user name using user2netname() (see secure_rpc()). The second field is window on the validity of the
client credential, given in seconds. A small window is more secure than a large one, but choosing too small
of a window will increase the frequency of re-synchronizations because of clock drift. The third parameter
syncaddr is optional. If it is NULL, then the authentication system will assume that the local clock is
always in sync with the server's clock, and will not attempt re-synchronizations. If an address is supplied,
however, then the system will use the address for consulting the remote time service whenever re-
synchronization is required. This parameter is usually the address of the RPC server itself. The final
parameter ckey is also optional. If it is NULL, then the authentication system will generate a random DES
key to be used for the encryption of credentials. If it is supplied, however, then it will be used instead.
Warning: this routine exists for backward compatibility only, and is obsoleted by authdes_seccreate() (see
secure_rpc()).

authunix_create():
Create and return an RPC authentication handle that contains.UX authentication information. The
parameter host is the name of the machine on which the information was created; uid is the user's user ID;
gid is the user's current group ID; grouplen and gidlistp refer to a counted array of groups to which the user
belongs. Warning: it is not very difficult to impersonate a user.

authunix_create_default():
Call authunix_create() with the appropriate parameters. Warning: this routine exists for backward
compatibility only, and is obsoleted by authsys_create_default() (see rpc_clnt_auth()).

callrpc():
Call the remote procedure associated with prognum, versnum, and procnum on the machine, host. The
parameter inproc is used to encode the procedure's parameters, and outproc is used to decode the
procedure's results; in is the address of the procedure's argument, and out is the address of where to place
the result(s). This routine returns 0 if it succeeds, or the value of enum clnt_stat cast to an integer if it fails.
The routine clnt_perrno() (see rpc_clnt_calls()) is handy for translating failure statuses into messages.
Warning: you do not have control of timeouts or authentication using this routine. This routine exists for
backward compatibility only, and is obsoleted by rpc_call() (see rpc_clnt_calls()).

clnt_broadcast:
Like callrpc(), except the call message is broadcast to all locally connected broadcast nets. Each time the
caller receives a response, this routine calls eachresult(), whose form is: eachresult(char *out, struct
sockaddr_in *addr); where out is the same as out passed to clnt_broadcast(), except that the remote
procedure's output is decoded there; addr points to the address of the machine that sent the results. If
eachresult() returns 0 clnt_broadcast() waits for more replies; otherwise it returns with appropriate
status. If eachresult() is NULL, clnt_broadcast() returns without waiting for any replies. Warning:
broadcast packets are limited in size to the maximum transfer unit of the transports involved. For Ethernet,
the callers argument size is approximately 1500 bytes. Since the call message is sent to all connected
networks, it may potentially lead to broadcast storms. clnt_broadcast() uses SB AUTH_SYS credentials
by default (see rpc_clnt_auth()). Warning: this routine exists for backward compatibility only, and is
obsoleted by rpc_broadcast() (see rpc_clnt_calls()).

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-5

clntraw_create():
This routine creates an internal, memory-based RPC client for the remote program prognum, version
versnum. The transport used to pass messages to the service is actually a buffer within the process's address
space, so the corresponding RPC server should live in the same address space; see svcraw_create(). This
allows simulation of RPC and acquisition of RPC overheads, such as round trip times, without any kernel
interference. This routine returns NULL if it fails. Warning: this routine exists for backward compatibility
only, and has the same functionality as clnt_raw_create() (see rpc_clnt_create()), which obsoletes it.

clnttcp_create():
This routine creates an RPC client for the remote program prognum, version versnum; the client uses
TCP/IP as a transport. The remote program is located at Internet address addr. If addr->sin_port is 0, then
it is set to the actual port that the remote program is listening on (the remote rpcbind service is consulted
for this information). The parameter *fdp is a file descriptor, which may be open and bound; if it is
RPC_ANYSOCK, then this routine opens a new one and sets *fdp. Refer to the File Descriptor section for
more information. Since TCP-based RPC uses buffered I/O, the user may specify the size of the send and
receive buffers with the parameters sendsz and recvsz; values of 0 choose suitable defaults. This routine
returns NULL if it fails.

clntudp_bufcreate():
Create a client handle for the remote program prognum, on versnum; the client uses UDP/IP as the
transport. The remote program is located at the Internet address addr. If addr->sin_port is 0, it is set to port
on which the remote program is listening on (the remote rpcbind service is consulted for this information).
The parameter *fdp is a file descriptor, which may be open and bound; if it is RPC_ANYSOCK, then this
routine opens a new one and sets *fdp. Refer to the File Descriptor section for more information. The UDP
transport resends the call message in intervals of wait time until a response is received or until the call
times out. The total time for the call to time out is specified by clnt_call() (see rpc_clnt_calls()). If
successful it returns a client handle, otherwise it returns NULL. The error can be printed using the
clnt_pcreateerror() (see rpc_clnt_create()) routine. The user can specify the maximum packet size for
sending and receiving by using sendsz and recvsz arguments for UDP-based RPC messages. Warning: if
addr->sin_port is 0 and the requested version number versnum is not registered with the remote portmap
service, it returns a handle if at least a version number for the given program number is registered. The
version mismatch is discovered by a clnt_call() later (see rpc_clnt_calls()). Warning: this routine exists
for backward compatibility only. clnt_tli_create() or clnt_dg_create() (see rpc_clnt_create()) should be
used instead.

clntudp_create():
This routine creates an RPC client handle for the remote program prognum, version versnum; the client
uses UDP/IP as a transport. The remote program is located at Internet address addr. If addr->sin_port is 0,
then it is set to actual port that the remote program is listening on (the remote rpcbind service is consulted
for this information). The parameter *fdp is a file descriptor, which may be open and bound; if it is
RPC_ANYSOCK, then this routine opens a new one and sets *fdp. Refer to the File Descriptor section for
more information. The UDP transport resends the call message in intervals of wait time until a response is
received or until the call times out. The total time for the call to time out is specified by clnt_call() (see
rpc_clnt_calls()). clntudp_create() returns a client handle on success, otherwise it returns NULL. The
error can be printed using the clnt_pcreateerror() (see rpc_clnt_create()) routine. Warning: since UDP-
based RPC messages can only hold up to 8 Kbytes of encoded data, this transport cannot be used for
procedures that take large arguments or return huge results. Warning: this routine exists for backward
compatibility only.clnt_create(), clnt_tli_create(), or clnt_dg_create() (see rpc_clnt_create()) should
be used instead.

libnsl __

9-6 SPARC Compliance Defintion 2.4 Interface Semantics 1998

get_myaddress():
Places the local system's IP address into *addr, without consulting the library routines that deal with
/etc/hosts. The port number is always set to htons(PMAPPORT). Warning: this routine is only intended
for use with the RPC library. It returns the local system's address in a form compatible with the RPC
library, and should not be taken as the system's actual IP address. In fact, the *addr buffer's host address
part is actually zeroed. This address may have only local significance and should NOT be assumed to be an
address that can be used to connect to the local system by remote systems or processes. Warning: this
routine remains for backward compatibility only.The routine netdir_getbyname() (see netdir()) should be
used with the name HOST_SELF to retrieve the local system's network address as a netbuf structure.

getrpcport():
getrpcport() returns the port number for the version versnum of the RPC program prognum running on
host and using protocol proto. getrpcport() returns 0 if the RPC system failed to contact the remote
portmap service, the program associated with prognum is not registered, or there is no mapping between
the program and a port. Warning: This routine exists for backward compatibility only.Enhanced
functionality is provided by rpcb_getaddr() (see rpcbind()).

pmap_getmaps():
A user interface to the portmap service, which returns a list of the current RPC program-to-port mappings
on the host located at IP address addr. This routine can return NULL. The command `rpcinfo -p' uses this
routine. Warning: this routine exists for backward compatibility only, enhanced functionality is provided by
rpcb_getmaps() (see rpcbind()).

pmap_getport():
A user interface to the portmap service, which returns the port number on which waits a service that
supports program prognum, version versnum, and speaks the transport protocol associated with protocol.
The value of protocol is most likely IPPROTO_UDP or IPPROTO_TCP. A return value of 0 means that
the mapping does not exist or that the RPC system failure to contact the remote portmap service. In the
latter case, the global variable rpc_createerr contains the RPC status. Warning: this routine exists for
backward compatibility only, enhanced functionality is provided by rpcb_getaddr() (see rpcbind()).

pmap_rmtcall():
Request that the portmap on the host at IP address *addr make an RPC on the behalf of the caller to a
procedure on that host. *portp is modified to the program's port number if the procedure succeeds. The
definitions of other parameters are discussed in callrpc() and clnt_call() (see rpc_clnt_calls()). Note: this
procedure is only available for the UDP transport. Warning: if the requested remote procedure is not
registered with the remote portmap then no error response is returned and the call times out. Also, no
authentication is done. Warning: this routine exists for backward compatibility only, enhanced functionality
is provided by rpcb_rmtcall() (see rpcbind()).

pmap_set():
A user interface to the portmap service, that establishes a mapping between the triple [prognum, versnum,
protocol] and port on the machine's portmap service. The value of protocol may be IPPROTO_UDP or
IPPROTO_TCP. Formerly, the routine failed if the requested port was found to be in use. Now, the
routine only fails if it finds that port is still bound. If port is not bound, the routine completes the requested
registration. This routine returns 1 if it succeeds, 0 otherwise.Automatically done by svc_register().
Warning: this routine exists for backward compatibility only, enhanced functionality is provided by
rpcb_set() (see rpcbind()).

pmap_unset():
A user interface to the portmap service, which destroys all mapping between the triple [prognum, versnum,
all protocols] and port on the machine's portmap service. This routine returns one if it succeeds, 0
otherwise. Warning: this routine exists for backward compatibility only, enhanced functionality is provided
by rpcb_unset() (see rpcbind()).

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-7

svc_fds:
A global variable reflecting the RPC service side's read file descriptor bit mask; it is suitable as a parameter
to the select() call. This is only of interest if a service implementor does not call svc_run(), but rather does
his own asynchronous event processing. This variable is read-only (do not pass its address to select()!), yet
it may change after calls to svc_getreq() or any creation routines. Similar to svc_fdset, but limited to 32
descriptors. Warning: this interface is obsoleted by svc_fdset (see rpc_svc_calls()).

svc_getcaller():
This routine returns the network address, represented as a struct sockaddr_in, of the caller of a procedure
associated with the RPC service transport handle, xprt. Warning: this routine exists for backward
compatibility only, and is obsolete. The preferred interface is svc_getrpccaller() (see rpc_svc_reg()),
which returns the address as a struct netbuf.

svc_getreq():
This routine is only of interest if a service implementor does not call svc_run(), but instead implements
custom asynchronous event processing. It is called when the select() call has determined that an RPC
request has arrived on some RPC file descriptors; rdfds is the resultant read file descriptor bit mask. The
routine returns when all file descriptors associated with the value of rdfds have been serviced. This routine
is similar to svc_getreqset() but is limited to 32 descriptors.

svcfd_create():
Create a service on top of any open and bound descriptor. Typically, this descriptor is a connected file
descriptor for a stream protocol. Refer to the File Descriptor section for more information. sendsz and
recvsz indicate sizes for the send and receive buffers. If they are 0, a reasonable default is chosen.

svcraw_create();
This routine creates an internal, memory-based RPC service transport, to which it returns a pointer. The
transport is really a buffer within the process's address space, so the corresponding RPC client should live
in the same address space; see clntraw_create(). This routine allows simulation of RPC and acquisition of
RPC overheads (such as round trip times), without any kernel interference. This routine returns NULL if it
fails. Warning: this routine exists for backward compatibility only, and has the same functionality of
svc_raw_create() (see rpc_svc_create()), which obsoletes it.

svctcp_create():
This routine creates a TCP/IP-based RPC service transport, to which it returns a pointer. The transport is
associated with the file descriptor fd, which may be RPC_ANYSOCK, in which case a new file descriptor
is created. If the file descriptor is not bound to a local TCP port, then this routine binds it to an arbitrary
port. Refer to the File Descriptor section for more information. Upon completion, xprt->xp_fd is the
transport's file descriptor, and xprt->xp_port is the transport's port number. This routine returns NULL if
it fails. Since TCP-based RPC uses buffered I/O, users may specify the size of buffers; values of 0 choose
suitable defaults. Warning: this routine exists for backward compatibiltyonly.svc_create(),
svc_tli_create(), or svc_vc_create() (see rpc_svc_create()) should be used instead.

svcudp_bufcreate():
This routine creates a UDP/IP-based RPC service transport, to which it returns a pointer. The transport is
associated with the file descriptor fd. If fd is RPC_ANYSOCK, then a new file descriptor is created. If the
file descriptor is not bound to a local UDP port, then this routine binds it to an arbitrary port. Upon
completion, xprt->xp_fd is the transport's file descriptor, and xprt->xp_port is the transport's port number.
Refer to the File Descriptor section for more information. This routine returns NULL if it fails. The user
specifies the maximum packet size for sending and receiving UDP-based RPC messages by using the

libnsl __

9-8 SPARC Compliance Defintion 2.4 Interface Semantics 1998

sendsz and recvsz parameters. Warning: this routine exists for backward compatibility only.
svc_tli_create(), or svc_dg_create() (see rpc_svc_create()) should be used instead.

svcudp_create():
This routine creates a UDP/IP-based RPC service transport, to which it returns a pointer. The transport is
associated with the file descriptor fd, which may be RPC_ANYSOCK, in which case a new file descriptor
is created. If the file descriptor is not bound to a local UDP port, then this routine binds it to an arbitrary
port. Upon completion, xprt->xp_fd is the transport's file descriptor, and xprt->xp_port is the transport's
port number. This routine returns NULL if it fails. Warning: since UDP-based RPC messages can only
hold up to 8 Kbytes of encoded data, this transport cannot be used for procedures that take large arguments
or return huge results. Warning: this routine exists for backward compatibility only. svc_create(),
svc_tli_create(), or svc_dg_create() (see rpc_svc_create()) should be used instead.

registerrrpc():
Register program prognum, procedure procname, and version versnum with the RPC service package. If a
request arrives for program prognum, version versnum, and procedure procnum, procname is called with a
pointer to its parameter(s); procname should return a pointer to its static result(s); inproc is used to decode
the parameters while outproc is used to encode the results. This routine returns 0 if the registration
succeeded, -1 otherwise. svc_run() must be called after all the services are registered. Warning: this
routine exists for backward compatibility only, and is obsoleted by rpc_reg().

svc_register():
Associates prognum and versnum with the service dispatch procedure, dispatch. If protocol is 0, the service
is not registered with the portmap service. If protocol is nonzero, then a mapping of the triple [prognum,
versnum, protocol] to xprt->xp_port is established with the local portmap service (generally protocol is 0,
IPPROTO_UDP or IPPROTO_TCP). The procedure dispatch has the following form:
dispatch(struct svc_req *request, SVCXPRT *xprt); The svc_register() routine returns one if it succeeds,
and 0 otherwise. Warning: this routine exists for backward compatibility only; enhanced functionality is
provided by svc_reg().

svc_unregister():
Remove all mapping of the double [prognum, versnum] to dispatch routines, and of the triple [prognum,
versnum, all-protocols] to port number from portmap. Warning: this routine exists for backward
compatibility, enhanced functionality is provided by svc_unreg().

xdr_authunix_parms():
Used for describing UNIX credentials. This routine is useful for users who wish to generate these
credentials without using the RPC authentication package. Warning: this routine exists for backward
compatibility only, and is obsoleted by xdr_authsys_parms() (see rpc_xdr()).

SEE ALSO
keyserv(), rpcbind(), rpcinfo(), rpc(), rpc_clnt_auth(), rpc_clnt_calls(), rpc_clnt_create(),
rpc_svc_calls(), rpc_svc_create(), rpc_svc_err(), rpc_svc_reg(), rpcbind(), secure_rpc(), select()

NOTES
These interfaces are unsafe in multithreaded applications. Unsafe interfaces should be called only from the
main thread.

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-9

clnt_control
clnt_create
clnt_create_timed
clnt_create_vers
clnt_create_vers_timed
clnt_destroy
clnt_dg_create
clnt_pcreateerror
clnt_raw_create
clnt_spcreateerror
clnt_tli_create
clnt_tp_create
clnt_tp_create_timed
clnt_vc_create
rpc_clnt_create
rpc_createerr

NAME
rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror, clnt_raw_create,
clnt_spcreateerror, clnt_tli_create, clnt_tp_create, clnt_tp_create_timed, clnt_vc_create,
rpc_createerr - library routines for dealing with creation and manipulation of CLIENT handles

SYNOPSIS

#include <rpc/rpc.h>
bool_t clnt_control(CLIENT *clnt, const u_int req, char *info);
void clnt_pcreateerror(const char *s);
void clnt_destroy(CLIENT *clnt);
char *clnt_spcreateerror(const char *s);
CLIENT *clnt_create(const char *host, const u_long prognum,

const u_long versnum, const char *nettype);
CLIENT *clnt_raw_create(const u_long prognum, const u_long versnum);
CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr,

const u_long prognum, const u_long versnum,
const u_int sendsz, const u_int recvsz);

CLIENT *clnt_tp_create(const char *host, const u_long prognum,
const u_long versnum, const struct netconfig *netconf);

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf,
const struct netbuf *svcaddr, const_long prognum,
const u_long versnum, const u_int sendsz, const u_int recvsz);

CLIENT *clnt_create_vers(const char *host, const u_long prognum,
u_long *vers_outp, const u_long vers_low,
const u_long vers_high, char *nettype);

CLIENT *clnt_create_vers_timed(const char *host, const u_long prognum,
u_long *vers_outp, const u_long vers_low,
const u_long vers_high,
char *nettype const struct timeval *timeout);

CLIENT *clnt_create_timed(const char *host, const u_long prognum,
const u_long versnum, const char *nettype,
const struct timeval *timeout);

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr,

libnsl __

9-10 SPARC Compliance Defintion 2.4 Interface Semantics 1998

const u_long prognum, const u_long versnum,
const u_int sendsz, const u_int recvsz);

CLIENT *clnt_tp_create_timed(const char *host, const u_long prognum,
const u_long versnum, const struct netconfig *netconf,
const struct timeval *timeout);

struct rpc_createerr rpc_createerr;
DESCRIPTION

RPC library routines allow C language programs to make procedure calls on other machines across the
network. First a CLIENT handle is created and then the client calls a procedure to send a request to the
server. On receipt of the request, the server calls a dispatch routine to perform the requested service, and
then sends a reply. These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time (-D_REENTRANT).
When the _REENTRANT flag is defined, rpc_createerr becomes a macro which enables each thread to
have its own rpc_createerr. See rpc() for the definition of the CLIENT data structure.

clnt_control():
A function macro to change or retrieve various information about a client object. req indicates the type of
operation, and info is a pointer to the information. For both connectionless and connection-oriented
transports, the supported values of req and their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

Note: if you set the timeout using clnt_control(), the timeout argument passed by clnt_call() is ignored in
all subsequent calls. Note: If you set the timeout value to 0 clnt_control() immediately returns an error
(RPC_TIMEDOUT). Set the timeout parameter to 0 for batching calls.

CLGET_FD int * get the associated file descriptor
CLGET_SVC_ADDR struct netbuf * get servers address
CLSET_FD_CLOSE void close the file descriptor when destroying the

client handle (see clnt_destroy())
CLSET_FD_NCLOSE void do not close the file descriptor when

destroying the client handle
CLSET_VERS unsigned long * set the RPC program's version number

associated with the client handle.
CLGET_VERS unsigned long * get the RPC program's version number

associated with the client handle. This
assumes that the RPC server for this new
version is still listening at the address of the
previous version.

CLGET_XID unsigned long * get the XID of the previous remote
procedure call

CLSET_XID unsigned long * set the XID of the next remote procedure
call

The following operations are valid for connectionless transports only:
CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before retransmitting the request.
clnt_control() returns TRUE on success and FALSE on failure.

clnt_create():
Generic client creation routine for program prognum and version versnum. host identifies the name of the
remote host where the server is located. nettype indicates the class of transport protocol to use. The
transports are tried in left to right order in NETPATH variable or in top to bottom order in the netconfig
database. clnt_create() tries all the transports of the nettype class available from the NETPATH
environment variable and the netconfig database, and chooses the first successful one. A default timeout is

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-11

set and can be modified using clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure. Note: clnt_create() returns a valid
client handle even if the particular version number supplied to clnt_create() is not registered with the
rpcbind service. This mismatch will be discovered by a clnt_call later (see rpc_clnt_calls()).

clnt_create_timed():
Generic client creation routine which is similar to clnt_create() but which also has the additional
parameter timeout that specifies the maximum amount of time allowed for each transport class tried. In all
other
respects, the clnt_create_timed() call behaves exactly like the clnt_create() call.

clnt_create_vers():
Generic client creation routine which is similar to clnt_create() but which also checks for the version
availability. host identifies the name of the remote host where the server is located. nettype indicates the
class transport protocols to be used. If the routine is successful it returns a client handle created for the
highest version between vers_low and vers_high that is supported by the server. vers_outp is set to this
value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no version between
vers_low and vers_high is supported by the server then the routine fails and returns NULL. A default
timeout is set and can be modified using clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure. Note: clnt_create() returns a valid
client handle even if the particular version number supplied to clnt_create() is not registered with the
rpcbind service. This mismatch will be discovered by a clnt_call later (see rpc_clnt_calls()). However,
clnt_create_vers() does this for you and returns a valid handle only if a version within the range supplied
is supported by the server.

clnt_create_vers_timed():
Generic client creation routine similar to clnt_create_vers() but with the additional parameter timeout,
which specifies the maximum amount of time allowed for each transport class tried. In all other respects,
the clnt_create_vers_timed() call behaves exactly like the clnt_create_vers() call.

clnt_destroy()
A function macro that destroys the client's RPC handle. Destruction usually involves deallocation of
private data structures, including clnt itself. Use of clnt is undefined after calling clnt_destroy(). If the
RPC library opened the associated file descriptor, or CLSET_FD_CLOSE was set using clnt_control(),
the file descriptor will be closed. The caller should call auth_destroy (clnt->cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see rpc_clnt_auth()).

clnt_dg_create():
This routine creates an RPC client for the remote program prognum and version versnum; the client uses a
connectionless transport. The remote program is located at address svcaddr. The parameter fildes is an open
and bound file descriptor. This routine will resend the call message in intervals of 15 seconds until a
response is received or until the call times out. The total time for the call to time out is specified by
clnt_call() (see clnt_call() in rpc_clnt_calls()). The retry time out and the total time out periods can be
changed using clnt_control(). The user may set the size of the send and receive buffers with the
parameters sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clnt_pcreateerror():
Print a message to standard error indicating why a client RPC handle could not be created. The message is
prepended with the string s and a colon, and appended with a newline.

clnt_raw_create():

libnsl __

9-12 SPARC Compliance Defintion 2.4 Interface Semantics 1998

This routine creates an RPC client handle for the remote program prognum and version versnum. The
transport used to pass messages to the service is a buffer within the process's address space, so the
corresponding RPC server should live in the same address space; (see svc_raw_create() in
rpc_svc_create()). This allows simulation of RPC and measurement of RPC overheads, such as round trip
times, without any kernel or networking interference. This routine returns NULL if it fails.
clnt_raw_create() should be called after svc_raw_create().

clnt_spcreateerror():
Like clnt_pcreateerror(), except that it returns a string instead of printing to the standard error. A newline
is not appended to the message in this case. Warning: returns a pointer to a buffer that is overwritten on
each call. In multithread applications, this buffer is implemented as thread-specific data.

clnt_tli_create():
This routine creates an RPC client handle for the remote program prognum and version versnum. The
remote program is located at address svcaddr. If svcaddr is NULL and it is connection-oriented, it is
assumed that the file descriptor is connected. For connectionless transports, if svcaddr is NULL,
RPC_UNKNOWNADDR error is set. fildes is a file descriptor which may be open, bound and connected.
If it is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If fildes is
RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes is unbound, then
it will attempt to bind the descriptor. The user may specify the size of the buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. Depending upon the type of the transport
(connection-oriented or connectionless), clnt_tli_create() calls appropriate client creation routines. This
routine returns NULL if it fails. The clnt_pcreateerror() routine can be used to print the reason for failure.
The remote rpcbind service (see rpcbind()) is not consulted for the address of the remote service.

clnt_tp_create():
Like clnt_create() except clnt_tp_create() tries only one transport specified through netconf.
clnt_tp_create() creates a client handle for the program prognum, the version versnum, and for the
transport specified by netconf. Default options are set, which can be changed using clnt_control() calls.
The remote rpcbind service on the host is consulted for the address of the remote service. This routine
returns NULL if it fails. The clnt_pcreateerror() routine can be used to print the reason for failure.

clnt_tp_create_timed():
Like clnt_tp_create() except clnt_tp_create_timed() has the extra parameter timeout which specifies the
maximum time allowed for the creation attempt to succeed. In all other respects, the
clnt_tp_create_timed() call behaves exactly like the clnt_tp_create() call.

clnt_vc_create():
This routine creates an RPC client for the remote program prognum and version versnum; the client uses a
connection-oriented transport. The remote program is located at address svcaddr. The parameter fildes is an
open and bound file descriptor. The user may specify the size of the send and receive buffers with the
parameters sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.
The address svcaddr should not be NULL and should point to the actual address of the remote program.
clnt_vc_create() does not consult the remote rpcbind service for this information.

 rpc_createerr():
A global variable whose value is set by any RPC client handle creation routine that fails. It is used by the
routine clnt_pcreateerror() to print the reason for the failure. In multithreaded applications, rpc_createerr
becomes a macro which enables each thread to have its own rpc_createerr.

SEE ALSO
rpcbind(), rpc(), rpc_clnt_auth(), rpc_clnt_calls(), rpc_svc_create(), svc_raw_create()

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-13

dial
undial

NAME
dial - establish an outgoing terminal line connection

SYNOPSIS
#include <dial.h>
int dial(CALL call);
void undial(int fd);

DESCRIPTION
dial() returns a file-descriptor for a terminal line open for read/write. The argument to dial() is a CALL
structure (defined in the header <dial.h>).

When finished with the terminal line, the calling program must invoke undial() to release the semaphore
that has been set during the allocation of the terminal device.

CALL is defined in the header <dial.h> and has the following members:

struct termio *attr; /* pointer to termio attribute struct */
int baud; /* transmission data rate */
int speed; /* 212A modem: low=300, high=1200 */
char *line; /* device name for outgoing line */
char *telno; /* pointer to telno digits string */
int modem; /* specify modem control for direct lines */
char *device; /* unused */
int dev_len; /* unused */

The CALL element speed is intended only for use with an outgoing dialed call, in which case its value
should be the desired transmission baud rate. The CALL element baud is no longer used.

If the desired terminal line is a direct line, a string pointer to its device-name should be placed in the line
element in the CALL structure. Legal values for such terminal device names are kept in the Devices file. In
this case, the value of the baud element should be set to -1. This value will cause dial to determine the
correct value from the <Devices> file.

The telno element is for a pointer to a character string representing the telephone number to be dialed. Such
numbers may consist only of these characters: 0-9 dial 0-9
 *dial *
 #dial #
 =wait for secondary dial tone
 -delay for approximately 4 seconds

The CALL element modem is used to specify modem control for direct lines. This element should be
nonzero if modem control is required. The CALL element attr is a pointer to a termio structure, as defined
in the header <termio.h>. A NULL value for this pointer element may be passed to the dial function, but if
such a structure is included, the elements specified in it will be set for the outgoing terminal line before the
connection is established. This setting is often important for certain attributes such as parity and baudrate.

The CALL elements device and dev_len are no longer used. They are retained in the CALL structure for

libnsl __

9-14 SPARC Compliance Defintion 2.4 Interface Semantics 1998

compatibility reasons.

RETURN VALUES
On failure, a negative value indicating the reason for the failure will be returned. Mnemonics for these
negative indices as listed here are defined in the header <dial.h>.
INTRPT -1 /* interrupt occurred */
D_HUNG -2 /* dialer hung (no return from write) */
NO_ANS -3 /* no answer within 10 seconds */
ILL_BD -4 /* illegal baudrate */
A_PROB -5 /* acu problem (open() failure) */
L_PROB -6 /* line problem (open() failure) */
NO_Ldv -7 /* can't open Devices file */
DV_NT_A -8 /* requested device not available */
DV_NT_K -9 /* requested device not known */
NO_BD_A -10 /* no device available at requested baud */
NO_BD_K -11 /* no device known at requested baud */
DV_NT_E -12 /* requested speed does not match */
BAD_SYS -13 /* system not in Systems file*/

FILES
/etc/uucp/Devices
/etc/uucp/Systems
/var/spool/uucp/LCK..tty-device

SEE ALSO
uucp(1C), alarm(), read(), write(), termio()

NOTES
Including the header <dial.h> automatically includes the header <termio.h>. An alarm() system call for
3600 seconds is made (and caught) within the dial module for the purpose of ``touching'' the LCK.. file and
constitutes the device allocation semaphore for the terminal device. Otherwise, uucp() may simply delete
the LCK.. entry on its 90-minute cleanup rounds. The alarm may go off while the user program is in a
read() or write() function, causing an apparent error return. If the user program expects to be around for an
hour or more, error returns from read()s should be checked for (errno==EINTR), and the read() possibly
reissued. This interface is unsafe in multithreaded applications. Unsafe interfaces should be called only
from the main thread.

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-15

doconfig

NAME
doconfig - execute a configuration script

SYNOPSIS
include <sac.h>
int doconfig(int fildes, char *script, long rflag);

DESCRIPTION
doconfig() is a Service Access Facility library function that interprets the configuration scripts contained in
the files </etc/saf/pmtag/_config>, </etc/saf/_sysconfig>, and </etc/saf/pmtag/svctag>, where pmtag
specifies the tag associated with the port monitor, and svctag specifies the service tag associated with a
given service. See pmadm() and sacadm().

script is the name of the configuration script; fildes is a file descriptor that designates the stream to which
stream manipulation operations are to be applied; rflag is a bit-mask that indicates the mode in which script
is to be interpreted. If rflag is zero, all commands in the configuration script are eligible to be interpreted. If
rflag has the NOASSIGN bit set, the assign command is considered illegal and will generate an error
return. If rflag has the NORUN bit set, the run and runwait commands are considered illegal and will
generate error returns.

The configuration language in which script is written consists of a sequence of commands, each of which is
interpreted separately. The following reserved keywords are defined: assign, push, pop, runwait, and run.
The comment character is #; when a # occurs on a line, everything from that point to the end of the line is
ignored. Blank lines are not significant. No line in a command script may exceed 1024 characters.

assign variable=value:
Used to define environment variables. variable is the name of the environment variable and value is the
value to be assigned to it. The value assigned must be a string constant; no form of parameter substitution is
available. value may be quoted. The quoting rules are those used by the shell for defining environment
variables. assign will fail if space cannot be allocated for the new variable or if any part of the specification
is invalid.

push module1[, module2, module3,...]:
Used to push STREAMS modules onto the stream designated by fildes. module1 is the name of the first
module to be pushed, module2 is the name of the second module to be pushed, etc. The command will fail
if any of the named modules cannot be pushed. If a module cannot be pushed, the subsequent modules on
the same command line will be ignored and modules that have already been pushed will be popped.

pop [module]:
Used to pop STREAMS modules off the designated stream. If pop is invoked with no arguments, the top
module on the stream is popped. If an argument is given, modules will be popped one at a time until the
named module is at the top of the stream. If the named module is not on the designated stream, the stream
is left as it was and the command fails. If module is the special keyword ALL, then all modules on the
stream will be popped. Note that only modules above the topmost driver are affected.

libnsl __

9-16 SPARC Compliance Defintion 2.4 Interface Semantics 1998

runwait command:
The runwait command runs a command and waits for it to complete. command is the pathname of the
command to be run. The command is run with /usr/bin/sh -c prepended to it; shell scripts may thus be
executed from configuration scripts. The runwait command will fail if command cannot be found or cannot
be executed, or if command exits with a nonzero status. run command The run command is identical to
runwait except that it does not wait for command to complete. command is the pathname of the command
to be run. run will not fail unless it is unable to create a child process to execute the command.

Although they are syntactically indistinguishable, some of the commands available to run and runwait are
interpreter built-in commands. Interpreter built-ins are used when it is necessary to alter the state of a
process within the context of that process. The doconfig() interpreter built-in commands are similar to the
shell special commands and, like these, they do not spawn another process for execution. See sh(). The
built-in commands are:

cd
ulimit
umask

RETURN VALUES
doconfig() returns 0 if the script was interpreted successfully. If a command in the script fails, the
interpretation of the script ceases at that point and a positive number is returned; this number indicates
which line in the script failed. If a system error occurs, a value of -1 is returned.When a script fails, the
process whose environment was being established should not be started.

SEE ALSO
sh(), pmadm(), sacadm()

NOTES
This interface is unsafe in multithreaded applications. Unsafe interfaces should be called only from the
main thread.

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-17

getrpcbyname
getrpcbyname_r
getrpcbynumber
getrpcbynumber_r
getrpcent
getrpcent_r
setrpcent

NAME
getrpcbyname, getrpcbyname_r, getrpcbynumber, getrpcbynumber_r, getrpcent, getrpcent_r,
setrpcent, endrpcent - get RPC entry

SYNOPSIS
#include <rpc/rpcent.h>
struct rpcent *getrpcbyname(const char * name);
struct rpcent *getrpcbyname_r(const char * name, struct rpcent *result,

char *buffer, int buflen);
struct rpcent *getrpcbynumber(const int number);
struct rpcent *getrpcbynumber_r(const int number, struct rpcent *result,

char *buffer, int buflen);
struct rpcent *getrpcent(void);
struct rpcent *getrpcent_r(struct rpcent *result, char *buffer, int buflen);
void setrpcent(const int stayopen);
void endrpcent(void);

DESCRIPTION
These functions are used to obtain entries for RPC (Remote Procedure Call) services. An entry may come
from any of the sources for rpc specified in the /etc/nsswitch.conf file (see nsswitch.conf()).

getrpcbyname() searches for an entry with the RPC service name specified by the parameter name.

getrpcbynumber() searches for an entry with the RPC program number.

The functions setrpcent(), getrpcent(), and endrpcent() are used to enumerate RPC entries from the
database.

setrpcent() sets (or resets) the enumeration to the beginning of the set of RPC entries. This function
should be called before the first call to getrpcent(). Calls to getrpcbyname() and getrpcbynumber() leave
the enumeration position in an indeterminate state. If the stayopen flag is nonzero, the system may keep
allocated resources such as open file descriptors until a subsequent call to endrpcent().

Successive calls to getrpcent() return either successive entries or NULL, indicating the end of the
enumeration.

endrpcent() may be called to indicate that the caller expects to do no further RPC entry retrieval
operations; the system may then deallocate resources it was using. It is still allowed, but possibly less
efficient, for the process to call more RPC entry retrieval functions after calling endrpcent().

Reentrant Interfaces
The functions getrpcbyname(), getrpcbynumber(), and getrpcent() use static storage that is re-used in

libnsl __

9-18 SPARC Compliance Defintion 2.4 Interface Semantics 1998

each call, making these routines unsafe for use in multithreaded applications.

The functions: getrpcbyname_r(), getrpcbynumber_r(), and getrpcent_r() provide reentrant interfaces
for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart, named by removing
the ``_r'' suffix. The reentrant interfaces, however, use buffers supplied by the caller to store returned
results, and are safe for use in both single-threaded and multithreaded applications. Each reentrant interface
takes the same parameters as its non-reentrant counterpart, as well as the following additional parameters.
The parameter result must be a pointer to a struct rpcent structure allocated by the caller. On
successful completion, the function returns the RPC entry in this structure. The parameter buffer must be a
pointer to a buffer supplied by the caller. This buffer is used as storage space for the RPC entry data. All of
the pointers within the returned struct rpcent result point to data stored within this buffer (see RETURN
VALUES). The buffer must be large enough to hold all of the data associated with the RPC entry. The
parameter buflen should give the size in bytes of the buffer indicated by buffer. For enumeration in
multithreaded applications, the position within the enumeration is a process-wide property shared by all
threads. setrpcent() may be used in a multithreaded application but resets the enumeration position for all
threads. If multiple threads interleave calls to getrpcent_r(), the threads will enumerate disjoint subsets
of the RPC entry database. Like their non-reentrant counterparts, getrpcbyname_r() and
getrpcbynumber_r() leave the enumeration position in an indeterminate state.

RETURN VALUES
RPC entries are represented by the struct rpcent structure defined in <rpc/rpcent.h>:

struct rpcent {
char *r_name; /* name of this rpc service */
char **r_aliases; /* zero-terminated list of alternate names */
long r_number; /* rpc program number */

};

The functions getrpcbyname(), getrpcbyname_r(), getrpcbynumber(), and getrpcbynumber_r() each
return a pointer to a struct rpcent if they successfully locate the requested entry; otherwise they return
NULL. The functions getrpcent() and getrpcent_r() each return a pointer to a struct rpcent if they
successfully enumerate an entry; otherwise they return NULL, indicating the end of the enumeration. The
functions getrpcbyname(), getrpcbynumber(), and getrpcent() use static storage, so returned data must
be copied before a subsequent call to any of these functions if the data is to be saved.

When the pointer returned by the reentrant functions getrpcbyname_r(), getrpcbynumber_r(), and
getrpcent_r() is non-NULL, it is always equal to the result pointer that was supplied by the caller.

ERRORS
The reentrant functions getrpcyname_r(), getrpcbynumber_r() and getrpcent_r() will return NULL and
set errno to ERANGE if the length of the buffer supplied by caller is not large enough to store the result.
See intro() for the proper usage and interpretation of errno in multithreaded applications.

FILES
/etc/rpc
/etc/nsswitch.conf

SEE ALSO
rpcinfo(), nsswitch.conf(), rpc(), attributes()

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-19

getnetconfig
setnetconfig
endnetconfig
getnetconfigent
freenetconfigent
nc_perror
nc_sperror

NAME
getnetconfig, setnetconfig, endnetconfig, getnetconfigent, freenetconfigent, nc_perror, nc_sperror -
get network configuration database entry

SYNOPSIS
#include <netconfig.h>
struct netconfig *getnetconfig (void *handlep);
void *setnetconfig (void);
int endnetconfig (void *handlep);
struct netconfig *getnetconfigent (const char *netid);
void freenetconfigent (struct netconfig *netconfigp);
void nc_perror (const char *msg);
char *nc_sperror (void);

DESCRIPTION
The library routines described on this page are part of the Network Selection component. They provide the
application access to the system network configuration database, /etc/netconfig. In addition to the routines
for accessing the netconfig database, Network Selection includes the environment variable NETPATH (see
environ()) and the NETPATH access routines described in getnetpath().

getnetconfig() returns a pointer to the current entry in the netconfig database, formatted as a struct
netconfig. Successive calls will return successive netconfig entries in the netconfig database.
getnetconfig() can be used to search the entire netconfig file. getnetconfig() returns NULL at the end of
the file. handlep is the handle obtained through setnetconfig().

A call to setnetconfig() has the effect of ``binding'' to or ``rewinding'' the netconfig database.
setnetconfig() must be called before the first call to getnetconfig() and may be called at any other time.
setnetconfig() need not be called before a call to getnetconfigent(). setnetconfig() returns a unique
handle to be used by getnetconfig().

endnetconfig() should be called when processing is complete to release resources for reuse. handlep is the
handle obtained through setnetconfig(). Programmers should be aware, however, that the last call to
endnetconfig() frees all memory allocated by getnetconfig() for the struct netconfig data structure.
endnetconfig() may not be called before setnetconfig().

getnetconfigent() returns a pointer to the struct netconfig structure corresponding to netid. It returns
NULL if netid is invalid (that is, does not name an entry in the netconfig database).

freenetconfigent() frees the netconfig structure pointed to by netconfigp (previously returned by
getnetconfigent()).

nc_perror() prints a message to the standard error indicating why any of the above routines failed. The
message is prepended with the string msg and a colon. A NEWLINE is appended at the end of the

libnsl __

9-20 SPARC Compliance Defintion 2.4 Interface Semantics 1998

message.

nc_sperror() is similar to nc_perror() but instead of sending the message to the standard error, will return
a pointer to a string that contains the error message.

nc_perror() and nc_sperror() can also be used with the NETPATH access routines defined in
getnetpath().

RETURN VALUES
setnetconfig() returns a unique handle to be used by getnetconfig(). In the case of an error,
setnetconfig() returns NULL and nc_perror() or nc_sperror() can be used to print the reason for failure.

getnetconfig() returns a pointer to the current entry in the netconfig() database, formatted as a struct
netconfig. getnetconfig() returns NULL at the end of the file, or upon failure.

endnetconfig() returns 0 on success and -1 on failure (for example, if setnetconfig() was not called
previously).

On success, getnetconfigent() returns a pointer to the struct netconfig structure corresponding to netid;
otherwise it returns NULL.

nc_sperror() returns a pointer to a buffer which contains the error message string. This buffer is
overwritten on each call. In multithreaded applications, this buffer is implemented as thread-specific data.

SEE ALSO
getnetpath(), netconfig(), ONC+ Developer's Guide, Transport Interfaces Programming Guide

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-21

netdir_free
netdir_getbyaddr
netdir_getbyname
netdir_mergeaddr
netdir_options
netdir_perror
netdir_sperror
taddr2uaddr
uaddr2taddr

NAME
netdir, netdir_getbyname, netdir_getbyaddr, netdir_free, netdir_options, taddr2uaddr,
uaddr2taddr, netdir_perror, netdir_sperror, netdir_mergeaddr - generic transport name-to-address
translation

SYNOPSIS
#include <netdir.h>
int netdir_getbyname (const struct netconfig *config,

const struct nd_hostserv *service,
struct nd_addrlist **addrs);

int netdir_getbyaddr (const struct netconfig *config,
struct nd_hostservlist **service,
const struct netbuf *netaddr);

void netdir_free (void *ptr, const int struct_type);
int netdir_options (const struct netconfig *config,

const int option, const int fildes,
char *point_to_args);

char *taddr2uaddr (const struct netconfig *config,
const struct netbuf *addr);

struct netbuf *uaddr2taddr (const struct netconfig *config, const char *uaddr);
void netdir_perror (char *s);
char *netdir_sperror (void);

DESCRIPTION
These routines provide a generic interface for name-to-address mapping that will work with all transport
protocols. This interface provides a generic way for programs to convert transport specific addresses into
common structures and back again. The netconfig structure, described on the netconfig() manual page,
identifies the transport.

The netdir_getbyname() routine maps the machine name and service name in the nd_hostserv structure to
a collection of addresses of the type understood by the transport identified in the netconfig structure. This
routine returns all addresses that are valid for that transport in the nd_addrlist structure. The nd_hostserv
structure contains the following members:

char *h_host; /* host name */
char *h_serv; /* service name */

The nd_addrlist structure contains the following members:
int n_cnt; /* number of addresses */
struct netbuf *n_addrs;

netdir_getbyname() accepts some special-case host names. The host names are defined in <netdir.h>. The

libnsl __

9-22 SPARC Compliance Defintion 2.4 Interface Semantics 1998

currently defined host names are:

HOST_SELF Represents the address to which local programs will bind their end
points. HOST_SELF differs from the host name provided by
gethostname(), which represents the address to which remote
programs will bind their end points.

HOST_ANY Represents any host accessible by this transport provider. HOST_ANY
allows applications to specify a required service without specifying a
particular host name.

HOST_SELF_CONNECT Represents the host address that can be used to connect to the local
host.

HOST_BROADCAST Represents the address for all hosts accessible by this transport
provider. Network requests to this address will be received by all
machines.

All fields of the nd_hostserv structure must be initialized.

To find the address of a given host and service on all available transports, call the netdir_getbyname()
routine with each struct netconfig structure returned by getnetconfig().

The netdir_getbyaddr() routine maps addresses to service names. This routine returns service, a list of
host and service pairs that would yield this address. If more than one tuple of host and service name is
returned, then the first tuple contains the preferred host and service names:

struct nd_hostservlist {
int *h_cnt; /* number of hostservs found */
struct hostserv *h_hostservs;

}

The netdir_free() structure is used to free the structures allocated by the name to address translation
routines. ptr points to the structure that has to be freed.The struct_type identifies the structure:

struct netbuf ND_ADDR
struct nd_addrlist ND_ADDRLIST
struct hostserv ND_HOSTSERV
struct nd_hostservlist ND_HOSTSERVLIST

The universal address returned by taddr2uaddr() should be freed by free().

The netdir_options() routine is used to do all transport-specific setups and option management. fildes is
the associated file descriptor. option, fildes, and pointer_to_args are passed to the netdir_options()
routine for the transport specified in config. Currently four values are defined for option:

ND_SET_BROADCAST
ND_SET_RESERVEDPORT
ND_CHECK_RESERVEDPORT
ND_MERGEADDR

The taddr2uaddr() and uaddr2taddr() routines support translation between universal addresses and TLI
type netbufs. The taddr2uaddr() routine takes a struct netbuf data structure and returns a pointer to a string
that contains the universal address. It returns NULL if the conversion is not possible. This is not a fatal

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-23

condition as some transports may not suppose a universal address form.

uaddr2taddr() is the reverse of taddr2uaddr(). It returns the struct netbuf data structure for the given
universal address.

If a transport provider does not support an option, netdir_options returns -1 and the error message can be
printed through netdir_perror() or netdir_sperror(). The specific actions of each option follow.

ND_SET_BROADCAST Sets the transport provider up to allow broadcast, if the
transport supports broadcast. fildes is a file descriptor into the
transport (i.e., the result of a t_open of /dev/udp).
pointer_to_args is not used. If this completes, broadcast
operations may be performed on file descriptor fildes.

ND_SET_RESERVEDPORT Allows the application to bind to a reserved port, if that
concept exists for the transport provider. fildes is an unbound
file descriptor into the transport. If pointer_to_args is NULL,
fildes will be bound to a reserved port. If pointer_to_args is a
pointer to a netbuf structure, an attempt will be made to bind
to any reserved port on the specified address.

ND_CHECK_RESERVEDPORT Used to verify that the address corresponds to a reserved port,
if that concept exists for the transport provider. fildes is not
used. pointer_to_args is a pointer to a netbuf structure that
contains the address. This option returns 0 only if the address
specified in pointer_to_args is reserved.

ND_MERGEADDR Used to take a ``local address'' (like the 0.0.0.0 address that
TCP uses) and return a ``real address'' that client machines
can connect to.fildesisnotused. pointer_to_args is a pointer to
a struct nd_mergearg, which has the following members:

char s_uaddr; /* server's universal address */
char c_uaddr; /* client's universal address */
char m_uaddr; /* the result */

If s_uaddr is something like 0.0.0.0.1.12, and, if the call is successful, m_uaddr will be set to something
like 192.11.109.89.1.12. For most transports, m_uaddr is exactly what s_uaddr is.

RETURN VALUES
The netdir_perror() routine prints an error message on the standard output stating why one of the name-to-
address mapping routines failed. The error message is preceded by the string given as an argument.

The netdir_sperror() routine returns a string containing an error message stating why one of the name-to-
address mapping routines failed.

netdir_sperror() returns a pointer to a buffer which contains the error message string. This buffer is
overwritten on each call. In multithreaded applications, this buffer is implemented as thread-specific data.

SEE ALSO
gethostname(), getnetconfig(), getnetpath(), netconfig()

libnsl __

9-24 SPARC Compliance Defintion 2.4 Interface Semantics 1998

rpc_reg
rpc_svc_reg
svc_auth_reg
svc_reg
svc_unreg
xprt_register
xprt_unregister

NAME
rpc_svc_reg, rpc_reg, svc_reg, svc_unreg, svc_auth_reg, xprt_register, xprt_unregister - library
routines for registering servers

SYNOPSIS

#include <rpc/rpc.h>
bool_t rpc_reg (u_long prognum, u_long versnum, u_long procnum,

char * const(*procname) (char *arg), xdrproc_t inproc,
xdrproc_t outproc, const char *nettype);

int svc_reg (const SVCXPRT *xprt, const u_long prognum, const u_long versnum,
const void (*dispatch), const struct netconfig *netconf);

void svc_unreg (const u_long prognum, const u_long versnum);
int svc_auth_reg (const int cred_flavor, const enum auth_stat (*handler));
void xprt_register (const SVCXPRT *xprt);
void xprt_unregister (const SVCXPRT *xprt);

DESCRIPTION
These routines are a part of the RPC library which allows the RPC servers to register themselves with
rpcbind() (see rpcbind()), and associate the given program and version number with the dispatch function.
When the RPC server receives a RPC request, the library invokes the dispatch routine with the appropriate
arguments. See rpc() for the definition of the SVCXPRT data structure.

rpc_reg():
Register program prognum, procedure procname, and version versnum with the RPC service package. If a
request arrives for program prognum, version versnum, and procedure procnum, procname is called with a
pointer to its parameter(s); procname should return a pointer to its static result(s). The arg parameter to
procname is a pointer to the (decoded) procedure argument. inproc is the XDR function used to decode the
parameters while outproc is the XDR function used to encode the results. Procedures are registered on all
available transports of the class nettype.See rpc(). This routine returns 0 if the registration succeeded, -1
otherwise.

svc_reg():
Associates prognum and versnum with the service dispatch procedure, dispatch. If netconf is NULL, the
service is not registered with the rpcbind service. For example, if a service has already been registered
using some other means, such as inetd (see inetd()), it will not need to be registered again. If netconf is
nonzero, then a mapping of the triple [prognum, versnum, netconf->nc_netid] to xprt->xp_ltaddr is
established with the local rpcbind service. The svc_reg() routine returns 1 if it succeeds, and 0 otherwise.

svc_unreg():
Remove from the rpcbind service, all mappings of the triple [prognum, versnum, all-transports] to network
address and all mappings within the RPC service package of the double [prognum, versnum] to dispatch

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-25

routines.

svc_auth_reg():
Registers the service authentication routine handler with the dispatch mechanism so that it can be invoked
to authenticate RPC requests received with authentication type cred_flavor. This interface allows
developers to add new authentication types to their RPC applications without needing to modify the
libraries. Service implementors usually do not need this routine. Typical service application would call
svc_auth_reg() after registering the service and prior to calling svc_run(). When needed to process an
RPC credential of type cred_flavor, the handler procedure will be called with two parameters (struct
svc_req *rqst, struct rpc_msg *msg) and is expected to return a valid enum auth_stat value. There is no
provision to change or delete an authentication handler once registered. The svc_auth_reg() routine returns
0 if the registration is successful, 1 if cred_flavor already has an authentication handler registered for it, and
-1 otherwise.

xprt_register():
after RPC service transport handle xprt is created, it is registered with the RPC service package. This
routine modifies the global variable svc_fdset (see rpc_svc_calls()). Service implementors usually do not
need this routine.

xprt_unregister():
before an RPC service transport handle xprt is destroyed, it unregisters itself with the RPC service
package. This routine modifies the global variable svc_fdset (see rpc_svc_calls()). Service implementors
usually do not need this routine.

SEE ALSO
inetd(), rpcbind(), rpc(), rpc_svc_calls(), rpc_svc_create(), rpc_svc_err(), rpcbind(), select()

libnsl __

9-26 SPARC Compliance Defintion 2.4 Interface Semantics 1998

rpc_svc_calls
svc_dg_enablecache
svc_done
svc_exit
svc_fdset
svc_freeargs
svc_getargs
svc_getreq_common
svc_getreq_poll
svc_getreqset
svc_getrpccaller
svc_pollset
svc_run
svc_sendreply

NAME
rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs, svc_getargs,
svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller, svc_pollset, svc_run,
svc_sendreply - library routines for RPC servers

SYNOPSIS

#include <rpc/rpc.h>
int svc_dg_enablecache(SVCXPRT *xprt, const unsigned long cache_size);
int svc_done(SVCXPRT *xprt);
void svc_exit(void);
fd_set svc_fdset;
bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
void svc_getreq_common(const int fd);
void svc_getreqset(fd_set *rdfds);
void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
void svc_run(void);
bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc,

const caddr_t out);
DESCRIPTION

These routines are part of the RPC library which allows C language programs to make procedure calls on
other machines across the network. These routines are associated with the server side of the RPC
mechanism. Some of them are called by the server side dispatch function, while others (such as svc_run())
are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single data area for
decoding arguments and encoding results. Therefore, this structure cannot be freely shared between threads
that call functions that do this. However, when a server is operating in the Automatic or User MT modes, a
copy of this structure is passed to the service dispatch procedure in order to enable concurrent request
processing. Under these circumstances, some routines which would otherwise be unsafe, become safe.
These are marked as such. Also marked are routines that are unsafe for MT applications, and are not to be
used by such applications.

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-27

svc_dg_enablecache():
This function allocates a duplicate request cache for the service endpoint xprt, large enough to hold
cache_size entries. Once enabled, there is no way to disable caching. This routine returns 1 if space
necessary for a cache of the given size was successfully allocated, and 0 otherwise. This function is safe in
MT applications.

svc_done():
This function frees resources allocated to service a client request directed to the service endpoint xprt. This
call pertains only to servers executing in the User MT mode. In the User MT mode, service procedures
must invoke this call before returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is invoked, the service
endpoint xprt should not be referenced by the service procedure. Server multithreading modes and
parameters can be set using the rpc_control() call.

svc_exit():
This function when called by any of the RPC server procedure or otherwise, destroys all services registered
by the server and causes svc_run() to return. If RPC server activity is to be resumed, services must be
reregistered with the RPC library either through one of the rpc_svc_create() functions, or using
xprt_register(). svc_exit() has global scope and ends all RPC server activity.

svc_fdset:
A global variable reflecting the RPC server's read file descriptor bit mask. This is only of interest if service
implementors do not call svc_run(), but rather do their own asynchronous event processing. This variable
is read-only, and it may change after calls to svc_getreqset() or any creation routines. Do not pass its
address to select(), Instead, pass the address of a copy.

svc_freeargs():
A function macro that frees any data allocated by the RPC/XDR system when it decoded the arguments to
a service procedure using svc_getargs(). This routine returns TRUE if the results were successfully freed,
and FALSE otherwise.

svc_getargs():
A function macro that decodes the arguments of an RPC request associated with the RPC service transport
handle xprt. The parameter in is the address where the arguments will be placed; inproc is the XDR routine
used to decode the arguments. This routine returns TRUE if decoding succeeds, and FALSE otherwise.

svc_getreq_common():
This routine is called to handle a request on the given file descriptor.

svc_getreq_poll():
This routine is only of interest if a service implementor does not call svc_run(), but instead implements
custom asynchronous event processing. It is called when poll() has determined that an RPC request has
arrived on some RPC file descriptors; pollretval is the return value from poll() and pfdp is the array of
pollfd structures on which the poll() was done. It is assumed to be an array large enough to contain the
maximal number of descriptors allowed. This function macro is unsafe in MT applications.

libnsl __

9-28 SPARC Compliance Defintion 2.4 Interface Semantics 1998

 svc_getreqset():
This routine is only of interest if a service implementor does not call svc_run(), but instead implements
custom asynchronous event processing. It is called when select() has determined that an RPC request has
arrived on some RPC file descriptors; rdfds is the resultant read file descriptor bit mask. The routine
returns when all file descriptors associated with the value of rdfds have been serviced. This function macro
is unsafe in MT applications.

svc_getrpccaller():
The approved way of getting the network address of the caller of a procedure associated with the RPC
service transport handle xprt.

svc_run():
This routine never returns. In single threaded mode, it waits for RPC requests to arrive, and calls the
appropriate service procedure using svc_getreq_poll() when one arrives. This procedure is usually waiting
for the poll() library call to return.

svc_sendreply():
Called by an RPC service's dispatch routine to send the results of a remote procedure call. The parameter
xprt is the request's associated transport handle; outproc is the XDR routine which is used to encode the
results; and out is the address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

SEE ALSO
rpcgen(), poll(), rpc(), rpc_control(), rpc_svc_create(), rpc_svc_err(), rpc_svc_reg(), select(),
xprt_register()

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-29

t_strerror

NAME
t_strerror - get error message string

SYNOPSIS
#include <xti.h>
const char *t_strerror(int errnum);

DESCRIPTION
This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future
evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI
routine that has the same name as an XTI routine, a different header file, tiuser.h, must be used. Refer to
the section, TLI COMPATIBILITY, for a description of differences between the two interfaces.

The t_strerror() function maps the supplied number (errnum) corresponding to a transport-level error to a
language- specific error message string and returns a pointer to that string. The string pointed to will not be
modified by the program, but may be overwritten by a subsequent call to the t_strerror() function. The
string is not terminated by a newline character. The language for the error message strings written by
t_strerror() is implementation-defined. If it is English, the error message string describing the value in
t_errno is identical to the comments following the t_errno codes defined in xti.h. If an error code is
unknown and the language is English, t_strerror() returns the string: <error>: error unknown where
<error> is the error number supplied as input. In other languages, an equivalent text is provided.

VALID STATES
Legitimate states (see t_getstate()) for a call to this routine are every one except T_UNINIT.

RETURN VALUES
The function t_strerror() returns a pointer to the generated message string.

SEE ALSO
gettext(), perror(), setlocale(), strerror(), t_error()

libnsl __

9-30 SPARC Compliance Defintion 2.4 Interface Semantics 1998

xdr_bool
xdr_char
xdr_double
xdr_enum
xdr_float
xdr_free
xdr_hyper
xdr_int
xdr_long, xdr_longlong_t
xdr_quadruple
xdr_short
xdr_simple
xdr_u_char
xdr_u_hyper
xdr_u_int
xdr_u_long, xdr_u_longlong_t
xdr_u_short
xdr_void

NAME
xdr_simple, xdr_bool, xdr_char, xdr_double, xdr_enum, xdr_float, xdr_free, xdr_hyper, xdr_int,
xdr_long, xdr_longlong_t, xdr_quadruple, xdr_short, xdr_u_char, xdr_u_hyper, xdr_u_int,
xdr_u_long, xdr_u_longlong_t, xdr_u_short, xdr_void - library routines for external data representation

SYNOPSIS
#include <rpc/xdr.h>
bool_t xdr_bool (XDR *xdrs, bool_t *bp);
bool_t xdr_char (XDR *xdrs, char *cp);
bool_t xdr_double (XDR *xdrs, double *dp);
bool_t xdr_enum (XDR *xdrs, enum_t *ep);
bool_t xdr_float (XDR *xdrs, float *fp);
void xdr_free (xdrproc_t proc, char *objp);
bool_t xdr_hyper (XDR *xdrs, longlong_t *llp);
bool_t xdr_int (XDR *xdrs, int *ip);
bool_t xdr_long (XDR *xdrs, long *lp);
bool_t xdr_longlong_t (XDR *xdrs, longlong_t *llp);
bool_t xdr_quadruple (XDR *xdrs, long double *pq);
bool_t xdr_short (XDR *xdrs, short *sp);
bool_t xdr_u_char (XDR *xdrs, unsigned char *ucp);
bool_t xdr_u_hyper (XDR *xdrs, u_longlong_t *ullp);
bool_t xdr_u_int (XDR *xdrs, unsigned *up);
bool_t xdr_u_long (XDR *xdrs, unsigned long *ulp);
bool_t xdr_u_longlong_t (XDR *xdrs, u_longlong_t *ullp);
bool_t xdr_u_short (XDR *xdrs, unsigned short *usp);
bool_t xdr_void (void);

DESCRIPTION
XDR library routines allow C programmers to describe simple data structures in a machine-independent
fashion. Protocols such as remote procedure calls (RPC) use these routines to describe the format of the
data. These routines require the creation of XDR streams (see xdr_create()).

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-31

See rpc() for the definition of the XDR data structure. Note that any buffers passed to the XDR routines
must be properly aligned. It is suggested that malloc() be used to allocate these buffers or that the
programmer insure that the buffer address is divisible evenly by four.

xdr_bool() translates between booleans (C integers) and their external representations. When encoding
data, this filter produces values of either 1 or 0. This routine returns TRUE if it succeeds, FALSE
otherwise.

xdr_char() translates between C characters and their external representations. This routine returns TRUE if
it succeeds, FALSE otherwise. Note: encoded characters are not packed, and occupy 4 bytes each. For
arrays of characters, it is worthwhile to consider xdr_bytes(), xdr_opaque(), or xdr_string() (see
xdr_complex()).

xdr_double() translates between C double precision numbers and their external representations. This
routine returns TRUE if it succeeds, FALSE otherwise.

xdr_enum() translates between C enums (actually integers) and their external representations. This routine
returns TRUE if it succeeds, FALSE otherwise.

xdr_float() translates between C floats and their external representations. This routine returns TRUE if it
succeeds, FALSE otherwise.

xdr_free(), is a Generic freeing routine. The first argument is the XDR routine for the object being freed.
The second argument is a pointer to the object itself. Note: the pointer passed to this routine is not freed,
but what it points to is freed (recursively, depending on the XDR routine).

xdr_hyper() translates between ANSI C long long integers and their external representations. This routine
returns TRUE if it succeeds, FALSE otherwise.

xdr_int() translates between C integers and their external representations. This routine returns TRUE if
it succeeds, FALSE otherwise.

xdr_long() translates between C long integers and their external representations. This routine returns
TRUE if it succeeds, FALSE otherwise.

xdr_longlong_t() translates between ANSI C long long integers and their external representations. This
routine returns TRUE if it succeeds, FALSE otherwise. This routine is identical to xdr_hyper().

xdr_quadruple() translates between IEEE quadruple precision floating point numbers and their external
representations. This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_short() translates between C short integers and their external representations. This routine returns
TRUE if it succeeds, FALSE otherwise.

xdr_u_char() translates between unsigned C characters and their external representations. This routine
returns TRUE if it succeeds, FALSE otherwise.

xdr_u_hyper() translates between unsigned ANSI C long long integers and their external representations.
This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_u_int() is a primitive filter that translates between a C unsigned integer and its external representation.
This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_u_long() translates between C unsigned long integers and their external representations. This routine

libnsl __

9-32 SPARC Compliance Defintion 2.4 Interface Semantics 1998

returns TRUE if it succeeds, FALSE otherwise.

xdr_u_longlong_t() translates between unsigned ANSI C long long integers and their external
representations. This routine returns TRUE if it succeeds, FALSE otherwise. This routine is identical to
xdr_u_hyper().

xdr_u_short() translates between C unsigned short integers and their external representations. This routine
returns TRUE if it succeeds, FALSE otherwise.

xdr_void() always returns TRUE. It may be passed to RPC routines that require a function parameter,
where nothing is to be done.

SEE ALSO
malloc(), rpc(), xdr_admin(), xdr_complex(), xdr_create()

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-33

xdr_admin
xdr_control
xdr_getpos
xdr_inline
xdr_setpos
xdr_sizeof
xdrrec_endofrecord
xdrrec_eof
xdrrec_readbytes
xdrrec_skiprecord

NAME
xdr_admin, xdr_control, xdr_getpos, xdr_inline, xdrrec_endofrecord, xdrrec_eof, xdrrec_readbytes,
xdrrec_skiprecord, xdr_setpos, xdr_sizeof - library routines for external data representation

SYNOPSIS
#include <rpc/xdr.h>
bool_t xdr_control (XDR *xdrs, int req, void *info);
u_int xdr_getpos (const XDR *xdrs);
long *xdr_inline (XDR *xdrs, const int len);
bool_t xdrrec_endofrecord (XDR * xdrs, int sendnow);
bool_t xdrrec_eof (XDR *xdrs);
int xdrrec_readbytes (XDR *xdrs, caddr_t addr, u_int nbytes);
bool_t xdrrec_skiprecord (XDR *xdrs);
bool_t xdr_setpos (XDR *xdrs, const u_int pos);
unsigned long xdr_sizeof (xdrproc_t func, void *data);

DESCRIPTION
XDR library routines allow C programmers to describe arbitrary data structures in a machine-independent
fashion. Protocols such as remote procedure calls (RPC) use these routines to describe the format of the
data. These routines deal specifically with the management of the XDR stream. See rpc() for the definition
of the XDR data structure. Note that any buffers passed to the XDR routines must be properly aligned. It is
suggested that malloc() be used to allocate these buffers or that the programmer insure that
the buffer address is divisible evenly by four.

xdr_control(): A function macro to change or retrieve various information about an XDR stream. req
indicates the type of operation and info is a pointer to the information. The supported values of req, their
argument types and what they do are: XDR_GET_BYTES_AVAIL xdr_bytesrec * return number of bytes
left unconsumed in the stream and a flag indicating whether or not this is the last fragment.

xdr_getpos(): A macro that invokes the get-position routine associated with the XDR stream, xdrs. The
routine returns an unsigned integer, which indicates the position of the XDR byte stream. A desirable
feature of XDR streams is that simple arithmetic works with this number, although the XDR stream
instances need not guarantee this. Therefore, applications written for portability should not depend on this
feature.

xdr_inline(): A macro that invokes the in-line routine associated with the XDR stream, xdrs. The routine
returns a pointer to a contiguous piece of the stream's buffer; len is the byte length of the desired buffer.
Note: pointer is cast to long *. Warning: xdr_inline() may return NULL (0) if it cannot allocate a
contiguous piece of a buffer. Therefore the behavior may vary among stream instances; it exists for the
sake of efficiency, and applications written for portability should not depend on this feature.

libnsl __

9-34 SPARC Compliance Defintion 2.4 Interface Semantics 1998

xdrrec_endofrecord(): This routine can be invoked only on streams created by xdrrec_create() (see
xdr_create()). The data in the output buffer is marked as a completed record, and the output buffer is
optionally written out if sendnow is nonzero. This routine returns TRUE if it succeeds, FALSE otherwise.

xdrrec_eof(): This routine can be invoked only on streams created by xdrrec_create(). After consuming
the rest of the current record in the stream, this routine returns TRUE if there is no more data in the stream's
input buffer. It returns FALSE if there is additional data in the stream's input buffer.

xdrrec_readbytes(): This routine can be invoked only on streams created by xdrrec_create(). It attempts
to read nbytes bytes from the XDR stream into the buffer pointed to by addr. On success this routine
returns the number of bytes read, -1 on failure. A return value of 0 indicates an end of record.

xdrrec_skiprecord(): This routine can be invoked only on streams created by xdrrec_create() (see
xdr_create()). It tells the XDR implementation that the rest of the current record in the stream's input
buffer should be discarded. This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_setpos(): A macro that invokes the set position routine associated with the XDR stream xdrs. The
parameter pos is a position value obtained from xdr_getpos(). This routine returns TRUE if the XDR
stream was repositioned, and FALSE otherwise. Warning: it is difficult to reposition some types of XDR
streams, so this routine may fail with one type of stream and succeed with another. Therefore, applications
written for portability should not depend on this feature.

xdr_sizeof(): This routine returns the number of bytes required to encode data using the XDR filter
function func, excluding potential overhead such as RPC headers or record markers. O is returned on error.
This information might be used to select between transport protocols, or to determine the buffer size for
various lower levels of RPC client and server creation routines, or to allocate storage when XDR is used
outside of the RPC subsystem.

SEE ALSO
malloc(), rpc(), xdr_complex(), xdr_create(), xdr_simple()

___ libnsl

1998 SPARC Compliance Definition 2.4 Interface Semantics 9-35

rpc_broadcast_exp

NAME
rpc_broadcast_exp - broadcast a call message specifying timeout

SYNOPSIS
#include <rpc/rpc.h>
enum clnt_stat rpc_broadcast_exp (const u_long prognum,

const u_long versnum,
const u_long procnum,
const xdrproc_t xargs,
 caddr_t argsp,
const xdrproc_t xresults,
caddr_t resultsp,
const resultproc_t eachresult,
const int inittime,
const int waittime,
char *nettype);

DESCRIPTION
This function is like rpc_broadcast(), except that the initial timeout, inittime, and the maximum
timeout, waittime, are specified in milliseconds.
inittime is the initial time that rpc_broadcast_exp() waits before re-sending the request. After the
first resend, the retransmission interval increases exponentially until it exceeds waittime.

libnsl __

9-36 SPARC Compliance Defintion 2.4 Interface Semantics 1998

SPARC COMPLIANCE DEFINITION 2.4 IS

libposix4

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-1

aio_cancel

NAME
aio_cancel - cancel asynchronous I/O request

SYNOPSIS
#include <aio.h>
int aio_cancel(int fildes, struct aiocb *aiocbp);

DESCRIPTION
The aio_cancel() function attempts to cancel either one or all outstanding asynchronous I/O requests pending
on the file descriptor specified by fildes.If aiocbp is NULL, then all such outstanding cancelable requests are
canceled; otherwise, the individual request referenced by aiocbp references will be canceled. Normal
completion notification occurs even for asynchronous I/O operations that are successfully canceled. If there
are requests which cannot be canceled, then the normal asynchronous completion process takes place for
those requests, and their associated aiocb structures are not modified.

struct aiocb {
int aio_fildes;
 volatile void *aio_buf;
 size_t aio_nbytes;
off_t aio_offset;
int aio_reqprio;
struct sigevent aio_sigevent;
int aio_lio_opcode;

};
struct sigevent {

int sigev_notify;
int sigev_signo;
union sigval sigev_value;

};
union sigval {

int sival_int; /* integer value */
void *sival_ptr; /* pointer value */

};

RETURN VALUES
If the requested operation(s) were canceled, aio_cancel() returns AIO_CANCELED. But if at least one of
the requested operation(s) cannot be canceled because it is in progress, then AIO_NOTCANCELED is
returned, and the application may determine the state of affairs for these operation(s) by using aio_error(). If
all of the operation(s) had already completed, AIO_ALLDONE is returned. Otherwise, aio_cancel() returns
-1, and sets errno to indicate the error condition.

ERRORS
EBADF fildes is not a valid file descriptor.

ENOSYS The aio_cancel() function is not supported.

libposix4 (EXPERIMENTAL) ___

10-2 SPARC Compliance Definition 2.4 Interface Semantics 1998

SEE ALSO
aio_read(), aio_return(),

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-3

aio_error
aio_return

NAME
aio_return, aio_error - retrieve return or error status of asynchronous I/O operation

SYNOPSIS
#include <aio.h>
ssize_t aio_return(struct aiocb * aiocbp);
int aio_error(const struct aiocb * aiocbp);
struct aiocb {

int aio_fildes;
 volatile void *aio_buf;
 size_t aio_nbytes;
off_t aio_offset;
int aio_reqprio;
struct sigevent aio_sigevent;
int aio_lio_opcode;

};
struct sigevent {

int sigev_notify;
int sigev_signo;
union sigval sigev_value;

};
union sigval {

int sival_int; /* integer value */
void *sival_ptr; /* pointer value */

};

DESCRIPTION
The aio_return() function returns the return status of the asynchronous I/O request associated with the aiocb
structure pointed to by aiocbp. aio_error() returns the error status of the asynchronous I/O request associated
with the aiocb structure pointed to by aiocbp. The aio_return() function should be called only once to retrieve
the valid return status of a given asynchronous operation, after aio_error() has returned a value other than
EINPROGRESS.

RETURN VALUES
If the asynchronous I/O operation has completed successfully, aio_return() returns the return status, as
described for read(), write(), and fsync(). If the asynchronous I/O operation has completed successfully,
aio_error() returns 0. If the operation has not yet completed, then EINPROGRESS is returned. If the
asynchronous I/O operation has completed unsuccessfully, then the error status, as described for read(),
write(), and fsync() is returned. If unsuccessful, aio_return() or aio_error() return -1, and set errno to indicate
the error condition.

ERRORS

libposix4 (EXPERIMENTAL) ___

10-4 SPARC Compliance Definition 2.4 Interface Semantics 1998

The aio_return() and aio_error() functions will fail if:

EINVAL aiocbp does not reference an asynchronous operation which has completed or failed.

ENOSYS The aio_return() or aio_error() function is not supported.

SEE ALSO
close(), exec(), exit(), fork(), lseek(), read(), write(), aio_cancel(), aio_fsync(), aio_read(), fsync(),
lio_listio(),

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-5

aio_fsync

NAME
aio_fsync - asynchronous file synchronization

SYNOPSIS
#include <aio.h>
int aio_fsync(int op, aiocb *aiocbp);

DESCRIPTION
The aio_fsync() function queues an asynchronous fsync() or fdatasync() request for all the currently queued
I/O operations on the file referenced by aiocbp->aio_fildes, and returns control immediately. This request is
serviced concurrently with other activity of the process.If op is O_DSYNC, all I/O operations are completed
by a call to fdatasync() (synchronized I/O data integrity completion). If op is O_SYNC, all I/O operations
are completed by a call to fsync() (synchronized I/O file integrity completion). (see fcntl() definitions of
O_DSYNC and O_SYNC.) When the request is queued, the error status for the operation is
EINPROGRESS.When all data has been successfully transferred, the error status is reset to reflect the
success or failure of the operation.aio_return() and aio_error() may be used with this aiocbp value to monitor
both the return and the error status of the asynchronous operation while it is proceeding. aiocbp-
>aio_sigevent defines the signal to be generated upon I/O completion. If aiocbp->aio_sigevent.sigev_signo
is non-zero, then a signal will be generated when all I/O operations have achieved synchronized I/O
completion.

struct aiocb {
int aio_fildes;
 volatile void *aio_buf;
 size_t aio_nbytes;
off_t aio_offset;
int aio_reqprio;
struct sigevent aio_sigevent;
int aio_lio_opcode;

};
struct sigevent {

int sigev_notify;
int sigev_signo;
union sigval sigev_value;

};
union sigval {

int sival_int; /* integer value */
void *sival_ptr; /* pointer value */

};

RETURN VALUES
If the I/O operation is successfully queued, aio_fsync() returns 0.Otherwise, it returns -1, and sets errno to
indicate the error condition.

ERRORS

libposix4 (EXPERIMENTAL) ___

10-6 SPARC Compliance Definition 2.4 Interface Semantics 1998

The aio_fsync() function will fail if:

EAGAIN The requested asynchronous operation was not queued due to temporary resource
limitations.

EBADF aiocbp->aio_fildes is not a valid file descriptor open for writing.

EINVAL Synchronized I/O is not supported for this file.A value of op other than O_DSYNC or
O_SYNC was specified.

ENOSYS aio_fsync() is not supported by this implementation.

SEE ALSO
fcntl(), open(), read(), write(), aio_error(), aio_return(), fdatasync(), fsync(), fcntl(),

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-7

aio_read
aio_write

NAME
aio_read, aio_write - asynchronous read and write operations

SYNOPSIS
#include <aio.h>
int aio_read(struct aiocb *aiocbp);
int aio_write(struct aiocb *aiocbp);

DESCRIPTION
The aio_read() function queues an asynchronous read request and returns control immediately. Rather than
blocking until completion, the read operation continues concurrently with other activity of the process. Upon
enqueuing the request, the calling process reads aiocbp->nbytes from the file referred to by aiocbp->fildes
into the buffer pointed to by aiocbp->aio_buf. aiocbp->offset marks the absolute position from the beginning
of the file (in bytes) at which the read begins. The aio_write() function queues an asynchronous write request,
and returns control immediately. Rather than blocking until completion, the write operation continues
concurrently with other activity of the process. Upon enqueuing the request, the calling process writes aiocbp-
>nbytes from the buffer pointed to by aiocbp->aio_buf into the file referred to by aiocbp->fildes. If
O_APPEND is set for aiocbp->fildes, aio_write() operations append to the file in the same order as the calls
were made. If O_APPEND is not set for the file descriptor, then the write operation will occur at the absolute
position from the beginning of the file plus aiocbp->offset (in bytes). These asynchronous operations are
submitted at a priority equal to the calling process' scheduling priority minus aiocbp->aio_reqprio.

For regular files, no data transfer will occur past the offset maximum established in the open file description
associated with aiocbp->fildes. aiocb->aio_sigevent defines both the signal to be generated and how the
calling process will be notified upon I/O completion. If aio_sigevent.sigev_notify is SIGEV_NONE, then no
signal will be posted upon I/O completion, but the error status and the return status for the operation will be
set appropriately. If aio_sigevent.sigev_notify is SIGEV_SIGNAL, then the signal specified in
aio_sigevent.sigev_signo will be sent to the process. If the SA_SIGINFO flag is set for that signal number,
then the signal will be queued to the process and the value specified in aio_sigevent.sigev_value will be the
si_value component of the generated signal (see siginfo()).

RETURN VALUES
If the I/O operation is successfully queued, aio_read() and aio_write() return 0; otherwise, they return -1, and
set errno to indicate the error condition. aiocbp may be used as an argument to aio_error() and aio_return()
in order to determine the error status and the return status of the asynchronous operation while it is
proceeding.

ERRORS
The aio_read() and aio_write() function will fail if:

EAGAIN The requested asynchronous I/O operation was not queued due to system resource
limitations.

libposix4 (EXPERIMENTAL) ___

10-8 SPARC Compliance Definition 2.4 Interface Semantics 1998

ENOSYS The aio_read() or aio_write() functions are not supported.

EBADF If the calling function is aio_read(), and aiocbp->fildes is not a valid file descriptor open
for reading. If the calling function is aio_write(), and aiocbp->fildes is not a valid file descriptor open for
writing.

EINVAL +o The file offset value implied by aiocbp->aio_offset would be invalid, +o aiocbp-
>aio_reqprio is not a valid value, or +o aiocbp->aio_nbytes is an invalid value.

ECANCELED The requested I/O was canceled before the I/O completed due to an explicit aio_cancel()
request.

EINVAL The file offset value implied by aiocbp->aio_offset would be invalid.

The following are additional conditions which maybe detected synchronously or asynchronously:

aio_read()

OVERFLOW The file is a regular file, aiocbp->aio_nbytes is greater than 0 and the starting offset in
aiocbp->aio_offset is before the end-of-file and is at or beyond the offset maximum in the open file
description associated with aiocbp->fildes.

aio_write()

EFBIG The file is a regular file, aiocbp->aio_nbytes is greater than 0 and the starting offset in
aiocbp->aio_offset is at or beyond the offset maximum in the open file description associated with aiocbp-
>fildes.

SEE ALSO
close(), exec(), exit(), fork(), lseek(), read(), write(), aio_cancel(), aio_return(), lio_listio(), siginfo()

NOTES
For portability, the application should set aiocb->aio_reqprio to 0.

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-9

aio_suspend

NAME
aio_suspend - wait for asynchronous I/O request

SYNOPSIS
#include <aio.h>
int aio_suspend(const struct aiocb * const list[], int nent, const struct timespec *timeout);

DESCRIPTION
The aio_suspend() function suspends the caller until at least one of the asynchronous I/O operations
referenced by list has completed, until a signal interrupts the function, or, if timeout is not NULL, until the
time interval specified by timeout has passed. If any of the aiocb structures in the list corresponds to a
completed asynchronous I/O operation (that is, the error status for the operation is not equal to
EINPROGRESS), at the time of the call, the function returns without suspending the caller. If the time
interval indicated in the timespec structure pointed to by timeout passes before any of the I/O operations
referenced by list are completed, then aio_suspend() returns with an error. The list argument is an array of
pointers to asynchronous I/O control blocks. The nent argument indicates the number of elements in this
array. Each aiocb structure pointed to must have been used in initiating an asynchronous I/O request via
aio_read(), aio_write(), aio_fsync(), or lio_listio().This array may contain null pointers which will be
ignored.

struct timespec {
time_t tv_sec;
long tv_nsec;

};

RETURN VALUES
If aio_suspend() returns after one or more asynchronous I/O operations have completed, it returns 0.
Otherwise, it returns -1, and sets errno to indicate the error condition. The application may determine which
asynchronous I/O had completed with both the associated error and return status of aio_return(), and
aio_error().

ERRORS
The aio_suspend() function will fail if:

EAGAIN No asynchronous I/O indicated in the list referenced by list completed in the time interval
indicated by timeout.

EINTR A signal interrupted the aio_suspend() function. Note that, since each asynchronous I/O
operation may possibly provoke a signal when it completes, this error return may be caused by the completion
of one (or more) of the very I/O operations being awaited.

ENOSYS The aio_suspend() function is not supported.

SEE ALSO
aio_fsync(), aio_read(), aio_return(), aio_write(), lio_listio(),

libposix4 (EXPERIMENTAL) ___

10-10 SPARC Compliance Definition 2.4 Interface Semantics 1998

clock_settime
clock_gettime
clock_getres

NAME
clock_settime, clock_gettime, clock_getres - high-resolution clock operations

SYNOPSIS
#include <time.h>
int clock_settime(clockid_t clock_id, const struct timespec *tp);
int clock_gettime(clockid_t clock_id, struct timespec *tp);
int clock_getres(clockid_t clock_id, struct timespec *res);
struct timespec {time_t tv_sec; long tv_nsec; };

DESCRIPTION
clock_settime() sets the specified clock, clock_id, to the value specified by tp. The calling process must have
an effective user ID of 0. clock_gettime() returns the current value tp for the specified clock, clock_id. The
resolution of any clock can be obtained by calling clock_getres(). If res is not NULL, the resolution of the
specified clock is stored in res. The clock_id for the real-time clock for the system is
CLOCK_REALTIME.The values returned by clock_gettime() and specified by clock_settime() represent
the amount of time (in seconds and nanoseconds) since 00:00 Universal Coordinated Time, January 1, 1970.

RETURN VALUES
clock_settime(), clock_gettime(), and clock_getres() return 0 upon success, otherwise they return -1 and set
errno to indicate the error condition.

ERRORS
EINVAL clock_id does not specify a known clock. The tp argument to clock_settime() is outside the

range for the given clock id. The tp argument to clock_settime() specified a nanosecond
value less than zero or greater than or equal to 1,000,000,000.

ENOSYS clock_settime(), clock_gettime(), or clock_getres() is not supported by this
implementation.

EPERM The requesting process does not have the appropriate privilege to set the specified clock.

SEE ALSO
time(), ctime(), timer_gettime()

NOTES
Clock resolutions are implementation defined and are not settable by a process.Time values that are between
two consecutive non-negative integer multiples of the resolution of the specified clock are truncated down to
the smaller multiple of the resolution.

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-11

fdatasync

NAME
fdatasync - synchronize a file's data

SYNOPSIS
#include <unistd.h>
int fdatasync(int fildes);

DESCRIPTION
fdatasync() forces all currently queued I/O operations associated with the file descriptor fildes to
synchronized I/O data integrity completion.See fcntl() definition of O_DSYNC.

RETURN VALUES
fdatasync() returns 0 upon success; otherwise, it returns -1 and sets errno to indicate the error condition.

ERRORS
EBADF fildes is not a valid file descriptor.

EINVAL This implementation does not support synchronized I/O for this file.

ENOSYS fdatasync() is not supported by this implementation.

In the event that any of the queued I/O operations fail, fdatasync() returns the error conditions defined for
read() and write().

SEE ALSO
fcntl(), open(), read(), write(), fsync(), aio_fsync(), fcntl()

NOTES
If fdatasync() fails, outstanding I/O operations are not guaranteed to have been completed.

libposix4 (EXPERIMENTAL) ___

10-12 SPARC Compliance Definition 2.4 Interface Semantics 1998

lio_listio

NAME
lio_listio - list directed I/O

SYNOPSIS
#include <aio.h>
int lio_listio(int mode, struct aiocb * const list[], int nent, struct sigevent *sig);

struct aiocb {
int aio_fildes; /* file descriptor */
volatile void *aio_buf; /* buffer location */
size_t aio_nbytes; /* length of transfer */
off_t aio_offset; /* file offset */
int aio_reqprio; /* request priority offset */
struct sigevent aio_sigevent; /* signal number and offset */
int aio_lio_opcode; /* listio operation */

};

struct sigevent {
int sigev_notify; /* notification mode */
int sigev_signo; /* signal number */
union sigval sigev_value; /* signal value */

};

union sigval {
int sival_int; /* integer value */
void *sival_ptr; /* pointer value */

};

DESCRIPTION
The lio_listio() function allows the calling process, LWP, or thread, to initiate a list of I/O requests within a
single function call.

If mode is set to LIO_WAIT, lio_listio() behaves synchronously, waiting until all I/O is completed, and the
sig argument is ignored. If mode is set to LIO_NOWAIT, lio_listio() behaves asynchronously; returning
immediately, and signal delivery will occur, according to the sig argument, when all the I/O operations from
this function complete. If sig is NULL, or the sigev_signo member of the sigevent structure referenced by sig
is zero, then no signal delivery will occur. Otherwise, the signal number indicated by sigev_signo will be
delivered when all the requests in list have completed.

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-13

list is an array of pointers to aiocb structures.This array consists of nent elements. The array may contain null
pointers, which will be ignored.

The aio_lio_opcode field of each aiocb structure in list specifies the operation to be performed (see
/usr/include/aio.h).

LIO_READ requests aio_read().

LIO_WRITE requests aio_write().

LIO_NOP causes the list entry to be ignored.

nent specifies the length of the array (number of members of the list).

When mode has the value LIO_WAIT, a pointer to a signal control structure, sig, is used to define both the
signal to be generated and how the calling process will be notified upon I/O completion. If sig->sigev_notify
is SIGEV_NONE, then no signal will be posted upon I/O completion, but the error status and the return status
for the operation will be set appropriately. If sig->sigev_notify is SIGEV_SIGNAL, then the signal specified
in sig->sigev_signo will be sent to the process. If the SA_SIGINFO flag is set for that signal number, then
the signal will be queued to the process and the value specified in sig->sigev_value will be the si_value
component of the generated signal (see siginfo()).

For regular files, no data transfer will occur past the offset maximum established in the open file description
associated with aiocbp->aio_fildes.

The behavior of this function is altered according to the definitions of synchronized I/O data integrity
completion and synchronized I/O file integrity completion if synchronized I/O is enabled on the file
associated with aio_fildes. (see fcntl() definitions of O_DSYNC and O_SYNC.)

RETURN VALUES
If the mode argument has the value LIO_NOWAIT, and the I/O operations are successfully queued,
lio_listio() returns 0; otherwise, it returns -1, and sets errno to indicate the error condition.

If the mode argument has the value LIO_WAIT, and when all the indicated I/O has completed successfully,
lio_listio() returns 0; otherwise, it returns -1, and sets errno to indicate the error condition.

In either case, the return value only indicates the success or failure of the lio_listio() call itself, not the status
of the individual I/O requests. In some cases, one or more of the I/O requests contained in the list may fail.
Failure of an individual request does not prevent completion of any other individual request. To determine the
outcome of each I/O request, the application must examine the error status associated with each aiocb control
block. Each error status so returned is identical to that returned as a result of an aio_read() or aio_write()
function.

libposix4 (EXPERIMENTAL) ___

10-14 SPARC Compliance Definition 2.4 Interface Semantics 1998

ERRORS
The lio_listio() function will fail if:

EAGAIN The resources necessary to queue all the I/O requests were not available.The error status for
each request is recorded in the aio_error member of the corresponding aiocb structure, and
can be retrieved using aio_error(). The value of nent entries exceed the system-wide limit,
AIO_MAX.

EINVAL The mode argument is an improper value.The value of nent is greater than
AIO_LISTIO_MAX.

EINTR A signal was delivered while waiting for all I/O requests to complete during an LIO_WAIT
operation.However, the outstanding I/O requests are not canceled. Use aio_fsync() to
determine if any request was initiated; aio_return() to determine if any request has
completed; or aio_error() to determine if any request was canceled.

EIO One or more of the individual I/O operations failed.Using aio_error() with each aiocb
structure will determine the individual request(s) that failed.

ENOSYS lio_listio() is not supported by this implementation.

If either lio_listio() succeeds in queuing all of its requests, or errno is set to EAGAIN, EINTR, or EIO, then
some of the I/O specified from the list may have been initiated. In this event, each aiocb structure contains
errors specific to the read() or write() function being performed:

EAGAIN The requested I/O operation was not queued due to resource limitations.

ECANCELED The requested I/O was canceled before the I/O completed due to an explicit aio_cancel()
request.

EINPROGRESS The requested I/O is in progress.

The following are additional error codes which may be set for each aiocb control block:

EOVERFLOW The aiocbp->aio_lio_opcode is LIO_READ, the file is a regular file, aiocbp->aio_nbytes
is greater than 0, and the aiocbp->aio_offset is before the end-of-file and is greater than or
equal to the offset maximum in the open file description associated with aiocbp-
>aio_fildes.

EFBIG The aiocbp->aio_lio_opcode is LIO_WRITE, the file is a regular file, aiocbp-
>aio_nbytes is greater than 0, and the aiocbp->aio_offset is greater than or equal to the offset maximum in
the open file description associated with aiocbp->aio_fildes.

SEE ALSO
close(), exec(), exit(), fork(), lseek(), read(), write(), aio_cancel(), aio_fsync(), aio_read(), aio_return(),
fcntl(), siginfo()

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-15

mq_close

NAME
mq_close - close a message queue

SYNOPSIS
#include <mqueue.h>
int mq_close(mqd_t mqdes);

DESCRIPTION
mq_close() removes the association between the message queue descriptor, mqdes, and its message queue.

If the process (or thread) has registered a notification request to the message queue via this mqdes, this
registration is removed and the message queue is available for another process to attach for notification.

RETURN VALUES
Upon successful completion, mq_close() returns 0; otherwise, the function returns -1 and sets errno to
indicate the error condition.

ERRORS
EBADF mqdes is an invalid message queue descriptor.

ENOSYS sem_open() is not supported by this implementation.

SEE ALSO
mq_notify(), mq_open(), mq_unlink()

libposix4 (EXPERIMENTAL) ___

10-16 SPARC Compliance Definition 2.4 Interface Semantics 1998

mq_getattr
mq_setattr

NAME
mq_setattr, mq_getattr - set/get message queue attributes

SYNOPSIS
#include <mqueue.h>
int mq_setattr(mqd_t mqdes, const struct mq_attr *mqstat, struct mq_attr* omqstat);
int mq_getattr(mqd_t mqdes, struct mq_attr *mqstat);
struct mq_attr {long mq_flags; longmq_maxmsg; longmq_msgsize; longmq_curmsgs;...};

DESCRIPTION
mq_setattr() is used to set attributes associated with the message queue specified by mqdes. The message
queue attributes corresponding to the following members defined in the mq_attr structure are set to the
specified values upon successful completion of mq_setattr(): mq_flags The value of this member is either 0
or O_NONBLOCK. The values of mq_maxmsg, mq_msgsize, and mq_curmsgs are ignored by mq_setattr().
If omqstat is non-NULL, mq_setattr() stores, in the location referenced by omqstat, the previous message
queue attributes and the current queue status. These values are the same as would be returned by a call to
mq_getattr() at that point. mq_getattr() is used to get status information and attributes associated with the
message queue specified in mqdes. Upon return, the mq_flags member of the mq_attr structure referenced by
mqstat has the value that was set when the message queue was created but also with modifications made by
subsequent mq_setattr() calls. The following attributes were set at message queue creation: mq_maxmsg,
mq_msgsize. Upon return, the mq_curmsgs (the number of messages currently on the queue) member of the
mq_attr structure referenced by mqstat is set according to the current state of the message queue.

RETURN VALUES
Upon successful completion, these function(s) return 0; otherwise, they return -1, and set errno to indicate the
error condition. mq_setattr(), if successful, also changes the attributes of the message queue as specified.

ERRORS
EBADF mqdes is not a valid message queue descriptor.

ENOSYS mq_setattr() and mq_getattr() are not supported by this implementation.

SEE ALSO
mq_open(), mq_receive(), mq_send()

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-17

mq_notify

NAME
mq_notify - notify process (or thread) that a message is available on a queue

SYNOPSIS
#include <mqueue.h>
int mq_notify(mqd_t mqdes, const struct sigevent *notification);

DESCRIPTION
mq_notify() provides an asynchronous mechanism for processes to receive notice that messages are available
in a message queue, rather than synchronously blocking (waiting) in mq_receive(). If notification is not
NULL, this function registers the calling process to be notified of message arrival at an empty message queue
associated with the message queue descriptor, mqdes. The notification specified by notification will be sent
to the process when the message queue becomes non-empty.At any time, only one process may be registered
for notification by a specific message queue. Also, if the calling process or any other process has already
registered for notification of message arrival at the specified message queue, subsequent attempts to register
for that message queue will fail. notification points to a structure that defines both the signal to be generated
and how the calling process will be notified upon I/O completion. If notification->sigev_notify is
SIGEV_NONE, then no signal will be posted upon I/O completion, but the error status and the return status
for the operation will be set appropriately. If notification->sigev_notify is SIGEV_SIGNAL, then the
signal specified in notification->sigev_signo will be sent to the process. If the SA_SIGINFO flag is set for
that signal number, then the signal will be queued to the process and the value specified in notification-
>sigev_value will be the si_value component of the generated signal (see siginfo()). If notification is NULL
and the process is currently registered for notification by the specified message queue, the existing registration
is removed. The message queue is then available for future registration. When the notification is sent to the
registered process, its registration is removed.The message queue is then be available for registration. If a
process has registered for notification of message arrival at a message queue and some processes is blocked
in mq_receive() waiting to receive a message when a message arrives at the queue, the arriving message will
be received by the appropriate mq_receive(), and no notification will be sent to the registered process. The
resulting behavior is as if the message queue remains empty, and this notification will not be sent until the
next arrival of a message at this queue. Any notification registration is removed if the calling process either
closes the message queue or exits.

RETURN VALUES
Upon successful completion, mq_notify() returns 0; otherwise, it returns a value of -1 and sets errno to
indicate the error condition.

ERRORS
EBADF mqdes is not a valid message queue descriptor.

EBUSY A process is already registered for notification by the message queue.

ENOSYS mq_notify() is not supported by this implementation.

SEE ALSO
mq_close(), mq_open(), mq_receive(), mq_send(), siginfo()

libposix4 (EXPERIMENTAL) ___

10-18 SPARC Compliance Definition 2.4 Interface Semantics 1998

mq_open

NAME
mq_open - open a message queue

SYNOPSIS

#include <mqueue.h>
mqd_t mq_open(const char *name, int oflag, /* unsigned long mode, mq_attr attr */...);

struct mq_attr {
long mq_flags; /* message queue flags */
long mq_maxmsg; /* maximum number of messages */
long mq_msgsize; /* maximum message size */
long mq_curmsgs; /* number of messages currently queued */
...

};

DESCRIPTION
mq_open() establishes a connection to a named message queue, name, returning the address of the message
queue descriptor to the caller for subsequent calls to mq_send() or mq_receive().The message queue once
opened remains usable by this process until the message queue is closed by a successful call to mq_close(),
exit(), or exec().

name points to a string naming a message queue.The name argument must conform to the construction rules
for a pathname. If name is not the name of an existing message queue and its creation is not requested,
mq_open() fails and returns an error. The first character of name must be a slash (/) character and the
remaining characters of name cannot include any slash characters. For maximum portability, name should
include no more than 14 characters, but this limit is not enforced.

oflag requests the desired receive and/or send access to the message queue.The requested access permission
to receive messages or send messages is granted if the calling process would be granted read or write access,
respectively, to a file with the equivalent permissions.

The value of oflag is the bitwise inclusive OR of values from the following list. Applications must specify
exactly one of the first three values (access modes) below in the value of oflag:

O_RDONLY Open the message queue for receiving messages.The process can use the returned
message queue descriptor with mq_receive(), but not mq_send(). A message queue may be open multiple
times in the same or different processes for receiving messages.

O_WRONLY Open the queue for sending messages. The process can use the returned

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-19

message queue descriptor with mq_send() but not mq_receive().A message queue may be open multiple
times in the same or different processes for sending messages.

O_RDWR Open the queue for both receiving and sending messages.The process can use any
of the functions allowed for O_RDONLY and O_WRONLY. A message queue may be open multiple times
in the same or different processes for sending messages.

Any combination of the remaining flags may additionally be specified in the value of oflag:

O_CREAT This option is used to create a message queue, and it requires two additional arguments:
mode, which is of type mode_t, and attr, which is pointer to a mq_attr structure. If the pathname, name, has
already been used to create a message queue that still exists, then this flag has no effect, unless combined with
O_EXCL (see below). Otherwise, a message queue is created without any messages in it.

The message queue's user ID is set to the process's effective user ID, and the message queue's group ID is set
to the process's effective group ID. The message queue's permission bits will be set to the value of mode, and
modified by clearing all bits set in the file mode creation mask of the process (see umask()). AND-NOT those
already set in the file mode creation mask of the process.

If attr is NULL, the message queue is created with the default message queue attributes,(mq_maxmsg=128
and mq_maxsize = 1024). If attr is non-NULL, the message queue mq_maxmsg and mq_msgsize attributes
are set to the values of the corresponding members in the mq_attr structure referred to by attr.

O_EXCL If both O_EXCL and O_CREAT are set, mq_open() will fail if the message
queue name exists. The check for the existence of the message queue and the creation of the message queue
if it does not exist are atomic with respect to other processes executing mq_open() naming the same name
with both O_EXCL and O_CREAT set.

O_NONBLOCK The setting of this flag is associated with the open message queue descriptor and
determines whether a calling mq_send() waits for message buffer space or a calling mq_receive() waits for
messages that are not currently available; or whether the calling function fails, thereby setting errno to
EAGAIN.

RETURN VALUES
Upon successful completion, mq_open() returns a message queue descriptor; otherwise the function returns
(mqd_t)(-1) and sets errno to indicate the error condition.

ERRORS
EACCESS The message queue exists and the permissions specified by oflag are denied, or the
message queue does not exist and permission to create the message queue is denied.

EEXISTO_CREAT and O_EXCL are set and the named message queue already exists.

EINTR The mq_open() operation was interrupted by a signal.

EINVAL name is not a valid name.

libposix4 (EXPERIMENTAL) ___

10-20 SPARC Compliance Definition 2.4 Interface Semantics 1998

O_CREAT was specified in oflag, the value of attr is not NULL, and either mq_maxmsg or mq_msgsize was
less than or equal to zero.

EMFILE The number of open message queue descriptors in this process exceeds
MQ_OPEN_MAX.

 The number of open file descriptors in this process exceeds OPEN_MAX.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a pathname component is
longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENFILE The system file table is full

ENOENTO_CREAT is not set and the named message queue, name, does not exist.

ENOSPC There is insufficient space for the creation of the new message queue.

ENOSYS mq_open() is not supported by this implementation.

SEE ALSO
exec(), exit(), umask(), mq_close(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), sysconf()

NOTES
Message queues are based on shared memory. Although permissions to send and receive messages are
checked by the mq_receive() and mq_send() interfaces, any application which can open the message queue
can directly access the shared memory to examine and manipulate messages in the queue. Thus message
queues should not be considered secure.

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-21

mq_receive

NAME
mq_receive - receive a message from a message queue

SYNOPSIS
#include <mqueue.h>
ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len, unsigned int *msg_prio);
struct mq_attr {longmq_flags; long mq_maxmsg;longmq_msgsize;longmq_curmsgs; ...};

DESCRIPTION
The mq_receive() function is used to receive the oldest of the highest priority message(s) from the message
queue specified by mqdes. If the size of the buffer in bytes, specified by msg_len, is less than the mq_msgsize
member of the message queue, the function fails and returns an error. Otherwise, the selected message is
removed from the queue and copied to the buffer pointed to by msg_ptr. If msg_prio is not NULL, the priority
of the selected message is stored in the location referenced by msg_prio. If the specified message queue is
empty and O_NONBLOCK is not set in the message queue description associated with mqdes, (see
mq_open() and mq_setattr()), mq_receive() blocks, waiting until a message is enqueued on the message
queue, or until mq_receive() is interrupted by a signal. If more than one process (or thread) is waiting to
receive a message when a message arrives at an empty queue, then the process of highest priority that has
been waiting the longest is selected to receive the message.If the specified message queue is empty and
O_NONBLOCK is set in the message queue description associated with mqdes, no message is removed from
the queue, and mq_receive() returns an error.

RETURN VALUES
Upon successful completion, mq_receive() returns the length of the selected message in bytes and the
message will have been removed from the queue.Otherwise, no message is removed from the queue, the
function returns a value of -1, and sets errno to indicate the error condition.

ERRORS
The mq_receive() function will fail if:

EAGAINO_NONBLOCK was set in the message description associated with mqdes, and the
specified message queue is empty.

EBADF The mqdes argument is not a valid message queue descriptor open for
reading.

EMSGSIZE The msg_len argument is less than the message size member of the
message queue.

EINTR The mq_receive() function operation was interrupted by a signal.

ENOSYS The mq_receive() function is not supported by this implementation.

SEE ALSO
mq_open(), mq_send(), mq_setattr()

libposix4 (EXPERIMENTAL) ___

10-22 SPARC Compliance Definition 2.4 Interface Semantics 1998

mq_send

NAME
mq_send - send a message to a message queue

SYNOPSIS
#include <mqueue.h>
int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len, unsigned int msg_prio);
struct mq_attr {long mq_flags;long mq_maxmsg; long mq_msgsize;long mq_curmsgs;...};

DESCRIPTION
mq_send() adds the message pointed to by msg_ptr to the message queue specified by mqdes. msg_len
specifies the length of the message in bytes pointed to by msg_ptr. The value of msg_len must be less than or
equal to the mq_msgsize attribute of the message queue, or mq_send() will fail. If the specified message queue
is not full, mq_send() behaves as if the message is inserted into the message queue at the position indicated
by msg_prio.A message with a larger numeric value of msg_prio is inserted before messages with lower
values of msg_prio. A message is inserted after other messages in the queue, if any, with equal msg_prio
priority. The value of msg_prio must be greater than 0, and less than or equal to MQ_PRIO_MAX. If the
specified message queue is full and if O_NONBLOCK is not set in the message queue description associated
with mqdes (see mq_open() and mq_setattr()), mq_send() blocks, waiting until space becomes available to
enqueue the message, or until mq_send() is interrupted by a signal.If more than one process (or thread) is
waiting to send when space becomes available in the message queue, then the process of the highest priority
which has been waiting the longest is unblocked to send its message. If the specified message queue is full
and O_NONBLOCK is set in the message queue description associated with mqdes, the message is not
queued, and mq_send() returns an error.

RETURN VALUES
Upon successful completion, mq_send() returns a value of 0; otherwise, no message is enqueued, the function
returns -1, and sets errno to indicate the error condition.

ERRORS
EAGAIN The O_NONBLOCK flag is set in the message queue description associated with mqdes,

and the specified message queue is full.

EBADF mqdes is not a valid message queue descriptor open for writing.

EINTR A signal interrupted the call to mq_send()

EMSGSIZE The specified message length, msg_len, exceeds the message size attribute of the message
queue.

ENOSYS mq_send() is not supported by this implementation.

SEE ALSO
mq_open(), mq_receive(), mq_setattr(), sysconf()

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-23

mq_unlink

NAME
mq_unlink - remove a message queue

SYNOPSIS
#include <mqueue.h>
int mq_unlink(const char *name);

DESCRIPTION
mq_unlink() removes the message queue named by name.After a successful call to mq_unlink() with name,
a call to mq_open() with the same name will fail if the flag O_CREAT is not set in flags. If one or more
processes have the message queue open when mq_unlink() is called, destruction of the message queue is
postponed until all references to the message queue have been closed.Calls to mq_open() to re-create the
message queue may fail until the message queue is actually removed. However, mq_unlink() does not block
(wait) until all references have been closed; it returns immediately.

RETURN VALUES
Upon successful completion, mq_unlink() returns a value of 0; otherwise, the named message queue is not
changed by this function call, the function returns a value of -1 and sets errno to indicate the error condition.

ERRORS
EACCESS Permission is denied to unlink the named message queue.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a pathname component is
longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The named message queue, name, does not exist.

ENOSYS mq_unlink() is not supported by this implementation.

SEE ALSO
mq_close(), mq_open()

libposix4 (EXPERIMENTAL) ___

10-24 SPARC Compliance Definition 2.4 Interface Semantics 1998

nanosleep

NAME
nanosleep - high resolution sleep

SYNOPSIS
#include <time.h>
int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);
struct timespec {

time_t tv_sec; /* seconds */
long tv_nsec; /* and nanoseconds */

};

DESCRIPTION
nanosleep() suspends the current thread from execution until either the time interval specified by rqtp has
elapsed, or a signal is delivered to the calling thread and its action is to invoke a signal-catching function or
to terminate the thread. The suspension time may be longer than requested because the argument value is
rounded up to an integer multiple of the sleep resolution or because of the scheduling of other activity by the
system. Except for the case of being interrupted by a signal, the suspension time will not be less than the time
specified by rqtp, as measured by the system clock, CLOCK_REALTIME. nanosleep() will not block nor
effect the action of any signal.

RETURN VALUES
If nanosleep() returns because the requested time has elapsed, it returns 0. Otherwise, if it returns because it
has been interrupted by a signal: it returns -1 and sets errno to indicate the interruption. If rmtp is non-NULL,
the timespec structure referenced by rmtp will be updated to contain the remaining amount of time between
rqtp and the time actually slept. If any of the following error conditions occur, nanosleep() returns -1 and sets
errno to indicate the error condition.

ERRORS
EINTR nanosleep() was interrupted by a signal.

EINVAL rqtp specified a nanosecond value less than zero or greater than or equal to 1,000,000,000.

ENOSYS nanosleep() is not supported by this implementation.

SEE ALSO
sleep()

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-25

sched_get_priority_max
sched_get_priority_min
sched_rr_get_interval

NAME
sched_get_priority_max,sched_get_priority_min, sched_rr_get_interval - get scheduling parameter limits

SYNOPSIS
#include <sched.h>
int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);
int sched_rr_get_interval(pid_t pid, struct timespec *interval);
struct timespec {time_t tv_sec; long tv_nsec;};

DESCRIPTION
sched_get_priority_max() and sched_get_priority_min() return the appropriate maximum or minimum
values, respectively, for the scheduling policy specified by policy. sched_rr_get_interval() updates the
timespec structure referenced by interval to contain the current execution time limit (i.e., time quantum) for
the process specified by pid under the SCHED_RR policy. After that time limit expires, when another process
at the same priority is ready to execute, a scheduling decision will be made. If pid is zero, the current
execution time limit for the calling process is stored in interval. The value of policy must be one of the
scheduling policy values defined in <sched.h>: SCHED_FIFO, SCHED_RR, or SCHED_OTHER.

RETURN VALUES
If successful, sched_get_priority_max() or sched_get_priority_min() returns the appropriate maximum or
minimum values, respectively. If successful, sched_rr_get_interval() returns 0. If unsuccessful, these
functions return -1, and set errno to indicate the error condition.

ERRORS
EINVAL The value of policy does not represent a defined scheduling policy.

ENOSYS sched_get_priority_max(), sched_get_priority_min(), and sched_rr_get_interval() are not
supported by this implementation.

ESRCH No process can be found corresponding to that specified by pid.

SEE ALSO
sched_setparam(), sched_setscheduler()

libposix4 (EXPERIMENTAL) ___

10-26 SPARC Compliance Definition 2.4 Interface Semantics 1998

sched_getparam, sched_setparam

NAME
sched_setparam, sched_getparam - set/get scheduling parameters

SYNOPSIS
#include <sched.h>
int sched_setparam(pid_t pid, const struct sched_param *param);
int sched_getparam(pid_t pid, struct sched_param *param);
struct sched_param {int sched_priority; /* process execution scheduling priority */}

DESCRIPTION
sched_setparam() sets the scheduling parameters of the process specified by pid to the values specified by the
sched_param structure referenced by param. sched_getparam() stores the scheduling parameters of a
process, specified by pid, in the sched_param structure pointed to by param. If the target process has as its
scheduling policy, SCHED_FIFO or SCHED_RR: If pid is zero, the scheduling parameters are set/stored
for the calling process. Otherwise, if a process specified by pid exists and if the calling process has
permission, the scheduling parameters are set/stored for the process whose process ID is equal to pid. The real
or effective user ID of the calling process must match the real or saved (from exec()) user ID of the target
process unless the effective user ID of the calling process is 0. The target process, pid, whether it is running
or not running, resumes execution after all other runnable processes of equal or greater priority have been
scheduled to run. If the priority of the process, pid, is set higher than that of the lowest priority running
process, and if process pid is ready to run, then process pid preempts a lowest priority running process.
Similarly, if the process calling sched_setparam() sets its own priority lower than that of one or more other
non-empty process lists, then the process that is the head of the highest priority list preempts the calling
process. Thus, in either case, the originating process might not receive notification of the completion of the
requested priority change until the higher priority process has executed. The value of param->sched_priority
must be an integer within the inclusive priority range for the current scheduling policy of the process specified
by pid. Higher numerical values for the priority represent higher priorities.

RETURN VALUES
If successful, sched_setparam() and sched_getparam() returns 0; otherwise, the priority remains unchanged,
the function returns -1, and sets errno to indicate the error condition.

ERRORS
EINVAL One or more of sched_setparam()'s requested scheduling parameters is outside the range
defined for the specified pid's scheduling policy.

ENOSYS sched_setparam() and sched_getparam() are not supported by this implementation.

EPERM The requesting process does not have permission to set/get the scheduling parameters for
the specified process, or does not have the appropriate privilege to invoke sched_setparam().

ESRCH No process can be found corresponding to that specified by pid.

SEE ALSO
exec(), sched_setscheduler()

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-27

sched_getscheduler, sched_setscheduler

NAME
sched_setscheduler, sched_getscheduler - set/get scheduling policy and scheduling parameters

SYNOPSIS
#include <sched.h>
int sched_setscheduler(pid_t pid, int policy, const struct sched_param *param);
int sched_getscheduler(pid_t pid);

DESCRIPTION
sched_setscheduler() sets the scheduling policy and scheduling parameters of the process specified by pid to
policy and the parameters specified in the sched_param structure pointed to by param, respectively. The value
of param->sched_priority must be any integer with in the inclusive priority range for the scheduling policy
specified by policy. The possible values for the policy parameter are defined in the header file <sched.h>:
SCHED_FIFO, SCHED_RR, or SCHED_OTHER. If pid is zero, the scheduling policy and scheduling
parameters are set for the calling process. Otherwise, if a process specified by pid exists and if the calling
process has permission, the scheduling policy and scheduling parameters are set for the process whose
process ID is equal to pid. The real or effective user ID of the calling process must match the real or saved
(from exec()) user ID of the target process unless the effective user ID of the calling process is super-user. To
change the policy of any process to either of the real time policies SCHED_FIFO or SCHED_RR, the
calling process must either have the SCHED_FIFO, or SCHED_RR policy or have an effective user ID of
0. sched_getscheduler() returns the scheduling policy of the process specified by pid. If pid is zero, the
scheduling policy is returned for the calling process. Otherwise, if a process specified by pid exists and if the
calling process has permission, the scheduling policy is returned for the process whose process ID is equal to
pid.

RETURN VALUES
If successful, sched_setscheduler() returns the former scheduling policy of the specified process (pid), which
will be one of the following values: SCHED_FIFO (realtime): First-In-First-Out; processes scheduled to
this policy, if not preempted by a higher priority or interrupted by a signal, will proceed until completion.
SCHED_RR (realtime): Round-Robin; processes scheduled to this policy, if not preempted by a higher
priority or interrupted by a signal, will execute for a time period, returned by sched_rr_get_interval() or by
the system. or SCHED_OTHER (time-sharing). Otherwise, the policy and scheduling parameters remain
unchanged, sched_setscheduler() returns -1, and sets errno to indicate the error condition. If successful,
sched_getscheduler() returns the scheduling policy of the specified process; otherwise, it returns -1, and sets
errno to indicate the error condition.

ERRORS
EINVAL The value of policy is invalid, or one or more of the parameters contained in param is

outside the valid range for the specified scheduling policy.

ENOSYS sched_setscheduler() and sched_getscheduler() are not supported by this implementation.

EPERM sched_setscheduler() does not have permission to set either or both of the scheduling
parameters or the scheduling policy of the specified process.

ESRCH No process can be found corresponding to that specified by pid.

libposix4 (EXPERIMENTAL) ___

10-28 SPARC Compliance Definition 2.4 Interface Semantics 1998

sched_yield

NAME
sched_yield - yield processor

SYNOPSIS
#include <sched.h>
int sched_yield(void);

DESCRIPTION
sched_yield() forces the running process to relinquish the processor until the process again becomes the head
of its process list.

RETURN VALUES
If successful, sched_yield() returns 0, other wise, it returns -1, and sets errno to indicate the error condition.

ERRORS
ENOSYS sched_yield() is not supported by this implementation.

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-29

sem_close

NAME
sem_close - close a named semaphore

SYNOPSIS
#include <semaphore.h>
int sem_close(sem_t *sem);
typedef struct {...} sem_t; /*opaque POSIX.4 semaphore*/

DESCRIPTION
sem_close() is used to indicate that the calling process is finished using the named semaphore sem.
sem_close() de-allocates any system resources for use by this process for this semaphore.If the semaphore
has not been removed with a successful call to sem_unlink(), then sem_close() has no effect on the state of
the semaphore. If sem_unlink() has been successfully invoked for name after the most recent call to
sem_open() with O_CREAT for this semaphore, then when all processes that have opened the semaphore
close it, the semaphore will no longer be accessible.

sem_close() should not be called for an unnamed semaphore initialized by sem_init().

RETURN VALUES
If successful, sem_close() returns 0, otherwise it returns -1 and sets errno to indicate the error condition.

ERRORS
EINVAL sem is not a valid semaphore descriptor.

ENOSYS sem_close() is not supported by this implementation.

SEE ALSO
sem_init(), sem_open(), sem_unlink()

libposix4 (EXPERIMENTAL) ___

10-30 SPARC Compliance Definition 2.4 Interface Semantics 1998

sem_destroy

NAME
sem_destroy - destroy an unnamed semaphore

SYNOPSIS
#include <semaphore.h>
int sem_destroy(sem_t *sem);
typedef struct {...} sem_t; /*opaque POSIX.4 semaphore*/

DESCRIPTION
sem_destroy() is used to destroy the unnamed semaphore, sem, which was initialized by sem_init().

RETURN VALUES
If successful, sem_destroy() returns 0, otherwise it returns -1 and sets errno to indicate the error condition.

ERRORS
EINVAL sem is not a valid semaphore.

ENOSYS sem_destroy() is not supported by this implementation.

EBUSY Other processes (or LWPs or threads) are currently blocked on the semaphore.

SEE ALSO
sem_init(), sem_open()

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-31

sem_getvalue

NAME
sem_getvalue - get the value of a semaphore

SYNOPSIS
#include <semaphore.h>
int sem_getvalue(sem_t *sem, int *sval);
typedef struct {...} sem_t; /*opaque POSIX.4 semaphore*/

DESCRIPTION
sem_getvalue() updates the location referenced by sval to have the value of the semaphore referenced by sem
without affecting the state of the semaphore.The updated value represents an actual semaphore value that
occurred at some unspecified time during the call to sem_getvalue(), but may not be the actual value of the
semaphore when sem_getvalue() is returned to the caller.

The value set in sval may be zero or positive. If sval is zero, there may be other processes (or LWPs or threads)
waiting for the semaphore; if sval is positive, no one is waiting.

RETURN VALUES
If successful, sem_getvalue() returns 0, otherwise, it returns -1, and sets errno to indicate the error condition.

ERRORS
EINVAL sem does not refer to a valid semaphore.

ENOSYS sem_getvalue() is not supported by this implementation.

SEE ALSO
sem_post(), sem_wait()

libposix4 (EXPERIMENTAL) ___

10-32 SPARC Compliance Definition 2.4 Interface Semantics 1998

sem_init

NAME
sem_init - initialize an unnamed semaphore

SYNOPSIS
#include <semaphore.h>
int sem_init(sem_t *sem, int pshared, unsigned int value);
typedef struct {...} sem_t; /*opaque POSIX.4 semaphore*/

DESCRIPTION
sem_init() is used to initialize the unnamed semaphore, referred to by sem, to value. This semaphore may be
used in subsequent calls to sem_wait(), sem_trywait(), sem_post(), and sem_destroy(). This semaphore
remains usable until the semaphore is destroyed.

If pshared is non-zero, then the semaphore is sharable between processes.If the semaphore is not being shared
between processes, the application should set pshared to 0.

RETURN VALUES
If successful, sem_init() returns 0 and initializes the semaphore in sem; otherwise it returns -1 and sets errno
to indicate the error condition.

ERRORS
EINVAL value exceeds SEM_VALUE_MAX.

ENOSPC A resource required to initialize the semaphore has been exhausted.

The resources have reached the limit on semaphores, SEM_NSEMS_MAX.

ENOSYS sem_init() is not supported by this implementation.

EPERM The calling process lacks the appropriate privileges to initialize the semaphore.

SEE ALSO
sem_destroy(), sem_post(), sem_wait()

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-33

sem_open

NAME
sem_open - initialize/open a named semaphore

SYNOPSIS
#include <semaphore.h>
sem_t *sem_open(const char *name, int oflag,
 /* unsigned long mode, unsigned int value */...);
typedef struct {...} sem_t; /*opaque POSIX.4 semaphore*/

DESCRIPTION
sem_open() establishes a connection to a semaphore, name, returning the address of the semaphore to the
calling process (or LWP or thread) for subsequent calls to sem_wait(), sem_trywait(), sem_post(), and
sem_close(). The semaphore remains usable by this process until the semaphore is closed.

name points to a string naming a semaphore object. The name argument should conform to the construction
rules for a pathname. If a process makes multiple successful calls to sem_open() with the same value for
name, the same semaphore address will be returned for each such successful call, provided that there have
been no calls to sem_unlink() for this semaphore. The first character of name must be a slash (/) character
and the remaining characters of name cannot include any slash characters. For maximum portability,
name should include no more than 14 characters, but this limit is not enforced.

oflag determines whether the semaphore is created or merely accessed by the call to sem_open(). The three
valid values for oflag are 0, O_CREAT, or the bitwise inclusive OR of O_CREAT and O_EXCL. Setting
the oflag bits to O_CREAT will create the semaphore if it does not already exist. Setting both O_CREAT
and O_EXCL will fail if the semaphore already exists. The check for the existence of the semaphore and the
creation of the semaphore if it does not exist is atomic with respect to other processes executing sem_open().
After the semaphore named name has been created by sem_open() with the O_CREAT flag, other processes
can connect to this semaphore by calling sem_open() with the same value of name, and no bits set in oflag.

Using the O_CREAT flag requires a third and a fourth argument: mode and value. The semaphore is created
with an initial count of value. value must be less than or equal to SEM_VALUE_MAX. The semaphore's user
ID acquires the effective user ID of the process; the semaphore's group ID is set to a system default group ID
or to the effective group ID of the process. The semaphore's permission bits is set to the value of mode,
modified by clearing all bits set in the file creation mask of the process (see umask()).

RETURN VALUES
If successful, sem_open() returns the address of the semaphore, otherwise it returns -1 and sets errno to
indicate the error condition.

ERRORS
EACCES The named semaphore exists and the O_RDWR permissions are denied, or the named
semaphore does not exist and permission to create the named semaphore is denied.

libposix4 (EXPERIMENTAL) ___

10-34 SPARC Compliance Definition 2.4 Interface Semantics 1998

EEXISTO_CREAT and O_EXCL are set and the named semaphore already exists.

EINTR sem_open() was interrupted by a signal.

EINVAL name is not a valid name.

O_CREAT was set in oflag and value is greater than SEM_VALUE_MAX.

EMFILE The number of open semaphore descriptors in this process exceeds SEM_NSEMS_MAX.

The number of open file descriptors in this process exceeds OPEN_MAX.

ENAMETOOLONG The string-length of name exceeds PATH_MAX, or a pathname component is
longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENFILE The system file table is full.

ENOENTO_CREAT is not set and the named semaphore does not exist.

ENOSPC There is insufficient space for the creation of the new named semaphore.

ENOSYS sem_open() is not supported by this implementation.

SEE ALSO
exec(), exit(), umask(), sem_close(), sem_post(), sem_unlink(), sem_wait(), sysconf()

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-35

sem_post

NAME
sem_post - increment the count of a semaphore

SYNOPSIS
#include <semaphore.h>
int sem_post(sem_t *sem);
typedef struct {...} sem_t /*opaque POSIX.4 semaphore*/

DESCRIPTION
If, prior to the call to sem_post(), the value of sem was 0, and other processes (or LWPs or threads) were
blocked waiting for the semaphore, then one of them will be allowed to return successfully from its call to
sem_wait(). The process to be unblocked will be chosen in a manner appropriate to the scheduling policies
and parameters in effect for the blocked processes. In the case of the policies SCHED_FIFO and
SCHED_RR, the highest priority waiting process is unblocked, and if there is more than one highest-priority
process blocked waiting for the semaphore, then the highest priority process which has been waiting the
longest is unblocked.

If, prior to the call to sem_post(), no other processes (or LWPs or thread) were blocked for the semaphore,
then its value is incremented by one.

sem_post() is reentrant with respect to signals (ASYNC-SAFE), and may be invoked from a signal-catching
function. The semaphore functionality described on this man page is for the POSIX threads implementation.

RETURN VALUES
If successful, sem_post() returns 0, otherwise it returns - 1, and sets errno to indicate the error condition.

ERRORS
EINVAL sem does not refer to a valid semaphore.

ENOSYS sem_post() is not supported by this implementation.

SEE ALSO
sched_setscheduler(), sem_wait(), semaphore()

NOTES
sem_wait() and sem_trywait() decrement the semaphore upon their successful return.

libposix4 (EXPERIMENTAL) ___

10-36 SPARC Compliance Definition 2.4 Interface Semantics 1998

sem_wait
sem_trywait

NAME
sem_wait, sem_trywait - acquire or wait for a semaphore

SYNOPSIS
#include <semaphore.h>
int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
typedef struct {...} sem_t; /*opaque POSIX.4 semaphore*/

DESCRIPTION
sem_wait() and sem_trywait() are the functions by which a calling thread waits or proceeds depending upon
the state of a semaphore. A synchronizing process can proceed only if the value of the semaphore it accesses
is currently greater than 0. If at the time of a call to either sem_wait() or sem_trywait(), the value of sem is
positive, these functions decrement the value of the semaphore, return immediately, and allow the calling
process to continue. If the semaphore's value is 0:

sem_wait() blocks, awaiting the semaphore to be released by another process (or LWP or thread).

sem_trywait() fails, returning immediately.

RETURN VALUES
If at the time of a call to either sem_wait() or sem_trywait(), the value of sem is positive, these functions return
0 on success. If the call was unsuccessful, the state of the semaphore is unchanged, the calling function returns
-1, and sets errno to indicate the error condition.

ERRORS
EAGAIN The value of sem was 0 when sem_trywait() was called.

EINVAL sem does not refer to a valid semaphore.

EINTR sem_wait() was interrupted by a signal.

ENOSYS sem_wait() and sem_trywait() are not supported by this implementation.

EDEADLK A deadlock condition was detected; i.e., two separate processes are waiting for an available
resource to be released via a semaphore “held” by the other process.

SEE ALSO
sem_post()

NOTES
sem_wait() can be interrupted by a signal, which may result in its premature return.

sem_post() increments the semaphore upon its successful return.

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-37

sem_unlink

NAME
sem_unlink - remove a named semaphore

SYNOPSIS
#include <semaphore.h>
int sem_unlink(const char *name);

DESCRIPTION
sem_unlink() removes the semaphore named by the string name. If the semaphore, name, is currently
referenced by other processes, then sem_unlink() has no effect on the state of the semaphore. If one or more
processes have the semaphore open when sem_unlink() is called, destruction of the semaphore is postponed
until all references to the semaphore have been destroyed by calls to sem_close(), exit(), or exec().Calls to
sem_open() to re-create or re-connect to the semaphore will refer to a new semaphore after sem_unlink() is
called. sem_unlink() does not block until all references have been destroyed; rather, it returns immediately.

RETURN VALUES
If successful, sem_unlink() returns 0; otherwise, the function returns -1, sets errno to indicate the error
condition, and the semaphore is left unchanged.

ERRORS
EACCES Permission is denied to unlink the named semaphore.

ENAMETOOLONG The string-length of name exceeds PATH_MAX, or a pathname component is
longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The named semaphore does not exist.

ENOSYS sem_unlink() is not supported by this implementation.

SEE ALSO
exec(), exit(), sem_close(), sem_open()

libposix4 (EXPERIMENTAL) ___

10-38 SPARC Compliance Definition 2.4 Interface Semantics 1998

shm_open

NAME
shm_open - open a shared memory object

SYNOPSIS
#include <sys/mman.h>
int shm_open(const char *name, int oflag, mode_t mode);

DESCRIPTION
shm_open() either opens a file descriptor for the shared memory object with the name referenced by name.
If successful, shm_open() returns a file descriptor for the shared memory object that is the lowest numbered
file descriptor not currently open for that process. Since the open file description is new, the new file descriptor
is not as yet shared with any other processes.

name points to a string naming a shared memory object.The name argument should conform to the
construction rules for a pathname. If a process makes multiple successful calls to shm_open(), with the same
value for name, the same semaphore address will be returned for each successful call, provided that there have
been no calls to sem_unlink() for this semaphore. The first character of name must be a slash (/) character
and the remaining characters of name cannot include any slash characters. For maximum portability, name
should include no more than 14 characters, but this limit is not enforced.

The file status flags and file access modes of the open file descriptor are set according to the value of oflag:
the bitwise inclusive OR of the following flags, defined in the header <fcntl.h>. (Applications must specify
exactly one of the first two values below in the value of oflag):

O_RDONLY Open for read access only.

O_RDWR Open for read or write access. Any combination of the remaining flags may be
bitwise inclusive OR- ed with the value of oflag:

O_CREAT If name does not exist, the shared memory object is created, it's user ID is set to
the effective user ID of the process, and it's group ID is set to a system default group ID or to the effective
group ID of the process.The shared memory object's permission bits will be set to the value of mode, modified
by clearing all bits set in the file mode creation mask of the process mode does not affect whether the shared
memory object is opened for reading, for writing, or for both.The new shared memory object has a size of
zero. If the shared memory object does exist, this flag will have no effect, except as specified under O_EXCL
below.

O_EXCL If both OEXCL and O_CREAT are set, shm_open() fails if the shared memory
object, name, exists. The check for the existence of the shared memory object and the creation of the object
if it does not exist is atomic with respect to other processes executing shm_open() naming the same shared
memory object with OEXCL and O_CREAT set.

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-39

O_TRUNC If the shared memory object exists, and it is successfully opened O_RDWR, the
object is truncated to zero length and the mode and ownership are unchanged by this function call.

RETURN VALUES
If successful, shm_open() returns a non negative integer representing the lowest numbered unused file
descriptor, otherwise it returns -1 and sets errno to indicate the error condition.

ERRORS
EACCES The shared memory object exists and the permissions specified by oflag are

denied, or the shared memory object does not exist and permission to create the
shared memory object is denied, or O_TRUNC is specified and write per mission
is denied.

EEXIST O_CREAT and O_EXCL are set and the named shared memory object already
exists.

EINTR The shm_open() operation was interrupted by a signal.

EINVAL name is an invalid file description.

EMFILE The number of open file descriptors in this process exceeds OPEN_MAX.

ENAMETOOLONG T he length of the name string exceeds PATH_MAX, or a pathname component
is longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENFILE The system file table is full

ENOENT O_CREAT is not set and the named shared memory object does not exist.

ENOSPC There is insufficient space for the creation of the new shared memory object.

ENOSYS shm_open() is not supported by this implementation.

FILES
/usr/include/fcntl.h

SEE ALSO
close(), dup(), exec(), fcntl(), mmap(), umask(), shm_unlink(), sysconf()

NOTES
When a shared memory object is created, the state of the shared memory object, including all data associated
with the shared memory object, persists until the shared memory object is unlinked and all other references
are gone.

libposix4 (EXPERIMENTAL) ___

10-40 SPARC Compliance Definition 2.4 Interface Semantics 1998

shm_unlink

NAME
shm_unlink - remove a shared memory object

SYNOPSIS
int shm_unlink(const char *name);

DESCRIPTION
shm_unlink() removes the name of the shared memory object named by the string pointed to by name. If one
or more references to the shared memory object exists when the object is unlinked, the name is removed
before shm_unlink() returns, but the removal of the memory object contents will be postponed until all open
and mapped references to the shared memory object have been removed.

RETURN VALUES
If successful, shm_unlink() returns 0, otherwise it returns -1 and sets errno to indicate the error condition,
and the named shared memory object is not affected by this function.

ERRORS
EACCES Permission is denied to unlink the named shared memory object.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a pathname component is
longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The named shared memory object does not exist.

ENOSYS shm_unlink() is not supported by this implementation.

SEE ALSO
close(), mmap(), mlock(), shm_open()

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-41

sigqueue

NAME
sigqueue - queue a signal to a process

SYNOPSIS
#include <signal.h>
int sigqueue(pid_t pid, int signo, const union sigval value);
union sigval {int sival_int;void*sival_ptr;};

DESCRIPTION
sigqueue() causes the signal, signo to be sent with the value, value to the process, pid. If signo is zero (the
null signal), error checking is performed, but no signal is actually sent.The null signal can be used to check
the validity of pid. The conditions required for a process to have permission to queue a signal to another
process are the same as for kill().

If resources were not available to queue the signal, sigqueue() exits and returns immediately. If
SA_SIGINFO is set for signo in the receiving process, and if the resources were available, the signal is left
queued and pending. If SA_SIGINFO is not set for signo, then signo is sent at least once to the receiving
process. If the value of pid causes signo to be generated for the sending process, and if signo is not blocked,
either signo or at least the pending, unblocked signal with the lowest number will be delivered to the sending
process before sigqueue() returns.

RETURN VALUES
If successful, sigqueue() returns 0, and queues the specified signal.Otherwise, sigqueue() returns -1 and sets
errno to indicate the error condition.

ERRORS
EAGAIN No resources are available to queue the signal.

The process has already queued {SIGQUEUE_MAX} signals that are still pending at the receiver(s), or a
system wide resource limit has been exceeded.

EINVAL The value of signo is an invalid or unsupported signal number.

ENOSYS sigqueue() is not supported by this implementation.

EPERM The process does not have the appropriate privilege to send the signal to the receiving
process.

ESRCH The process pid does not exist.

SEE ALSO
kill(), sigwaitinfo(), siginfo(), signal()

libposix4 (EXPERIMENTAL) ___

10-42 SPARC Compliance Definition 2.4 Interface Semantics 1998

sigwaitinfo
sigtimedwait

NAME
sigwaitinfo, sigtimedwait - wait for queued signals

SYNOPSIS
#include <signal.h>
int sigwaitinfo(const sigset_t *set, siginfo_t *info);
int sigtimedwait(const sigset_t *set, siginfo_t *info, const struct timespec *timeout);
typedef struct siginfo {int si_signo; int si_code;...; int si_value; ... } siginfo_t;
struct timespec {time_t tv_sec; long tv_nsec;};

DESCRIPTION
sigwaitinfo() and sigtimedwait() select the pending signal from the set specified by set. When multiple signals
are pending, the lowest numbered one will be selected.The selection order between realtime and non-realtime
signals, or between multiple pending non-realtime signals, is unspecified. If no signal in set is pending at the
time of the call, sigwaitinfo() suspends the calling process until one or more signals in set become pending
or until it is interrupted by an unblocked, caught signal. sigtimedwait(), on the other hand, suspends itself for
the time interval specified in the timespec structure referenced by timeout. If the timespec structure pointed
to by timeout is zero-valued, and if none of the signals specified by set are pending, then sigtimedwait()
returns immediately with the error EAGAIN. If, while sigwaitinfo() or sigtimedwait() is waiting, a signal
occurs which is eligible for delivery (i.e., not blocked by the process signal mask), that signal is handled
asynchronously and the wait is interrupted. If info is non-NULL, the selected signal number is stored in
si_signo, and the cause of the signal is stored in the si_code. If any value is queued to the selected signal, the
first such queued value is dequeued and, if info is non-NULL, the value is stored in the si_value member of
info. The system resource used to queue the signal is released and made available to queue other signals. If
the value of the si_code member is SI_NOINFO, only the si_signo member of siginfo_t is meaningful, and
the value of all other members is unspecified. If no further signals are queued for the selected signal, the
pending indication for that signal is reset.

RETURN VALUES
If one of the signals specified by set is either pending or generated, sigwaitinfo() or sigtimedwait() returns the
selected signal number. Otherwise, the function returns -1 and sets errno to indicate the error condition.

ERRORS
EINTR The wait was interrupted by an unblocked, caught signal.

ENOSYS sigwaitinfo() or sigtimedwait() is not supported by this implementation.

EAGAIN No signal specified by set was delivered within the specified timeout period.

EINVAL timeout specified a tv_nsec value less than 0 or greater than 1,000,000,000.

SEE ALSO
time(), sigqueue(), siginfo(), signal()

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-43

timer_create

NAME
timer_create - create a timer

SYNOPSIS
#include <signal.h>
#include <time.h>
int timer_create(clockid_t clock_id, struct sigevent *evp, timer_t *timerid);

DESCRIPTION
timer_create() creates a timer using the specified clock, clock_id, as the timing base. This timer ID is unique
and meaningful only within the calling LWP until the timer is deleted.This timer is initially disarmed upon
return from timer_create(). The timer may be created per-LWP or per-process. Expiration signals for a per-
LWP timer will be sent to the creating LWP. Expiration signals for a per-process timer will be sent to the
process.A per-LWP timer will be automatically deleted when the creating LWP exits. By default, timers are
created per-LWP.If the symbol _POSIX_PER_PROCESS_TIMER_SOURCE is defined or the symbol
_POSIX_C_SOURCE is defined to have a value greater than 199500L before the inclusion of <time.h>,
timers will be created per-process. If evp is non-NULL: then evp points to a sigevent structure, allocated by
the application, which defines the asynchronous notification that will occur when the timer expires. If the
sigev_notify member of evp is SIGEV_SIGNAL, then the structure also contains the signal number and the
application specific data value to be sent to the process. If SA_SIGINFO is set for the expiration signal, then
the signal and application-defined value specified in the structure will be queued to the process on timer
expiration. If SA_SIGINFO is not set for the expiration signal, then the signal specified in the structure will
be sent upon the timer expiration. If the sigev_notify member is SIGEV_NONE, no notification will be sent.
If evp is NULL, and SA_SIGINFO is set for the expiration signal, then the default signal, SIGALRM, will
be queued to the process and the signal data value will be set to the timer ID.

RETURN VALUES
timer_create() returns 0 upon success and creates a timer_t, timerid, which can be passed to the timer calls;
otherwise it returns -1 and sets errno to indicate the error condition.

ERRORS
EAGAIN The system lacks sufficient signal queuing resources to honor the request.

EINVAL The specified clock ID, clock_id, is not defined.

ENOSYS timer_create() is not supported by this implementation.

SEE ALSO
exec(), fork(), time(), clock_settime(), signal(), timer_delete(), timer_settime()

libposix4 (EXPERIMENTAL) ___

10-44 SPARC Compliance Definition 2.4 Interface Semantics 1998

timer_delete

NAME
timer_delete - delete a per-LWP timer

SYNOPSIS
#include <time.h>

int timer_delete(timer_t timerid);

DESCRIPTION
timer_delete() deletes the specified timer, timerid, previously created by timer_create(). If the timer is
armed when timer_delete() is called, the behavior is as if the timer is automatically disarmed before removal.

RETURN VALUES
timer_delete() returns 0 upon success, otherwise it returns -1 and sets errno to indicate the error condition.

ERRORS
EINVAL timerid does not refer to a valid timer.

ENOSYS timer_delete() is not supported by this implementation.

SEE ALSO
timer_create()

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-45

timer_gettime
timer_settime
timer_getoverrun

NAME
timer_settime, timer_gettime, timer_getoverrun-high-resolution timer operations

SYNOPSIS
#include <time.h>

int timer_settime(timer_t timerid, int flags, const struct itimerspec *value, struct itimerspec *ovalue);

int timer_gettime(timer_t timerid, struct itimerspec *value);

int timer_getoverrun(timer_t timerid);

struct itimerspec {

struct timespec it_interval; /* timer period */

struct timespec it_value; /* timer expiration */

};

struct timespec{

time_t tv_sec; /* seconds */

long tv_nsec; /* and nanoseconds */

};

DESCRIPTION
If value->it_value is non-zero, timer_settime() arms the timer, timerid, to next expire after the time
designated by value->it_value. Upon expiration, an application-specified notification (see timer_create()) or
the default signal, SIGALRM, is queued for the calling LWP. If timerid was already armed when
timer_settime() is called, this call resets the time until the next expiration to the value of value->it_value. If
value->it_value is zero, then the timer is disarmed.

value->it_value may be expressed as either an absolute or relative time.If flags is set to TIMER_RELTIME,
then the timer will initially expire relative to when the call is made. If flags is set to TIMER_ABSTIME,
then the initial expiration will be relative to 00:00 Universal Coordinated Time, January 1, 1970. If the
specified (absolute) time has already passed, timer_settime() succeeds and the expiration notification is made.

If value->it_interval is non-zero, then timerid, will be a “periodic” timer, to be reloaded to expire every value-
>it_interval seconds (nanoseconds).Otherwise, if value->it_interval is zero and value->it_value is non-zero,
then timerid is a “one-shot” timer, which will expire only at the time specified by value->it_value.

If ovalue is not NULL, and timer timerid had previously been used, then timer_settime() will store the
remaining time until the previous timer expires in ovalue->it_value, and the previous reload interval in
ovalue->it_interval. (If the previous timer was disarmed, ovalue->it_value will be set to zero). The values

___ libposix4 (EXPERIMENTAL)

1998 SPARC Compliance Definition 2.4 Interface Semantics 10-46

store dino value by timer_settime() are the same values that would have been returned by a call to
timer_gettime(timerid,...).

timer_gettime() stores the amount of time until the specified timer, timerid, expires into value->it_value, and
the timer's reload value into value->it_interval.

Only a single signal can be queued to the LWP for a given timer at any point in time. When a timer, for which
a signal is still pending expires, (from a previous interval), no signal will be queued, and a “timer overrun
count” will be incremented. When a timer expiration signal is delivered to an LWP, timer_overrun() may be
used to determine the timer expiration overrun count for the specified timer. The overrun count returned
contains the number of extra timer expirations which occurred between the time the signal was generated
(queued) and when it was delivered, up to but not including a maximum of {DELAYTIMER_MAX}. If the
number of such extra expirations is greater than or equal to {DELAYTIMER_MAX}, then the overrun count
is set to {DELAYTIMER_MAX}.The value returned by timer_getoverrun() applies to the most recent
expiration signal delivery for the timer.

RETURN VALUES
timer_settime(), and timer_gettime() return 0 upon success. If timer_getoverrun() succeeds, the number of
extra timer expirations which occurred between the time the signal was queued and when it was delivered is
returned. If these functions fail, they return -1 and set errno to indicate the error condition.

ERRORS
EINVAL timerid does not correspond to a timer returned by timer_create().

The timer, timerid, had already been deleted by timer_delete().

A value structure specified a nanosecond value less than zero or greater than or equal to 1,000,000,000.

ENOSYS timer_settime(), timer_gettime(), or timer_getoverrun() is not supported by this
implementation.

SEE ALSO
clock_settime(), timer_create(), timer_delete()

SPARC COMPLIANCE DEFINITION 2.4 IS

libsocket

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-1

accept

NAME
accept - accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int accept (int s, struct sockaddr *addr, int *addrlen);

DESCRIPTION
The argument s is a socket that has been created with socket() and bound to an address with bind(),
and that is listening for connections after a call to listen(). accept extracts the first connection on the
queue of pending connections, creates a new socket with the properties of s, and allocates a new file
descriptor, ns, for the socket. If no pending connections are present on the queue and the socket is
not marked as non-blocking, accept blocks the caller until a connection is present. If the socket is
marked as non-blocking and no pending connections are present on the queue, accept returns an
error as described below. accept uses the netconfig() file to determine the STREAMS device file
name associated with s. This is the device on which the connect indication will be accepted. The
accepted socket, ns, is used to read and write data to and from the socket that connected to ns; it is
not used to accept more connections. The original socket (s) remains open for accepting further
connections.
The argument addr is a result parameter that is filled in with the address of the connecting entity as
it is known to the communications layer. The exact format of the addr parameter is determined by
the domain in which the communication occurs.
addrlen is a value-result parameter. Initially, it contains the amount of space pointed to by addr; on
return it contains the length in bytes of the address returned.
accept is used with connection-based socket types, currently with SOCK_STREAM.
It is possible to poll(BA_OS) a socket for the purpose of an accept by polling it for a read. However,
this will only indicate when a connect indication is pending; it is still necessary to call accept.

RETURN VALUES
accept returns -1 on error. If it succeeds, it returns a non-negative integer that is a descriptor for the
accepted socket.

ERRORS
accept will fail if:
EBADF The descriptor is invalid.
ENODEV The protocol family and type corresponding to s could not be found in the

netconfig file.
ENOMEM There was insufficient user memory available to complete the operation.
ENOSR There were insufficient STREAMS resources available to complete the

operation.

libsocket __

11-2 SPARC Compliance Defintion 2.4 Interface Semantics 1998

ENOTSOCK The descriptor does not reference a socket.
EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.
EPROTO A protocol error has occurred; for example, the STREAMS protocol stack

has not been initialized.
EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be

accepted.

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-3

bind

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int bind (int s, struct sockaddr *name, int namelen);

DESCRIPTION
bind assigns a name to an unnamed socket, s. When a socket is created with socket(), it exists in a
name space (address family) but has no name assigned. bind requests that the name pointed to by
name be assigned to the socket. namelen specifies the size of name.

RETURN VALUES
If the bind is successful, a 0 value is returned. A return value of -1 indicates an error, which is further
specified in the global errno.

ERRORS
The bind call will fail if:
EADDRINUSE The specified address is already in use.
EADDRNOTAVAIL The specified address is not available on the local machine.
EBADF s is not a valid descriptor.
EINVAL namelen is not the size of a valid address for the specified address family.
EINVAL The socket is already bound to an address.
ENOSR There were insufficient STREAMS resources for the operation to

complete.
ENOTSOCK s is a descriptor for a file, not a socket.

libsocket __

11-4 SPARC Compliance Defintion 2.4 Interface Semantics 1998

connect

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int connect(int s, struct sockaddr *name, int namelen);

DESCRIPTION
The parameter s is a socket. If it is of type SOCK_DGRAM, connect specifies the peer with which
the socket is to be associated; this address is the address to which datagrams are to be sent if a
receiver is not explicitly designated; it is the only address from which datagrams are to be received.
If the socket s is of type SOCK_STREAM, connect attempts to make a connection to another socket.
The other socket is specified by name. name is an address in the communication space of the socket.
namelen specifies the size of data structure pointed to by name. Each communication space
interprets the name parameter in its own way. If s is not bound, then it will be bound to an address
selected by the underlying transport provider. Generally, stream sockets may successfully connect
only once; datagram sockets may use connect multiple times to change their association. Datagram
sockets may dissolve the association by connecting to a null address.

RETURN VALUES
If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned and sets errno
to indicate the error.

ERRORS
The call fails if:
EADDRINUSE The address is already in use.
EADDRNOTAVAIL The specified address is not available on the remote machine.
EAFNOSUPPORT Addresses in the specified address family cannot be used with this socket.
EALREADY The socket is non-blocking and a previous connection attempt has not yet

been completed.
EBADF s is not a valid descriptor.
ECONNREFUSED The attempt to connect was forcefully rejected. The calling program

should close(BA_OS) the socket descriptor, and issue another socket() call
to obtain a new descriptor before attempting another connect call.

EINPROGRESS The socket is non-blocking and the connection cannot be completed
immediately. It is possible to poll(BA_OS) for completion by polling the
socket for writing. However, this is only possible if the socket STREAMS
module is the topmost module on the protocol stack with a write service
procedure. This will be the normal case.

EINTR The connection attempt was interrupted before any data arrived by the

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-5

delivery of a signal.
EINVAL namelen is not the size of a valid address for the specified address family.
EISCONN The socket is already connected.
ENETUNREACH The network is not reachable from this host.
ENOSR There were insufficient STREAMS resources available to complete the

operation.

libsocket __

11-6 SPARC Compliance Defintion 2.4 Interface Semantics 1998

gethostbyname, gethostbyaddr

NAME
gethostbyname, gethostbyaddr - get network host entry

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
struct hostent *gethostbyname (char *name);
struct hostent *gethostbyaddr (struct in_addr *addr,

const sizeof (struct in_addr), const int AF_INET);

DESCRIPTION
gethostbyaddr, and gethostbyname each return a host entry. The entry comes from the system’s
hosts database. The lookup order is unspecified. gethostbyname searches for a host entry with a
given hostname. gethostbyaddr searches for a host entry with a given hostaddress. The internal
representation of a host entry is a structure defined in <netdb.h> with the following members:

char *h_name;
char **h_aliases;
int h_addrtype;
int h_length;
char **h_addr_list;

Host addresses are supplied in network byte order.

RETURN VALUES
gethostbyname and gethostbyaddr return a pointer to a struct hostent if they successfully locate the
requested entry; otherwise they return NULL, and set an integer h_errno to indicate one of these
errors: HOST_NOT_FOUND, TRY_AGAIN, NO_RECOVERY, NO_DATA and NO_ADDRESS
(see /usr/include/netdb.h).

NOTES
All information is contained in a static area so it must be copied if it is to be saved.

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-7

getpeername

NAME
getpeername - get name of connected peer

SYNOPSIS
int getpeername(int s, struct sockaddr *name, int *namelen);

DESCRIPTION
getpeername returns the name of the peer connected to socket s. The int pointed to by the namelen
parameter should be initialized to indicate the amount of space pointed to by name. On return it
contains the actual size of the name returned (in bytes). The name is truncated if the buffer provided
is too small.

RETURN VALUES
If successful, getpeername returns 0; otherwise it returns -1 and sets errno to indicate the error.

ERRORS
The call succeeds unless:
EBADF The argument s is not a valid descriptor.
ENOMEM There was insufficient user memory for the operation to complete.
ENOSR There were insufficient STREAMS resources available for the operation to

complete.
ENOTCONN The socket is not connected.
ENOTSOCK The argument s is not a socket.

libsocket __

11-8 SPARC Compliance Defintion 2.4 Interface Semantics 1998

getprotobyname, getprotobynumber, getprotoent

NAME
getprotobyname, getprotobynumber, getprotoent - get protocol entry

SYNOPSIS
#include <netdb.h>
struct protoent *getprotobyname (char *name);
struct protoent *getprotobynumber (int proto);
struct protoent *getprotoent (void);

DESCRIPTION
getprotoent, getprotobyname, and getprotobynumber each return a protocol entry. The entry may
comes from the system’s protocols database. name is a pointer to one of the strings “tcp”, “udp”, or
“icmp”. proto is one of the values 6 (tcp), 17 (udp), 0 (ip), or 1 (icmp).
getprotoent enumerates protocol entries: successive calls to getprotoent will return either
successive protocol entries or NULL. Enumeration may not be supported by some sources.
The internal representation of a protocol entry is a protoent structure defined in <netdb.h> with the
following members:

char *p_name;
char **p_aliases;
int p_proto;

RETURN VALUES
getprotobyname and getprotobynumber return a pointer to a struct protoent if they successfully
locate the requested entry; otherwise they return NULL.
getprotoent returns a pointer to a struct protoent if it successfully enumerates an entry; otherwise it
returns NULL, indicating the end of the enumeration.

NOTES
All information is contained in a static area so it must be copied if it is to be saved.
Use of getprotoent is deprecated.

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-9

getservbyname, getservbyport

NAME
getservbyname, getservbyport - get service entry

SYNOPSIS
#include <netdb.h>
struct servent *getservbyname (char *name, char *proto);
struct servent *getservbyport (int port, char *proto);

DESCRIPTION
getservbyname, and getservbyport each return a service entry. The entry come from the system’s
services database. getservbyname searches for a service entry with a given service name.
getservbyport searches for a service entry with a given port number and, if the protocol name is
non-NULL, the protocol.
name is a pointer to one of the strings “tcp” or “udp”. port is the number of a well-known port.
The internal representation of a service entry is a struct servent defined in <netdb.h> with the
following members:

char *s_name;
char **s_aliases;
int s_port;
char *s_proto;

RETURN VALUES
getservbyname and getservbyport return a pointer to a struct servent if they successfully locate the
requested entry; otherwise they return NULL.

NOTES
All information is contained in a static area, so it must be copied if it is to be saved.

libsocket __

11-10 SPARC Compliance Defintion 2.4 Interface Semantics 1998

getsockname

NAME
getsockname - get socket name

SYNOPSIS
#include <sys/types.h>
#include <sys/sockets.h>
int getsockname(int s, struct sockaddr *name, int *namelen);

DESCRIPTION
getsockname returns the current name for socket s. The namelen parameter should be initialized to
indicate the amount of space pointed to by name. On return it contains the actual size in bytes of the
name returned.

RETURN VALUES
If successful, getsockname returns 0; otherwise it returns -1 and sets errno to indicate the error.

ERRORS
The call succeeds unless:
EBADF The argument s is not a valid file descriptor.
ENOMEM There was insufficient memory available for the operation to complete.
ENOSR There were insufficient STREAMS resources available for the operation to

complete.
ENOTSOCK The argument s is not a socket.

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-11

inet_lnaof. inet_makeaddr, inet_network

NAME
inet_network, inet_makeaddr, inet_lnaof - Internet address manipulation

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
int inet_network (char *cp);
struct in_addr inet_makeaddr (int net, int lna);
int inet_lnaof (struct in_addr in);

DESCRIPTION
The inet_network routine interprets a character string, cp, representing numbers expressed in the
Internet standard “.” notation, returning numbers suitable for use as Internet addresses and
Internet network numbers, respectively. The routine inet_makeaddr takes an Internet network
number, net, and a local network address, lna, and constructs an Internet address from it. The
routine inet_lnaof break apart an Internet host address, in, returning the network number and local
network address part, respectively.
All Internet addresses are returned in network order (bytes ordered from left to right). All network
numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES
Values specified using the ‘.’ notation take one of the following forms: a.b.c.d, a.b.c, a.b, a . When
four parts are specified, each is interpreted as a byte of data and assigned, from left to right, to the
four bytes of an Internet address. When a three part address is specified, the last part is interpreted
as a 16-bit quantity and placed in the right most two bytes of the network address. This makes the
three part address format convenient for specifying Class B network addresses as “128.net.host”.
When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed in
the right most three bytes of the network address. This makes the two part address format
convenient for specifying Class A network addresses as “net.host”. When only one part is given,
the value is stored directly in the network address without any byte rearrangement. All numbers
supplied as “parts” in a ‘.’ notation may be decimal, octal, or hexadecimal, as specified in the C
language (that is, a leading 0x or 0X implies hexadecimal; otherwise, a leading 0 implies octal;
otherwise, the number is interpreted as decimal).

RETURN VALUES
The value -1 is returned by inet_network for malformed requests.
The routine inet_lnaof break apart Internet host addresses, returning the network number and local
network address part, respectively.

libsocket __

11-12 SPARC Compliance Defintion 2.4 Interface Semantics 1998

listen

NAME
listen - listen for connections on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/sockets.h>
int listen(int s, int backlog);

DESCRIPTION
To accept connections, a socket, s, is first created with socket(), a backlog for incoming connections
is specified with listen and then the connections are accepted with accept(). The listen call applies
only to sockets of type SOCK_STREAM or SOCK_SEQPACKET.
The backlog parameter defines the maximum length the queue of pending connections may grow
to. If a connection request arrives with the queue full, the client will receive an error with an
indication of ECONNREFUSED.

RETURN VALUES
A 0 return value indicates success; -1 indicates an error.

ERRORS
The call fails if:
EBADF The argument s is not a valid file descriptor.
ENOTSOCK The argument s is not a socket.
EOPNOTSUPP The socket is not of a type that supports the operation listen.

NOTES
There is currently no backlog limit.

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-13

recv , recvfrom , recvmsg

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/uio.h>
int recv (int s, char *buf, int len, int flags);
int recvfrom (int s, char *buf, int len, int flags, struct sockaddr *from, int *fromlen);
int recvmsg (int s, struct msghdr *msg, int flags);

DESCRIPTION
recv, recvfrom, and recvmsg are used to receive messages from another socket. recv may be used
only on a connected socket (see connect()), while recvfrom and recvmsg may be used to receive data
on a socket whether it is in a connected state or not. s is a socket created with socket(). buf is a
pointer to the buffer to receive the data and len is its size in bytes.
If from is not a NULL pointer, the source address of the message is filled in. fromlen is a value-result
parameter, initialized to the size of the buffer associated with from, and modified on return to
indicate the actual size of the address stored there. The length of the message is returned. If a
message is too long to fit in the supplied buffer, excess bytes may be discarded depending on the
type of socket the message is received from (see socket()).
If no messages are available at the socket, the receive call waits for a message to arrive, unless the
socket is nonblocking (see fcntl(BA_OS)) in which case -1 is returned with the external variable
errno set to EWOULDBLOCK.
The poll call may be used to determine when more data arrives.
The flags parameter is formed by ORing one or more of the following:
MSG_OOB Read any out-of-band data present on the socket rather than the regular in-

band data.
MSG_PEEK Peek at the data present on the socket; the data is returned, but not

consumed, so that a subsequent receive operation will see the same data.
The recvmsg call uses a struct msghdr, msg, to minimize the number of directly supplied
parameters. This structure is defined in <sys/socket.h> and includes the following members:
caddr_t msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_accrights; /* access rights sent/received */
int msg_accrightslen;
Here msg_name and msg_namelen specify the destination address if the socket is unconnected;
msg_name may be given as a NULL pointer if no names are desired or required. The msg_iov and

libsocket __

11-14 SPARC Compliance Defintion 2.4 Interface Semantics 1998

msg_iovlen describe the scatter-gather locations, as described in read(BA_OS). A buffer to receive
any access rights sent along with the message is specified in msg_accrights, which has length
msg_accrightslen.

RETURN VALUES
These calls return the number of bytes received, or -1 if an error occurred.

ERRORS
The calls fail if:
EBADF s is an invalid file descriptor.
EINTR The operation was interrupted by delivery of a signal before any data was

available to be received.
ENOMEM There was insufficient user memory available for the operation to

complete.
ENOSR There were insufficient STREAMS resources available for the operation to

complete.
ENOTSOCK s is not a socket.
EWOULDBLOCK The socket is marked non-blocking and the requested operation would

block.

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-15

send, sendto, sendmsg

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int send (int s, char *buf, int len, int flags);
int sendto (int s, char *buf, int len, int flags, struct sockaddr *to, int tolen);
int sendmsg (int s, struct msghdr *msg, int flags);

DESCRIPTION
send, sendto, and sendmsg are used to transmit a message to another transport end-point. send may
be used only when the socket is in a connected state, while sendto and sendmsg may be used at any
time. s is a socket created with socket(). buf points to a buffer containing the data to be sent. len is
number of bytes to be sent. The address of the target is given by to with tolen specifying its size. The
length of the message is given by len. If the message is too long to pass atomically through the
underlying protocol, then the error EMSGSIZE is returned, and the message is not transmitted. A
return value of -1 indicates locally detected errors only. It does not implicitly mean the message was
not delivered. If the socket does not have enough buffer space available to hold the message being
sent, send blocks, unless the socket has been placed in non-blocking I/O mode (see fcntl(BA_OS)).
The poll call may be used to determine when it is possible to send more data. The flags parameter
is formed from the bit-wise OR of zero or more of the following:
MSG_OOB Send out-of-band data on sockets that support this notion. The underlying

protocol must also support out-of-band data. Only SOCK_STREAM
sockets created in the AF_INET address family support out-of-band data.

MSG_DONTROUTE The SO_DONTROUTE option is turned on for the duration of the
operation. It is used only by diagnostic or routing programs.

See recv() for a description of the msghdr structure.

RETURN VALUES
These calls return the number of bytes sent, or -1 if an error occurred.

ERRORS
The calls fail if:
EBADF s is an invalid file descriptor.
EINTR The operation was interrupted by delivery of a signal before any data

could be buffered to be sent.
EINVAL tolen is not the size of a valid address for the specified address family.
EMSGSIZE The socket requires that message be sent atomically, and the message was

too long.

libsocket __

11-16 SPARC Compliance Defintion 2.4 Interface Semantics 1998

ENOMEM There was insufficient memory available to complete the operation.
ENOSR There were insufficient STREAMS resources available for the operation to

complete.
ENOTSOCK s is not a socket.
EWOULDBLOCK The socket is marked non-blocking and the requested operation would

block.

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-17

getsockopt , setsockopt

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int getsockopt (int s, int level, int optname, void *optval, int *optlen);
int setsockopt (int s, int level, int optname, void *optval, int optlen);

DESCRIPTION
getsockopt and setsockopt manipulate options associated with a socket, s. Options may exist at
multiple protocol levels; they are always present at the uppermost socket level.
When manipulating socket options, the level at which the option resides and the name of the option
must be specified. To manipulate options at the socket level, level is specified as SOL_SOCKET. To
manipulate options at any other level, level is the protocol number of the protocol that controls the
option. For example, to indicate that an option is to be interpreted by the TCP protocol, level is set
to the TCP protocol number (see getprotobyname()).
The parameters optval and optlen are used to access option values for setsockopt. For getsockopt,
they identify a buffer in which the value(s) for the requested option(s) are to be returned. For
getsockopt, optlen is a value-result parameter, initially containing the size of the buffer pointed to
by optval, and modified on return to indicate the actual size of the value returned. Use a 0 optval if
no option value is to be supplied or returned.
optname and any specified options are passed un-interpreted to the appropriate protocol module for
interpretation. The include file <sys/socket.h> contains definitions for the socket-level options
described below. Options at other protocol levels vary in format and name.
Most socket-level options take an int for optval. For setsockopt, the optval parameter should be non-
zero to enable a boolean option, or zero if the option is to be disabled. SO_LINGER uses a struct
linger parameter that specifies the desired state of the option and the linger interval (see below).
struct linger is defined in <sys/socket.h>. struct linger contains the following members:

l_onoff option on/off
l_linger linger time

The following options are recognized at the socket level. Except as noted, each may be examined
with getsockopt and set with setsockopt.
SO_DEBUG toggle recording of debugging information
SO_REUSEADDR toggle local address reuse
SO_KEEPALIVE toggle keep connections alive
SO_DONTROUTE toggle routing bypass for outgoing messages
SO_LINGER linger on close if data is present
SO_BROADCAST toggle permission to transmit broadcast messages
SO_OOBINLINE toggle reception of out-of-band data in band

libsocket __

11-18 SPARC Compliance Defintion 2.4 Interface Semantics 1998

SO_SNDBUF set buffer size for output
SO_RCVBUF set buffer size for input
SO_TYPE get the type of the socket (get only)
SO_ERROR get and clear error on the socket (get only)

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR indicates
that the rules used in validating addresses supplied in a bind() call should allow reuse of local
addresses. SO_KEEPALIVE enables the periodic transmission of messages on a connected socket.
If the connected party fails to respond to these messages, the connection is considered broken and
processes using the socket are notified using a SIGPIPE signal. SO_DONTROUTE indicates that
outgoing messages should bypass the standard routing facilities. Instead, messages are directed to
the appropriate network interface according to the network portion of the destination address.
SO_LINGER controls the action taken when un-sent messages are queued on a socket and a
close(BA_OS) is performed. If the socket promises reliable delivery of data and SO_LINGER is set,
the system will block the process on the close attempt until it is able to transmit the data or until it
decides it is unable to deliver the information (a timeout period, termed the linger interval, is
specified in the setsockopt call when SO_LINGER is requested). If SO_LINGER is disabled and a
close is issued, the system will process the close in a manner that allows the process to continue as
quickly as possible.
The option SO_BROADCAST requests permission to send broadcast datagrams on the socket.
With protocols that support out-of-band data, the SO_OOBINLINE option requests that out-of-
band data be placed in the normal data input queue as received; it will then be accessible with recv
or read calls without the MSG_OOB flag.
SO_SNDBUF and SO_RCVBUF are options that adjust the normal buffer sizes allocated for
output and input buffers, respectively. The buffer size may be increased for high-volume
connections or may be decreased to limit the possible backlog of incoming data.
Finally, SO_TYPE and SO_ERROR are options used only with getsockopt. SO_TYPE returns the
type of the socket (for example, SOCK_STREAM). It is useful for servers that inherit sockets on
startup. SO_ERROR returns any pending error on the socket and clears the error status. It may be
used to check for asynchronous errors on connected datagram sockets or for other asynchronous
errors.

RETURN VALUES
If successful, getsockopt returns 0; otherwise it returns -1 and sets errno to indicate the error.

ERRORS
The call succeeds unless:
EBADF The argument s is not a valid file descriptor.
ENOMEM There was insufficient memory available for the operation to complete.
ENOPROTOOPT The option is unknown at the level indicated.
ENOSR There were insufficient STREAMS resources available for the operation to

complete.
ENOTSOCK The argument s is not a socket.

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-19

shutdown

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
int shutdown (int s, int how);

DESCRIPTION
The shutdown call shuts down all or part of a full-duplex connection on the socket associated with
s. If how is 0, then further receives will be disallowed. If how is 1, then further sends will be
disallowed. If how is 2, then further sends and receives will be disallowed.

RETURN VALUES
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:
EBADF s is not a valid file descriptor.
ENOMEM There was insufficient user memory available for the operation to complete.
ENOSR There were insufficient STREAMS resources available for the operation to

complete.
ENOTCONN The specified socket is not connected.
ENOTSOCKs is not a socket.

NOTES
The how values should be defined constants.

libsocket __

11-20 SPARC Compliance Defintion 2.4 Interface Semantics 1998

socket

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int socket (int domain, int type, int protocol);

DESCRIPTION
socket creates an endpoint for communication and returns a descriptor. The domain parameter
specifies a communications domain within which communication will take place; this selects the
protocol family which should be used. The protocol family generally is the same as the address
family for the addresses supplied in later operations on the socket. These families are defined in the
include file <sys/socket.h>. The only supported protocol family is PF_INET. The socket has the
indicated type, which specifies the communication semantics. Currently defined types are:
SOCK_STREAM: A SOCK_STREAM type provides sequenced, reliable, two-way

connection-based byte streams. An out-of-band data transmission
mechanism may be supported.

SOCK_STREAM A SOCK_DGRAM socket supports datagrams (connectionless, unreliable
messages of a fixed (typically small) maximum length).

SOCK_SEQPACKET A SOCK_SEQPACKET socket may provide a sequenced, reliable, two-
way connection-based data transmission path for datagrams of fixed
maximum length; a consumer may be required to read an entire packet
with each read system call. This facility is protocol specific, and presently
not implemented for any protocol family.

protocol specifies a particular protocol to be used with the socket. Normally only a single protocol
exists to support a particular socket type within a given protocol family. However, multiple
protocols may exist, in which case a particular protocol must be specified in this manner. The
protocol number to use is particular to the “communication domain” in which communication is
to take place. If a protocol is specified by the caller, then it will be packaged into a socket level
option request and sent to the underlying protocol layers.
Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket
must be in a connected state before any data may be sent or received on it. A connection to another
socket is created with a connect() call. Once connected, data may be transferred using read(BA_OS)
and write(BA_OS) calls or some variant of the send() and recv() calls. When a session has been
completed, a close(BA_OS) may be performed. Out-of-band data may also be transmitted as
described on the send() manual page and received as described on the recv() manual page.
The communications protocols used to implement a SOCK_STREAM insure that data is not lost
or duplicated. If a piece of data for which the peer protocol has buffer space cannot be successfully
transmitted within a reasonable length of time, then the connection is considered broken and calls
will indicate an error with -1 returns and with ETIMEDOUT as the specific code in the global
variable errno. The protocols optionally keep sockets “warm” by forcing transmissions roughly
every minute in the absence of other activity. An error is then indicated if no response can be elicited

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-21

on an otherwise idle connection for a extended period (for instance 5 minutes). A SIGPIPE signal
is raised if a process sends on a broken stream; this causes naive processes, which do not handle the
signal, to exit.
SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets. The only
difference is that read calls will return only the amount of data requested, and any remaining in the
arriving packet will be discarded.
SOCK_DGRAM sockets allow datagrams to be sent to correspondents named in sendto calls.
Datagrams are generally received with recvfrom, which returns the next datagram with its return
address.
An ioctl(BA_OS) call can be used to specify a process group to receive a SIGURG signal when the
out-of-band data arrives. It may also enable non-blocking I/O and asynchronous notification of
I/O events with SIGPOLL signals.
The operation of sockets is controlled by socket level options. These options are defined in the file
<sys/socket.h>. setsockopt() and getsockopt() are used to set and get options, respectively.

RETURN VALUES
A -1 is returned if an error occurs. Otherwise the return value is a descriptor referencing the socket.

ERRORS
The socket call fails if:
EACCES Permission to create a socket of the specified type and/or protocol is

denied.
EMFILE The per-process descriptor table is full.
ENOMEM Insufficient user memory is available.
ENOSR There were insufficient STREAMS resources available to complete the

operation.
EPROTONOSUPPORTThe protocol type or the specified protocol is not supported within this

domain.

libsocket __

11-22 SPARC Compliance Defintion 2.4 Interface Semantics 1998

endnetent, getnetbyaddr, getnetbyaddr_r, getnetbyname
getnetbyname_r, getnetent, getnetent_r, setnetent

NAME
getnetbyname, getnetbyname_r, getnetbyaddr, getnetbyaddr_r, getnetent, getnetent_r, setnetent,
endnetent - get network entry

SYNOPSIS
#include <netdb.h>
struct netent *getnetbyname(const char *name);
struct netent *getnetbyname_r(const char *name, struct netent *result, char *buffer, int buflen);
struct netent *getnetbyaddr(long net, int type);
struct netent *getnetbyaddr_r(long net, int type, struct netent *result, char *buffer, int buflen);
struct netent *getnetent(void);
struct netent *getnetent_r(struct netent *result, char *buffer, int buflen);
int setnetent(int stayopen);
int endnetent(void);

DESCRIPTION
These functions are used to obtain entries for networks. An entry may come from any of the sources for
networks specified in the /etc/nsswitch.conf file (see nsswitch.conf()). getnetbyname() searches for a
network entry with the network name specified by the character string parameter name. getnetbyaddr()
searches for a network entry with the network address specified by net. The parameter type specifies the
family of the address. This should be one of the address families defined in <sys/socket.h>. The functions
setnetent(), getnetent(), and endnetent() are used to enumerate network entries from the database.
setnetent() sets (or resets) the enumeration to the beginning of the set of network entries. This function
should be called before the first call to getnetent(). Calls to getnetbyname() and getnetbyaddr() leave
the enumeration position in an indeterminate state. If the stayopen flag is non-zero, the system may keep
allocated resources such as open file descriptors until a subsequent call to endnetent(). Successive calls to
getnetent() return either successive entries or NULL, indicating the end of the enumeration. endnetent()
may be called to indicate that the caller expects to do no further network entry retrieval operations; the system
may then deallocate resources it was using. It is still allowed, but possibly less efficient, for the process to
call more network entry retrieval functions after calling endnetent().

Reentrant Interfaces
The functions getnetbyname(), getnetbyaddr(), and getnetent() use static storage that is re-used in each
call, making these routines unsafe for use in multithreaded applications. The functions: getnetbyname_r(),
getnetbyaddr_r(), and getnetent_r() provide reentrant interfaces for these operations. Each reentrant
interface performs the same operation as its non-reentrant counterpart, named by removing the ``_r'' suffix.
The reentrant interfaces, however, use buffers supplied by the caller to store returned results, and are safe for
use in both single-threaded and multithreaded applications. Each reentrant interface takes the same
parameters as its non-reentrant counterpart, as well as the following additional parameters. The parameter
result must be a pointer to a struct netent structure allocated by the caller. On successful completion, the
function returns the network entry in this structure. The parameter buffer must be a pointer to a buffer
supplied by the caller. This buffer is used as storage space for the network entry data. All of the pointers within

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-23

the returned struct netent result point to data stored within this buffer (see RETURN VALUES). The buffer
must be large enough to hold all of the data associated with the network entry. The parameter buflen should
give the size in bytes of the buffer indicated by buffer . For enumeration in multithreaded applications, the
position within the enumeration is a process-wide property shared by all threads. setnetent() may be used in
a multithreaded application but resets the enumeration position for all threads. If multiple threads
interleave calls to getnetent_r(), the threads will enumerate disjoint subsets of the network database. Like
their non-reentrant counterparts, getnetbyname_r() and getnetbyaddr_r() leave the enumeration position
in an indeterminate state.

RETURN VALUES
Network entries are represented by the struct netent structure defined in <netdb.h>:

struct netent {

char *n_name;

char **n_aliases;

int n_addrtype;

long n_net;

};

The functions getnetbyname(), getnetbyname_r(), getnetbyaddr(), and getnetbyaddr_r() each return a
pointer to a struct netent if they successfully locate the requested entry; otherwise they return NULL. The
functions getnetent() and getnetent_r() each return a pointer to a struct netent if they successfully enumerate
an entry; otherwise they return NULL, indicating the end of the enumeration. The functions getnetbyname(),
getnetbyaddr(), and getnetent() use static storage, so returned data must be copied before a subsequent
call to any of these functions if the data is to be saved. When the pointer returned by the reentrant functions
getnetbyname_r(), getnetbyaddr_r(), and getnetent_r() is non-NULL, it is always equal to the result
pointer that was supplied by the caller. The functions setnetent() and endnetent() return 0 on success.

ERRORS
The reentrant functions getnetbyname_r(), getnetbyaddr_r() and getnetent_r() will return NULL and set
errno to ERANGE if the length of the buffer supplied by caller is not large enough to store the result. See
intro() for the proper usage and interpretation of errno in multithreaded applications.

FILES
/etc/networks, /etc/nsswitch.conf

SEE ALSO
inet(), networks(), nsswitch.conf()

NOTES
The current implementation of these functions only return or accept network numbers for the Internet address
family (type AF_INET). The functions described in inet() may be helpful in constructing and manipulating
addresses and network numbers in this form. Programs that use the interfaces described in this manual page
cannot be linked statically since the implementations of these functions employ dynamic loading and linking
of shared objects at run time. When compiling multithreaded applications, see Intro(), Notes On Multithread
Applications, for information about the use of the _REENTRANT flag.

libsocket __

11-24 SPARC Compliance Defintion 2.4 Interface Semantics 1998

endprotoent, getprotobyname, getprotobyname_r
getprotobynumber, getprotobynumber_r, getprotoent
getprotoent_r, setprotoent

NAME
getprotobyname,getprotobyname_r, getprotobynumber, getprotobynumber_r, getprotoent,
getprotoent_r, setprotoent, endprotoent - get protocol entry

SYNOPSIS
#include <netdb.h>
struct protoent *getprotobyname(const char *name);
struct protoent *getprotobyname_r(const char *name,

struct protoent *result, char *buffer, int buflen);
struct protoent *getprotobynumber(int proto);
struct protoent *getprotobynumber_r(int proto, struct protoent *result,

char *buffer, int buflen);
struct protoent *getprotoent(void);
struct protoent *getprotoent_r(struct protoent *result, char *buffer, int buflen);
int setprotoent(int stayopen);
int endprotoent(void);

DESCRIPTION
These routines return a protocol entry. Two types of interfaces are supported: reentrant
(getprotobyname_r(), getprotobynumber_r(), and getprotoent_r()) and non-reentrant
(getprotobyname(), getprotobynumber(), and getprotoent()). The reentrant routines may be used in
single-threaded applications and are safe for multi-threaded applications, making them the preferred
interfaces. The reentrant routines require additional parameters which are used to return results data. result is
a pointer to a struct protoent structure and will be where the returned results will be stored. buffer is used as
storage space for elements of the returned results. buflen is the size of buffer and should be large enough to
contain all returned data. buflen must be at least 1024 bytes. getprotobyname_r(), getprotobynumber_r(),
and getprotoent_r() each return a protocol entry. The entry may come from one of the following sources:
the protocols file (see protocols()), the NIS maps “protocols.byname” and “protocols.bynumber”,
and the NIS+ table ``protocols''. The sources and their lookup order are specified in the /etc/nsswitch.conf
file (see nsswitch.conf() for details). Some name services such as NIS will return only one name for a host,
whereas others such as NIS+ or DNS will return all aliases. getprotobyname_r() and
getprotobynumber_r() sequentially search from the beginning of the file until a matching protocol name
or protocol number is found, or until an EOF is encountered. getprotobyname() and getprotobynumber()
have the same functionality as getprotobyname_r() and getprotobynumber_r() except that a static buffer
is used to store returned results. These routines are unsafe in a multi-threaded application. getprotoent_r()
enumerates protocol entries: successive calls to getprotoent_r() will return either successive protocol
entries or NULL. Enumeration may not be supported by some sources. Note that if multiple threads call
getprotoent_r(), each will retrieve a subset of the protocol database.

getprotent() has the same functionality as getprotent_r() except that a static buffer is used to store returned
results. This routine is unsafe in a multi-threaded application. setprotoent() “rewinds” to the beginning of

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-25

the enumeration of protocol entries. If the stayopen flag is non-zero, resources such as open file descriptors
are not de-allocated after each call to getprotobynumber_r() and getprotobyname_r(). Calls to
getprotobyname_r() , getprotobyname() , getprotobynumber_r() and getprotobynumber() may leave
the enumeration in an indeterminate state, so setprotoent() should be called before the first getprotoent_r()
or getprotoent(). Note that setprotoent() has process-wide scope, and ``rewinds'' the protocol entries for all
threads calling getprotoent_r() as well as main-thread calls to getprotoent(). endprotoent() may be called
to indicate that protocol processing is complete; the system may then close any open protocols file, deallocate
storage, and so forth. It is legitimate, but possibly less efficient, to call more protocol routines after
endprotoent(). The internal representation of a protocol entry is a protoent structure defined in <netdb.h>
with the following members:

char *p_name;

char **p_aliases;

int p_proto;

RETURN VALUES
getprotobyname_r(), getprotobyname(), getprotobynumber_r(), and getprotobynumber() return a
pointer to a struct protoent if they successfully locate the requested entry; otherwise they return NULL.
getprotoent_r() and getprotoent() return a pointer to a struct protoent if they successfully enumerate an
entry; otherwise they return NULL, indicating the end of the enumeration.

ERRORS
getprotobyname_r(), getprotobynumber_r(), and getprotoent_r() will fail if the following is true:

ERANGE length of the buffer supplied by caller is not large enough to store the result.

FILES
/etc/protocols, /etc/nsswitch.conf

SEE ALSO
intro(), nsswitch.conf(), protocols()

NOTES
Although getprotobyname_r(), getprotobynumber_r(), and getprotoent_r() are not mentioned by
POSIX.4a Draft 6, they were added to complete the functionality provided by similar thread-safe functions.
These interfaces are subject to change to be compatible with the “spirit” of POSIX.4a when it is approved as
a standard. When compiling multithreaded applications, see intro(), Notes On Multithread Applications, for
information about the use of the _REENTRANT flag. The routines getprotobyname_r(),
getprotobynumber_r(), and getprotoent_r() are reentrant and multi-thread safe. The reentrant interfaces
can be used in single-threaded as well as multi-threaded applications and are therefore the preferred
interfaces. The routines getprotobyname(), getprotobyaddr(), and getprontoent() use static storage, so
returned data must be copied if it is to be saved. Because of their use of static storage for returned data, these
routines are not safe for multi-threaded applications. setprotoent() and endprotoent() have process-wide
scope, and are therefore not safe in multi-threaded applications. Use of getprotoent_r() and getprotoent()
is discouraged; enumeration is well-defined for the protocols file and is supported (albeit inefficiently) for
NIS and NIS+, but in general may not be well-defined. The semantics of enumeration are discussed in
nsswitch.conf().

libsocket __

11-26 SPARC Compliance Defintion 2.4 Interface Semantics 1998

endservent, getservbyname, getservbyname_r
getservbyport, getservbyport_r, getservent
getservent_r, setservent

NAME
getservbyname, getservbyname_r, getservbyport, getservbyport_r, getservent, getservent_r,
setservent, endservent - get service entry

SYNOPSIS
#include <netdb.h>
struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyname_r(const char *name, const char *proto,

struct servent *result, char *buffer, int buflen);
struct servent *getservbyport(int port, const char *proto);
struct servent *getservbyport_r(int port, const char *proto,

struct servent *result, char *buffer, int buflen);
struct servent *getservent(void);
struct servent *getservent_r(struct servent *result, char *buffer, int buflen);
int setservent(int stayopen);
int endservent(void);

DESCRIPTION
These functions are used to obtain entries for Internet services. An entry may come from any of the sources
for services specified in the /etc/nsswitch.conf file. See nsswitch.conf(). getservbyname() and
getservbyport() sequentially search from the beginning of the file until a matching protocol name or port
number is found, or until end-of-file is encountered. If a protocol name is also supplied (non-NULL), searches
must also match the protocol. getservbyname() searches for an entry with the Internet service name specified
by the parameter name. getservbyport() searches for an entry with the Internet port number port.

The string proto is used by both getservbyname() and getservbyport() to restrict the search to entries with
the specified protocol. If proto is NULL, entries with any protocol may be returned. The functions
setservent(), getservent(), and endservent() are used to enumerate entries from the services database.
setservent() sets (or resets) the enumeration to the beginning of the set of service entries. This function
should be called before the first call to getservent(). Calls to the functions getservbyname() and
getservbyport() leave the enumeration position in an indeterminate state. If the stay open flag is non-zero,
the system may keep allocated resources such as open file descriptors until a subsequent call to endservent().
getservent() reads the next line of the file, opening the file if necessary. getservent() opens and rewinds the
file. If the stayopen flag is non-zero, the net data base will not be closed after each call to getservent() (either
directly, or indirectly through one of the other “getserv” calls). Successive calls to getservent() return either
successive entries or NULL, indicating the end of the enumeration. endservent() closes the file.
endservent() may be called to indicate that the caller expects to do no further service entry retrieval
operations; the system may then deallocate resources it was using. It is still allowed, but possibly less efficient,
for the process to call more service entry retrieval functions after calling endservent().

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-27

Reentrant Interfaces
The functions getservbyname(), getservbyport(), and getservent() use static storage that is re-used in each
call, making these functions unsafe for use in multithreaded applications. The functions:
getservbyname_r(), getservbyport_r(), and getservent_r() provide reentrant interfaces for these
operations. Each reentrant interface performs the same operation as its non-reentrant counterpart, named by
removing the “_r” suffix. The reentrant interfaces, however, use buffers supplied by the caller to store returned
results, and are safe for use in both single-threaded and multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as the following
additional parameters. The parameter result must be a pointer to a struct servent structure allocated by the
caller. On successful completion, the function returns the service entry in this structure. The parameter buffer
must be a pointer to a buffer supplied by the caller. This buffer is used as storage space for the service entry
data. All of the pointers within the returned struct servent result point to data stored within this buffer. See the
RETURN VALUES section of this man page. The buffer must be large enough to hold all of the data
associated with the service entry. The parameter buflen should give the size in bytes of the buffer indicated
by buffer. For enumeration in multithreaded applications, the position within the enumeration is a process-
wide property shared by all threads. setservent() may be used in a multithreaded application but resets the
enumeration position for all threads. If multiple threads interleave calls to getservent_r(), the threads
will enumerate disjoint subsets of the service database. Like their non-reentrant counterparts,
getservbyname_r() and getservbyport_r() leave the enumeration position in an indeterminate state.

RETURN VALUES
Service entries are represented by the struct servent structure defined in <netdb.h>:

struct servent {

char *s_name; /* official name of service */

char **s_aliases; /* alias list */

int s_port; /* port service resides at */

char *s_proto; /* protocol to use */

};

The members of this structure are:

s_name The official name of the service.

s_aliases A zero terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are returned in network byte
order.

s_proto The name of the protocol to use when contacting the service.

The functions getservbyname(), getservbyname_r(), getservbyport(), and getservbyport_r() each
return a pointer to a struct servent if they successfully locate the requested entry; otherwise they return NULL.
The functions getservent() and getservent_r() each return a pointer to a struct servent if they successfully
enumerate an entry; otherwise they return NULL, indicating the end of the enumeration. The functions
getservbyname(), getservbyport(), and getservent() use static storage, so returned data must be copied
before a subsequent call to any of these functions if the data is to be saved. When the pointer returned by the
reentrant functions getservbyname_r(), getservbyport_r(), and getservent_r() is non-null, it is always
equal to the result pointer that was supplied by the caller.

libsocket __

11-28 SPARC Compliance Defintion 2.4 Interface Semantics 1998

ERRORS
The reentrant functions getservbyname_r(), getservbyport_r() and getservent_r() will return NULL and
set errno to ERANGE if the length of the buffer supplied by caller is not large enough to store the result.

FILES
/etc/services Internet network services

/etc/netconfig network configuration file

/etc/nsswitch.conf configuration file for the name-service switch

SEE ALSO
intro(), intro(), netdir(), netconfig(), nsswitch.conf(), services()

NOTES
The functions that return struct servent return the least significant 16-bits of the s_port field in network byte
order. getservbyport() and getservbyport_r() also expect the input parameter port in the network byte order
. See htons() for more details on converting between host and network byte orders. Programs that use the
interfaces described in this manual page cannot be linked statically since the implementations of these
functions employ dynamic loading and linking of shared objects at run time.

In order to ensure that they all return consistent results, getservbyname(), getservbyname_r(), and
netdir_getbyname() are implemented in terms of the same internal library function. This function obtains
the system-wide source lookup policy based on the inet family entries in netconfig() and the services: entry
in nsswitch.conf(). Similarly, getservbyport(), getservbyport_r(), and netdir_getbyaddr() are
implemented in terms of the same internal library function. If the inet family entries in netconfig() have a “-
” in the last column for nametoaddr libraries, then the entry for services in nsswitch.conf will be used;
otherwise the nametoaddr libraries in that column will be used, and nsswitch.conf will not be consulted.

There is no analogue of getservent() and getservent_r() in the netdir functions, so these enumeration
functions go straight to the services entry in nsswitch.conf. Thus enumeration may return results from a
different source than that used by getservbyname(), getservbyname_r(), getservbyport(), and
getservbyport_r().

When compiling multithreaded applications, see intro(), Notes On Multithread Applications, for information
about the use of the _REENTRANT flag.

Use of the enumeration interfaces getservent() and getservent_r() is discouraged; enumeration may
not be supported for all database sources. The semantics of enumeration are discussed further in
nsswitch.conf().

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-29

ether_ntoa, ether_aton, ether_ntohost
ether_hostton, ether_line

NAME
ether_ntoa, ether_aton, ether_ntohost, ether_hostton, ether_line - Ethernet address mapping
operations

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
char *ether_ntoa (struct ether_addr *e);
struct ether_addr *ether_aton (char *s);
int ether_ntohost (char *hostname, struct ether_addr *e);
int ether_hostton (char *hostname, struct ether_addr *e);
int ether_line (char *l, struct ether_addr * e, char *hostname);

DESCRIPTION
These routines are useful for mapping 48 bit Ethernet numbers to their ASCII representations or their
corresponding host names, and vice versa. The function ether_ntoa() converts a 48 bit Ethernet number
pointed to by e to its standard ASCII representation; it returns a pointer to the ASCII string. The
representation is of the form x:x:x:x:x:x where x is a hexadecimal number between 0 and ff. The function
ether_aton() converts an ASCII string in the standard representation back to a 48 bit Ethernet number; the
function returns NULL if the string cannot be scanned successfully. The function ether_ntohost() maps an
Ethernet number (pointed to by e) to its associated hostname. The string pointed to by hostname must be
long enough to hold the hostname and a NULL character. The function returns zero upon success and non-
zero upon failure. Inversely, the function ether_hostton() maps a hostname string to its corresponding
Ethernet number; the function modifies the Ethernet number pointed to by e. The function also returns zero
upon success and non-zero upon failure. In order to do the mapping, both these functions may lookup one or
more of the following sources: the ethers file, the NIS maps “ethers.byname”' and “ethers.byaddr” and the
NIS+ table ``ethers''. The sources and their lookup order are specified in the /etc/nsswitch.conf file (see
nsswitch.conf() for details). The function ether_line() scans a line (pointed to by l) and sets the hostname
and the Ethernet number (pointed to by e). The string pointed to by hostname must be long enough to hold
the hostname and a NULL character. The function returns zero upon success and non-zero upon failure. The
format of the scanned line is described by ethers().

FILES
/etc/ethers, /etc/nsswitch.conf

SEE ALSO
ethers(), nsswitch.conf()

libsocket __

11-30 SPARC Compliance Defintion 2.4 Interface Semantics 1998

byteorder, htonl
htons, ntohl, ntohs

NAME
byteorder, htonl, htons, ntohl, ntohs - convert values between host and network byte order

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>
u_long htonl(u_long hostlong);
u_short htons(u_short hostshort);
u_long ntohl(u_long netlong);
u_short ntohs(u_short netshort);

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and host byte order. On some
architectures these routines are defined as NULL macros in the include file <netinet/in.h>. On other
architectures, if their host byte order is different from network byte order, these routines are functional. These
routines are most often used in conjunction with Internet addresses and ports as returned by gethostent() and
getservent(). (See gethostbyname() and getservbyname() respectively.)

SEE ALSO
gethostbyname(), getservbyname()

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-31

rcmd, rresvport, ruserok

NAME
rcmd, rresvport, ruserok - routines for returning a stream to a remote command

SYNOPSIS
int rcmd(char **ahost, unsigned short inport, const char *user, const char *ruser,

const char *cmd, int *fd2p);
int rresvport(int *port);
int ruserok(const char *rhost, int suser, const char *ruser, const char *luser);

DESCRIPTION
rcmd() is a routine used by the super-user to execute a command on a remote machine using an authentication
scheme based on reserved port numbers. rresvport() is a routine which returns a descriptor to a socket with
an address in the privileged port space. ruserok() is a routine used by servers to authenticate clients requesting
service with rcmd. All three functions are present in the same file and are used by the in.rshd() server (among
others).

rcmd() looks up the host *ahost using gethostbyname(), returning -1 if the host does not exist. Otherwise
*ahost is set to the standard name of the host and a connection is established to a server residing at the well-
known Internet port inport. If the connection succeeds, a socket in the Internet domain of type
SOCK_STREAM is returned to the caller, and given to the remote command as its standard input (file
descriptor 0) and standard output (file descriptor 1). If fd2p is non-zero, then an auxiliary channel to a control
process will be set up, and a descriptor for it will be placed in *fd2p. The control process will return diagnostic
output from the command (file descriptor 2) on this channel, and will also accept bytes on this channel as
signal numbers, to be forwarded to the process group of the command. If fd2p is 0, then the standard error
(file descriptor 2) of the remote command will be made the same as its standard output and no provision is
made for sending arbitrary signals to the remote process, although you may be able to get its attention by using
out-of-band data. The protocol is described in detail in in.rshd().

The rresvport() routine is used to obtain a socket bound to a privileged port number. This socket is suitable
for use by rcmd() and several other routines. Privileged Internet ports are those in the range 1 to 1023. Only
the super-user is allowed to bind a socket to a privileged port number. The application must pass in port, which
must be in the range 512 to 1023. The system first tries to bind to that port number. If it fails, it then tries to
bind to port numbers less than port until either it succeeds or port number 512 is reached.

ruserok() takes a remote host's name, as returned by a gethostbyaddr() (see gethostbyname()) routine, two
user names and a flag indicating whether the local user's name is that of the super-user. It then checks
the files /etc/hosts.equiv and possibly .rhosts in the local user's home directory to see if the request for service
is allowed. 0 is returned if the machine name is listed in the /etc/hosts.equiv file, or the host and remote user
name are found in the .rhosts file; otherwise ruserok() returns -1. If the super-user flag is 1, the checking
of the /etc/hosts.equiv file is bypassed.

RETURN VALUES
rcmd() returns a valid socket descriptor on success. It returns -1 on error and prints a diagnostic message on

libsocket __

11-32 SPARC Compliance Defintion 2.4 Interface Semantics 1998

the standard error.

rresvport() returns a valid, bound socket descriptor on success. It returns -1 on error with the global value
errno set according to the reason for failure.

FILES
/etc/hosts.equiv system trusted hosts and users

~/.rhosts user's trusted hosts and users

SEE ALSO
rlogin, rsh, in.rexecd, in.rshd, gethostbyname(), rexec()

NOTES
The error code EAGAIN is overloaded to mean “All network ports in use “.

These interfaces are unsafe in multithreaded applications. Unsafe interfaces should be called only from the
main thread.

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-33

rexec

NAME
rexec - return stream to a remote command

SYNOPSIS
int rexec (char **ahost, unsigned short inport, const char *user, const char *passwd,

const char *cmd,int *fd2p);

DESCRIPTION
rexec() looks up the host *ahost using gethostbyname(), returning -1 if the host does not exist. Otherwise
*ahost is set to the standard name of the host. If a username and password are both specified, then these are
used to authenticate to the foreign host; otherwise the user's .netrc file in his home directory is searched for
appropriate information. If all this fails, the user is prompted for the information. The port inport specifies
which well-known DARPA Internet port to use for the connection. The protocol for connection is described
in detail in in.rexecd().

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the remote
command as its standard input and standard output. If fd2p is non-zero, then an auxiliary channel to a control
process will be setup, and a file descriptor for it will be placed in *fd2p. The control process will return
diagnostic output (file descriptor 2, the standard error) from the command on this channel, and will also accept
bytes on this channel as signal numbers, to be forwarded to the process group of the command. If fd2p is 0,
then the standard error (file descriptor 2 of the remote command) will be made the same as its standard output
and no provision is made for sending arbitrary signals to the remote process, although you may be able to get
its attention by using out-of-band data.

RETURN VALUES
If rexec() succeeds, a file descriptor number, which is a socket of type SOCK_STREAM, is returned by the
routine. *ahost is set to the standard name of the host, and if fd2p is not NULL, a file descriptor number is
placed in *fd2p which represents the command's standard error stream. If rexec() fails, -1 is returned.

SEE ALSO
in.rexecd(), gethostbyname(), getservbyname()

NOTES
There is no way to specify options to the socket() call that rexec() makes. This interface is unsafe in
multithreaded applications. Unsafe interfaces should be called only from the main thread.

libsocket __

11-34 SPARC Compliance Defintion 2.4 Interface Semantics 1998

getsockopt, setsockopt

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int getsockopt(int s, int level, int optname, char *optval,int *optlen);
int setsockopt(int s, int level, int optname, const char *optval, int optlen);

DESCRIPTION
getsockopt() and setsockopt() manipulate options associated with a socket. Options may exist at multiple
protocol levels; they are always present at the uppermost “socket” level.

When manipulating socket options, the level at which the option resides and the name of the option must be
specified. To manipulate options at the “socket” level, level is specified as SOL_SOCKET. To manipulate
options at any other level, level is the protocol number of the protocol that controls the option. For example,
to indicate that an option is to be interpreted by the TCP protocol, level is set to the TCP protocol number
(see getprotobyname()).

The parameters optval and optlen are used to access option values for setsockopt(). For getsockopt(), they
identify a buffer in which the value(s) for the requested option(s) are to be returned. For getsockopt(), optlen
is a value-result parameter, initially containing the size of the buffer pointed to by optval, and modified on
return to indicate the actual size of the value returned. Use a 0 optval if no option value is to be supplied or
returned.

optname and any specified options are passed uninterpreted to the appropriate protocol module for
interpretation. The include file <sys/socket.h> contains definitions for the socket-level options described
below. Options at other protocol levels vary in format and name.

Most socket-level options take an int for optval. For setsockopt(), the optval parameter should be non-zero
to enable a boolean option, or zero if the option is to be disabled. SO_LINGER uses a struct linger parameter
that specifies the desired state of the option and the linger interval (see below). struct linger is defined in
<sys/socket.h>. struct linger contains the following members:

l_onoff on = 1/off = 0

l_linger linger time, in seconds

The following options are recognized at the socket level. Except as noted, each may be examined with
getsockopt() and set with setsockopt().

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-35

SO_DEBUG enable/disable recording of debugging information

SO_REUSEADDR enable/disable local address reuse

SO_KEEPALIVE enable/disable keep connections alive

SO_DONTROUTE enable/disable routing bypass for outgoing messages

SO_LINGER linger on close if data is present

SO_BROADCAST enable/disable permission to transmit broadcast messages

SO_OOBINLINE enable/disable reception of out-of-band data in band

SO_SNDBUF set buffer size for output

SO_RCVBUF set buffer size for input

SO_DGRAM_ERRIND application wants delayed error

SO_TYPE get the type of the socket (get only)

SO_ERROR get and clear error on the socket (get only)

SO_DEBUG enables debugging in the underlying protocol modules.

SO_REUSEADDR indicates that the rules used in validating addresses supplied in a bind() call should
allow reuse of local addresses.

SO_KEEPALIVE enables the periodic transmission of messages on a connected socket. If the
connected party fails to respond to these messages, the connection is considered
broken and processes using the socket are notified using a SIGPIPE signal.

SO_DONTROUTE indicates that outgoing messages should bypass the standard routing facilities.
Instead, messages are directed to the appropriate network interface according to
the network portion of the destination address.

SO_LINGER controls the action taken when un-sent messages are queued on a socket and a
close() is performed. If the socket promises reliable delivery of data and
SO_LINGER is set, the system will block the process on the close() attempt until
it is able to transmit the data or until it decides it is unable to deliver the
information (a timeout period, termed the linger interval, is specified in the
setsockopt() call when SO_LINGER is requested). If SO_LINGER is disabled
and a close() is issued, the system will process the close() in a manner that allows
the process to continue as quickly as possible.

SO_BRODCAST The option SO_BROADCAST requests permission to send broadcast datagrams
on the socket. With protocols that support out-of-band data, the
SO_OOBINLINE option requests that out-of-band data be placed in the normal
data input queue as received; it will then be accessible with recv() or read() calls
without the MSG_OOB flag.

SO_SNDBUF/SO_RCVBUF SO_SNDBUF and SO_RCVBUF are options that adjust the normal
buffer sizes allocated for output and input buffers, respectively. The
buffer size may be increased for high-volume connections or may be
decreased to limit the possible backlog of incoming data.

SO_DGRAM_ERRIND By default, delayed errors (such as ICMP port unreachable packets) are returned
only for connected datagram sockets. SO_DGRAM_ERRIND makes it possible
to receive errors for datagram sockets that are not connected. When this option is
set, certain delayed errors received after completion of a sendto() or sendmsg()
operation will cause a subsequent sendto() or sendmsg() operation using the
same destination address (to parameter) to fail with the appropriate error. See
send().

libsocket __

11-36 SPARC Compliance Defintion 2.4 Interface Semantics 1998

SO_TYPE returns the type of the socket (for example, SOCK_STREAM). It is useful for
servers that inherit sockets on startup. This option is used only with getsockopt().

SO_ERROR returns any pending error on the socket and clears the error status. It may be used
to check for asynchronous errors on connected datagram sockets or for other
asynchronous errors. This option is used only with getsockopt().

RETURN VALUES
If successful, getsockopt() returns 0; otherwise, it returns -1 and sets errno to indicate the error.

ERRORS
The call succeeds unless:

EBADF The argument s is not a valid file descriptor.

ENOMEM There was insufficient memory available for the operation to complete.

ENOPROTOOPT The option is unknown at the level indicated.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

ENOTSOCK The argument s is not a socket.

SEE ALSO
close(), ioctl(), bind(), getprotobyname(), send(), socket()

__ libsocket

1998 SPARC Compliance Definition 2.4 Interface Semantics 11-37

socketpair

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int socketpair(int domain, int type, int protocol, intsv[2]);

DESCRIPTION
The socketpair() library call creates an unnamed pair of connected sockets in the specified address family d,
of the specified type , and using the optionally specified protocol. The descriptors used in referencing the
new sockets are returned in sv[0] and sv[1]. The two sockets are indistinguishable.

RETURN VALUES
socketpair() returns -1 on failure, and 0 on success.

ERRORS
The call succeeds unless:

EAFNOSUPPORT The specified address family is not supported on this machine.

EMFILE Too many descriptors are in use by this process.

ENOMEM There was insufficient user memory for the operation to complete.

ENOSR There were insufficient STREAMS resources for the operation to complete.

EOPNOSUPPORT The specified protocol does not support creation of socket pairs.

EPROTONOSUPPORT The specified protocol is not supported on this machine.

SEE ALSO
pipe(), read(), write()

NOTES
This call is currently implemented only for the AF_UNIX address family.

libsocket __

11-38 SPARC Compliance Defintion 2.4 Interface Semantics 1998

SPARC COMPLIANCE DEFINITION 2.4 IS

libthread

__ libthread

1998 SPARC Compliance Definition 2.4 Interface Semantics 12-1

cond_broadcast, cond_destroy
cond_init, cond_timedwait
cond_signal, cond_wait

NAME
condition, cond_init, cond_destroy, cond_wait, cond_timedwait, cond_signal, cond_broadcast -
condition variables

SYNOPSIS
#include <synch.h>
int cond_init (cond_t *cvp, int type, void *arg);
int cond_destroy (cond_t *cvp);
int cond_wait (cond_t *cvp, mutex_t *mp);
int cond_timedwait (cond_t *cvp, mutex_t *mp, timestruc_t *abstime);
int cond_signal (cond_t *cvp);
int cond_broadcast (cond_t *cvp);

DESCRIPTION
A condition variable enables threads to atomically block until a condition is satisfied. The condition
is tested under the protection of a mutual exclusion lock (mutex). When the condition is false, a
thread typically blocks on a condition variable and atomically releases the mutex waiting for the
condition to change. When another thread changes the condition, it may signal the associated
condition variable to cause one or more waiting threads to wake up, reacquire the mutex, and re-
evaluate the condition.
Condition variables can be used to synchronize threads among processes if they are allocated in
memory that is writable and shared by the cooperating processes (see mmap(KE_OS)) and have
been initialized for this behavior.
Condition variables must be initialized before use. cond_init() initializes the condition variable
pointed to by cvp. A condition variable can potentially have several different types of behavior,
specified by type. No current type uses arg although a future type may specify additional behavior
parameters via arg. type may be one of the following:
USYNC_PROCESS The condition variable can be used to synchronize threads in this process

and other processes. Only one process should initialize the condition
variable. arg is ignored.

USYNC_THREAD The condition variable can be used to synchronize threads in this process,
only. arg is ignored.

Condition variables may also be initialized by allocation in zeroed memory. In this case a type of
USYNC_THREAD is assumed. Multiple threads must not initialize the same condition variable
simultaneously. A condition variable must not be re-initialized while other threads may be using it.
cond_destroy() destroys any state associated with the condition variable pointed to by cvp. The
space for storing the condition variable is not freed. A condition variable must not be destroyed
while other threads may be using it.
cond_wait() atomically releases the mutex pointed to by mp and causes the calling thread to block
on the condition variable pointed to by cvp. The blocked thread may be awakened by cond_signal(),
cond_broadcast(), or when interrupted by delivery of a signal or a fork(). Any change in value of a

libthread ___

12-2 SPARC Compliance Defintion 2.4 Interface Semantics 1998

condition associated with the condition variable cannot be inferred by the return of cond_wait()
and any such condition must be re-evaluated.
cond_timedwait() is similar to cond_wait(), except that the calling thread will not block past the
time of day specified by abstime. If the time of day becomes greater than abstime then
cond_timedwait() returns with the error code ETIME.
cond_wait() and cond_timedwait() always return with the mutex locked and owned by the calling
thread even when returning an error.
cond_signal() unblocks one thread that is blocked on the condition variable pointed to by cvp.
cond_broadcast() unblocks all threads that are blocked on the condition variable pointed to by cvp.
If no threads are blocked on the condition variable then cond_signal() and cond_broadcast() have
no effect.
Both functions should be called under the protection of the same mutex that is used with the
condition variable being signaled. Otherwise the condition variable may be signaled between the
test of the associated condition and blocking in cond_wait(). This can cause an infinite wait.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, these functions fail and return the corresponding
value:
EINVAL Invalid argument. For cond_init(), type is not a recognized type. For

cond_timedwait(), the specified number of seconds, abstime, is greater
than some implementation dependent time that is at least the start time of
the application plus 50,000,000, or the number of nanoseconds is greater
than or equal to 1,000,000,000.

If any of the following conditions are detected, cond_wait() or cond_timedwait() fails and returns
the corresponding value:
EINTR The wait was interrupted by a signal or fork().
If any of the following conditions are detected, cond_timedwait() fails and returns the
corresponding value:
ETIME The time specified by abstime has passed.

NOTES
These interfaces also available via: #include <thread.h>
By default, there is no defined order of unblocking if multiple threads are waiting for a condition
variable.

__ libthread

1998 SPARC Compliance Definition 2.4 Interface Semantics 12-3

fork1

NAME
fork1 - create a new process

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
pid_t fork1 (void);

DESCRIPTION
fork1() causes creation of a new process. It differs from fork() in that fork() duplicates all the threads
in the parent process in the child process, while fork1() duplicates only the calling thread in the
child process.

RETURN VALUES
Upon successful completion, fork1() returns a value of 0 to the child process and returns the process
ID of the child process to the parent process. Otherwise, a value of (pid_t)-1 is returned to the
parent process, no child process is created, and errno is set to indicate the error.

ERRORS
Same as fork().

NOTES
When calling fork1() the thread in the child must not depend on any resources that are held by
threads that no longer exist in the child. In particular, locks held by these threads will not be
released.

libthread ___

12-4 SPARC Compliance Defintion 2.4 Interface Semantics 1998

mutex_destroy, mutex_init, mutex_lock
mutex_trylock, mutex_unlock

NAME
mutex, mutex_init, mutex_destroy, mutex_lock, mutex_trylock, mutex_unlock - mutual exclusion
locks

SYNOPSIS
#include <synch.h>
int mutex_init (mutex_t *mp, int type, void *arg);
int mutex_destroy (mutex_t *mp);
int mutex_lock (mutex_t *mp);
int mutex_trylock (mutex_t *mp);
int mutex_unlock (mutex_t *mp);

DESCRIPTION
Mutual exclusion locks (mutexes) are used to serialize the execution of threads. They are typically
used to ensure that only one thread executes a critical section of code at any one time (mutual
exclusion).
Mutexes can be used to synchronize threads in this process and other processes if they are allocated
in memory that is writable and shared among the cooperating processes (see mmap(KE_OS)) and
have been initialized for this behavior.
Mutexes must be initialized before use. mutex_init() initializes the mutex pointed to by mp. A
mutex can potentially have several different types of behavior, specified by type. No current type
uses arg although a future type may specify additional behavior parameters via arg. type may be
one of the following:
USYNC_PROCESS The mutex can be used to synchronize threads in this process and other

processes. Only one process should initialize the mutex. arg is ignored.
USYNC_THREAD The mutex can be used to synchronize threads in this process, only. arg is

ignored.
Mutexes may also be initialized by allocation in zeroed memory. In this case a type of
USYNC_THREAD is assumed. Multiple threads must not initialize the same mutex
simultaneously. A mutex lock must not be re-initialized while other threads may be using it.
mutex_destroy() destroys any state associated with the mutex pointed to by mp. The space for
storing the mutex is not freed. A mutex lock must not be destroyed while other threads may be
using it.
mutex_lock() locks the mutex pointed to by mp. If the mutex is already locked, the calling thread
blocks until the mutex becomes available. When mutex_lock() returns, the mutex is locked and the
calling thread is the owner.
mutex_trylock() attempts to lock the mutex pointed to by mp. If the mutex is already locked it
returns with an error. Otherwise the mutex is locked and the calling thread is the owner.
mutex_unlock() unlocks the mutex pointed to by mp. The mutex must be locked and the calling
thread must be the one that last locked the mutex (the owner). If any other threads are waiting for
the mutex to become available, one of them is unblocked. If the calling thread is not the owner of

__ libthread

1998 SPARC Compliance Definition 2.4 Interface Semantics 12-5

the lock, the behavior of the program is undefined.
RETURN VALUE

Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, these functions fail and return the corresponding
value:
EINVAL Invalid argument.
If any of the following conditions are detected, mutex_trylock() fails and returns the corresponding
value:
EBUSY The mutex pointed to by mp was already locked.

NOTES
In the current implementation, mutex_lock(), mutex_unlock(), and mutex_trylock() do not validate
the mutex type. Therefore, EINVAL is not returned for an uninitialized mutex or for a mutex with
an invalid type. The behavior of these interfaces for mutexes containing an invalid type is
unspecified. By default, there is no defined order of acquisition if multiple threads are waiting for
a mutex. These interfaces are also available via: #include <thread.h>

libthread ___

12-6 SPARC Compliance Defintion 2.4 Interface Semantics 1998

rwlock_destroy, rwlock_init, rw_rdlock, rw_tryrdlock
rw_trywrlock, rw_unlock, rw_wrlock

NAME
rwlock, rwlock_init, rwlock_destroy, rw_rdlock, rw_wrlock, rw_tryrdlock, rw_trywrlock,
rw_unlock - multiple readers, single writer locks

SYNOPSIS
#include <synch.h>
int rwlock_init (rwlock_t *rwlp, int type, void *arg);
int rwlock_destroy (rwlock_t *rwlp);
int rw_rdlock (rwlock_t *rwlp);
int rw_wrlock (rwlock_t *rwlp);
int rw_unlock (rwlock_t *rwlp);
int rw_tryrdlock (rwlock_t *rwlp);
int rw_trywrlock (rwlock_t *rwlp);

DESCRIPTION
Multiple readers, single writer (readers/writer) locks allow many threads to have simultaneous
read-only access to data while allowing only one thread to have write access at any given time.
They are typically used to protect data that is searched more frequently than it is changed.
Readers/writer locks can be used to synchronize threads in this process and other processes if they
are allocated in memory that is writable and shared among the cooperating processes (see
mmap(KE_OS)) and have been initialized for this behavior.
Readers/writer locks must be initialized before use. rwlock_init() initializes the readers/writer
lock pointed to by rwlp. A readers/writer lock can potentially have several different types of
behavior, specified by type. No current type uses arg although a future type may specify additional
behavior parameters via arg. type may be one of the following:
USYNC_PROCESS The readers/writer lock can be used to synchronize threads in this process

and other processes. Only one process should initialize the readers/writer
lock. arg is ignored.

USYNC_THREAD The readers/writer lock can be used to synchronize threads in this
process, only. arg is ignored.

Readers/writer locks may also be initialized by allocation in zeroed memory. In this case a type of
USYNC_THREAD is assumed. Multiple threads must not initialize the same readers/writer lock
simultaneously. A readers/writer lock must not be re-initialized while other threads may be using
it.
rwlock_destroy() destroys any state associated with the readers/writer lock pointed to by rwlp. The
space for storing the readers/writer lock is not freed. A readers/writer lock must not be destroyed
while other threads may be using it.
rw_rdlock() acquires a read lock on the readers/writer lock pointed to by rwlp. If the readers/writer
lock is already locked for writing, the calling thread blocks until the write lock is released. More
than one thread may hold a read lock on a readers/writer lock at any one time.
rw_tryrdlock() attempts to acquire a read lock on the readers/writer lock pointed to by rwlp. If the

__ libthread

1998 SPARC Compliance Definition 2.4 Interface Semantics 12-7

readers/writer lock is already locked for writing, it returns an error.
rw_wrlock() acquires a write lock on the readers/writer lock pointed to by rwlp. If the
readers/writer lock is already locked for reading or writing, the calling thread blocks until all the
read locks and write locks are released. Only one thread may hold a write lock on a readers/writer
lock at any one time.
rw_trywrlock() attempts to acquire a write lock on the readers/writer lock pointed to by rwlp. If
the readers/writer lock is already locked for reading or writing, it returns an error.
rw_unlock() unlocks a readers/writer lock pointed to by rwlp. The readers/writer lock must be
locked and the calling thread must hold the lock either for reading or writing. If any other threads
are waiting for the readers/writer lock to become available, one of them is unblocked. If the calling
thread does not hold the lock for either reading or writing, the behavior of the program is
undefined.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, these functions fail and return the corresponding
value:
EINVAL Invalid argument.
If any of the following conditions are detected, rw_tryrdlock() or rw_trywrlock() fails and returns
the corresponding value:
EBUSY The readers/writer lock pointed to by rwlp was already locked.

NOTES
These interfaces also available via: #include <thread.h>
By default, there is no defined order of acquisition if multiple threads are waiting for a
readers/writer lock. However, implementations usually bias acquisition order in some way so as
to avoid writer starvation.

libthread ___

12-8 SPARC Compliance Defintion 2.4 Interface Semantics 1998

sema_destroy, sema_init, sema_post
sema_trywait, sema_wait

NAME
semaphore, sema_init, sema_destroy, sema_wait, sema_trywait, sema_post - semaphores

SYNOPSIS
#include <synch.h>
int sema_init (sema_t *sp, unsigned int count, int type, void * arg);
int sema_destroy (sema_t *sp);
int sema_wait (sema_t *sp);
int sema_trywait (sema_t *sp);
int sema_post (sema_t *sp);

DESCRIPTION
Conceptually, a semaphore is a non-negative integer count. Semaphores are typically used to
coordinate access to resources. The semaphore count is initialized to the number of free resources.
Threads then atomically increment the count when resources are added and atomically decrement
the count when resources are removed. When the semaphore count becomes zero, indicating no
more resources are present, threads trying to decrement the semaphore will block until the count
becomes greater than zero.
Semaphores can be used to synchronize threads in this process and other processes if they are
allocated in memory that is writable and is shared among the cooperating processes (see
mmap(KE_OS)) and have been initialized for this behavior.
Semaphores must be initialized before use. sema_init() initializes the semaphore pointed to by sp
to count. A semaphore can potentially have several different types of behavior, specified by type. No
current type uses arg although a future type may specify additional behavior parameters via arg.
type may be one of the following:
USYNC_PROCESS The semaphore can be used to synchronize threads in this process and

other processes. Only one process should initialize the semaphore. arg is
ignored.

USYNC_THREAD The semaphore can be used to synchronize threads in this process, only.
arg is ignored.

Multiple threads must not initialize the same semaphore simultaneously. A semaphore must not be
re-initialized while other threads may be using it.
sema_destroy() destroys any state associated with the semaphore pointed to by sp. The space for
storing the semaphore is not freed. A semaphore must not be destroyed while other threads may
be using it.
sema_wait() blocks the calling thread until the count in the semaphore pointed to by sp becomes
greater than zero and then atomically decrements it.
sema_trywait() atomically decrements the count in the semaphore pointed to by sp if the count is
greater than zero. Otherwise it returns an error.
sema_post() atomically increments the count semaphore pointed to by sp. If there are any threads
blocked on the semaphore, one is unblocked.

__ libthread

1998 SPARC Compliance Definition 2.4 Interface Semantics 12-9

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, these functions fail and return the corresponding
value:
EINVAL Invalid argument.
If any of the following conditions are detected, sema_wait() fails and returns the corresponding
value:
EINTR The wait was interrupted by a signal.
If any of the following conditions are detected, sema_trywait() fails and returns the corresponding
value:
EBUSY The semaphore pointed to by sp has a zero count.

NOTES
These interfaces also available via: #include <thread.h>
By default, there is no defined order of unblocking if multiple threads are waiting for a semaphore.

libthread ___

12-10 SPARC Compliance Defintion 2.4 Interface Semantics 1998

thr_continue, thr_suspend

NAME
thr_suspend, thr_continue - suspend or continue thread execution

SYNOPSIS
#include <thread.h>
int thr_suspend (thread_t target_thread);
int thr_continue (thread_t target_thread);

DESCRIPTION
thr_suspend() immediately suspends the execution of the thread specified by target_thread. On
successful return from thr_suspend(), the suspended thread is no longer executing. Once a thread
is suspended, subsequent calls to thr_suspend() have no effect.
thr_continue() resumes the execution of a suspended thread. Once a suspended thread is
continued, subsequent calls to thr_continue() have no effect.
A suspended thread will not be awakened by a signal. The signal stays pending until the execution
of the thread is resumed by thr_continue().

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, thr_suspend() or thr_continue() fails and returns the
corresponding value:
ESRCH target_thread cannot be found in the current process.

__ libthread

1998 SPARC Compliance Definition 2.4 Interface Semantics 12-11

thr_create

NAME
thr_create - create a new thread of control

SYNOPSIS
#include <thread.h>
int thr_create (void *stack_base,

size_t stack_size,
void *(*start_routine) (void *),
void *arg,
 long flags,
 thread_t *new_thread

);

DESCRIPTION
thr_create() adds a new thread of control to the current process. The new thread begins execution
by calling the function specified by start_routine with a single argument, arg. If start_routine
returns, the thread exits with the exit status set to the value returned by start_routine (see thr_exit).
The new thread will use the stack starting at the address specified by stack_base and continuing for
stack_size bytes. stack_size must be greater than the value returned by thr_min_stack(). If stack_base
is NULL then thr_create() allocates a stack for the new thread with at least stack_size bytes. If
stack_size is zero then a default size is used. If stack_size is not zero then it must be greater than the
value returned by thr_min_stack(). A stack of minimum size may not accommodate the stack frame
for start_function. If a stack size is specified, it must take into account the requirements start_function
and the functions that it may call in turn, in addition to the minimum requirement.
flags specifies additional attributes for the created thread. The value in flags is constructed from the
bitwise inclusive OR of the following:
THR_SUSPENDED The new thread is created suspended and will not execute start_routine

until it is started by thr_continue().
THR_DETACHED The new thread is created detached. Its thread ID and other resources may

be reused as soon as the thread terminates. A detached thread cannot be
waited for via thr_join().

THR_BOUND The new thread is created permanently bound to an LWP (i.e. it is a bound
thread).

THR_NEW_LWP The desired concurrency level for unbound threads is increased by one.
This is similar to incrementing concurrency by one via
thr_setconcurrency). Typically, this adds a new LWP to the pool of LWPs
running unbound threads.

THR_DAEMON The thread is marked as a daemon. The process will exit when all non-
daemon threads exit.

If both THR_BOUND and THR_NEW_LWP are specified then, typically, two LWPs are created,
one for the bound thread and another for the pool of LWPs running unbound threads.

libthread ___

12-12 SPARC Compliance Defintion 2.4 Interface Semantics 1998

When new_thread is not NULL then it points to a location where the ID of the new thread is stored
if thr_create() is successful. The ID is only valid within the calling process.
The new thread inherits the calling thread’s signal mask and priority. Pending signals are not
inherited.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, thr_create() fails and returns the corresponding
value:
EAGAIN A system limit is exceeded, e.g., too many LWPs were created.
ENOMEM Not enough memory was available to create the new thread.
EINVAL stack_base is not NULL and stack_size is less than the value returned by

thr_min_stack().
EINVAL stack_base is NULL and stack_size is not zero and is less than the value

returned by thr_min_stack().

NOTES
Typically, thread stacks allocated by thr_create() begin on page boundaries and any specified size
is rounded up to the next page boundary. A page with no access permission is appended to the top
of the stack so that most stack overflows will result in a SIGSEGV signal being sent to the offending
thread. Thread stacks allocated by the caller are used as is.
Using a default stack size for the new thread, instead of passing a user-specified stack size, results
in much better thr_create() performance.
A thread has not terminated until thr_exit() has finished. The only way to determine this is by
thr_join(). When thr_join() returns a departed thread, it means that this thread has terminated and
its resources are reclaimable. For instance, if a user specified a stack to thr_create(), this stack can
only be reclaimed after thr_join() has reported this thread as a departed thread. It is not possible to
determine when a detached thread has terminated. A detached thread disappears without leaving
a trace.
If there is no explicit synchronization, an unsuspended, detached thread can die and have its thread
ID re-assigned to another new thread before its creator returns from thr_create().

__ libthread

1998 SPARC Compliance Definition 2.4 Interface Semantics 12-13

thr_exit

NAME
thr_exit - thread termination

SYNOPSIS
#include <thread.h>
void thr_exit (void *status);

DESCRIPTION
thr_exit() terminates the calling thread. All thread-specific data bindings are released (see
thr_keycreate). If the calling thread is not detached, then the thread’s ID and the exit status
specified by status are retained until it is waited for (see thr_join). Otherwise, status is ignored and
the thread’s ID may be reclaimed immediately.
If the calling thread is the last non-daemon thread in the process (see thr_create), then the process
terminates with a status of zero (see exit(BA_OS)). If the initial thread returns from main() then the
process exits with a status equal to the return value.

RETURN VALUE
thr_exit() does not return.

libthread ___

12-14 SPARC Compliance Defintion 2.4 Interface Semantics 1998

thr_getconcurrency, thr_setconcurrency

NAME
thr_setconcurrency, thr_getconcurrency - get/set thread concurrency level

SYNOPSIS
#include <thread.h>
int thr_setconcurrency (int new_level);
int thr_getconcurrency (void);

DESCRIPTION
Unbound threads in a process (see thr_create) may or may not be required to be simultaneously
active. By default, the threads system ensures that a sufficient number of threads are active so that
the process can continue to make progress. While this conserves system resources, it may not
produce the most effective level of concurrency. thr_setconcurrency() permits the application to
give the threads system a hint, specified by new_level, for the desired level of concurrency. The
actual number of simultaneously active threads may be larger or smaller than this number. The
value for the desired concurrency level may also be affected by creating threads with the
THR_NEW_LWP flag set (see thr_create).
If new_level is zero, the threads system will only ensure that a sufficient number of threads are active
so that the process can continue to make progress.
thr_getconcurrency() returns the current value for the desired concurrency level. The actual number
of simultaneously active threads may be larger or smaller than this number.

RETURN VALUE
thr_setconcurrency() returns zero when successful. A nonzero value indicates an error code.
thr_getconcurrency() always returns the current value for the desired concurrency level.

ERRORS
If any of the following conditions are detected, thr_setconcurrency() fails and returns the
corresponding value:
EAGAIN the specified concurrency level would cause a system resource to be

exceeded.
EINVAL new_level is negative.

__ libthread

1998 SPARC Compliance Definition 2.4 Interface Semantics 12-15

thr_getprio, thr_setprio

NAME
thr_setprio, thr_getprio - set/get a thread priority

SYNOPSIS
#include <thread.h>
int thr_setprio (thread_t target_thread, int pri);
int thr_getprio (thread_t target_thread, int *pri);

DESCRIPTION
Each thread has a priority which it inherits from its creator. thr_setprio() changes the priority of the
thread, specified by target_thread, within the current process to the priority specified by pri. By
default, threads are scheduled based on fixed priorities that range from zero, the least significant,
to the largest integer. The target_thread will preempt lower priority threads, and will yield to higher
priority threads.
The function thr_getprio() stores the current priority for the thread specified by target_thread in the
location pointed to by pri.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates error.

ERRORS
If any of the following conditions are detected, thr_setprio() or thr_getprio() fails and returns the
corresponding value:
ESRCH target_thread cannot be found in the current process.
If any of the following conditions are detected, thr_setprio() fails and returns the corresponding
value:
EINVAL The value of pri makes no sense for the scheduling class associated with

the target_thread.

libthread ___

12-16 SPARC Compliance Defintion 2.4 Interface Semantics 1998

thr_getspecific, thr_keycreate, thr_setspecific

NAME
thr_keycreate, thr_setspecific, thr_getspecific - thread-specific data

SYNOPSIS
#include <thread.h>
int thr_keycreate(thread_key_t *keyp, void (*destructor) (void *value));
int thr_setspecific(thread_key_t key, void *value);
int thr_getspecific(thread_key_t key, void **valuep);

DESCRIPTION
thr_keycreate() allocates a key that is used to identify data that is specific to each thread in the
process. The key is global to all threads in the process. Once a key has been created each thread may
bind a value to the key. The values are specific to the binding thread and are maintained for each
thread independently. All threads initially have the value NULL associated with the key when it is
created. When thr_keycreate() returns successfully the allocated key is stored in the location
pointed to by keyp. The caller must ensure that storage and access to this key are properly
synchronized.
An optional destructor function, specified by destructor, may be associated with each key. If a key
has a non-NULL destructor function and the thread has a non-NULL value associated with that
key, the destructor function is called with the current associated value when the thread exits. The
order in which the destructor functions are called for all the allocated keys is unspecified.
thr_setspecific() binds value to the thread-specific data key, for the calling thread.
thr_getspecific() stores the current value bound to key for the calling thread into the location
pointed to by valuep.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, thr_keycreate() fails and returns the corresponding
value:
EAGAIN The key name space is exhausted.
If any of the following conditions are detected, thr_keycreate() or thr_setspecific() fails and returns
the corresponding value:
ENOMEM Not enough memory is available.
If any of the following conditions are detected, thr_setspecific() or thr_getspecific() fails and

returns the corresponding value:
EINVAL key is invalid.

__ libthread

1998 SPARC Compliance Definition 2.4 Interface Semantics 12-17

thr_join

NAME
thr_join - wait for thread termination

SYNOPSIS
#include <thread.h>
int thr_join (thread_t wait_for, thread_t *departed, void **status);

DESCRIPTION
thr_join() blocks the calling thread until the thread specified by wait_for terminates. The specified
thread must be in the current process and must not be detached (see thr_create). If wait_for is
(thread_t)0, then thr_join() waits for any undetached thread in the process to terminate.

If departed is not NULL, it points to a location that is set to the ID of the terminated thread if
thr_join() returns successfully. If status is not NULL, it points to a location that is set to the exit
status of the terminated thread if thr_join() returns successfully.

If thr_join() is not successful, the value of the location pointed to by status is unchanged.

Multiple threads cannot wait for the same thread to terminate; one thread will return successfully
and the others will fail with an error of ESRCH.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, thr_join() fails and returns the corresponding value:

ESRCH wait_for is not a valid, undetached thread in the current process.
EDEADLK wait_for specifies the calling thread.
EDEADLCK wait_for is (thread_t)0 and there is no valid, undetached thread in

the current process which is not the calling thread.

libthread ___

12-18 SPARC Compliance Defintion 2.4 Interface Semantics 1998

thr_kill

NAME
thr_kill - send a signal to a thread

SYNOPSIS
#include <thread.h>
#include <signal.h>
int thr_kill (thread_t target_thread, int sig);

DESCRIPTION
thr_kill() sends the signal, sig, to the thread specified by target_thread. target_thread must be a thread
within the same process as the calling thread. sig must be one from the list given in signal
(BA_ENV)or zero. If sig is zero, error checking is performed but no signal is actually sent. This can
be used to check the validity of target_thread.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions detected, thr_kill() fails and returns the corresponding value:
EINVAL sig is not a valid signal number.
ESRCH target_thread cannot be found in the current process.

__ libthread

1998 SPARC Compliance Definition 2.4 Interface Semantics 12-19

thr_min_stack

NAME
thr_min_stack - minimum stack space for a thread

SYNOPSIS
#include <thread.h>
size_t thr_min_stack(void);

DESCRIPTION
When a thread is created with a user-supplied stack, the user must reserve enough space to run this
thread. In a dynamically linked execution environment, it is very hard to know what the minimum
stack requirements are for a thread. The function thr_min_stack() returns the amount of space
needed to execute a null thread. This is a thread that was created to execute a null procedure. A
thread that does something useful should have a stack size that is thr_min_stack() + <some
increment>.
Most users should not be creating threads with user-supplied stacks. This functionality was
provided to support applications that wanted complete control over their execution environment.
Typically, users should let the threads library manage stack allocation. The threads library provides
default stacks which should meet the requirements of any created thread.

RETURN VALUE
thr_min_stack returns the minimum stack size for a thread.

libthread ___

12-20 SPARC Compliance Defintion 2.4 Interface Semantics 1998

thr_self

NAME
thr_self - get thread identifier

SYNOPSIS
#include <thread.h>
thread_t thr_self(void)

DESCRIPTION
thr_self() returns the ID of the calling thread.

__ libthread

1998 SPARC Compliance Definition 2.4 Interface Semantics 12-21

thr_sigsetmask

NAME
thr_sigsetmask - change and/or examine calling thread’s signal mask

SYNOPSIS
#include <thread.h>
#include <signal.h>
int thr_sigsetmask (int how, const sigset_t *set, sigset_t *oset);

DESCRIPTION
thr_sigsetmask() examines and/or changes the calling thread’s signal mask. If the value of the
argument set is not NULL, it points to a set of signals to be used to change the currently blocked set.
The value of the argument how determines the manner in which the set is changed. how may have
one of the following values:
SIG_BLOCK set represent a set of signals to block. They are added to the current signal

mask.
SIG_UNBLOCK set represents a set of signals to unblock. These signals are deleted from the

current signal mask.
SIG_SETMASK set represents the new signal mask. The current signal mask is replaced by

set.
If the value of oset is not NULL, it points to space where the previous signal mask is stored. If the
value of set is NULL, the value of how is not significant and the thread’s signal mask is unchanged;
thus, thr_sigsetmask() can be used to enquire about the currently blocked signals.

RETURN VALUE
Zero is returned when successful. A non-zero value indicates an error.

ERRORS
If any of the following conditions are detected, thr_sigsetmask() fails and returns the
corresponding value:
EINVAL set is not NULL and the value of how is not defined.

NOTES
It is not possible to block those signals that cannot be ignored (see sigaction(BA_OS)). In addition,
if using the threads library, it is not possible to block the signal SIGLWP, reserved by the threads
library, and it is not possible to unblock the signal SIGWAITING, which is always blocked on all
threads. This restriction is silently imposed by the threads library.

libthread ___

12-22 SPARC Compliance Defintion 2.4 Interface Semantics 1998

thr_main

NAME
thr_main - identify the main thread

SYNOPSIS
#include <thread.h>
int thr_main(void);

DESCRIPTION
thr_main — identifies the calling thread as the main thread or not the main thread.

RETURN VALUES
thr_main() returns:
1 if the calling thread is the main thread.
0 if the calling thread is not the main thread.
-1 if libthread is not linked in or thread initialization has not completed.

__ libthread

1998 SPARC Compliance Definition 2.4 Interface Semantics 12-23

thr_yield

NAME
thr_yield - yield execution to another thread

SYNOPSIS
#include <thread.h>
void thr_yield(void);

DESCRIPTION
thr_yield() causes the current thread to yield its execution in favor of another thread with the same
or greater priority.

RETURN VALUE
No value is returned.

libthread ___

12-24 SPARC Compliance Defintion 2.4 Interface Semantics 1998

sigwait

NAME
sigwait - wait until a signal is posted

SYNOPSIS
 #include <signal.h>
 int sigwait (sigset_t *set);

DESCRIPTION
sigwait() selects a signal in set that is pending on the calling thread (see thr_create()). If no signal
in set is pending, then sigwait() blocks until a signal in set becomes pending. The selected signal
is cleared from the set of signals pending on the calling thread and the number of the signal is
returned. The selection of a signal in set is independent of the signal mask of the calling thread.
This means a thread can synchronously wait for signals that are being blocked by the signal mask
of the calling thread.
If more than one thread waits for the same signal, only one is unblocked when the signal arrives.

RETURN VALUES
Upon successful completion, a signal number is returned. Otherwise, a value of -1 is returned and
errno is set to indicate error.

ERRORS
If any of the following conditions are detected, sigwait() fails and returns the corresponding value:

EINVAL set contains an unsupported signal number.
EFAULT set points to an invalid address.

NOTES
sigwait() cannot be used to wait for signals that cannot be caught (see sigaction(BA_OS)). This
restriction is silently imposed by the system.

sigwait() is designated as EXPERMIMENTAL since it has an interface which is different from the one in
POSIX 1003.1c. sigwait interface in POSIX is as following:

int sigwait (const sigset_t *setp, int *signo);

SPARC COMPLIANCE DEFINITION 2.4 IS

libucb

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-1

nice

NAME
nice - change priority of a process

SYNOPSIS
#include <unistd.h>
int nice(int incr);

DESCRIPTION
The nice() function allows a process to change its priority. The invoking process must be in a scheduling class
that supports the nice(). The priocntl() function is a more general interface to scheduler functions.

nice() adds the value of incr to the nice value of the calling process. A process' nice value is a non-negative

number for which a greater positive value results in lower CPU priority.

A maximum nice value of 2 * NZERO -1 and a minimum nice value of 0 are imposed by the system. NZERO
is defined in <limits.h> with a default value of 20. Requests for values above or below these limits result in
the nice value being set to the corresponding limit. A nice value of 40 is treated as 39. Only a process with
super-user privileges can lower the nice value.

RETURN VALUES
Upon successful completion, nice() returns the new nice value minus NZERO . Otherwise, a value of -1 is
returned, the process' nice value is not changed, and errno is set to indicate the error.

ERRORS
nice() fails if one or more of the following are true:

EINVAL nice() is called by a process in a scheduling class other than time-sharing.

EPERM inc is negative or greater than 40 and the effective user ID of the calling process is not
superuser.

USAGE
As -1 is a permissible return value in a successful situation, an application wishing to check for error
situations should set errno to 0, then call nice(), and if it returns -1, check to see if errno is non-zero.

SEE ALSO
nice, exec(), priocntl()

libucb ___

13-2 SPARC Compliance Defintion 2.4 Interface Semantics 1998

setjmp
longjmp
_setjmp
_longjmp

NAME
setjmp, longjmp, _setjmp, _longjmp - non-local goto

SYNOPSIS
#include <setjmp.h>
int setjmp(jmp_buf env);
void longjmp(jmp_buf env,int val);
int _setjmp(jmp_buf env);
void _longjmp(jmp_buf env,int val);

DESCRIPTION
setjmp() and longjmp() are useful for dealing with errors and interrupts encountered in a low-level subroutine
of a program. setjmp() saves its stack environment in env for later use by longjmp(). A normal call to setjmp()
returns zero.setjmp() also saves the register environment. If a longjmp() call will be made, the routine which
called setjmp() should not return until after the longjmp() has returned control (see below).

longjmp() restores the environment saved by the last call of setjmp(), and then returns in such a way that
execution continues as if the call of setjmp() had just returned the value val to the function that invoked
setjmp(); however, if val were zero, execution would continue as if the call of setjmp() had returned one. This
ensures that a ``return'' from setjmp() caused by a call to longjmp() can be distinguished from a regular return
from setjmp(). The calling function must not itself have returned in the interim, otherwise longjmp() will be
returning control to a possibly non-existent environment. All memory-bound data have values as of the time
longjmp() was called. The CPU and floating point data registers are restored to the values they had at the time
that setjmp() was called. But, because the register storage class is only a hint to the C compiler, variables
declared as register variables may not necessarily be assigned to machine registers, so their values are
unpredictable after a longjmp(). This is especially a problem for programmers trying to write machine-
independent C routines.

setjmp() and longjmp() save and restore the signal mask while _setjmp() and _longjmp() manipulate only the
C stack and registers. None of these functions save or restore any floating-point status or control registers.

SEE ALSO
sigvec()-BSD, setjmp(), signal()

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of these
interfaces with any of the system libraries or in multi-thread applications is unsupported.

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-3

scandir
alphasort

NAME
scandir, alphasort - scan a directory

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>
int scandir(char *dirname, struct direct *(*namelist[]), int (*select)(.), (*dcomp)());
int alphasort(struct direct **d1, **d2);

DESCRIPTION
The scandir() function reads the directory dirname and builds an array of pointers to directory entries using
malloc(). The second parameter is a pointer to an array of structure pointers. The third parameter is a pointer
to a routine which is called with a pointer to a directory entry and should return a non zero value if the
directory entry should be included in the array. If this pointer is NULL, then all the directory entries will be
included. The last argument is a pointer to a routine which is passed to qsort(), which sorts the completed
array. If this pointer is NULL, the array is not sorted.

The alphasort() function is a routine that sorts the array alphabetically.

RETURN VALUES
The scandir() function returns the number of entries in the array and a pointer to the array through the
parameter namelist. The scandir() function returns -1 if the directory cannot be opened for reading or if
malloc() cannot allocate enough memory to hold all the data structures.

SEE ALSO
getdents(),malloc(),qsort(),readdir()-BSD, readdir(

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of these
interfaces with any of the system libraries or in multi-thread applications is unsupported.

libucb ___

13-4 SPARC Compliance Defintion 2.4 Interface Semantics 1998

fopen

NAME
fopen, freopen - open a stream

SYNOPSIS
#include <stdio.h>
FILE *fopen(const char *file, *mode);
FILE *freopen(const char *file, *mode, register FILE *iop);

DESCRIPTION
fopen() opens the file named by file and associates a stream with it. If the open succeeds, fopen() returns a
pointer to be used to identify the stream in subsequent operations. file points to a character string that contains
the name of the file to be opened. mode is a character string having one of the following values:

r open for reading

w truncate or create for writing

a append: open for writing at end of file, or create for writing

r+ open for update (reading and writing)

w+ truncate or create for update

a+ append; open or create for update at EOF
freopen() opens the file named by file and associates the stream pointed to by iop with it. The mode argument
is used just as in fopen(). The original stream is closed, regardless of whether the open ultimately succeeds.
If the open succeeds, freopen() returns the original value of iop. freopen() is typically used to attach the
preopened streams associated with stdin, stdout, and stderr to other files.When a file is opened for update,
both input and output may be done on the resulting stream. However, output may not be directly followed by
input without an intervening fseek() or rewind(), and input may not be directly followed by output without an
intervening fseek() or rewind(). An input operation which encounters EOF will fail.

RETURN VALUES
fopen() and freopen() return a NULL pointer on failure.

SEE ALSO
open(), fclose(), fopen(), freopen(), fseek(), malloc(), rewind()

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of these
interfaces with any of the system libraries or in multi-thread applications is unsupported. In order to support
the same number of open files that the system does, fopen() must allocate additional memory for data
structures using malloc() after 64 files have been opened. This confuses some programs which use their own
memory allocators. The interfaces of fopen() and freopen() differ from the Standard I/O Functions fopen()
and freopen(). The Standard I/O Functions distinguish binary from text files with an additional use of 'b' as
part of the mode.

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-5

gettimeofday
settimeofday

NAME
gettimeofday, settimeofday - get or set the date and time

SYNOPSIS
#include <sys/time.h>
int gettimeofday(struct timeval *tzp, struct timezone *tzp);
int settimeofday(struct timeval *tzp, struct timezone *tzp);

DESCRIPTION
The system's notion of the current Greenwich time is obtained with the gettimeofday() call, and set with the
settimeofday() call. The current time is expressed in elapsed seconds and microseconds since 00:00 GMT,
January 1, 1970 (zero hour). The resolution of the system clock is hardware dependent; the time may be
updated continuously, or in clock ticks. tp points to a timeval structure, which includes the following
members:

long tv_sec; /* seconds since Jan. 1, 1970 */

long tv_usec; /* and microseconds */

If tp is a NULL pointer, the current time information is not returned or set. tzp is an obsolete pointer formerly
used to get and set timezone information. tzp is now ignored. Timezone information is now handled using the
TZ environment variable; see TIMEZONE. Only the privileged user may set the time of day.

RETURN VALUES
A -1 return value indicates an error occurred; in this case an error code is stored in the global variable errno.

ERRORS
The following error codes may be set in errno:

EINVAL tp specifies an invalid time.

EPERM A user other than the privileged user attempted to set the time.

SEE ALSO
adjtime(), ctime(), gettimeofday(), TIMEZONE

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of these
interfaces with any of the system libraries or in multi-thread applications is unsupported.tv_usec is always 0.

libucb ___

13-6 SPARC Compliance Defintion 2.4 Interface Semantics 1998

mctl

NAME
mctl - memory management control

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>
int mctl(caddr_t addr, size_t le n, int function, int arg);

DESCRIPTION
mctl() applies a variety of control functions over pages identified by the mappings established for the address
range [addr, addr + len). The function to be performed is identified by the argument function. Valid functions
are defined in mman.h as follows:

MC_LOCK Lock the pages in the range in memory. This function is used to support mlock().
See mlock() for semantics and usage. arg is ignored.

MC_LOCKAS Lock the pages in the address space in memory. This function is used to support
mlockall(). See mlockall() for semantics and usage. addr and len are ignored. arg
is an integer built from the flags:

MCL_CURRENT Lock current mappings

MCL_FUTURE Lock future mappings

MC_SYNC Synchronize the pages in the range with their backing storage. Optionally
invalidate cache copies. This function is used to support msync(). See msync() for
semantics and usage. arg is used to represent the flags argument to msync(). It is
constructed from an OR of the following values:

MS_SYNC Synchronized write

MS_ASYNC Return immediately

MS_INVALIDATE Invalidate mappings

MS_ASYNC returns after all I/O operations are scheduled. MS_SYNC does not return until all
I/O operations are complete. Specify exactly one of MS_ASYNC or MS_SYNC.
MS_INVALIDATE invalidates all cached copies of data from memory, requiring
them to be re-obtained from the object's permanent storage location upon the next
reference.

MC_UNLOCK Unlock the pages in the range. This function is used to support munlock(). arg is
ignored.

MC_UNLOCKAS Remove address space memory lock, and locks on all current mappings. This
function is used to support munlockall(). addr and len must have the value 0. arg
is ignored.

RETURN VALUES
mctl() returns 0 on success, -1 on failure.

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-7

ERRORS
mctl() fails if:

EAGAIN Some or all of the memory identified by the operation could not be
locked due to insufficient system resources.

EBUSYMS_INVALIDATE was specified and one or more of the pages is locked in memory.

EINVAL addr is not a multiple of the page size as returned by getpagesize().
EINVAL addr and/or len do not have the value 0 when MC_LOCKAS or

MC_UNLOCKAS are specified.

EINVAL arg is not valid for the function specified.

EIO An I/O error occurred while reading from or writing to the file system.

ENOMEM Addresses in the range [addr, addr + len) are invalid for the address space
of a process, or specify one or more pages which are not mapped.

EPERM The process's effective user ID is not super-user and one of MC_LOCK
MC_LOCKAS, MC_UNLOCK, or MC_UNLOCKAS was specified.

SEE ALSO
mmap(),memcntl(),getpagesize(),mlock(), mlockall(), msync()

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of these
interfaces with any of the system libraries or in multi-thread applications is unsupported.

libucb ___

13-8 SPARC Compliance Defintion 2.4 Interface Semantics 1998

psignal
sys_siglist

NAME
psignal, sys_siglist - system signal messages

SYNOPSIS
void psignal (unsigned sig, char *s);
char *sys_siglist[];

DESCRIPTION
psignal() produces a short message on the standard error file describing the indicated signal. First the
argument string s is printed, then a colon, then the name of the signal and a NEWLINE. Most usefully, the
argument string is the name of the program which incurred the signal. The signal number should be from
among those found in <signal.h>.

To simplify variant formatting of signal names, the vector of message strings sys_siglist is provided; the signal
number can be used as an index in this table to get the signal name without the newline. The define NSIG
defined in <signal.h> is the number of messages provided for in the table; it should be checked because new
signals may be added to the system before they are added to the table.

SEE ALSO
perror(), signal()

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of these
interfaces with any of the system libraries or in multi-thread applications is unsupported.

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-9

rand
srand

NAME
rand, srand - simple random number generator

SYNOPSIS
int rand()
int srand(unsigned seed);

DESCRIPTION
rand() uses a multiplicative congruential random number generator with period 232 to return successive
pseudo-random numbers in the range from 0 to “231 -1.”

srand() can be called at any time to reset the random-number generator to a random starting point. The
generator is initially seeded with a value of 1.

SEE ALSO
drand48(), rand(), random()

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of these
interfaces with any of the system libraries or in multi-thread applications is unsupported.The spectral
properties of rand() leave a great deal to be desired. drand48() and random() provide much better, though
more elaborate, random-number generators. The low bits of the numbers generated are not very random; use
the middle bits. In particular the lowest bit alternates between 0 and 1.

libucb ___

13-10 SPARC Compliance Defintion 2.4 Interface Semantics 1998

sigblock
sigmask
sigpause
sigsetmask

NAME
sigblock, sigmask, sigpause, sigsetmask - block signals

SYNOPSIS
#include <signal.h>
int sigblock(int mask);
int sigmask(int signum);
int sigpause(int mask);
int sigsetmask(int mask);

DESCRIPTION
sigblock() adds the signals specified in mask to the set of signals currently being blocked from delivery.
Signals are blocked if the appropriate bit in mask is a 1; the macro sigmask is provided to construct the mask
for a given signum. sigblock() returns the previous mask. The previous mask may be restored using
sigsetmask().

sigpause() assigns mask to the set of masked signals and then waits for a signal to arrive; on return the set of
masked signals is restored. mask is usually 0 to indicate that no signals are now to be blocked. sigpause()
always terminates by being interrupted, returning -1 and setting errno to EINTR.

sigsetmask() sets the current signal mask (those signals that are blocked from delivery). Signals are blocked
if the corresponding bit in mask is a 1; the macro sigmask is provided to construct the mask for a given
signum. In normal usage, a signal is blocked using sigblock(). To begin a critical section, variables modified
on the occurrence of the signal are examined to determine that there is no work to be done, and the process
pauses awaiting work by using sigpause() with the mask returned by sigblock(). It is not possible to block
SIGKILL, SIGSTOP, or SIGCONT, this restriction is silently imposed by the system.

RETURN VALUES
sigblock() and sigsetmask() return the previous set of masked signals. sigpause() returns -1 and sets errno to
EINTR.

SEE ALSO
kill(), sigaction(), signal()-BSD, sigvec()-BSD

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of these
interfaces with any of the system libraries or in multi-thread applications is unsupported.

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-11

siginterrupt

NAME
siginterrupt - allow signals to interrupt functions

SYNOPSIS
int siginterrupt(int sig, flag);

DESCRIPTION
siginterrupt() is used to change the function restart behavior when a function is interrupted by the specified
signal. If the flag is false (0), then functions will be restarted if they are interrupted by the specified signal and
no data has been transferred yet. System call restart is the default behavior when the signal() routine is used.

If the flag is true , then restarting of functions is disabled. If a function is interrupted by the specified signal
and no data has been transferred, the function will return -1 with errno set to EINTR. Interrupted functions
that have started transferring data will return the amount of data actually transferred. Issuing a siginterrupt()
call during the execution of a signal handler will cause the new action to take place on the next signal to be
caught.

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of these
interfaces with any of the system libraries or in multi-thread applications is unsupported.

This library routine uses an extension of the sigvec()-BSD function that is not available in 4.2 BSD, hence it
should not be used if backward compatibility is needed.

RETURN VALUES
A 0 value indicates that the call succeeded. A -1 value indicates that the call failed and errno is set to indicate
the error.

ERRORS
siginterrupt() may return the following error:

EINVAL sig is not a valid signal.

SEE ALSO
sigblock()-BSD, sigvec()-BSD, signal()

libucb ___

13-12 SPARC Compliance Defintion 2.4 Interface Semantics 1998

signal

NAME
signal - simplified software signal facilities

SYNOPSIS
#include <signal.h>
void (*signal(int sig, void (*func)()))()

DESCRIPTION
signal() is a simplified interface to the more general sigvec()-BSD facility. Programs that use signal() in
preference to sigvec() are more likely to be portable to all systems. A signal is generated by some abnormal
event, initiated by a user at a terminal (quit, interrupt, stop), by a program error (bus error, etc.), by request of
another program (kill), or when a process is stopped because it wishes to access its control terminal while in
the background (see termio). Signals are optionally generated when a process resumes after being stopped,
when the status of child processes changes, or when input is ready at the control terminal. Most signals cause
termination of the receiving process if no action is taken; some signals instead cause the process receiving
them to be stopped, or are simply discarded if the process has not requested otherwise. Except for the
SIGKILL and SIGSTOP signals, the signal() call allows signals either to be ignored or to interrupt to a
specified location. See sigvec()-BSD for a complete list of the signals. If func is SIG_DFL, the default action
for signal sig is reinstated; this default is termination (with a core image for starred signals) except for signals
marked with @ or |+. Signals marked with @ are discarded if the action is SIG_DFL; signals marked with
|+ cause the process to stop. If func is SIG_IGN the signal is subsequently ignored and pending instances of
the signal are discarded. Otherwise, when the signal occurs further occurrences of the signal are automatically
blocked and func is called. A return from the function unblocks the handled signal and continues the process
at the point it was interrupted. If a caught signal occurs during certain functions, terminating the call
prematurely, the call is automatically restarted. In particular this can occur during a read() or write() on a slow
device (such as a terminal; but not a file) and during a wait(). The value of signal() is the previous (or initial)
value of func for the particular signal. After a fork() or vfork() the child inherits all signals. An exec() resets
all caught signals to the default action; ignored signals remain ignored.

RETURN VALUES
The previous action is returned on a successful call. Otherwise, -1 is returned and errno is set to indicate the
error.

ERRORS
signal() will fail and no action will take place if the following occurs:

EINVAL sig is not a valid signal number, or is SIGKILL or SIGSTOP.

SEE ALSO
kill, exec(), fcntl(), fork(), getitimer(), getrlimit(), kill(), ptrace(), read(), sigaction(), wait(), write(), abort(),
setjmp()-BSD, sigblock()-BSD, sigstack()-BSD, sigvec()-BSD, wait()-BSD, setjmp(), signal(), signal,
termio

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-13

sigstack

NAME
sigstack - set and/or get signal stack context

SYNOPSIS
#include <signal.h>
int sigstack(struct sigstack *nss, *oss);

DESCRIPTION
The sigstack() function allows users to define an alternate stack, called the “signal stack”, on which signals
are to be processed. When a signal's action indicates its handler should execute on the signal stack (specified
with a sigvec()-BSD call), the system checks to see if the process is currently executing on that stack. If the
process is not currently executing on the signal stack, the system arranges a switch to the signal stack for the
duration of the signal handler's execution. A signal stack is specified by a sigstack() structure, which includes
the following members:

char *ss_sp; /* signal stack pointer */

int ss_onstack; /* current status */

The ss_sp member is the initial value to be assigned to the stack pointer when the system switches the process
to the signal stack. Note that, on machines where the stack grows downwards in memory, this is not the
address of the beginning of the signal stack area. The ss_onstack member is zero or non-zero depending on
whether the process is currently executing on the signal stack or not. If nss is not a null pointer, sigstack() sets
the signal stack state to the value in the sigstack() structure pointed to by nss. If nss is a null pointer, the signal
stack state will be unchanged. If oss is not a null pointer, the current signal stack state is stored in the
sigstack() structure pointed to by oss.

RETURN VALUES
Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS
The sigstack() function will fail and the signal stack context will remain unchanged if one of the following
occurs.

EFAULT Either nss or oss points to memory that is not a valid part of the process address space.

SEE ALSO
sigaltstack(), sigvec()-BSD, signal()

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of these
interfaces with any of the system libraries or in multi-thread applications is unsupported.

libucb ___

13-14 SPARC Compliance Defintion 2.4 Interface Semantics 1998

sigvec

NAME
sigvec - software signal facilities

SYNOPSIS
#include <signal.h>
int sigvec(int sig, struct sigvec *nvec, *ovec);

DESCRIPTION
The system defines a set of signals that may be delivered to a process. Signal delivery resembles the
occurrence of a hardware interrupt: the signal is blocked from further occurrence, the current process context
is saved, and a new one is built. A process may specify a handler to which a signal is delivered, or specify that
a signal is to be blocked or ignored. A process may also specify that a default action is to be taken by the
system when a signal occurs. Normally, signal handlers execute on the current stack of the process. This may
be changed, on a per-handler basis, so that signals are taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that caused their invocation to be
blocked, but other signals may yet occur. A global signal mask defines the set of signals currently blocked
from delivery to a process. The signal mask for a process is initialized from that of its parent (normally 0). It
may be changed with a sigblock() or sigsetmask() call, or when a signal is delivered to the process. A process
may also specify a set of flags for a signal that affect the delivery of that signal.

When a signal condition arises for a process, the signal is added to a set of signals pending for the process. If
the signal is not currently blocked by the process then it is delivered to the process. When a signal is delivered,
the current state of the process is saved, a new signal mask is calculated (as described below), and the signal
handler is invoked. The call to the handler is arranged so that if the signal handling routine returns normally
the process will resume execution in the context from before the signal's delivery. If the process wishes to
resume in a different context, then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of the process' signal
handler (or until a sigblock() or sigsetmask() call is made). This mask is formed by taking the current signal
mask, adding the signal to be delivered, and ORing in the signal mask associated with the handler to be
invoked. The action to be taken when the signal is delivered is specified by a sigvec() structure, which includes
the following members:

void(*sv_handler)(); /* signal handler */

int sv_mask; /* signal mask to apply */

int sv_flags; /* see signal options */

#define SV_ONSTACK /* take signal on signal stack */

#define SV_INTERRUPT /* do not restart system on signal return */

#define SV_RESETHAND /* reset handler to SIG_DFL when signal taken*/

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-15

If the SV_ONSTACK bit is set in the flags for that signal, the system will deliver the signal to the process on
the signal stack specified with sigstack()-BSD rather than delivering the signal on the current stack.

If nvec is not a NULL pointer, sigvec() assigns the handler specified by sv_handler(), the mask specified by
sv_mask(), and the flags specified by sv_flags() to the specified signal. If nvec is a NULL pointer, sigvec()
does not change the handler, mask, or flags for the specified signal.

The mask specified in nvec is not allowed to block SIGKILL, SIGSTOP, or SIGCONT. The system enforces
this restriction silently.

If ovec is not a NULL pointer, the handler, mask, and flags in effect for the signal before the call to sigvec()
are returned to the user. A call to sigvec() with nvec a NULL pointer and ovec not a NULL pointer can be
used to determine the handling information currently in effect for a signal without changing that information.

The following is a list of all signals with names as in the include file <signal.h>:

SIGHUP hangup

SIGINT interrupt

SIGQUIT* quit

SIGILL* illegal instruction

SIGTRAP* trace trap

SIGABRT* abort (generated by abort() routine)

SIGEMT* emulator trap

SIGFPE* arithmetic exception

SIGKILL kill (cannot be caught, blocked, or ignored)

SIGBUS* bus error

SIGSEGV* segmentation violation

SIGSYS* bad argument to function

SIGPIPE write on a pipe or other socket with no one to read it

SIGALRM alarm clock

SIGTERM software termination signal

SIGURG@ urgent condition present on socket

SIGSTOP|+ stop (cannot be caught, blocked, or ignored)

SIGTSTP|+ stop signal generated from keyboard

SIGCONT@ continue after stop (cannot be blocked)

SIGCHLD@ child status has changed

SIGTTIN|+ background read attempted from control terminal

SIGTTOU|+ background write attempted to control terminal

SIGIO@ I/O is possible on a descriptor (see fcntl())
SIGXCPU cpu time limit exceeded (see getrlimit())

libucb ___

13-16 SPARC Compliance Defintion 2.4 Interface Semantics 1998

SIGXFSZ file size limit exceeded (see getrlimit())
SIGVTALRM virtual time alarm; see setitimer() on getitimer()
SIGPROF profiling timer alarm; see setitimer() on getitimer()
SIGWINCH@ window changed (see termio)

SIGLOST resource lost (see lockd)

SIGUSR1 user-defined signal 1

SIGUSR2 user-defined signal 2

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvec() call is made, or an execve() is
performed, unless the SV_RESETHAND bit is set in the flags for that signal. In that case, the value of the
handler for the caught signal will be set to SIG_DFL before entering the signal-catching function, unless the
signal is SIGILL, SIGPWR, or SIGTRAP. Also, if this bit is set, the bit for that signal in the signal mask
will not be set; unless the signal mask associated with that signal blocks that signal, further occurrences of
that signal will not be blocked. The SV_RESETHAND flag is not available in 4.2 BSD, hence it should not
be used if backward compatibility is needed.

The default action for a signal may be reinstated by setting the signal's handler to SIG_DFL; this default is
termination except for signals marked with @ or |+. Signals marked with @ are discarded if the action is
SIG_DFL; signals marked with |+ cause the process to stop. If the process is terminated, a “core image” will
be made in the current working directory of the receiving process if the signal is one for which an asterisk
appears in the above list. If the handler for that signal is SIG_IGN, the signal is subsequently ignored, and
pending instances of the signal are discarded.

If a caught signal occurs during certain functions, the call is normally restarted. The call can be forced to
terminate prematurely with an EINTR error return by setting the SV_INTERRUPT bit in the flags for that
signal. The SV_INTERRUPT flag is not available in 4.2 BSD, hence it should not be used if backward
compatibility is needed. The affected functions are read() or write() on a slow device (such as a terminal or
pipe or other socket, but not a file) and during a wait(). After a fork() or vfork() the child inherits all signals,
the signal mask, the signal stack, and the restart/interrupt and reset-signal-handler flags.

The execve() call resets all caught signals to default action and resets all signals to be caught on the user stack.
Ignored signals remain ignored; the signal mask remains the same; signals that interrupt functions continue
to do so.

The accuracy of addr is machine dependent. For example, certain machines may supply an address that is on
the same page as the address that caused the fault. If an appropriate addr cannot be computed it will be set to
SIG_NOADDR.

RETURN VALUES
A 0 value indicates that the call succeeded. A -1 return value indicates that an error occurred and errno is set
to indicate the reason.

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-17

ERRORS
sigvec() will fail and no new signal handler will be installed if one of the following occurs:

EFAULT Either nvec or ovec is not a NULL pointer and points to memory that is not a valid part of
the process address space.

EINVAL sig is not a valid signal number, or, SIGKILL, or SIGSTOP.

SEE ALSO
intro(), exec(), fcntl(), fork(), getitimer(), getrlimit(), ioctl(), kill(), ptrace(), read(), umask(), vfork(), wait(),
write(), setjmp(), sigblock()-BSD, sigstack()-BSD, signal()-BSD, wait()-BSD, signal()

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of these
interfaces with any of the system libraries or in multi-thread applications is unsupported.

SIGPOLL is a synonym for SIGIO. A SIGIO will be issued when a file descriptor corresponding to a
STREAM file has a “selectable” event pending. Unless that descriptor has been put into asynchronous mode
(see fcntl()), a process may specifically request that this signal be sent using the I_SETSIG ioctl() call.
Otherwise, the process will never receive SIGPOLL s0.

The handler routine can be declared:

void handler(int sig, int code, struct sigcontext *scp, char *addr);

Here sig is the signal number; code is a parameter of certain signals that provides additional detail; scp is a
pointer to the sigcontext structure (defined in signal.h), used to restore the context from before the signal; and
addr is additional address information. The signals SIGKILL, SIGSTOP, and SIGCONT cannot be ignored.

libucb ___

13-18 SPARC Compliance Defintion 2.4 Interface Semantics 1998

sleep

NAME
sleep - suspend execution for interval

SYNOPSIS
int sleep(unsigned seconds);

DESCRIPTION
sleep() suspends the current process from execution for the number of seconds specified by the argument. The
actual suspension time may be up to 1 second less than that requested, because scheduled wakeups occur at
fixed 1-second intervals, and may be an arbitrary amount longer because of other activity in the system.

sleep() is implemented by setting an interval timer and pausing until it expires. The previous state of this timer
is saved and restored. If the sleep time exceeds the time to the expiration of the previous value of the timer,
the process sleeps only until the timer would have expired, and the signal which occurs with the expiration of
the timer is sent one second later.

SEE ALSO
alarm(), getitimer(), longjmp(), siglongjmp(), sleep(), usleep()

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of these
interfaces with any of the system libraries or in multi-thread applications is unsupported.

SIGALRM should not be blocked or ignored during a call to sleep(). Only a prior call to alarm() should
generate SIGALRM for the calling process during a call to sleep(). A signal-catching function should not
interrupt a call to sleep() to call siglongjmp() or longjmp() to restore an environment saved prior to the sleep()
call.

WARNINGS
sleep() is slightly incompatible with alarm(). Programs that do not execute for at least one second of clock
time between successive calls to sleep() indefinitely delay the alarm signal. Use sleep(). Each sleep() call
postpones the alarm signal that would have been sent during the requested sleep period to occur one second
later.

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-19

printf
fprintf
sprintf
vprintf
vfprintf
vsprintf

NAME
printf, fprintf, sprintf, vprintf, vfprintf, vsprintf - formatted output conversion

SYNOPSIS
#include <stdio.h>
int printf(const char *format);
int fprintf(FILE *stream, char *format, va_dcl);
char *sprintf(char *s, *format, va_dcl);
int vprintf(char *format, va_list ap);
int vfprintf(FILE *stream, char *format, va_list ap);
char *vsprintf(char *s, *format, va_list ap);

DESCRIPTION
printf() places output on the standard output stream stdout. fprintf() places output on the named output
stream. sprintf() places “output,” followed by the NULL character (\0), in consecutive bytes starting at *s; it
is the user's responsibility to ensure that enough storage is available. vprintf(), vfprintf(), and vsprintf() are
the same as printf(), fprintf(), and sprintf() respectively, except that instead of being called with a variable
number of arguments, they are called with an argument list as defined by varargs.

Each of these functions converts, formats, and prints its args under control of the format. The format is a
character string which contains two types of objects: plain characters, which are simply copied to the output
stream, and conversion specifications, each of which causes conversion and printing of zero or more args. The
results are undefined if there are insufficient args for the format. If the format is exhausted while args remain,
the excess args are simply ignored.

Each conversion specification is introduced by the character

%. After the %, the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the converted value has fewer characters
than the field width, it will be padded on the left (or right, if the left-adjustment flag `-', described below, has
been given) to the field width. The padding is with blanks unless the field width digit string starts with a zero,
in which case the padding is with zeros.

A precision that gives the minimum number of digits to appear for the d, i, o, u, x, or X conversions, the

libucb ___

13-20 SPARC Compliance Defintion 2.4 Interface Semantics 1998

number of digits to appear after the decimal point for the e, E, and f conversions, the maximum number of
significant digits for the g and G conversion, or the maximum number of characters to be printed from a string
in s conversion. The precision takes the form of a period (.) followed by a decimal digit string; a NULL digit
string is treated as zero. Padding specified by the precision overrides the padding specified by the field width.

An optional l (ell) specifying that a following d, i, o, u, x, or X conversion character applies to a long integer
arg. An l before any other conversion character is ignored. A character that indicates the type of conversion
to be applied. A field width or precision or both may be indicated by an asterisk (*) instead of a digit string.
In this case, an integer arg supplies the field width or precision. The arg that is actually converted is not fetched
until the conversion letter is seen, so the args specifying field width or precision must appear before the arg
(if any) to be converted. A negative field width argument is taken as a `-' flag followed by a positive field
width. If the precision argument is negative, it will be changed to zero.

The flag characters and their meanings are:

- The result of the conversion will be left justified within the field.

+ The result of a signed conversion will always begin with a sign (+ or -).

blank If the first character of a signed conversion is not a sign, a blank will be prefixed to the result. This
implies that if the blank and + flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an “alternate form.”For c, d, i, s, and u
conversions, the flag has no effect. For o conversion, it increases the precision to force the first digit
of the result to be a zero. For x or X conversion, a non-zero result will have 0x or 0X prefixed to it.
For e, E, f, g, and G conversions, the result will always contain a decimal point, even if no digits
follow the point (normally, a decimal point appears in the result of these conversions only if a digit
follows it). For g and G conversions, trailing zeroes will not be removed from the result (which they
normally are).

The conversion characters and their meanings are: d,i,o,u,x,X

The integer arg is converted to signed decimal (d or i), unsigned octal (o), unsigned decimal (u), or unsigned
hexadecimal notation (x and X), respectively; the letters abcdef are used for x conversion and the letters
ABCDEF for X conversion. The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it will be expanded with leading zeroes. (For compatibility
with older versions, padding with leading zeroes may alternatively be specified by prepending a zero to the
field width. This does not imply an octal value for the field width.) The default precision is 1. The result of
converting a zero value with a precision of zero is a NULL string. f The float or double arg is converted to
decimal notation in the style [-]ddd.ddd where the number of digits after the decimal point is equal to the
precision specification. If the precision is missing, 6 digits are given; if the precision is explicitly 0, no digits
and no decimal point are printed.

e,E The float or double arg is converted in the style [-]d.ddde+_ddd, where there is one digit before the
decimal point and the number of digits after it is equal to the precision; when the precision is missing, 6 digits
are produced; if the precision is zero, no decimal point appears. The E format code will produce a number
with E instead of e introducing the exponent. The exponent always contains at least two digits. g,G The float
or double arg is printed in style f or e (or in style E in the case of a G format code), with the precision
specifying the number of significant digits. The style used depends on the value converted: style e or E will
be used only if the exponent resulting from the conversion is less than -4 or greater than the precision. Trailing
zeroes are removed from the result; a decimal point appears only if it is followed by a digit.

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-21

The e, E f, g, and G formats print IEEE indeterminate values (infinity or not-a-number) as “Infinity” or “NaN”
respectively.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and characters from the string are printed until a NULL
character (\0) is encountered or until the number of characters indicated by the precision specification is
reached. If the precision is missing, it is taken to be infinite, so all characters up to the first NULL character
are printed. A NULL value for arg will yield undefined results. % Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the result of a conversion is
wider than the field width, the field is simply expanded to contain the conversion result. Padding takes place
only if the specified field width exceeds the actual width. Characters generated by printf() and fprintf() are
printed as if putc() had been called.

RETURN VALUES
Upon success, printf() and fprintf() return the number of characters transmitted, excluding the null character.
vprintf() and vfprintf() return the number of characters transmitted. sprintf() and vsprintf() always return s.
If an output error is encountered, printf(), fprint(), vprintf(), and vfprintf() return EOF.

SEE ALSO
econvert(), putc(), scanf(), vprintf(), varargs

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of these
interfaces with any of the system libraries or in multi-thread applications is unsupported. Very wide fields
(>128 characters) fail.

libucb ___

13-22 SPARC Compliance Defintion 2.4 Interface Semantics 1998

times

NAME
times - get process times

SYNOPSIS
#include <sys/param.h>
#include <sys/types.h>
#include <sys/times.h>
int times(register struct tms *tmsp);

DESCRIPTION
times() returns time-accounting information for the current process and for the terminated child processes of
the current process. All times are reported in clock ticks. The number of clock ticks per second is defined by
the variable CLK_TCK, found in the header <limits.h>. A structure with the following members is returned
by times():

time_t tms_utime; /* user time */

time_t tms_stime; /* system time */

time_t tms_cutime; /* user time, children */

time_t tms_cstime; /* system time, children */

The children's times are the sum of the children's process times and their children's times.

RETURN VALUES
times() returns

0 on success.

-1 on failure.

SEE ALSO
time(), wait(), getrusage()

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of these
interfaces with any of the system libraries or in multi-thread applications is unsupported.

times() has been superseded by getrusage().

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-23

wait

NAME
wait, wait3, wait4, waitpid, WIFSTOPPED, WIFSIGNALED, WIFEXITED - wait for process to terminate
or stop

SYNOPSIS
#include <sys/wait.h>
int wait(int *statusp);
int waitpid(int pid, int *statusp, int options);
#include <sys/time.h>
#include <sys/resource.h>
int wait3(int *statusp, int options, struct rusage *rusage);
int wait4(int pid, int *statusp, int options, struct rusage *rusage);
WIFSTOPPED(int status);
WIFSIGNALED(int status);
WIFEXITED(int status);

DESCRIPTION
wait() delays its caller until a signal is received or one of its child processes terminates or stops due to tracing.
If any child process has died or stopped due to tracing and this has not been reported using wait(), return is
immediate, returning the process ID and exit status of one of those children. If that child process has died, it
is discarded. If there are no children, return is immediate with the value -1 returned. If there are only running
or stopped but reported children, the calling process is blocked.

If status is not a NULL pointer, then on return from a successful wait() call the status of the child process
whose process ID is the return value of wait() is stored in the wait() union pointed to by status. The w_status
member of that union is an int; it indicates the cause of termination and other information about the terminated
process in the following manner:

* If the low-order 8 bits of w_status are equal to 0177, the child process has stopped; the 8 bits higher up from
the low-order 8 bits of w_status contain the number of the signal that caused the process to stop. See ptrace()
and sigvec()-BSD.

* If the low-order 8 bits of w_status are non-zero and are not equal to 0177, the child process terminated due
to a signal; the low-order 7 bits of w_status contain the number of the signal that terminated the process. In
addition, if the low-order seventh bit of w_status (that is, bit 0200) is set, a ``core image'' of the process was
produced; see sigvec()-BSD.

* Otherwise, the child process terminated due to an exit() call; the 8 bits higher up from the low-order 8 bits
of w_status contain the low-order 8 bits of the argument that the child process passed to exit(); see exit().

libucb ___

13-24 SPARC Compliance Defintion 2.4 Interface Semantics 1998

waitpid() behaves identically to wait() if pid has a value of -1 and options has a value of zero. Otherwise, the
behavior of waitpid() is modified by the values of pid and options as follows:

pid specifies a set of child processes for which status is requested. waitpid() only returns the status of a child
process from this set.

* If pid is equal to -1, status is requested for any child process. In this respect, waitpid() is then equivalent to
wait().

* If pid is greater than zero, it specifies the process ID of a single child process for which status is requested.

* If pid is equal to zero, status is requested for any child process whose process group ID is equal to that of
the calling process.

* If pid is less than -1, status is requested for any child process whose process group ID is equal to the absolute
value of pid.

options is constructed from the bitwise inclusive OR of zero or more of the following flags, defined in the
header <sys/wait.h>:

WNOHANG
waitpid() does not suspend execution of the calling process if status is not immediately available for one of
the child processes specified by pid.

WUNTRACED
The status of any child processes specified by pid that are stopped, and whose status has not yet been reported
since they stopped, are also reported to the requesting process.

wait3() is an alternate interface that allows both nonblocking status collection and the collection of the status
of children stopped by any means. The status parameter is defined as above. The options parameter is used to
indicate the call should not block if there are no processes that have status to report (WNOHANG), and/or
that children of the current process that are stopped due to a SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP
signal are eligible to have their status reported as well (WUNTRACED). A terminated child is discarded after
it reports status, and a stopped process will not report its status more than once. If rusage is not a NULL
pointer, a summary of the resources used by the terminated process and all its children is returned. Only the
user time used and the system time used are currently available. They are returned in rusage.ru_utime and
rusage.ru_stime, respectively.

When the WNOHANG option is specified and no processes have status to report, wait3() returns 0. The
WNOHANG and WUNTRACED options may be combined by ORing the two values.

wait4() is another alternate interface. With a pid argument of 0, it is equivalent to wait3(). If pid has a nonzero
value, then wait4() returns status only for the indicated process ID, but not for any other child processes.

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-25

WIFSTOPPED, WIFSIGNALED, WIFEXITED, are macros that take an argument status, of type int, as
returned by wait(), or wait3(), or wait4(). WIFSTOPPED evaluates to true when the process for which the
wait() call was made is stopped, or to false (0) otherwise. WIFSIGNALED evaluates to true when the process
was terminated with a signal. WIFEXITED evaluates to true when the process exited by using an exit() call.

RETURN VALUES
If wait() or waitpid() returns due to a stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of -1 is returned and errno is set to indicate the error.

If wait() or waitpid() return due to the delivery of a signal to the calling process, a value of -1 is returned and
errno is set to EINTR. If waitpid() function was invoked with WNOHANG set in options, it has at least one
child process specified by pid for which status is not available, and status is not available for any process
specified by pid, a value of zero is returned. Otherwise, a value of -1 is returned, and errno is set to indicate
the error.

wait3() and wait4() returns 0 if WNOHANG is specified and there are no stopped or exited children, and
returns the process ID of the child process if it returns due to a stopped or terminated child process. Otherwise,
they returns a value of -1 and sets errno to indicate the error.

ERRORS
wait(), wait3() or wait4() will fail and return immediately if one or more of the following are true:

ECHILD The calling process has no existing unwaited-for child processes.

EFAULT The status or rusage arguments point to an illegal address.

waitpid() may set errno to:

ECHILD The process or process group specified by pid does not exist or is not a child of the calling
process.

EINTR The function was interrupted by a signal. The value of the location pointed to by statusp is
undefined.

EINVAL The value of options is not valid.

wait(), and wait3(), and wait4() will terminate prematurely, return -1, and set errno to EINTR upon the arrival
of a signal whose SV_INTERRUPT bit in its flags field is set (see sigvec()-BSD and siginterrupt()-BSD).
signal()-BSD, sets this bit for any signal it catches.

SEE ALSO
exit(), ptrace(), wait(), waitpid(), getrusage(), siginterrupt()-BSD, signal()-BSD, sigvec()-BSD, signal()

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of these
interfaces with any of the system libraries or in multi-thread applications is unsupported.If a parent process
terminates without waiting on its children, the initialization process (process ID = 1) inherits the children.

libucb ___

13-26 SPARC Compliance Defintion 2.4 Interface Semantics 1998

wait(), and wait3(), and wait4() are automatically restarted when a process receives a signal while awaiting
termination of a child process, unless the SV_INTERRUPT bit is set in the flags for that signal.

Calls to wait() with an argument of 0 should be cast to type `int *', as in:

wait((int *)0)

Other members of the wait union could be used to extract this information more conveniently:

* If the w_stopval member had the value WSTOPPED, the child process had stopped; the value of the

w_stopsig member was the signal that stopped the process.

* If the w_termsig member was non-zero, the child process terminated due to a signal; the value of the
w_termsig member was the number of the signal that terminated the process. If the w_coredump member was
non-zero, a core dump was produced.

* Otherwise, the child process terminated due to a call to exit(). The value of the w_retcode member was the
low-order 8 bits of the argument that the child process passed to exit().

union wait is obsolete in light of the new specifications provided by IEEE Std 1003.1-1988 and endorsed by
SVID89 and XPG3.

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-27

reboot

NAME
reboot - reboot system or halt processor

SYNOPSIS
#include <sys/reboot.h>
int reboot(int howto, char *bootargs);

DESCRIPTION
reboot() reboots the system. howto is an option passed to specify the behavior of the system while rebooting.
The function interface permits only one of RB_HALT, RB_ASKNAME or RB_AUTOBOOT to be passed.
RB_AUTOBOOT is the default.

The howto options are:

RE_AUTOBOOT The machine is rebooted from the root filesystem on the default boot device. See
boot and kernel.

RB_HALT the processor is simply halted; no reboot takes place. RB_HALT should be used
with caution.

RB_ASKNAME Interpreted by the bootstrap program and kernel, causing the user to be asked for
pathnames during the bootstrap.

The interpretation of the bootargs argument is platform dependent.

RETURN VALUES
If successful, this call never returns. Otherwise, a -1 is returned and an error is returned in the global variable
errno.

ERRORS
EPERM The caller is not the super-user.

SEE ALSO
boot, halt, reboot, uadmin()

NOTES
Any other howto argument causes the kernel file to boot. Only the super-user may reboot() a machine.

libucb ___

13-28 SPARC Compliance Defintion 2.4 Interface Semantics 1998

bcopy
bcmp
bzero

NAME
bcopy, bcmp, bzero - bit and byte string operations

SYNOPSIS
#include <strings.h>
void bcopy(const void *s1, void *s2, size_t n);
int bcmp(const void *s1, const void *s2, size_t n);
void bzero(void *s, size_t n);

DESCRIPTION
The functions bcopy(), bcmp(), and bzero() operate on variable length strings of bytes. They do not check for
null bytes as the routines in string() do.

bcopy() copies n bytes from string s1 to the string s2. Overlapping strings are handled correctly.

bcmp() compares byte string s1 against byte string s2, returning zero if they are identical, 1 otherwise. Both
strings are assumed to be n bytes long. bcmp() using n zero bytes always returns zero.

bzero() places n 0 bytes in the string s.

SEE ALSO
memory(), string()

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-29

ftime

NAME
ftime - get date and time

SYNOPSIS
#include <sys/timeb.h>
int ftime(struct timeb *tp);

DESCRIPTION
The ftime() function sets the time and millitm members of the timeb structure pointed to by tp. The structure
is defined in <sys/timeb.h> and contains the following members:

time_t time;

unsigned short millitm;

short timezone;

short dstflag;

The time and millitm members contain the seconds and milliseconds portions, respectively, of the current time
in seconds since 00:00:00 UTC (Coordinated Universal Time), January 1, 1970. The timezone member
contains the local time zone. The dstflag member contains a flag that, if non-zero, indicates that Daylight
Saving time applies locally during the appropriate part of the year. The contents of the timezone and dstflag
members of tp after a call to ftime() are unspecified.

RETURN VALUES
Upon successful completion, the ftime() function returns 0. Otherwise -1 is returned.

USAGE
For portability to implementations conforming to earlier versions of this document, time() is preferred over
this function.

The millisecond value usually has a granularity greater than one due to the resolution of the system clock.
Depending on any granularity (particularly a granularity of one) renders code non-portable.

SEE ALSO
date, time(), ctime(), gettimeofday(), timezone

libucb ___

13-30 SPARC Compliance Defintion 2.4 Interface Semantics 1998

getdtablesize

NAME
getdtablesize - get the file descriptor table size

SYNOPSIS
#include <unistd.h>
int getdtablesize(void);

DESCRIPTION
The getdtablesize() function is equivalent to getrlimit() with the RLIMIT_NOFILE option.

RETURN VALUES
The getdtablesize() function returns the current soft limit as if obtained from a call to getrlimit() with the
RLIMIT_NOFILE option.

USAGE
There is no direct relationship between the value returned by getdtablesize() and {OPEN_MAX} defined in
<limits.h>.

SEE ALSO
close(), getrlimit(), open(), setrlimit(), select()

NOTES
Each process has a file descriptor table which is guaranteed to have at least 20 slots. The entries in the
descriptor table are numbered with small integers starting at 0. The getdtablesize() function returns the current
maximum size of this table by calling the getrlimit() function.

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-31

gethostid

NAME
gethostid - get unique identifier of current host

SYNOPSIS
#include <unistd.h>
long gethostid(void);

DESCRIPTION
gethostid() returns the 32-bit identifier for the current host, which should be unique across all hosts. This
number is usually taken from the CPU board's ID PROM.

SEE ALSO
hostid, sysinfo()

libucb ___

13-32 SPARC Compliance Defintion 2.4 Interface Semantics 1998

gethostname
sethostname

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
int gethostname(char *name, int namelen);
int sethostname(char *name, int namelen);

DESCRIPTION
gethostname() returns the standard host name for the current processor, as previously set by sethostname. The
parameter namelen specifies the size of the array pointed to by name. The returned name is null-terminated
unless insufficient space is provided.

sethostname() sets the name of the host machine to be name, which has length namelen. This call is restricted
to the privileged user and is normally used only when the system is bootstrapped.

RETURN VALUES
If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is returned and an error code is
placed in the global location errno.

ERRORS
The following error may be returned by these calls:

EFAULT The name or namelen parameter gave an invalid address.

EPERM The caller was not the privileged user. Note: this error only applies to sethostname().

SEE ALSO
uname(), sysinfo(), gethostid()

NOTES
Host names are limited to MAXHOSTNAMELEN characters, currently 256. (See the <sys/param.h>
header.)

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-33

getpagesize

NAME
getpagesize - get system page size

SYNOPSIS
#include <unistd.h>
int getpagesize(void);

DESCRIPTION
getpagesize() returns the number of bytes in a page. Page granularity is the granularity of many of the memory
management calls. The page size is a system page size and need not be the same as the underlying hardware
page size.

The getpagesize() function is equivalent to sysconf(_SC_PAGE_SIZE) and sysconf(_SC_PAGESIZE).

RETURN VALUES
The getpagesize() function returns the current page size.

SEE ALSO
pagesize, brk(), getrlimit(), mmap(), mprotect(), munmap(), malloc(), msync(), sysconf()

libucb ___

13-34 SPARC Compliance Defintion 2.4 Interface Semantics 1998

getpriority
setpriority

NAME
getpriority, setpriority - get or set process scheduling priority

SYNOPSIS
#include <sys/resource.h>
int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int priority);

DESCRIPTION
The getpriority() function obtains the current scheduling priority of a process, process group, or user. The
setpriority() function sets the scheduling priority of a process, process group, or user.

Target processes are specified by the values of the which and who arguments. The which argument may be
one of the following values: PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, indicating that the who
argument is to be interpreted as a process ID, a process group ID, or a user ID, respectively. A 0 value for the
who argument specifies the current process, process group, or user.

If more than one process is specified, getpriority() returns the highest priority (lowest numerical value)
pertaining to any of the specified processes, and setpriority() sets the priorities of all of the specified processes
to the specified value.

The default priority is 0; negative priorities cause more favorable scheduling. While the range of valid priority
values is [-20, 20], implementations may enforce more restrictive limits. If the value specified to setpriority()
is less than the system's lowest supported priority value, the system's lowest supported value is used; if it is
greater than the system's highest supported value, the system's highest supported value is used.

Only a process with appropriate privileges can raise its priority (that is, assign a lower numerical priority
value).

RETURN VALUES
Upon successful completion, getpriority() returns an integer in the range from -20 to 20. Otherwise, -1 is
returned and errno is set to indicate the error.

Upon successful completion, setpriority() returns 0. Otherwise, -1 is returned and errno is set to indicate the
error.

ERRORS
The getpriority() and setpriority() functions will fail if:

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-35

ESRCH No process could be located using the which and who argument values specified.

EINVAL The value of the which argument was not recognized, or the value of the who argument is
not a valid process ID, process group ID, or user ID.

In addition, setpriority() may fail if:

EPERM A process was located, but neither the real nor effective user ID of the executing process is
the privileged user or match the effective user ID of the process whose priority is being
changed.

EACCES A request was made to change the priority to a lower numeric value (that is, to a higher
priority) and the current process does not have appropriate privileges.

USAGE
The effect of changing the scheduling priority may vary depending on the process-scheduling algorithm in
effect.

Because getpriority() can return the value -1 on successful completion, it is necessary to set errno to 0 prior
to a call to getpriority(). If getpriority() returns the value -1, then errno can be checked to see if an error
occurred or if the value is a legitimate priority.

SEE ALSO
nice, renice, fork()

libucb ___

13-36 SPARC Compliance Defintion 2.4 Interface Semantics 1998

getrusage

NAME
getrusage - get information about resource utilization

SYNOPSIS
#include <sys/resource.h>
int getrusage(int who, struct rusage *r_usage);

DESCRIPTION
The getrusage() function provides measures of the resources used by the current process or its terminated and
waited-for child processes. If the value of the who argument is RUSAGE_SELF, information is returned
about resources used by the current process. If the value of the who argument is RUSAGE_CHILDREN,
information is returned about resources used by the terminated and waited-for children of the current process.
If the child is never waited for (for instance, if the parent has SA_NOCLDWAIT set or sets SIGCHLD to
SIG_IGN), the resource information for the child process is discarded and not included in the resource
information provided by getrusage().

The r_usage argument is a pointer to an object of type struct rusage in which the returned information is
stored. The members of rusage are as follows:

 struct timeval ru_utime; /* user time used */

 struct timeval ru_stime; /* system time used */

 long ru_maxrss; /* maximum resident set size */

 long ru_idrss; /* integral resident set size */

 long ru_minflt; /* page faults not requiring physical I/O */

 long ru_majflt; /* page faults requiring physical I/O */

 long ru_nswap; /* swaps */

 long ru_inblock; /* block input operations */

 long ru_oublock; /* block output operations */

 long ru_msgsnd; /* messages sent */

 long ru_msgrcv; /* messages received */

 long ru_nsignals; /* signals received */

 long ru_nvcsw; /* voluntary context switches */

 long ru_nivcsw; /* involuntary context switches */

The fields are interpreted as follows:

ru_utime The total amount of time spent executing in user mode. Time is given in seconds and
microseconds.

ru_stime The total amount of time spent executing in system mode. Time is given in seconds and
microseconds.

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-37

ru_maxrss The maximum resident set size. Size is given in pages (the size of a page, in bytes, is given
by the getpagesize() function).

ru_idrss An “integral” value indicating the amount of memory in use by a process while the process
is running. This value is the sum of the resident set sizes of the process running when a
clock tick occurs. The value is given in pages times clock ticks. It does not take sharing into
account.

ru_minflt The number of page faults serviced which did not require any physical I/O activity.

ru_majflt The number of page faults serviced which required physical I/O activity. This could include
page ahead operations by the kernel.

ru_nswap The number of times a process was swapped out of main memory.

ru_inblock The number of times the file system had to perform input in servicing a read() request.

ru_oublock The number of times the file system had to perform output in servicing a write() request.

ru_msgsnd The number of messages sent over sockets.

ru_msgrcv The number of messages received from sockets.

ru_nsignals The number of signals delivered.

ru_nvcsw The number of times a context switch resulted due to a process voluntarily giving up the
processor before its time slice was completed (usually to await availability of a resource).

ru_nivcsw The number of times a context switch resulted due to a higher priority process becoming
runnable or because the current process exceeded its time slice.

RETURN VALUES
Upon successful completion, getrusage() returns 0. Otherwise, -1 is returned and errno is set to indicate the
error.

ERRORS
getrusage() will fail if:

EFAULT The address specified by the r_usage argument is not in a valid portion of the process'
address space.

EINVAL The who parameter is not a valid value.

SEE ALSO
read(),times(),wait(),write(), getpagesize(), gettimeofday()

NOTES
Only the timeval fields of struct rusage are supported in this implementation.

The numbers ru_inblock and ru_oublock account only for real I/O, and are approximate measures at best.
Data supplied by the cache mechanism is charged only to the first process to read and the last process to write
the data.

libucb ___

13-38 SPARC Compliance Defintion 2.4 Interface Semantics 1998

The way resident set size is calculated is an approximation, and could misrepresent the true resident set size.

Page faults can be generated from a variety of sources and for a variety of reasons. The customary cause for
a page fault is a direct reference by the program to a page which is not in memory. Now, however, the kernel
can generate page faults on behalf of the user, for example, servicing read() and write() functions. Also, a
page fault can be caused by an absent hardware translation to a page, even though the page is in physical
memory.

In addition to hardware detected page faults, the kernel may cause pseudo page faults in order to perform
some housekeeping. For example, the kernel may generate page faults, even if the pages exist in physical
memory, in order to lock down pages involved in a raw I/O request.

By definition, major page faults require physical I/O, while minor page faults do not require physical I/O. For
example, reclaiming the page from the free list would avoid I/O and generate a minor page fault. More
commonly, minor page faults occur during process startup as references to pages which are already in
memory. For example, if an address space faults on some “hot” executable or shared library, this results in a
minor page fault for the address space. Also, any one doing a read() or write() to something that is in the page
cache will get a minor page fault(s) as well. There is no way to obtain information about a child process which
has not yet terminated.

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-39

getwd

NAME
getwd - get current working directory pathname

SYNOPSIS
#include <unistd.h>
char *getwd(char *path_name);

DESCRIPTION
The getwd() function determines an absolute pathname of the current working directory of the calling process,
and copies that pathname into the array pointed to by the path_name argument.

If the length of the pathname of the current working directory is greater than ({PATH_MAX} + 1) including
the null byte, getwd() fails and returns a null pointer.

RETURN VALUES
Upon successful completion, a pointer to the string containing the absolute pathname of the current working
directory is returned. Otherwise, getwd() returns a null pointer and the contents of the array pointed to by
path_name are undefined.

SEE ALSO
getcwd(

libucb ___

13-40 SPARC Compliance Defintion 2.4 Interface Semantics 1998

index

NAME
index, rindex - string operations

SYNOPSIS
#include <strings.h>
char *index(const char *s, int c);
char *rindex(const char *s, int c);

DESCRIPTION
These functions operate on null-terminated strings.

index() returns a pointer to the first occurrence of character c in string s, and rindex() returns a pointer to the
last occurrence of character c in string s. Both index() and rindex() return a null pointer if c does not occur in
the string. The null character terminating a string is considered to be part of the string.

SEE ALSO
bstring(), malloc(), string()

NOTES
On most modern computer systems, you can not use a null pointer to indicate a null string. A null pointer is
an error and results in an abort of the program. If you wish to indicate a null string, you must have a pointer
that points to an explicit null string. On some implementations of the C language on some machines, a null
pointer, if dereferenced, would yield a null string; this highly nonportable trick was used in some programs.
Programmers using a null pointer to represent an empty string should be aware of this portability issue; even
on machines where dereferencing a null pointer does not cause an abort of the program, it does not necessarily
yield a null string.

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-41

random
srandom
initstate
setstate

NAME
random, srandom, initstate, setstate - pseudorandom number functions

SYNOPSIS
#include <stdlib.h>
long random(void);
void srandom(unsigned int seed);
char *initstate(unsigned int seed, char *state, size_t size);
char *setstate(const char *state);

DESCRIPTION
The random() function uses a nonlinear additive feedback random-number generator employing a default
state array size of 31 long integers to return successive pseudo-random numbers in the range from 0 to 231-
1. The period of this random-number generator is approximately 16 x (231-1). The size of the state array
determines the period of the random-number generator. Increasing the state array size increases the period.

The srandom() function initializes the current state array using the value of seed.

The random() and srandom() functions have (almost) the same calling sequence and initialization properties
as rand() and srand() (see rand()). The difference is that rand() produces a much less random sequence-in
fact, the low dozen bits generated by rand go through a cyclic pattern. All the bits generated by random() are
usable. For example, random()&01 will produce a random binary value.

Unlike srand(), srandom() does not return the old seed because the amount of state information used is much
more than a single word. Two other routines are provided to deal with restarting/changing random number
generators. With 256 bytes of state information, the period of the random-number generator is greater than
269.

Like rand(), random() produces by default a sequence of numbers that can be duplicated by calling
srandom() with 1 as the seed.

The initstate() and setstate() functions handle restarting and changing random-number generators. The
initstate() function allows a state array, pointed to by the state argument, to be initialized for future use. The
size argument, which specifies the size in bytes of the state array, is used by initstate() to decide what type of
random-number generator to use; the larger the state array, the more random the numbers. Values for the
amount of state information are 8, 32, 64, 128, and 256 bytes. Other values greater than 8 bytes are rounded
down to the nearest one of these values. For values smaller than 8, random() uses a simple linear congruential
random number generator. The seed argument specifies a starting point for the random-number sequence and
provides for restarting at the same point. The initstate() function returns a pointer to the previous state

libucb ___

13-42 SPARC Compliance Defintion 2.4 Interface Semantics 1998

information array.

If initstate() has not been called, then random() behaves as though initstate() had been called with seed=1
and size=128.

If initstate() is called with size<8, then random() uses a simple linear congruential random number generator.

Once a state has been initialized, setstate() allows switching between state arrays. The array defined by the
state argument is used for further random-number generation until initstate() is called or setstate() is called
again. The setstate() function returns a pointer to the previous state array.

RETURN VALUES
The random() function returns the generated pseudo-random number.

The srandom() function returns no value.

Upon successful completion, initstate() and setstate() return a pointer to the previous state array. Otherwise,
a null pointer is returned.

SEE ALSO
drand48(), rand()

NOTES
random() and srandom() are unsafe in multi-thread applications.

Use of these interfaces in multi-thread applications is unsupported.

random() and srandom() function at about two-thirds the speed of rand().

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-43

killpg

NAME
killpg - send signal to a process group

SYNOPSIS
#include <signal.h>
int killpg(pid_t pgrp, int sig);

DESCRIPTION
killpg() sends the signal sig to the process group pgrp. See signal for a list of signals.

The real or effective user ID of the sending process must match the real or saved set-user ID of the receiving
process, unless the effective user ID of the sending process is the privileged user. A single exception is the
signal SIGCONT, which may always be sent to any descendant of the current process.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the global
variable errno is set to indicate the error.

ERRORS
killpg() will fail and no signal will be sent if any of the following occur:

EINVAL sig is not a valid signal number.

EPERM The effective user ID of the sending process is not privileged user, and neither its real nor
effective user ID matches the real or saved set-user ID of one or more of the target
processes.

ESRCH No processes were found in the specified process group.

SEE ALSO
kill(), setpgrp(), sigaction(), signal

libucb ___

13-44 SPARC Compliance Defintion 2.4 Interface Semantics 1998

re_comp
re_exec

NAME
re_comp, re_exec - compile and execute regular expressions

SYNOPSIS
#include <re_comp.h>
char *re_comp(const char *string);
int re_exec(const char *string);

DESCRIPTION
The re_comp() function converts a regular expression string (RE) into an internal form suitable for pattern
matching. The re_exec() function compares the string pointed to by the string argument with the last regular
expression passed to re_comp(). If re_comp() is called with a null pointer argument, the current regular
expression remains unchanged. Strings passed to both re_comp() and re_exec() must be terminated by a null
byte, and may include NEWLINE characters.

The re_comp() and re_exec() functions support simple regular expressions, which are defined on the regexp
manual page. The regular expressions of the form \{m\}, \{m,\}, or \{m,n\} are not supported.

RETURN VALUES
The re_comp() function returns a null pointer when the string pointed to by the string argument is successfully
converted. Otherwise, a pointer to one of the following error message strings is returned:

No previous regular expression

Regular expression too long

unmatched \(

missing]

too many \(\) pairs

unmatched \)

Upon successful completion, re_exec() returns 1 if string matches the last compiled regular expression.
Otherwise, re_exec() returns 0 if string fails to match the last compiled regular expression, and -1 if the
compiled regular expression is invalid (indicating an internal error).

USAGE
For portability to implementations conforming to X/Open standards prior to XPG4v2, regcomp() and
regexec() are preferred to these functions.

SEE ALSO
grep, regcmp, regcmp(), regcomp(), regexec(), regexpr(), regexp, standards

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-45

setbuffer
setlinebuf

NAME
setbuffer, setlinebuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>
void setbuffer(FILE *iop, char *abuf, size_t asize);
void setlinebuf(FILE *iop);

DESCRIPTION
setbuffer, setlinebuf - assign buffering to a stream The three types of buffering available are unbuffered, block
buffered, and line buffered. When an output stream is unbuffered, information appears on the destination file
or terminal as soon as written; when it is block buffered many characters are saved up and written as a block;
when it is line buffered characters are saved up until a NEWLINE is encountered or input is read from stdin.
fflush() may be used to force the block out early. Normally all files are block buffered. A buffer is obtained
from malloc() upon the first getc() or putc() on the file. If the standard stream stdout refers to a terminal it is
line buffered. The standard stream stderr is unbuffered by default.

setbuffer() can be used after a stream, iop, has been opened but before it is read or written. It uses the character
array abuf whose size is determined by the asize argument instead of an automatically allocated buffer. If abuf
is the NULL pointer, input/output will be completely unbuffered. A manifest constant BUFSIZ , defined in
the <stdio.h> header, tells how big an array is needed:

char buf[BUFSIZ];

setlinebuf() is used to change the buffering on a stream from block buffered or unbuffered to line buffered.
Unlike setbuffer(), it can be used at any time that the stream, iop, is active.

A stream can be changed from unbuffered or line buffered to block buffered by using freopen(). A stream can
be changed from block buffered or line buffered to unbuffered by using freopen() followed by setbuf() with
a buffer argument of NULL.

SEE ALSO
malloc(), fclose(), fopen(), fread(), getc(), printf(), putc(), puts(), setbuf(), setvbuf()

NOTES
A common source of error is allocating buffer space as an “automatic” variable in a code block, and then
failing to close the stream in the same block.

libucb ___

13-46 SPARC Compliance Defintion 2.4 Interface Semantics 1998

setregid

NAME
setregid - set real and effective group IDs

SYNOPSIS
#include <unistd.h>
int setregid(gid_t rgid, gid_t egid);

DESCRIPTION
setregid() is used to set the real and effective group IDs of the calling process. If rgid is -1, the real GID is not
changed; if egid is -1, the effective GID is not changed. The real and effective GIDs may be set to different
values in the same call.

If the effective user ID of the calling process is superuser, the real GID and the effective GID can be set to
any legal value.

If the effective user ID of the calling process is not super-user, either the real GID can be set to the saved
setGID from execve(), or the effective GID can either be set to the saved setGID or the real GID. Note: if a
setGID process sets its effective GID to its real GID, it can still set its effective GID back to the saved setGID.

In either case, if the real GID is being changed (that is, if rgid is not -1), or the effective GID is being changed
to a value not equal to the real GID, the saved setGID is set equal to the new effective GID.

RETURN VALUES
setregid() returns:

0 on success.

-1 on failure and sets errno to indicate the error.

ERRORS
setregid() will fail and neither of the group IDs will be changed if:

EINVAL The value of rgid or egid is less than 0 or greater than UID_MAX (defined in <limits.h>).

EPERM The calling process' effective UID is not the super-user and a change other than changing
the real GID to the saved setGID, or changing the effective GID to the real GID or the saved
GID, was specified.

SEE ALSO
execve(), getgid(), setreuid(), setuid()

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-47

setreuid

NAME
setreuid - set real and effective user IDs

SYNOPSIS
#include <unistd.h>
int setreuid(uid_t ruid, uid_t euid);

DESCRIPTION
setreuid() is used to set the real and effective user IDs of the calling process. If ruid is -1, the real user ID is
not changed; if euid is -1, the effective user ID is not changed. The real and effective user IDs may be set to
different values in the same call. If the effective user ID of the calling process is superuser, the real user ID
and the effective user ID can be set to any legal value.

If the effective user ID of the calling process is not super-user, either the real user ID can be set to the effective
user ID, or the effective user ID can either be set to the saved set-user ID from execve() or the real user ID.
Note: if a set-UID process sets its effective user ID to its real user ID, it can still set its effective user ID back
to the saved set-user ID.

In either case, if the real user ID is being changed (that is, if ruid is not -1), or the effective user ID is being
changed to a value not equal to the real user ID, the saved set-user ID is set equal to the new effective user ID.

RETURN VALUES
setreuid() returns:

0 on success.

-1 on failure and sets errno to indicate the error.

ERRORS
setreuid() will fail and neither of the user IDs will be changed if:

EINVAL The value of ruid or euid is less than 0 or greater than UID_MAX (defined in <limits.h>).

EPERM The calling process' effective user ID is not the super-user and a change other than changing
the real user ID to the effective user ID, or changing the effective user ID to the real user
ID or the saved set-user ID, was specified.

SEE ALSO
execve(), getuid(), setregid(), setuid()

libucb ___

13-48 SPARC Compliance Defintion 2.4 Interface Semantics 1998

ualarm

NAME
ualarm - schedule signal after interval in microseconds

SYNOPSIS
#include <unistd.h>
useconds_t ualarm(useconds_t useconds, useconds_t interval);

DESCRIPTION
The ualarm() function causes the SIGALRM signal to be generated for the calling process after the number
of real-time microseconds specified by the useconds argument has elapsed. When the interval argument is
non-zero, repeated timeout notification occurs with a period in microseconds specified by the interval
argument. If the notification signal, SIGALRM, is not caught or ignored, the calling process is terminated.

Because of scheduling delays, resumption of execution when the signal is caught may be delayed an arbitrary
amount of time.

Interactions between ualarm() and either alarm() or sleep() are unspecified.

RETURN VALUES
The ualarm() function returns the number of microseconds remaining from the previous ualarm() call. If no
timeouts are pending or if ualarm() has not previously been called, ualarm() returns 0.

SEE ALSO
alarm(), setitimer(), sighold(), signal(), sleep(), usleep()

___libucb

1998 SPARC Compliance Definition 2.4 Interface Semantics 13-49

usleep

NAME
usleep - suspend execution for interval in microseconds

SYNOPSIS
#include <unistd.h>
int usleep(useconds_t useconds);

DESCRIPTION
The usleep() function suspends the current process from execution for the number of microseconds specified
by the useconds argument. (A microsecond is .000001 seconds.) Because of other activity, or because of the
time spent in processing the call, the actual suspension time may be longer than the amount of time specified.
The useconds argument must be less than 1,000,000. If the value of useconds is 0, then the call has no effect.
The usleep() function uses the process' real-time interval timer to indicate to the system when the process
should be woken up.

There is one real-time interval timer for each process. The usleep() function will not interfere with a previous
setting of this timer. If the process has set this timer prior to calling usleep(), and if the time specified by
useconds equals or exceeds the interval timer's prior setting, the process will be woken up shortly before the
timer was set to expire.

Interactions between usleep() and either alarm() or sleep() are unspecified.

RETURN VALUES
On successful completion, usleep() returns 0. Otherwise, it returns -1 and sets errno to indicate the error.

ERRORS
The usleep() function may fail if:

EINVAL The time interval specified 1,000,000 or more microseconds.

SEE ALSO
alarm(), poll(), setitimer(), sigaction(), sigprocmask(), select(), sleep(), ualarm()

libucb ___

13-50 SPARC Compliance Defintion 2.4 Interface Semantics 1998

SPARC COMPLIANCE DEFINITION 2.4 IS

libw

__ libw

1998 SPARC Compliance Definition 2.4 Interface Semantics 14-1

fgetwc

NAME
fgetwc - get a wide-character code from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>
wint_t fgetwc(FILE *stream);

DESCRIPTION
The fgetwc() function obtains the next character (if present) from the input stream pointed to by stream,
converts that to the corresponding wide-character code and advances the associated file position indicator for
the stream (if defined). If an error occurs, the resulting value of the file position indicator for the stream is
indeterminate. The fgetwc() function may mark the st_atime field of the file associated with stream for update.
The st_atime field will be marked for update by the first successful execution of fgetwc(), fgetc(), fgets(),
fgetws(), fread(), fscanf(), getc(), getchar(), gets(), or scanf() using stream that returns data not supplied by
a prior call to ungetc() or ungetwc().

RETURN VALUES
Upon successful completion the fgetwc() function returns the wide-character code of the character read from
the input stream pointed to by stream converted to a type wint_t. If the stream is at end-of-file, the end-of-file
indicator for the stream is set and fgetwc() returns WEOF. If a read error occurs, the error indicator for the
stream is set, fgetwc() returns WEOF and sets errno to indicate the error.

ERRORS
EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream and the process

would be delayed in the fgetwc() operation.

EBADF The file descriptor underlying stream is not a valid file descriptor open for reading.

EINTR The read operation was terminated due to the receipt of a signal, and no data was
transferred.

EIO A physical I/O error has occurred, or the process is in a background process group
attempting to read from its controlling terminal, and either the process is ignoring or
blocking the SIGTTIN signal or the process group is orphaned.

EOVERFLOW The file is a regular file and an attempt was made to read at or beyond the offset maximum
associated with the corresponding stream.

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a non-existent device, or the request was outside the capabilities of
the device.

EILSEQ The data obtained from the input stream does not form a valid character.

SEE ALSO
feof(), ferror(), fgetc(), fgets(), fgetws(), fopen(), fread(), fscanf(), getc(), getchar(), gets(), scanf(),
setlocale(), ungetc(), ungetwc()

libw ___

14-2 SPARC Compliance Defintion 2.4 Interface Semantics 1998

getws, fgetws

NAME
getws, fgetws - convert a string of EUC characters from the stream to Process Code

SYNOPSIS
#include <stdio.h>
#include <widec.h>
wchar_t *getws(wchar_t *s);
wchar_t *fgetws(wchar_t *s, int n, FILE *stream);

DESCRIPTION
The getws() function reads a string of Extended Unix Code (EUC) characters from the standard input stream,
stdin, converts it to process code, and writes it to the array pointed to by s, until a new-line character is read
or an end-of- file condition is encountered. The new-line character is discarded and the string is terminated
with a wchar_t NULL character. The getws() function returns its argument. The fgetws() function reads EUC
characters from the stream, converts them to Process Code, and writes them to the array pointed to by s. It
stops when either n-1 characters are read, a new-line character is read and transferred to s, or an end-of-file
condition is encountered. The string is then terminated with a wchar_t NULL character. The fgetws() function
returns its first argument.

RETURN VALUES
If end-of-file is encountered and no characters have been read, no characters are transferred to s and a NULL
pointer is returned. If a read error occurs, such as trying to use these functions on a file that has not been
opened for reading, a NULL pointer is returned. Otherwise s is returned.

ERRORS
The fgetws() function will fail if data needs to be read and:

EOVERFLOW The file is a regular file and an attempt was made to read at or beyond the offset
maximum associated with the corresponding stream.

SEE ALSO
ferror(), fread(), getwc(), putws(), scanf()

__ libw

1998 SPARC Compliance Definition 2.4 Interface Semantics 14-3

fputwc

NAME
fputwc - put wide-character code on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>
wint_t fputwc(wint_t wc, FILE *stream);

DESCRIPTION
The fputwc() function writes the character corresponding to the wide-character code wc to the output stream
pointed to by stream, at the position indicated by the associated file-position indicator for the stream (if
defined), and advances the indicator appropriately. If the file cannot support positioning requests, or if the
stream was opened with append mode, the character is appended to the output stream. If an error occurs while
writing the character, the shift state of the output file is left in an undefined state. The st_ctime and st_mtime
fields of the file will be marked for update between the successful execution of fputwc() and the next
successful completion of a call to fflush() or fclose() on the same stream or a call to exit(2) or abort().

RETURN VALUES
Upon successful completion, fputwc() returns wc. Otherwise, it returns WEOF, the error indicator for the
stream is set, and errno is set to indicate the error.

ERRORS
The fputwc() function will fail if either the stream is unbuffered or data in the stream's buffer needs to be
written, and:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream and the process
would be delayed in the write operation.

EBADF The file descriptor underlying stream is not a valid file descriptor open for writing.

EFBIG An attempt was made to write to a file that exceeds the maximum file size or the process'
file size limit.

EFBIG The file is a regular file and an attempt was made to write at or beyond the offset maximum
associated with the corresponding stream.

EINTR The write operation was terminated due to the receipt of a signal, and no data was
transferred.

EIO A physical I/O error has occurred, or the process is a member of a background process
group attempting to write to its controlling terminal, TOSTOP is set, the process is neither
ignoring nor blocking SIGTTOU and the process group of the process is orphaned.

ENOSPC There was no free space remaining on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any process.
A SIGPIPE signal will also be sent to the process.

The fputwc() function may fail if:

libw ___

14-4 SPARC Compliance Defintion 2.4 Interface Semantics 1998

ENOMEM Insufficient storage space is available.

ENXIOA request was made of a non-existent device, or the request was outside the capabilities of the
device.

EILSEQ The wide-character code wc does not correspond to a valid character.

SEE ALSO
exit(2), ulimit(2), abort(), fclose(), ferror(), fflush(), fopen(), setbuf()

__ libw

1998 SPARC Compliance Definition 2.4 Interface Semantics 14-5

fputws

NAME
fputws - put wide character string on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>
int fputws(const wchar_t *s, FILE *stream);

DESCRIPTION
The fputws() function writes a character string corresponding to the (null-terminated) wide character string
pointed to by ws to the stream pointed to by stream. No character corresponding to the terminating null wide-
character code is written.

The st_ctime and st_mtime fields of the file will be marked for update between the successful execution of
fputws() and the next successful completion of a call to fflush() or fclose() on the same stream or a call to
exit(2) or abort().

RETURN VALUES
Upon successful completion, fputws() returns a non-negative number. Otherwise it returns -1, sets an error
indicator for the stream and errno is set to indicate the error.

ERRORS
Refer to fputwc().

USAGE
The fputws() function does not append a NEWLINE character.

SEE ALSO
exit(2), abort(), fclose(), fflush(), fopen(), fputwc()

libw ___

14-6 SPARC Compliance Defintion 2.4 Interface Semantics 1998

getwidth

NAME
getwidth - get codeset information

SYNOPSIS
#include <euc.h>
#include <getwidth.h>
void getwidth(eucwidth_t *ptr);

DESCRIPTION
The getwidth() function reads the character class table for the current locale to get information on the
supplementary codesets. getwidth() sets this information into the struct eucwidth_t. This struct is defined in
<euc.h> and has the following members:

short int _eucw1,_eucw2,_eucw3;

short int _scrw1,_scrw2,_scrw3;

short int _pcw;

char _multibyte;

Codeset width values for supplementary codesets 1, 2, and 3 are set in _eucw1, _eucw2, and _eucw3,
respectively. Screen width values for supplementary codesets 1, 2, and 3 are set in _scrw1, _scrw2, and
_scrw3, respectively. The width of Extended Unix Code (EUC) Process Code is set in _pcw. The _multibyte
entry is set to 1 if multibyte characters are used, and set to 0 if only single-byte characters are used.

SEE ALSO
euclen(), setlocale()

NOTES
This function can be used safely in a multi-thread application, as long as setlocale() is not being called to
change the locale.

This function will only work with EUC locales.

__ libw

1998 SPARC Compliance Definition 2.4 Interface Semantics 14-7

isenglish, isideogram, isnumber
isphonogram, isspecial, iswalnum
iswalpha, iswascii, iswcntrl
iswdigit, iswgraph, iswlower, iswprint
iswpunct, iswspace, iswupper, iswxdigit

NAME
iswalpha, iswupper, iswlower, iswdigit, iswxdigit, iswalnum, iswspace, iswpunct, iswprint, iswcntrl,
iswascii, iswgraph, isphonogram, isideogram, isenglish, isnumber, isspecial - wide-character code
classification functions

SYNOPSIS
#include <wchar.h>
int iswalpha(wint_t wc);

DESCRIPTION
These functions test whether wc is a wide-character code representing a character of a particular class defined
in the LC_CTYPE category of the current locale. In all cases, wc is a wint_t, the value of which must be a
wide-character code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument has any other values, the behavior is undefined.

iswalpha(wc) tests whether wc is a wide-character code representing a character of class “alpha” in the
program's current locale.

iswupper(wc) tests whether wc is a wide-character code representing a character of class “upper” in the
program's current locale.

iswlower(wc) tests whether wc is a wide-character code representing a character of class “lower” in the
program's current locale.

iswdigit(wc) tests whether wc is a wide-character code representing a character of class “digit” in the
program's current locale.

iswxdigit(wc) tests whether wc is a wide-character code representing a character of class “xdigit” in the
program's current locale.

iswalnum(wc) tests whether wc is a wide-character code representing a character of class “alpha” or “digit”
in the program's current locale.

iswspace(wc) tests whether wc is a wide-character code representing a character of class “space” in the
program's current locale.

libw ___

14-8 SPARC Compliance Defintion 2.4 Interface Semantics 1998

iswpunct(wc) tests whether wc is a wide-character code representing a character of class “punct” in the
program's current locale.

iswprint(wc) tests whether wc is a wide-character code representing a character of class “print” in the
program's current locale.

iswgraph(wc) tests whether wc is a wide-character code representing a character of class “graph” in the
program's current locale.

iswcntrl(wc) tests whether wc is a wide-character code representing a character of class “cntrl” in the
program's current locale.

iswascii(wc) tests whether wc is a wide-character code representing an ASCII character.

isphonogram(wc)tests whether wc is a wide-character code representing a phonetic language character,
excluding ASCII characters.

isideogram(wc) tests whether wc is a wide-character code representing an ideographic language
character, excluding ASCII characters.

isenglish(wc) tests whether wc is a wide-character code representing an English language character,
excluding ASCII characters.

isnumber(wc) tests whether wc is a wide-character code representing digit [0-9], excluding ASCII
characters.

isspecial(wc) tests whether wc is a wide-character code representing a special language character, excluding
ASCII characters.

SEE ALSO
localedef(), setlocale(), stdio(), wconv()

__ libw

1998 SPARC Compliance Definition 2.4 Interface Semantics 14-9

putws

NAME
putws - convert a string of Process Code characters to EUC characters

SYNOPSIS
#include <stdio.h>
#include <widec.h>
int putws(wchar_t *s);

DESCRIPTION
The putws() function converts the Process Code string (terminated by a (wchar_t)NULL) pointed to by s, to
an Extended Unix Code (EUC) string followed by a NEWLINE character, and writes it to the standard output
stream stdout. It does not write the terminal null character.

RETURN VALUES
the putws() function returns the number of Process Code characters transformed and written. It returns EOF
if it attempts to write to a file that has not been opened for writing.

SEE ALSO
ferror(), fopen(), fread(), getws(), printf(), putwc()

libw ___

14-10 SPARC Compliance Defintion 2.4 Interface Semantics 1998

towlower

NAME
towlower - transliterate upper-case wide-character code to lower-case

SYNOPSIS
#include <wchar.h>
wint_t towlower(wint_t wc);

DESCRIPTION
The towlower() function has as a domain a type wint_t, the value of which must be a character representable
as a wchar_t, and must be a wide-character code corresponding to a valid character in the current locale or
the value of WEOF. If the argument has any other value, the argument is returned unchanged. If the
argument of towlower() represents an upper-case wide-character code, and there exists a corresponding lower-
case wide-character code (as defined by character type information in the program locale category
LC_CTYPE), the result is the corresponding lower-case wide-character code. All other arguments in the
domain are returned unchanged.

RETURN VALUES
On successful completion, towlower() returns the lower-case letter corresponding to the argument passed.
Otherwise, it returns the argument unchanged.

SEE ALSO
iswalpha(), setlocale(), towupper()

__ libw

1998 SPARC Compliance Definition 2.4 Interface Semantics 14-11

towupper

NAME
towupper - transliterate lowercase wide-character code to uppercase

SYNOPSIS
#include <wchar.h>
wint_t towupper(wint_t wc);

DESCRIPTION
The towupper() function has as a domain a type wint_t, the value of which must be a character representable
as a wchar_t, and must be a wide-character code corresponding to a valid character in the current locale or
the value of WEOF. If the argument has any other value, the argument is returned unchanged. If the
argument of towupper() represents a lowercase wide-character code (as defined by character type information
in the program locale category LC_CTYPE), the result is the corresponding uppercase wide-character code.
All other arguments in the domain are returned unchanged.

RETURN VALUES
Upon successful completion, towupper() returns the uppercase letter corresponding to the argument passed.
Otherwise, it returns the argument unchanged.

SEE ALSO
iswalpha(), setlocale(), towlower()

libw ___

14-12 SPARC Compliance Defintion 2.4 Interface Semantics 1998

ungetwc

NAME
ungetwc - push wide-character code back into input stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>
wint_t ungetwc(wint_t wc, FILE *stream);

DESCRIPTION
The ungetwc() function pushes the character corresponding to the wide character code specified by wc back
onto the input stream pointed to by stream. The pushed-back characters will be returned by subsequent reads
on that stream in the reverse order of their pushing. A successful intervening call (with the stream pointed
to by stream) to a file-positioning function (fseek(), fsetpos() or rewind()) discards any pushed-back
characters for the stream. The external storage corresponding to the stream is unchanged. One character of
push-back is guaranteed. If ungetwc() is called too many times on the same stream without an intervening
read or file-positioning operation on that stream, the operation may fail. If the value of wc equals that of the
macro WEOF, the operation fails and the input stream is unchanged. A successful call to ungetwc() clears
the end-of-file indicator for the stream. The value of the file-position indicator for the stream after reading or
discarding all pushed-back characters will be the same as it was before the characters were pushed back. The
file-position indicator is decremented (by one or more) by each successful call to ungetwc(); if its value was
0 before a call, its value is indeterminate after the call.

RETURN VALUES
Upon successful completion, ungetwc() returns the wide-character code corresponding to the pushed-back
character. Otherwise it returns WEOF.

ERRORS
The ungetwc() function may fail if:

EILSEQ An invalid character sequence is detected, or a wide-character code does not correspond to
a valid character.

SEE ALSO
read(2), fseek(), fsetpos(), rewind(), setbuf()

__ libw

1998 SPARC Compliance Definition 2.4 Interface Semantics 14-13

wscasecmp, wscol, wsdup, wsncasecmp

NAME
wscasecmp, wsncasecmp, wsdup, wscol - Process Code string operations

SYNOPSIS
#include <widec.h>
int wscasecmp (const wchar_t *s1, const wchar_t *s2);
int wsncasecmp (const wchar_t *s1, const wchar_t *s2, int n);
wchar_t *wsdup (const wchar_t *s);
int wscol (const wchar_t *s);

DESCRIPTION
These functions operate on Process Code strings terminated by wchar_t NULL characters. During appending
or copying, these routines do not check for an overflow condition of the receiving string. In the following, s,
s1, and s2 point to Process Code strings terminated by a wchar_t NULL.

wscasecmp(), wsncasecmp()
The wscasecmp() function compares its arguments, ignoring case, and returns an integer greater than, equal
to, or less than 0, depending upon whether s1 is lexicographically greater than, equal to, or less than s2.
wsncasecmp() makes the same comparison but compares at most n Process Code characters. The four
Extended Unix Code (EUC) codesets are ordered from lowest to highest as 0, 2, 3, 1 when characters from
different codesets are compared.

wsdup()

The wsdup() function returns a pointer to a new Process Code string, which is a duplicate of the string pointed
to by s. The space for the new string is obtained using malloc(). If the new string cannot be created, a null
pointer is returned.

wscol()
The wscol() function returns the screen display width (in columns) of the Process Code string s.

SEE ALSO
malloc(), string(), wcstring()

libw ___

14-14 SPARC Compliance Defintion 2.4 Interface Semantics 1998

wcstring, wcscat, wscat
wcsncat, wsncat, wcscmp, wscmp
wcsncmp, wsncmp, wcscpy, wscpy
wcsncpy, wsncpy, wcslen, wslen
wcschr, wschr, wcsrchr, wsrchr
windex, wrindex, wcspbrk, wspbrk
wcswcs, wcsspn, wsspn,
wcscspn, wscspn, wcstok, wstok

NAME
wcstring, wcscat, wscat, wcsncat, wsncat, wcscmp, wscmp, wcsncmp, wsncmp, wcscpy, wscpy, wcsncpy,
wsncpy, wcslen, wslen, wcschr, wschr, wcsrchr, wsrchr, windex, wrindex, wcspbrk, wspbrk, wcswcs,
wcsspn, wsspn, wcscspn, wscspn, wcstok, wstok - wide character string operations

SYNOPSIS
#include <wchar.h>
wchar_t *wcscat (wchar_t *ws1, const wchar_t *ws2);
wchar_t *wscat (wchar_t *ws1, const wchar_t *ws2);
wchar_t *wcsncat (wchar_t *ws1, const wchar_t *ws2, size_t n);
wchar_t *wsncat (wchar_t *ws1, const wchar_t *ws2, size_t n);
int wcscmp (const wchar_t *ws1, const wchar_t *ws2);
int wscmp (const wchar_t *ws1, const wchar_t *ws2);
int wcsncmp (const wchar_t *ws1, const wchar_t *ws2, size_t n);
int wsncmp (const wchar_t *ws1, const wchar_t *ws2, size_t n);
wchar_t *wcscpy (wchar_t *ws1, const wchar_t *ws2);
wchar_t *wscpy (wchar_t *ws1, const wchar_t *ws2);
wchar_t *wcsncpy (wchar_t *ws1, const wchar_t *ws2, size_t n);
wchar_t *wsncpy (wchar_t *ws1, const wchar_t *ws2, size_t n);
size_t wcslen (const wchar_t *ws);
size_t wslen (const wchar_t *ws);
wchar_t *wcschr (const wchar_t *ws, wint_t wc);
wchar_t *wschr (const wchar_t *ws, wint_t wc);
wchar_t *wcsrchr (const wchar_t *ws, wchar_t wc);
wchar_t *wsrchr (const wchar_t *ws, wint_t wc);
wchar_t *windex (const wchar_t *ws, wchar_t wc);
wchar_t *wrindex (const wchar_t *ws, wchar_t wc);
wchar_t *wcspbrk (const wchar_t *ws1, const wchar_t *ws2);
wchar_t *wspbrk (const wchar_t *ws1, const wchar_t *ws2);
wchar_t *wcswcs (const wchar_t *ws1, const wchar_t *ws2);
size_t wcsspn (const wchar_t *ws1, const wchar_t *ws2);
size_t wsspn (const wchar_t *ws1, const wchar_t *ws2);

__ libw

1998 SPARC Compliance Definition 2.4 Interface Semantics 14-15

size_t wcscspn (const wchar_t *ws1, const wchar_t *ws2);
size_t wscspn (const wchar_t *ws1, const wchar_t *ws2);
wchar_t *wcstok (wchar_t *ws1, const wchar_t *ws2);
wchar_t *wstok (wchar_t *ws1, const wchar_t *ws2);

DESCRIPTION
These functions operate on wide character strings terminated by wchar_t NULL characters. During
appending or copying, these routines do not check for an overflow condition of the receiving string. In the
following, ws, ws1, and ws2 point to wide character strings terminated by a wchar_t NULL.

wcscat(), wscat()
The wcscat() and wscat() functions append a copy of the wide character string pointed to by ws2 (including
the terminating null wide-character code) to the end of the wide character string pointed to by ws1. The initial
wide-character code of ws2 overwrites the null wide-character code at the end of ws1. If copying takes place
between objects that overlap, the behavior is undefined. Both functions return s1; no return value is reserved
to indicate an error.

wcsncat(), wsncat()
The wcsncat() and wsncat() functions append not more than n wide-character codes (a null wide-character
code and wide character codes that follow it are not appended) from the array pointed to by ws2 to the end of
the wide character string pointed to by ws1. The initial wide-character code of ws2 overwrites the null wide-
character code at the end of ws1. A terminating null wide-character code is always appended to the result.
Both functions return ws1; no return value is reserved to indicate an error.

wcscmp(), wscmp()
The wcscmp() and wscmp() functions compare the wide character string pointed to by ws1 to the wide
character string pointed to by ws2. The sign of a nonzero return value is determined by the sign of the
difference between the values of the first pair of wide-character codes that differ in the objects being
compared. Upon completion, both functions return an integer greater than, equal to, or less than zero, if the
wide character string pointed to by ws1 is greater than, equal to, or less than the wide character string pointed
to by ws2.

wcsncmp(), wsncmp()
The wcsncmp() and wsncmp() functions compare not more than n wide-character codes (wide-character
codes that follow a null wide character code are not compared) from the array pointed to by ws1 to the array
pointed to by ws2. The sign of a nonzero return value is determined by the sign of the difference between the
values of the first pair of wide-character codes that differ in the objects being compared. Upon successful
completion, both functions return an integer greater than, equal to, or less than zero, if the possibly null-
terminated array pointed to by ws1 is greater than, equal to, or less than the possibly null-terminated array
pointed to by ws2.

wcscpy(), wscpy()
The wcscpy() and wscpy() functions copy the wide character string pointed to by ws2 (including the
terminating null wide-character code) into the array pointed to by ws1. If copying takes place between
objects that overlap, the behavior is undefined. Both functions return ws1; no return value is reserved to
indicate an error.

libw ___

14-16 SPARC Compliance Defintion 2.4 Interface Semantics 1998

wcsncpy(), wsncpy()
The wcsncpy() and wsncpy() functions copy not more than n wide-character codes (wide-character codes that
follow a null wide character code are not copied) from the array pointed to by ws2 to the array pointed to by
ws1. If copying takes place between objects that overlap, the behavior is undefined. If the array pointed to
by ws2 is a wide character string that is shorter than n wide-character codes, null wide-character codes are
appended to the copy in the array pointed to by ws1, until a total n wide-character codes are written. Both
functions return ws1; no return value is reserved to indicate an error.

wcslen(), wslen()
The wcslen() and wslen() functions compute the number of wide-character codes in the wide character string
to which ws points, not including the terminating null wide-character code. Both functions return ws; no
return value is reserved to indicate an error.

wcschr(), wschr()
The wcschr() and wschr() functions locate the first occurrence of wc in the wide character string pointed
to by ws. The value of wc must be a character representable as a type wchar_t and must be a wide-character
code corresponding to a valid character in the current locale. The terminating null wide-character code is
considered to be part of the wide character string. Upon completion, both functions return a pointer to the
wide-character code, or a null pointer if the wide-character code is not found.

wcsrchr(), wsrchr()
The wcsrchr() and wsrchr() functions locate the last occurrence of wc in the wide character string pointed
to by ws. The value of wc must be a character representable as a type wchar_t and must be a wide-character
code corresponding to a valid character in the current locale. The terminating null wide-character code is
considered to be part of the wide character string. Upon successful completion, both functions return a
pointer to the wide-character code, or a null pointer if wc does not occur in the wide character string.

windex(), wrindex()
The windex() and wrindex() functions behave the same as wschr() and wsrchr(), respectively.

wcspbrk(), wspbrk()
The wcspbrk() and wspbrk() functions locate the first occurrence in the wide character string pointed to by
ws1 of any wide-character code from the wide character string pointed to by ws2. Upon successful
completion, the function returns a pointer to the wide-character code, or a null pointer if no wide-character
code from ws2 occurs in ws1.

wcswcs()

The wcswcs() function locates the first occurrence in the wide character string pointed to by ws1 of the
sequence of wide-character codes (excluding the terminating null wide-character code) in the wide character
string pointed to by ws2. Upon successful completion, the function returns a pointer to the located wide
character string, or a null pointer if the wide character string is not found. If ws2 points to a wide character
string with zero length, the function returns ws1.

wcsspn(), wsspn()

__ libw

1998 SPARC Compliance Definition 2.4 Interface Semantics 14-17

The wcsspn() and wsspn() functions compute the length of the maximum initial segment of the wide character
string pointed to by ws1 which consists entirely of wide-character codes from the wide string pointed to by
ws2. Both functions return ws1; no return value is reserved to indicate an error.

wcscspn(), wscspn()
The wcscspn() and wscspn() functions compute the length of the maximum initial segment of the wide
character string pointed to by ws1 which consists entirely of wide-character codes not from the wide character
string pointed to by ws2. Both functions return ws1; no return value is reserved to indicate an error.

wcstok(), wstok()
A sequence of calls to the wcstok() and wstok() functions break the wide character string pointed to by ws1
into a sequence of tokens, each of which is delimited by a wide-character code from the wide character string
pointed to by ws2. The first call in the sequence has ws1 as its first argument, and is followed by calls with a
null pointer as their first argument. The separator string pointed to by ws2 may be different from call to call.

The first call in the sequence searches the wide character string pointed to by ws1 for the first wide-character
code that is not contained in the current separator string pointed to by ws2. If no such wide-character code is
found, then there are no tokens in the wide character string pointed to by ws1, and wcstok() and wstok() return
a null pointer. If such a wide-character code is found, it is the start of the first token.

wcstok() and wstok() then search from that point for a wide-character code that is contained in the current
separator string. If no such wide-character code is found, the current token extends to the end of the wide
character string pointed to by ws1, and subsequent searches for a token will return a null pointer. If such a
wide-character code is found, it is overwritten by a null wide character, which terminates the current token.
wcstok() and wstok() save a pointer to the following wide-character code, from which the next search for a
token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from the saved
pointer and behaves as described above. Upon successful completion, both functions return a pointer to the
first wide-character code of a token. Otherwise, if there is no token, a null pointer is returned.

SEE ALSO
malloc(), string(), wcswidth(), wcwidth()

libw ___

14-18 SPARC Compliance Defintion 2.4 Interface Semantics 1998

wcscoll, wscoll

NAME
wcscoll, wscoll - wide character string comparison using collating information

SYNOPSIS
#include <wchar.h>
int wcscoll(const wchar_t *ws1, const wchar_t *ws2);
int wscoll(const wchar_t *ws1, const wchar_t *ws2);

DESCRIPTION
The wcscoll() and wscoll() functions compare the wide character string pointed to by ws1 to the wide
character string pointed to by ws2, both interpreted as appropriate to the LC_COLLATE category of the
current locale.

RETURN VALUES
Upon successful completion, wcscoll() and wscoll() return an integer greater than, equal to, or less than 0,
depending upon whether the wide character string pointed to by ws1 is greater than, equal to, or less than the
wide character string pointed to by ws2, when both are interpreted as appropriate to the current locale. On
error, wcscoll() and wscoll() may set errno, but no return value is reserved to indicate an error.

ERRORS
wcscoll() and wscoll() may fail if:

EINVAL The ws1 or ws2 arguments contain wide character codes outside the domain of the collating
sequence.

ENOSYS The function is not supported.

SEE ALSO
setlocale(), wcscmp(), wcsxfrm()

NOTES
Because no return value is reserved to indicate an error, an application wishing to check for error situations
should set errno to 0, call either wcscoll() or wscoll(), then check errno and if it is nonzero, assume an error
has occurred. wcsxfrm() and wcscmp() should be used for sorting large lists. wcscoll() and wscoll() can be
used safely in multithreaded applications as long as setlocale() is not being called to change the locale.

__ libw

1998 SPARC Compliance Definition 2.4 Interface Semantics 14-19

wsprintf

NAME
wsprintf - formatted output conversion

SYNOPSIS
#include <stdio.h>
#include <widec.h>
int wsprintf(wchar_t *s, const char *format, /* arg */...);

DESCRIPTION
wsprintf() outputs a Process Code string ending with a Process Code (wchar_t) NULL character. It is the
user's responsibility to allocate enough space for this wchar_t string.

This returns the number of Process Code characters (excluding the NULL terminator) that have been written.
The conversion specifications and behavior of wsprintf() are the same as the regular sprintf() function except
that the result is a Process Code string for wsprintf(), and on Extended Unix Code (EUC) character string for
sprintf().

RETURN VALUES
Upon success, wsprintf() returns the number of characters printed. When an error condition is encountered,
a negative value is returned.

SEE ALSO
wsscanf(), printf(), scanf(), sprintf()

libw ___

14-20 SPARC Compliance Defintion 2.4 Interface Semantics 1998

wsscanf

NAME
wsscanf - formatted input conversion

SYNOPSIS
#include <stdio.h>
#include <widec.h>
int wsscanf(wchar_t *s, const char *format, /* pointer */...);

DESCRIPTION
wsscanf() reads Process Code characters from the Process Code string s, interprets them according to the
format, and stores the results in its arguments. wsscanf() expects, as arguments, a control string format, and
a set of pointer arguments indicating where the converted input should be stored. The results are undefined if
there are insufficient args for the format. If the format is exhausted while args remain, the excess args are
simply ignored.

The conversion specifications and behavior of wsscanf() are the same as the regular sscanf() function except
that the source is a Process Code string for wsscanf(), and on Extended Unix Code (EUC) character string for
sscanf().

RETURN VALUES
wsscanf() returns the number of characters matched. On error wsscanf() returns a negative value.

SEE ALSO
wsprintf(), printf(), scanf()

__ libw

1998 SPARC Compliance Definition 2.4 Interface Semantics 14-21

wcstod, wstod, watof

NAME
wcstod, wstod, watof - convert wide character string to double-precision number

SYNOPSIS
#include <wchar.h>
double wcstod(const wchar_t *nptr, wchar_t **endptr);
double wstod(const wchar_t *nptr, wchar_t **endptr);
double watof(wchar_t *nptr);

DESCRIPTION
The wcstod() and wstod() functions convert the initial portion of the wide character string pointed to by nptr
to double representation. They first decompose the input wide character string into three parts: an initial,
possibly empty, sequence of whitespace wide character codes (as specified by iswspace()); a subject sequence
interpreted as a floating-point constant; and a final wide-character string of one or more unrecognised wide-
character codes, including the terminating null wide character code of the input wide character string. They
then attempt to convert the subject sequence to a floating-point number, and return the result.

The expected form of the subject sequence is an optional `+' or `-' sign, then a non-empty sequence of digits
optionally containing a radix, then an optional exponent part. An exponent part consists of `e' or `E', followed
by an optional sign, followed by one or more decimal digits. The subject sequence is defined as the longest
initial subsequence of the input wide character string, starting with the first non-white-space wide-character
code, that is of the expected form. The subject sequence contains no wide-character codes if the input wide
character string is empty or consists entirely of whitespace wide-character codes, or if the first wide-character
code that is not white space other than a sign, a digit or a radix.

If the subject sequence has the expected form, the sequence of wide-character codes starting with the first digit
or the radix (whichever occurs first) is interpreted as a floating constant as defined in the C language, except
that the radix is used in place of a period, and that if neither an exponent part nor a radix appears, a radix is
assumed to follow the last digit in the wide character string. If the subject sequence begins with a minus sign
(-), the value resulting from the conversion is negated. A pointer to the final wide character string is stored in
the object pointed to by endptr, provided that endptr is not a null pointer.

The radix is defined in the program's locale (category LC_NUMERIC). In the POSIX locale, or in a locale
where the radix is not defined, the radix defaults to a period (.). In other than the POSIX locale, other
implementation-dependent subject sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed; the value of
nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

watof(str) is equivalent to wstod(str, (wchar_t **)NULL).

RETURN VALUES

libw ___

14-22 SPARC Compliance Defintion 2.4 Interface Semantics 1998

wcstod() and wstod() return the converted value, if any. If no conversion could be performed, 0 is returned,
and errno may be set to EINVAL. If the correct value is outside the range of representable values,
+_HUGE_VAL is returned (according to the sign of the value), and errno is set to ERANGE. If the correct
value would cause underflow, 0 is returned, and errno is set to ERANGE.

ERRORS
wcstod() and wstod() will fail if:

ERANGE The value to be returned would cause overflow or underflow.

wcstod() and wcstod() may fail if:

EINVAL No conversion could be performed.

SEE ALSO
iswspace(), localeconv(), scanf(), setlocale(), wcstol()

NOTES
Because 0 is returned on error and is also a valid return on success, an application wishing to check for error
situations should set errno to 0, call wcstod() or wstod(), then check errno and if it is nonzero, assume an error
has occurred.

__ libw

1998 SPARC Compliance Definition 2.4 Interface Semantics 14-23

wcstol, wstol, watol, watoll, watoi

NAME
wcstol, wstol, watol, watoll, watoi - convert wide character string to long integer

SYNOPSIS
#include <wchar.h>
long int wcstol(const wchar_t *nptr, wchar_t **endptr, int base);
#include <widec.h>
long int wstol(const wchar_t *nptr, wchar_t **endptr, int base);
long watol(wchar_t *nptr);
long long watoll(wchar_t *nptr);
int watoi(wchar_t *nptr);

DESCRIPTION
The wcstol() and wstol() functions convert the initial portion of the wide character string pointed to by nptr
to long int representation. They first decompose the input wide character string into three parts: an initial,
possibly empty, sequence of whitespace wide-character codes (as specified by iswspace()), a subject sequence
interpreted as an integer represented in some radix determined by the value of base; and a final wide character
string of one or more unrecognised wide character codes, including the terminating null wide-character code
of the input wide character string. They then attempt to convert the subject sequence to an integer, and return
the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant, octal constant
or hexadecimal constant, any of which may be preceded by a `+' or `-' sign. A decimal constant begins with
a nonzero digit, and consists of a sequence of decimal digits. An octal constant consists of the prefix `0'
optionally followed by a sequence of the digits `0' to `7' only. A hexadecimal constant consists of the prefix
`0x' or `0X' followed by a sequence of the decimal digits and letters `a' (or `A') to `f' (or `F') with values 10
to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence of letters
and digits representing an integer with the radix specified by base, optionally preceded by a `+' or `-' sign, but
not including an integer suffix. The letters from `a' (or `A') to ’z' (or `Z') inclusive are ascribed the values 10
to 35; only letters whose ascribed values are less than that of base are permitted. If the value of base is 16,
the wide-character code representations of `0x' or `0X' may optionally proceed the sequence of letters and
digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide character string, starting
with the first non-white-space wide-character code, that is of the expected form. The subject sequence
contains no wide-character codes if the input wide character string is empty or consists entirely of whitespace
wide-character code, or if the first non-white-space wide-character code is other than a sign or a permissible
letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of wide-character codes

libw ___

14-24 SPARC Compliance Defintion 2.4 Interface Semantics 1998

starting with the first digit is interpreted as an integer constant. If the subject sequence has the expected form
and the value of base is between 2 and 36, it is used as the base for conversion, ascribing to each letter its
value as given above. If the subject sequence begins with a minus sign (-), the value resulting from the
conversion is negated. A pointer to the final wide character string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

In other than the POSIX locale, additional implementation-dependent subject sequence forms may be
accepted. If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

The watol() function is equivalent to wstol(str, (wchar_t **)NULL, 10). The watoll() function is the long-long
(double long) version of watol(). The watoi() function is equivalent to (int)watol().

RETURN VALUES
Upon successful completion, wcstol() and wstol() return the converted value, if any. If no conversion could
be performed, 0 is returned, and errno may be set to indicate the error. If the correct value is outside the range
of representable values, {LONG_MAX} or {LONG_MIN} is returned (according to the sign of the value),
and errno is set to ERANGE.

ERRORS
The wcstol() and wstol() functions will fail if:

EINVAL The value of base is not supported.

ERANGE The value to be returned is not representable.

The wcstol() and wstol() functions may fail if:

EINVAL No conversion could be performed.

SEE ALSO
iswalpha(), iswspace(), scanf(), wcstod()

NOTES
Because 0, {LONG_MIN}, and {LONG_MAX} are returned on error and are also valid returns on success,
an application wishing to check for error situations should set errno to 0, call wcstol() or wstol(), then check
errno and if it is nonzero assume an error has occurred. Truncation from long long to long can take place upon
assignment or by an explicit cast.

__ libw

1998 SPARC Compliance Definition 2.4 Interface Semantics 14-25

wcsxfrm, wsxfrm

NAME
wcsxfrm, wsxfrm - wide character string transformation

SYNOPSIS
#include <wchar.h>
size_t wcsxfrm(wchar_t *ws1, const wchar_t *ws2, size_t n);
size_t wsxfrm(wchar_t *ws1, const wchar_t *ws2, size_t n);

DESCRIPTION
The wcsxfrm() and wcsxfrm() functions transform the wide character string pointed to by ws2 and place the
resulting wide character string into the array pointed to by ws1. The transformation is such that if either the
wcscmp() or wscmp() functions are applied to two transformed wide strings, they return a value greater than,
equal to, or less than 0, corresponding to the result of the wcscoll() or wscoll() function applied to the same
two original wide character strings. No more than n wide-character codes are placed into the resulting array
pointed to by ws1, including the terminating null wide-character code. If n is 0, ws1 is permitted to be a null
pointer. If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUES
wcsxfrm() and wsxfrm() return the length of the transformed wide character string (not including the
terminating null wide-character code). If the value returned is n or more, the contents of the array pointed to
by ws1 are indeterminate. On error, wcsxfrm() and wsxfrm() return (size_t)-1, and set errno to indicate the
error.

ERRORS
wcsxfrm() and wsxfrm() may fail if:

EINVAL The wide character string pointed to by ws2 contains wide-character codes outside the
domain of the collating sequence.

ENOSYS The function is not supported.

SEE ALSO
setlocale(), wcscmp(), wcscoll(),wscmp(), wscoll()

NOTES
The transformation function is such that two transformed wide character strings can be ordered by the
wcscmp() or wscmp() functions as appropriate to collating sequence information in the program's locale
(category LC_COLLATE). The fact that when n is 0, ws1 is permitted to be a null pointer, is useful to
determine the size of the ws1 array prior to making the transformation. Because no return value is reserved to
indicate an error, an application wishing to check for error situations should set errno to 0, call wcsxfrm() or
wsxfrm(), then check errno and if it is non-zero, assume an error has occurred. wcsxfrm() and wsxfrm() can
be used safely in multi-threaded applications as long as setlocale() is not being called to change the locale.

libw ___

14-26 SPARC Compliance Defintion 2.4 Interface Semantics 1998

SPARC COMPLIANCE DEFINITION 2.4 IS

Large Files Interfaces

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-1

Large File Support Interfaces
Overview

This section of the SCD IS defines large file support interfaces for the 32-bit ABI--these interfaces do
not apply to the 64-bit ABI. There is no large file support library. Instead, large file support
interfaces are provided within other dynamic libraries as described in the SCD. The SCD also
specifies those interface members which are REQUIRED and those which are EXPERIMENTAL.

Rationale:
Interface members required in the document: “Adding Support for Arbitrary File Sizes to the Single
UNIX Specification” have been implemented by multiple system vendors and are REQUIRED in the
SCD. All other interface members are EXPERIMENTAL.

On a 32-bit system, a large file is a regular file whose size is greater than or equal to 2 Gbyte (231

bytes). A small file is a regular file whose size is less than 2 Gbyte.

System Interfaces
The following table summarizes the differences in function signature definitions between small file
(standard, 32-bit) and their corresponding large file (64-bit) interfaces.

Small File Definition Large File Definition Header
 __
int aio_cancel(...,struct aiocb *); int aio_cancel64(...,struct aiocb64 *); <aio.h>
int aio_error(const struct aiocb *); int aio_error64(const struct aiocb64 *);
int aio_fsync(..., struct aiocb *); int aio_fsync64(...,struct aiocb64 *);
int aio_read(struct aiocb *); int aio_read64(struct aiocb64 *);
int aio_return(struct aiocb *); int aio_return64(struct aiocb64 *);
int aio_suspend(const struct aiocb *,...); int aio_suspend64 (const struct aiocb64 *,...)
int aio_write(struct aiocb *); int aio_write64(struct aiocb64 *);
int lio_listio(..., const struct aiocb *,...); int lio_listio64(...,const struct aiocb64 *,...);
__
struct dirent *readdir; struct dirent64 *readdir64; <dirent.h>
struct dirent *readdir_r; struct dirent64 *readdir64_r;
 __
int creat; int creat64; <fcntl.h>
int open; int open64;
int ftw(..., const struct stat *,...); int ftw64(..., const struct stat64 *,...); <ftw.h>
int nftw(..., const struct stat *,...); int nftw64(..., const struct stat64 *,...);

Large Files Interfaces__

15-2 SPARC Compliance Defintion 2.4 Interface Semantics 1998

int fgetpos; int fgetpos64; <stdio.h>
FILE *fopen; FILE *fopen64;
FILE *freopen; FILE *freopen64;
int fseeko(...,off_t,...); int fseeko64(..., off64_t,...);
int fsetpos(...,const fpos_t *); int fsetpos64(...,const fpos64_t *);
off_t ftello; off64_t ftello64;
FILE *tmpfile; FILE *tmpfile64;

int mkstemp; int mkstemp64; <stdlib.h>
__
int aioread(...,off_t,...); int aioread64(..., off64_t,...); <sys/async.h>
int aiowrite(..., off_t,...); int aiowrite64(...,off64_t,...);
______ ___
int alphasort(struct direct **,..); int alphasort64(struct direct64 **); <sys/dir.h>
struct direct *readdir; struct direct64 *readdir64;
int scandir(..., struct direct *(*[]),...); int scandir64(...,struct direct64 *(*[]),...);
 __
int getdents(..., dirent); int getdents64(..., dirent64); <sys/dirent.h>
__
void mmap(..., off_t); void mmap64(..., off64_t); <sys/mman.h>
__
int getrlimit(...,struct rlimit *); int getrlimit64(..., struct rlimit64 *); <sys/resource.h>
int setrlimit(..., const struct rlimit *); int setrlimit64(..., const struct rlimit64 *);
 __
int fstat(...,struct stat *); int fstat64(...,struct stat64 *); <sys/stat.h>
int lstat(...,struct stat *); int lstat64(...,struct stat64 *);
int stat(...,struct stat *); int stat64(...,struct stat64 *);

int statvfs(...,struct statvfs *); int statvfs64(...,struct statvfs64 *); <sys/statvfs.h>
int fstatvfs(...,struct statvfs *); int fstatvfs64(...,struct statvfs64 *);

int lockf(..., off_t); int lockf64(...,off64_t); <unistd.h>
off_t lseek(...,off_t,...); off64_t lseek64(...,off64_t,...);
int ftruncate(...,off_t); int ftruncate64(...,off64_t);
ssize_t pread(...,off_t); ssize_t pread64(...,off64_t);
ssize_t pwrite(...,off_t); ssize_t pwrite64(...,off64_t);
int truncate(..., off_t); int truncate64(...,off64_t);

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-3

creat64 (libc, libthread)

NAME
creat64 - create a new file or rewrite an existing one in large file environment

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int creat64 (const char *path, mode_t mode);

DESCRIPTION
The creat64 function creates a new ordinary file or prepares to rewrite an existing file named by the
path name pointed to by path.
If the file exists, the length is truncated to 0 and the mode and owner are unchanged.
If the file does not exist the file’s owner ID is set to the effective user ID of the process. The group
ID of the file is set to the effective group ID of the process, or if the S_ISGID bit is set in the parent
directory then the group ID of the file is inherited from the parent directory. The access permission
bits of the file mode are set to the value of mode modified as follows:

•If the group ID of the new file does not match the effective group ID or one of the supple-
mentary group IDs, the S_ISGID bit is cleared.

• All bits set in the process’s file mode creation mask are cleared (see umask).

• The “save text image after execution bit” of the mode is cleared (see chmod for the values of
mode).

Upon successful completion, a write-only file descriptor is returned and the file is open for writing,
even if the mode does not permit writing. The file pointer is set to the beginning of the file. The file
descriptor is set to remain open across exec functions (see fcntl). A new file may be created with a
mode that forbids writing.
The call creat64(path, mode) is equivalent to:

open64(path, O_WRONLY | O_CREAT | O_TRUNC, mode)

RETURN VALUES
Upon successful completion a non-negative integer, namely the lowest numbered unused file
descriptor, is returned. Otherwise, a value of -1 is returned, no files are created or modified, and
errno is set to indicate the error.

ERRORS
The creat64 function fails if one or more of the following are true:
EACCESS Search permission is denied on a component of the path prefix. The file

doesn’t exist and the directory in which the file is to be created does not
permit writing.

EAGAIN The file exists, mandatory file/record locking is set, and there are

Large Files Interfaces__

15-4 SPARC Compliance Defintion 2.4 Interface Semantics 1998

outstanding record locks on the file (see chmod).

EDQUOT The directory where the new file entry is being placed cannot be extended
because the user’s quota of disk blocks on that file system has been
exhausted.
The user’s quota of inodes on the file system where the file is being created
has been exhausted.

EFAULT path points to an illegal address.
EINTR A signal was caught during the creat64 function.
EISDIR The named file is an existing directory.
ELOOP Too many symbolic links were encountered in translating path.
EMFILE The process has too many open files (see getrlimit64).
EMULTIHOP Components of path require hopping to multiple remote machines.
ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the length of a

path component exceeds {NAME_MAX} while {_POSIX_NO_TRUNC} is
in effect.

ENFILE The system file table is full.
ENOENT A component of the path prefix does not exist.
ENOLINK path points to a remote machine and the link to that machine is no longer

active.
ENOSPC The file system is out of inodes.
ENOTDIR A component of the path prefix is not a directory.
EROFS The named file resides or would reside on a ready-only file system.

SEE ALSO
chmod, close, dup, fcntl, getrlimit64, lseeko64, open64, read, umask, write, stat64.

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-5

fopen64 (libc), freopen64 (libc)

NAME
fopen64, freopen64 - open a stream file in large file environment

SYNOPSIS
#include <stdio.h>
FILE *fopen64(const char *filename, const char *type);
FILE *freopen64(const char *filename, const char *type, FILE *stream);

DESCRIPTION
fopen64 opens the file named by filename and associates a stream with it. fopen64 returns a pointer
to the FILE structure associated with the stream. filename points to a character string that contains
the name of the file to be opened. type is a character string beginning with one of the following
sequences:
“r” or “rb” open for reading
“w” or “wb” truncate to zero length or create for writing
“a” or “ab” append; open for writing at end of file, or create for writing
“r+”, “r+b” or “rb+” open for update (reading and writing)
“w+'', “w+b” or “wb+” truncate or create for update
“a+”, “a+b” or “ab+” append; open or create for update at end-of-file

The “b” is ignored in the above types. The “b” exists to distinguish binary files from text files.
However, there is no distinction between these types of files on a UNIX system. freopen64
substitutes the named file in place of the open stream. A flush is first attempted, and then the
original stream is closed, regardless of whether the open ultimately succeeds. Failure to flush or
close stream successfully is ignored. freopen64 returns a pointer to the FILE structure associated
with stream. freopen64 is typically used to attach the pre-opened streams associated with stdin,
stdout, and stderr to other files. stderr is by default unbuffered, but the use of freopen64 will cause
it to become buffered or line-buffered. When a file is opened for update, both input and output may
be done on the resulting stream. However, output may not be directly followed by input without
an intervening fflush, fseek, fsetpos64, or rewind, and input may not be directly followed by output
without an intervening fseek, fsetpos64, or rewind, or an input operation that encounters end-of-
file.

When a file is opened for append (that is, when type is “a”, “ab”, “a+”, or “ab+”), it is impossible
to overwrite information already in the file. fseek may be used to reposition the file pointer to any
position in the file, but when output is written to the file, the current file pointer is disregarded. All
output is written at the end of the file and causes the file pointer to be repositioned at the end of the
output. If two separate processes open the same file for append, each process may write freely to
the file without fear of destroying output being written by the other. The output from the two
processes will be intermixed in the file in the order in which it is written. When opened, a stream is
fully buffered if and only if it can be determined not to refer to an interactive device.The error and
end-of-file indicators are cleared for the stream.

Large Files Interfaces__

15-6 SPARC Compliance Defintion 2.4 Interface Semantics 1998

RETURN VALUES
The functions fopen64 and freopen64 return a null pointer if path cannot be accessed, or if type is
invalid, or if the file cannot be opened. The functions fopen64 may fail and not set errno if there are
no free stdio streams.

SEE ALSO
close, creat64, dup, open64, pipe, write, fclose, fseek, setbuf, stdio

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-7

fseeko64 (libc)

NAME
fseeko64 - reposition a file-position indicator in a stream in large file environment.

SYNOPSIS
#include <stdio.h>
int fseeko64 (FILE *stream, off64_t offset, int whence);

DESCRIPTION
fseeko64 sets the position of the next input or output operation on the stream. The new position is
at the signed distance offset bytes from the beginning, from the current position, or from the end of
the file, according to a ptrname value of SEEK_SET, SEEK_CUR, or SEEK_END (defined in
<stdio.h>) as follows:

 SEEK_SET set position equal to offset bytes.
 SEEK_CUR set position to current location plus offset.
SEEK_END set position to EOF plus offset.

fseeko64 allows the file position indicator to be set beyond the end of the existing data in the file. If
data is later written at this point, subsequent reads of data in the gap will return zero until data is
actually written into the gap. fseeko64, by itself, does not extend the size of the file.

RETURN VALUES
fseeko64 returns -1 for improper seeks, otherwise zero. An improper seek can be, for example, an
fseeko64 done on a file that has not been opened via fopen64; in particular, fseeko64 may not be
used on a terminal or on a file opened via popen. After a stream is closed, no further operations are
defined on that stream.

Large Files Interfaces__

15-8 SPARC Compliance Defintion 2.4 Interface Semantics 1998

fgetpos64 (libc), fsetpos64 (libc)

NAME
fsetpos64, fgetpos64 - reposition a file pointer in a stream in large file environment

SYNOPSIS
#include <stdio.h>
int fsetpos64(FILE *stream, const fpos64_t *pos);
int fgetpos64(FILE *stream, fpos64_t *pos);

DESCRIPTION
fsetpos64 sets the position of the next input or output operation on the stream according to the
value of the object pointed to by pos. The object pointed to by pos must be a value returned by an
earlier call to fgetpos64 on the same stream.

fsetpos64 clears the end-of-file indicator for the stream and undoes any effects of the ungetc
function on the same stream. After fsetpos64, the next operation on a file opened for update may
be either input or output.

fgetpos64 stores the current value of the file position indicator for stream in the object pointed to by
pos. The value stored contains information usable by fsetpos64 for repositioning the stream to its
position at the time of the call to fgetpos64.

RETURN VALUES
If successful, both fsetpos64 and fgetpos64 return zero. Otherwise, they both return nonzero.

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-9

stat64 (libc), lstat64 (libc), fstat64 (libc)

NAME
stat64, lstat64, fstat64 – get file status in large file environment

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
int stat64 (const char * path, struct stat64 * buf);
int lstat64 (const char * path, struct stat64 * buf);
int fstat64 (int fildes, struct stat64 * buf);

DESCRIPTION
The stat64 function obtains information about the file pointed to by path. Read, write, or execute
permission of the named file is not required, but all directories listed in the path name leading to
the file must be searchable.
The lstat64 function obtains file attributes similar to stat64, except when the named file is a
symbolic link; in that case lstat64 returns information about the link, while stat64 returns
information about the file the link references.
The fstat64 function obtains information about an open file known by the file descriptor fildes,
obtained from a successful open64, creat64, dup, fcntl, or pipe function.
buf is a pointer to a stat64 structure into which information is placed concerning the file.
The contents of the structure pointed to by buf include the following members:

dev_t st_dev; /� ID of device containing �/
/� a directory entry for this file �/

long st_pad1[3]; /� reserve for dev expansion �/
/* sysid definition */

ino64_t st_ino; /� Inode number �/
mode_t st_mode; /* File mode (see mknod) */
dev_t st_rdev; /* ID of device */

/� This entry is defined only for �/
long st_pad2[2] /� char special or block special files �/
nlink_t st_nlink; /� Number of links �/
uid_t st_uid; /� User ID of the file’s owner �/
gid_t st_gid; /� Group ID of the file’s group �/
off64_t st_size; /� File size in bytes �/
time_t st_atime; /� Time of last access �/
time_t st_mtime; /� Time of last data modification �/
time_t st_ctime; /� Time of last file status change �/

/� Times measured in seconds since �/
/� 00:00:00 UTC, Jan. 1, 1970 �/

long st_blksize; /� Preferred I/O block size �/
blkcnt64_t st_blocks; /� large file support �/
char st_fstype[16]; /* file system type name */
long st_pad4[8]; /* expansion area */

Large Files Interfaces__

15-10 SPARC Compliance Defintion 2.4 Interface Semantics 1998

Descriptions of structure members are as follows:
st_mode The mode of the file as described in mknod. In addition to the modes

described in mknod, the mode of a file may also be S_IFLNK if the file is a
symbolic link. S_IFLNK may only be returned by lstat64.

st_ino This field uniquely identifies the file in a given file system. The pair st_ino
and st_dev uniquely identifies regular files.

st_dev This field uniquely identifies the file system that contains the file. Its value
may be used as input to the ustat function to determine more information
about this file system. No other meaning is associated with this value.

st_rdev This field should be used only by administrative commands. It is valid
only for block special or character special files and only has meaning on
the system where the file was configured.

st_nlink This field should be used only by administrative commands.
st_uid The user ID of the file’s owner.
st_gid The group ID of the file’s group.
st_size For large files, this is the address of the end of the file. For block special or

character special, this is not defined. See also pipe.
st_atime Time when file data was last accessed. Changed by the following

functions: creat64, mknod, pipe, utime, and read.
st_mtime Time when data was last modified. Changed by the following functions:

creat64, mknod, pipe, utime, and write.
st_ctime Time when file status was last changed. Changed by the following

functions: chmod, chown, creat64, link, mknod, pipe, unlink, utime, and
write.

st_blksize A hint as to the “best” unit size for I/O operations. This field is not defined
for block special or character special files.

st_blocks The total number of physical blocks of size 512 bytes actually allocated on
disk. This field is not defined for block special or character special files.

st_fstype An array size 16 of buffer to store the file system type name.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

ERRORS
The stat64 and lstat64 functions will fail if one or more of the following are true:
EACCES Search permission is denied for a component of the path prefix.
EFAULT buf or path points to an illegal address.
EINTR A signal was caught during the stat64 or lstat64 function.
ELOOP Too many symbolic links were encountered in translating path.
EMULTIHOP Components of path require hopping to multiple remote machines and the

file system does not allow it.
ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the length of a

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-11

path component exceeds {NAME_MAX} while {_POSIX_NO_TRUNC} is
in effect.

ENOENT The named file does not exist or is the null pathname.
ENOLINK path points to a remote machine and the link to that machine is no longer

active.
ENOTDIR A component of the path prefix is not a directory.
EOVERFLOW A component is too large to store in the structure pointed to by buf.
The fstat64 function will fail if one or more of the following are true:
EBADF fildes is not a valid open file descriptor.
EFAULT buf points to an illegal address.
EINTR A signal was caught during the fstat64 function.
ENOLINK fildes points to a remote machine and the link to that machine is no longer

active.
EOVERFLOW A component is too large to store in the structure pointed to by buf.

SEE ALSO
chmod, chown, creat64, link, mknod, pipe, read, time, unlink, utime, write, fattach

Large Files Interfaces__

15-12 SPARC Compliance Defintion 2.4 Interface Semantics 1998

fstatvfs64 (libc), statvfs64 (libc)

NAME
statvfs64, fstatvfs64 – get file system information

SYNOPSIS
#include <sys/types.h>
#include <sys/statvfs.h>
int statvfs64 (const char *path, struct statvfs64 * buf);
int fstatvfs64 (int fildes, struct statvfs64 * buf);

DESCRIPTION
The statvfs64 function returns a generic superblock describing a file system; it can be used to
acquire information about mounted file systems. buf is a pointer to a structure (described below)
that is filled by the function.
path should name a file that resides on that file system. The file system type is known to the
operating system. Read, write, or execute permission for the named file is not required, but all
directories listed in the path name leading to the file must be searchable.
The statvfs64 structure pointed to by buf includes the following members:

u_long f_bsize; /� preferred file system block size �/
u_long f_frsize; /� fundamental filesystem block

(size if supported) �/
fsblkcnt64_t f_blocks; /� total # of blocks on file

system in units of f_frsize �/
fsblkcnt64_t f_bfree; /� total # of free blocks �/
fsblkcnt64_t f_bavail; /� # of free blocks avail to non-super-user �/
fsfilcnt64_t f_files; /� total # of file nodes (inodes)�/
fsfilcnt64_t f_ffree; /� total # of free file nodes �/
fsfilcnt64_t f_favail; /� # of inodes avail to non-super-user�/
u_long f_fsid; /� file system id (dev for now) �/
char f_basetype[16]; /� target fs type name, null-terminated �/
u_long f_flag; /� bit mask of flags �/
u_long f_namemax; /� maximum file name length �/
char f_fstr[32]; /� file system specific string �/
u_long f_filler[16]; /� reserved for future expansion �/

f_basetype contains a null-terminated file system type name of the mounted target.
The following flags can be returned in the f_flag field:

ST_RDONLY 0x01 /� read-only file system �/
ST_NOSUID 0x02 /� does not support setuid/setgid semantics �/
ST_NOTRUNC 0x04 /� does not truncate file names longer than {NAME_MAX}�/

The fstatvfs64 function is similar to statvfs64, except that the file named by path in statvfs64 is
instead identified by an open file descriptor fildes obtained from a successful open64, creat64, dup,
fcntl, or pipe function.

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-13

RETURN VALUES
Upon successful completion 0 is returned. Otherwise, –1 is returned and errno is set to indicate the
error.

ERRORS
The statvfs64 and fstatvfs64 function will fail if one or more:
EOVERFLOW One of the values to be returned cannot be represented correctly in the

structure pointed to by buf.
The statvfs64 function will fail if one or more:
EACCES Search permission is denied on a component of the path prefix.
EFAULT path or buf points to an illegal address.
EINTRA signal was caught during statvfs64 execution.
EIO An I/O error occurred while reading the file system.
ELOOP Too many symbolic links were encountered in translating path.
EMULTIHOP Components of path require hopping to multiple remote machines and file

system type does not allow it.
ENAMETOOLONG The length of a path component exceeds {NAME_MAX} characters, or the

length of path The exceeds {PATH_MAX} characters.
ENOENT Either a component of the path prefix or the file referred to by path does

not exist.
ENOLINK path points to a remote machine and the link to that machine is no longer

active.
ENOTDIR A component of the path prefix of path is not a directory.
The fstatvfs64 function will fail if one or more:
EBADF fildes is not an open file descriptor.
EFAULT buf points to an illegal address.
EINTR A signal was caught during fstatvfs64 execution.
EIO An I/O error occurred while reading the file system.

SEE ALSO
chmod, chown, creat64, dup, fcntl, link, mknod, open64, pipe, read, time, unlink, utime, write

Large Files Interfaces__

15-14 SPARC Compliance Defintion 2.4 Interface Semantics 1998

ftello64 (libc)

NAME
ftello64 – return a file offset in a stream

SYNOPSIS
#include <stdio.h>
off64_t ftello64 (FILE * stream);

DESCRIPTION
The ftello64 function obtains the current value of the file-position indicator for the stream pointed
to by stream.

RETURN VALUES
Upon successful completion, ftello64 returns the current value of the file-position indicator for the
stream measured in bytes from the beginning of the file.
Otherwise, it returns <1 and sets errno to indicate the error.

ERRORS
The ftello64 functions will fail if:
EBADF The file descriptor underlying stream is not an open file descriptor.
ESPIPE The file descriptor underlying stream is associated with a pipe or FIFO.

The ftello64 function will fail if:
EOVERFLOW The current file offset cannot be represented correctly in an object of type

off64_t.
SEE ALSO

lseek64, fopen64, fseeko64

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-15

ftruncate64 (libc), truncate64 (libc)

NAME
truncate64, ftruncate64 – set a file to a specified length in large file environment

SYNOPSIS
#include <unistd.h>
int truncate64 (const char *path, off64_t length);
int ftruncate64(int fildes, off64_t length);

DESCRIPTION
The file whose name is given by path or referenced by the descriptor fildes has its size set to length
bytes.

If the file was previously longer than length, bytes past length will no longer be accessible. If it was
shorter, bytes from the EOF before the call to the EOF after the call will be read in as zeros. The
effective user ID of the process must have write permission for the file, and for ftruncate64 the file
must be open for writing.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

ERRORS
truncate64 fails if one or more of the following are true:
EACCES Search permission is denied on a component of the path prefix.
EACCES Write permission is denied for the file referred to by path.
EFAULT path points outside the process's allocated address space.
EINTR A signal was caught during execution of the truncate64 routine.
EINVAL path is not an ordinary file.
EIO An I/O error occurred while reading from or writing to the file system.
EISDIR The file referred to by path is a directory.
ELOOP Too many symbolic links were encountered in translating path.
EMFILE The maximum number of file descriptors available to the process has been

reached.
EMULTIHOP Components of path require hopping to multiple remote machines and file

system type does not allow it.
ENAMETOOLONG The length of a path component exceeds {NAME_MAX} characters, or

the length of path exceeds {PATH_MAX} characters.
ENFILE Could not allocate any more space for the system file table.

Large Files Interfaces__

15-16 SPARC Compliance Defintion 2.4 Interface Semantics 1998

ENOENT Either a component of the path prefix or the file referred to by path does
not exist.

ENOLINK path points to a remote machine and the link to that machine is no longer
active.

ENOTDIR A component of the path prefix of path is not a directory.
EROFS The file referred to by path resides on a read-only file system.
ftruncate64 fails if one or more of the following are true:
EAGAIN The file exists, mandatory file/record locking is set, and there are

outstanding record locks on the file (see chmod).
EBADF fildes is not a file descriptor open for writing.
EINTR A signal was caught during execution of the ftruncate64 routine.
EIO An I/O error occurred while reading from or writing to the file system.
ENOLINK fildes points to a remote machine and the link to that machine is no longer

active.
EINVAL fildes does not correspond to an ordinary file.

SEE ALSO
chmod, fcntl, open64

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-17

ftw64 (libc), nftw64 (libc)

NAME
ftw64, nftw64 – walk a file tree

SYNOPSIS
#include <ftw.h>
int ftw64 (const char *path, int (*fn) (const char*, const struct stat64*,int),int depth);
int nftw64 (const char *path, int (*fn) (const char*, const struc t stat64*, int, struct FTW *), int

depth, int flags);

DESCRIPTION
The ftw64 function recursively descends the directory hierarchy rooted in path. For each object in
the hierarchy, ftw64 calls the user-defined function fn, passing it a pointer to a null-terminated
character string containing the name of the object, a pointer to a stat64 structure (see stat64)
containing information about the object, and an integer. Possible values of the integer, defined in
the <ftw.h> header, are:
FTW_F The object is a file.
FTW_D The object is a directory.
FTW_DNR The object is a directory that cannot be read. Descendants of the directory

will not be processed.
FTW_NS stat64 failed on the object because of lack of appropriate permission or the

object is a symbolic link that points to a non-existent file. The stat buffer
passed to fn is undefined. stat64 failure other than lack of appropriate
permission (EACCES) is considered an error and nftw64 will return -1.

ftw64 visits a directory before visiting any of its descendants.
The tree traversal continues until the tree is exhausted, an invocation of fn returns a nonzero value,
or some error is detected within ftw64 (such as an I/O error). If the tree is exhausted, ftw64 returns
zero. If fn returns a nonzero value, ftw64 stops its tree traversal and returns whatever value was
returned by fn.
The function nftw64 is similar to ftw64 except that it takes an additional argument, flags. The flags
field is used to specify:
FTW_PHYS Physical walk, does not follow symbolic links. Otherwise, nftw64 will

follow links but will not walk down any path that crosses itself.
FTW_MOUNT The walk will not cross a mount point.

FTW_DEPTHAll subdirectories will be visited before the directory itself.
FTW_CHDIR The walk will change to each directory before reading it.
The function nftw64 calls fn with four arguments at each file and directory. The first argument is
the pathname of the object, the second is a pointer to the stat buffer, the third is an integer giving
additional information, and the fourth is a struct FTW that contains the following members:
int base;
int level;

Large Files Interfaces__

15-18 SPARC Compliance Defintion 2.4 Interface Semantics 1998

base is the offset into the pathname of the base name of the object. level indicates the depth relative
to the rest of the walk, where the root level is zero.
The values of the third argument are as follows:
FTW_F The object is a file.
FTW_D The object is a directory.
FTW_DP The object is a directory and subdirectories have been visited.
FTW_SL The object is a symbolic link.
FTW_SLN The object is a symbolic link that points to a non-existent file.
FTW_DNR The object is a directory that cannot be read. fn will not be called for any of

its descendants.
FTW_NS stat64 failed on the object because of lack of appropriate permission. The

stat buffer passed to fn is undefined. stat64 failure other than lack of
appropriate permission. EACCES is considered an error and nftw64 will
return –1.

Both ftw64 and nftw64 use one file descriptor for each level in the tree. The depth argument limits
the number of file descriptors so used. If depth is zero or negative, the effect is the same as if it were
1. depth must not be greater than the number of file descriptors currently available for use. ftw64
will run faster if depth is at least as large as the number of levels in the tree. When ftw64 and nftw64
return, they close any file descriptors they have opened; they do not close any file descriptors that
may have been opened by fn.

RETURN VALUES
If successful, ftw64 and nftw64 return 0. If either function detects an error other than EACCES, it
returns –1, and sets the error type in errno.

NOTES
Because ftw64 is recursive, it is possible for it to terminate with a memory fault when applied to
very deep file structures.
ftw64 uses malloc to allocate dynamic storage during its operation. If ftw64 is forcibly terminated,
such as by longjmp being executed by fn or an interrupt routine, ftw64 will not have a chance to
free that storage, so it will remain permanently allocated. A safe way to handle interrupts is to store
the fact that an interrupt has occurred, and arrange to have fn return a nonzero value at its next
invocation.
ftw64 is safe in multi-thread applications. nftw64 is safe in multi-thread applications when the
FTW_CHDIR flag is not set.

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-19

getdents64 (libc)

NAME
getdents64 – read directory entries and put in a file system independent format

SYNOPSIS
#include <sys/dirent.h>
int getdents64 (int fildes, struct dirent64 *buf, size_t nbyte);

DESCRIPTION
The getdents64 function attempts to read nbyte bytes from the directory associated with the file
descriptor fildes and to format them as file system independent directory entries in the buffer
pointed to by buf. Since the file system independent directory entries are of variable length, in most
cases the actual number of bytes returned will be strictly less than nbyte. See dirent64 to calculate
the number of bytes.
The file system independent directory entry is specified by the dirent64 structure. For a description
of this see dirent64.
On devices capable of seeking, getdents64 starts at a position in the file given by the file pointer
associated with fildes. Upon return from getdents64, the file pointer is incremented to point to the
next directory entry.

RETURN VALUES
Upon successful completion a non-negative integer is returned indicating the number of bytes
actually read. A value of 0 indicates the end of the directory has been reached. If the function failed,
–1 is returned and errno is set to indicate the error.

ERRORS
The getdents64 function will fail if one or more of the following are true:
EBADF fildes is not a valid file descriptor open for reading.
EFAULT buf points to an illegal address.
EINVAL nbyte is not large enough for one directory entry.
EIO An I/O error occurred while accessing the file system.
ENOENT The current file pointer for the directory is not located at a valid entry.
ENOLINK fildes points to a remote machine and the link to that machine is no longer

active.
ENOTDIR fildes is not a directory.
EOVERFLOW The value of the dirent64 structure member d_ino or d_off cannot be

represented in an ino64_t or off64_t.

Large Files Interfaces__

15-20 SPARC Compliance Defintion 2.4 Interface Semantics 1998

getrlimit64 (libc), setrlimit64 (libc)

NAME
getrlimit64, setrlimit64 – control maximum system resource consumption

SYNOPSIS
#include <sys/resource.h>
int getrlimit64 (int resource, struct rlimit64 *rlp);
int setrlimit64 (int resource, const struct rlimit64 *rlp);

DESCRIPTION
Limits on the consumption of a variety of system resources by a process and each process it creates
may be obtained with the getrlimit64 and set with setrlimit64 functions.
Each call to either getrlimit64 or setrlimit64 identifies a specific resource to be operated upon as
well as a resource limit. A resource limit is a pair of values: one specifying the current (soft) limit,
the other a maximum (hard) limit. Soft limits may be changed by a process to any value that is less
than or equal to the hard limit. A process may (irreversibly) lower its hard limit to any value that
is greater than or equal to the soft limit. Only a process with an effective user ID of super-user can
raise a hard limit. Both hard and soft limits can be changed in a single call to setrlimit64 subject to
the constraints described above. Limits may have an “infinite” value of RLIM_INFINITY. rlp is a
pointer to struct rlimit64 that includes the following members:

rlim64_t rlim_cur; /* current (soft) limit */
rlim64_t rlim_max; /* hard limit */

rlim64_t is an arithmetic data type to which objects of type size_t and off64_t can be cast without loss
of information.
The possible resources, their descriptions, and the actions taken when the current limit is exceeded
are summarized in the table below:
RLIMIT_CORE The maximum size of a core file in bytes that may be created by a process.

A limit of 0 will prevent the creation of a core file.
The writing of a core file will terminate at this size.

RLIMIT_CPU The maximum amount of CPU time in seconds used by a process. This is
a soft limit only.
SIGXCPU is sent to the process. If the process is holding or ignoring
SIGXCPU, the behavior is scheduling class defined.

RLIMIT_DATA The maximum size of a process’s heap in bytes.
brk will fail with errno set to ENOMEM.

RLIMIT_FSIZE The maximum size of a file in bytes that may be created by a process. A
limit of 0 will prevent the creation of a file.

SIGXFSZ is sent to the process. If the process is holding or ignoring SIGXFSZ,
continued attempts to increase the size of a file beyond the limit will fail
with errno set to EFBIG.

RLIMIT_NOFILE One more than the maximum value that the system may assign to a newly

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-21

created descriptor. This limit constrains the number of file descriptors that
a process may create.

RLIMIT_STACK The maximum size of a process’s stack in bytes. The system will not
automatically grow the stack beyond this limit.
Within a process, setrlimit64 will increase the limit on the size of your
stack, but will not move current memory segments to allow for that
growth. To guarantee that the process stack can grow to the limit, the limit
must be altered prior to the execution of the process in which the new
stack size is to be used.

SIGSEGV is sent to the process. If the process is holding or ignoring
SIGSEGV, or is catching SIGSEGV and has not made arrangements to
use an alternate stack (see sigaltstack), the disposition of SIGSEGV will
be set to SIG_DFL before it is sent.

RLIMIT_VMEM The maximum size of a process’s mapped address space in bytes. brk and
setrlimit64() and getrlimit64() functions will fail with errno set to
ENOMEM. In addition, the automatic stack growth will fail with the effects
outlined above.

RLIMIT_AS This is the maximum size of a process’ total available memory, in bytes. If
this limit is exceeded, the brk, malloc, mmap64 and sbrk functions will fail
with errno set to ENOMEM. In addition, the automatic stack growth will
fail with the effects outlined above.

Because limit information is stored in the per-process information, the shell built-in ulimit
command must directly execute this system call if it is to affect all future processes created by the
shell.
The value of the current limit of the following resources affect these implementation defined
parameters:

Limit Implementation Defined Constant
RLIMIT_FSIZE FCHR_MAX
RLIMIT_NOFILE OPEN_MAX

When using the getrlimit64 function, if a resource limit can be represented correctly in an object of
type rlim64_t, then its representation is returned; otherwise, if the value of the resource limit is
equal to that of the corresponding saved hard limit, the value returned is RLIM_SAVED_MAX;
otherwise the value returned is RLIM_SAVED_CUR.
When using the setrlimit64 function, if the requested new limit is RLIM_INFINITY, the new limit
will be no limit; otherwise if the requested new limit is RLIM_SAVED_MAX, the new limit will be
the corresponding saved hard limit; otherwise, if the requested new limit is RLIM_SAVED_CUR,
the new limit will be the corresponding saved soft limit; otherwise, the new limit will be the
requested value. In addition, if the corresponding saved limit can be represented correctly in an
object of type rlim64_t, then it will be overwritten with the new limit.
The result of setting a limit to RLIM_SAVED_MAX or RLIM_SAVED_CUR is unspecified unless
a previous call to getrlimit64 returned that value as the soft or hard limit for the corresponding
resource limit.
A limit whose value is greater than RLIM_INFINITY is permitted.
The exec family of functions also cause resource limits to be saved. See exec.

Large Files Interfaces__

15-22 SPARC Compliance Defintion 2.4 Interface Semantics 1998

RETURN VALUES
Upon successful completion, getrlimit64 and setrlimit64 return 0. Otherwise, these functions
return –1 and set errno to indicate the error.

ERRORS
The getrlimit64 and setrlimit64 functions will fail if:
EFAULT rlp points to an illegal address.
EINVAL An invalid resource was specified; or in a setrlimit64 call, the new rlim_cur

exceeds the new rlim_max.
EPERM The limit specified to setrlimit64 would have raised the maximum limit

value, and the effective user of the calling process is not super-user.
The setrlimit64 function may fail if:
EINVAL The limit specified cannot be lowered because current usage is already

higher than the limit.

SEE ALSO
brk, exec, fork, open64, sigaltstack, ulimit, getdtablesize, malloc, signal, sysconf, signal

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-23

lockf64 (libc)

NAME
lockf64 – record locking on files

SYNOPSIS
#include <unistd.h>
int lockf64(int fildes, int function, off64_t size);

DESCRIPTION
The lockf64 function allows sections of a file to be locked; advisory or mandatory write locks
depending on the mode bits of the file (see chmod). Locking calls from other processes that attempt
to lock the locked file section will either return an error value or be put to sleep until the resource
becomes unlocked. All the locks for a process are removed when the process terminates. See fcntl
for more information about record locking.
The fildes argument is an open file descriptor. The file descriptor must have O_WRONLY or
O_RDWR permission in order to establish locks with this function call. function is a control value
that specifies the action to be taken. The permissible values for function are defined in <unistd.h> as
follows:

#define F_ULOCK 0 /* unlock previously locked section */
#define F_LOCK 1 /* lock section for exclusive use */
#define F_TLOCK 2 /* test & lock section for exclusive use */
#define F_TEST 3 /* test section for other locks */

All other values of function are reserved for future extensions and will result in an error return if not
implemented.

F_TEST is used to detect if a lock by another process is present on the specified section. F_LOCK
and F_TLOCK both lock a section of a file if the section is available. F_ULOCK removes locks from
a section of the file.
The size argument is the number of contiguous bytes to be locked or unlocked. The resource to be
locked or unlocked starts at the current offset in the file and extends forward for a positive size and
backward for a negative size (the preceding bytes up to but not including the current offset). If size
is zero, the section from the current offset through the largest file offset is locked (that is, from the
current offset through the present or any future end-of-file). An area need not be allocated to the
file in order to be locked as such locks may exist past the end-of-file.
The sections locked with F_LOCK or F_TLOCK may, in whole or in part, contain or be contained
by previously locked section for the same process. Locked sections will be unlocked starting at the
point of the offset through size bytes or to the end of file if size is (off64_t) 0. When this situation
occurs, or if this situation occurs in adjacent sections, the sections are combined into a single
section. If the request requires that a new element be added to the table of active locks and this table
is already full, an error is returned, and the new section is not locked.

Large Files Interfaces__

15-24 SPARC Compliance Defintion 2.4 Interface Semantics 1998

F_LOCK and F_TLOCK requests differ only by the action taken if the resource is not available.
F_LOCK will cause the calling process to sleep until the resource is available. F_TLOCK will cause
the function to return a –1 and set errno to EAGAIN if the section is already locked by another
process.
File locks are released on first close by the locking process of any file descriptor for the file.

F_ULOCK requests may, in whole or in part, release one or more locked sections controlled by the
process. When sections are not fully released, the remaining sections are still locked by the process.
Releasing the center section of a locked section requires an additional element in the table of active
locks. If this table is full, an errno is set to EDEADLK and the requested section is not released.
An F_ULOCK request in which size is nonzero and the offset of the last byte of the requested section
is the maximum value for an object of type off64_t, when the process has an existing lock in which
size is 0 and which includes the last byte of the requested section, will be treated as a request to
unlock from the start of the requested section with a size equal to 0. Otherwise, an F_ULOCK
request will attempt to unlock only the requested section.
A potential for deadlock occurs if a process controlling a locked resource is put to sleep by
requesting another process’s locked resource. Thus calls to lockf64 or fcntl scan for a deadlock prior
to sleeping on a locked resource. An error return is made if sleeping on the locked resource would
cause a deadlock.
Sleeping on a resource is interrupted with any signal. The alarm function may be used to provide
a timeout facility in applications that require this facility.

RETURN VALUES
Upon successful completion, 0 is returned. Otherwise, –1 is returned and errno is set to indicate the
error.

ERRORS
The lockf64 function will fail if:
EBADF The fildes argument is not a valid open file descriptor; or function is

F_LOCK or F_TLOCK and fildes is not a valid file descriptor open for
writing.

EACCES or EAGAIN The function argument is F_TLOCK or F_TEST and the section is already
locked by another process.

EDEADLK The function argument is F_LOCK and a deadlock is detected.
EINTR A signal was caught during execution of the function.
ECOMM The fildes argument is on a remote machine and the link to that machine is

no longer active.
EINVAL The function argument is not one of F_LOCK, F_TLOCK, F_TEST, or

F_ULOCK; or size plus the current file offset is less than 0.
EOVERFLOW The offset of the first, or if size is not 0 then the last, byte in the requested

section cannot be represented correctly in an object of type off64_t.
The lockf64 function may fail if:
EAGAIN The function argument is F_LOCK or F_TLOCK and the file is mapped

with mmap64.
EDEADLK or ENOLCK The function argument is F_LOCK, F_TLOCK, or F_ULOCK, and

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-25

the request would cause the number of locks to exceed a system-
imposed limit.

EOPNOTSUPP or EINVAL The locking of files of the type indicated by the fildes argument is
not supported.

USAGE
Record-locking should not be used in combination with the fopen64, fread, fwrite and other stdio
functions. Instead, the more primitive, non-buffered functions (such as open64) should be used.
Unexpected results may occur in processes that do buffering in the user address space. The process
may later read/write data which is/was locked. The stdio functions are the most common source
of unexpected buffering.
The alarm function may be used to provide a timeout facility in applications requiring it.

SEE ALSO
alarm, chmod, close, creat64, fcntl, mmap64, open64, read, write

Large Files Interfaces__

15-26 SPARC Compliance Defintion 2.4 Interface Semantics 1998

lseek64 (libc)

NAME
lseek64 – move read/write file pointer

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
off64_t lseek64 (int fildes, off64_t offset, int whence);

DESCRIPTION
The lseek64 function sets the file pointer associated with the open file descriptor specified by fildes
as follows:
• If whence is SEEK_SET, the pointer is set to offset bytes.
• If whence is SEEK_CUR, the pointer is set to its current location plus offset.
• If whence is SEEK_END, the pointer is set to the size of the file plus offset.

On success, lseek64 returns the resulting pointer location, as measured in bytes from the beginning
of the file. Note that if fildes is a remote file descriptor and offset is negative, lseek64 returns the file
pointer even if it is negative.

The lseek64 function allows the file pointer to be set beyond the existing data in the file. If data are
later written at this point, subsequent reads in the gap between the previous end of data and the
newly written data will return bytes of value 0 until data are written into the gap.

RETURN VALUES
Upon successful completion, the resulting file pointer is returned. Remote file descriptors are the
only ones that allow negative file pointers. Otherwise, –1 is returned and errno is set to indicate the
error.

ERRORS
The lseek64 function fails and the file pointer remains unchanged if one or more of the following
are true:
EBADF The fildes argument is not an open file descriptor.
EINVAL The whence argument is not SEEK_SET, SEEK_CUR, or SEEK_END.
EINVAL The fildes argument is not a remote file descriptor, and the resulting file

pointer would be negative.
EOVERFLOW The resulting file offset would be a value which cannot be represented

correctly in an object of type off64_t for regular files.
ESPIPE The fildes argument is associated with a pipe, a FIFO, or a socket.
Some devices are incapable of seeking. The value of the file pointer associated with such a device
is undefined.

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-27

SEE ALSO
creat64, open64, read, write

NOTES
In multithreaded programs, using lseek64 in conjunction with a read or write on a file descriptor
shared amongst more than one thread is not an atomic operation. To ensure atomicity, use pread64
or pwrite64.

Large Files Interfaces__

15-28 SPARC Compliance Defintion 2.4 Interface Semantics 1998

mmap64 (libc)

NAME
mmap64 – map pages of memory

SYNOPSIS
#include <sys/mman.h>
void*mmap64(void *addr, size_t len, int prot, int flags, int fildes, off64_t off);

DESCRIPTION
The mmap64 function establishes a mapping between a process’s address space and a virtual
memory object. The format of the call is as follows:
pa = mmap64(addr, len, prot, flags, fildes, off);
at an address pa for len bytes to the memory object represented by the file descriptor fildes at offset
off for len bytes. The value of pa is an implementation-dependent function of the parameter addr and
values of flags, further described below. A successful mmap64 call returns pa as its result. The
address ranges covered by [pa, pa + len) and [off, off + len) must be legitimate for the possible (not
necessarily current) address space of a process and the object in question, respectively.
The mmap64 function allows [pa, pa + len) to extend beyond the end of the object, both at the time
of the mmap64 and while the mapping persists, such as when the file was created just before the
mmap64 and has no contents, or if the file is truncated. Any reference to addresses beyond the end
of the object, however, will result in the delivery of a “SIGBUS” signal. In other words, mmap64
cannot be used to implicitly extend the length of files.
The mapping established by mmap64 replaces any previous mappings for the process’s pages in
the range [pa, pa + len).
Mappings established from fildes are not removed upon a close of that descriptor. Use munmap to
remove a mapping.
The parameter prot determines whether read, write, execute, or some combination of accesses are
permitted to the pages being mapped. The protection options are defined in <sys/mman.h> as:

PROT_READ Page can be read.
PROT_WRITE Page can be written.
PROT_EXEC Page can be executed.
PROT_NONE Page can not be accessed.

Not all implementations literally provide all possible combinations. PROT_WRITE is often
implemented as PROT_READ|PROT_WRITE and PROT_EXEC as PROT_READ|PROT_EXEC.
However, no implementation will permit a write to succeed where PROT_WRITE has not been set.
The behavior of PROT_WRITE can be influenced by setting MAP_PRIVATE in the flags parameter,
described below.
The parameter flags provides other information about the handling of the mapped pages. The
options are defined in <sys/mman.h> as:
MAP_SHARED Share changes.

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-29

MAP_PRIVATE Changes are private.
MAP_FIXED Interpret addr exactly.
MAP_NORESERVE Don’t reserve swap space.

MAP_SHARED and MAP_PRIVATE describe the disposition of write references to the memory
object. If MAP_SHARED is specified, write references will change the memory object. If
MAP_PRIVATE is specified, the initial write reference will create a private copy of the memory
object page and redirect the mapping to the copy. Either MAP_SHARED or MAP_PRIVATE must
be specified, but not both. The mapping type is retained across a fork.
Note that the private copy is not created until the first write; until then, other users who have the
object mapped MAP_SHARED can change the object.
MAP_FIXED informs the system that the value of pa must be addr, exactly. The use of MAP_FIXED
is discouraged, as it may prevent an implementation from making the most effective use of system
resources.
When MAP_FIXED is not set, the system uses addr in an implementation-defined manner to arrive
at pa. The pa so chosen will be an area of the address space which the system deems suitable for a
mapping of len bytes to the specified object. All implementations interpret an addr value of zero as
granting the system complete freedom in selecting pa, subject to constraints described below. A
nonzero value of addr is taken to be a suggestion of a process address near which the mapping
should be placed. When the system selects a value for pa, it will never place a mapping at address
0, nor will it replace any extant mapping, nor map into areas considered part of the potential data
or stack segments.
MAP_NORESERVE specifies that no swap space be reserved for a mapping. Without this flag, the
creation of a writable MAP_PRIVATE mapping reserves swap space equal to the size of the
mapping; when the mapping is written into, the reserved space is employed to hold private copies
of the data. A write into a MAP_NORESERVE mapping produces results which depend on the
current availability of swap space in the system. If space is available, the write succeeds and a
private copy of the written page is created; if space is not available, the write fails and a SIGBUS
signal is delivered to the writing process. MAP_NORESERVE mappings are inherited across fork;
at the time of the fork swap space is reserved in the child for all private pages that currently exist
in the parent; thereafter the child’s mapping behaves as described above.
The parameter off is constrained to be aligned and sized according to the value returned by sysconf.
When MAP_FIXED is specified, the parameter addr must also meet these constraints. The system
performs mapping operations over whole pages. Thus, while the parameter len need not meet a size
or alignment constraint, the system will include, in any mapping operation, any partial page
specified by the range [pa, pa + len).
The system will always zero-fill any partial page at the end of an object. Further, the system will
never write out any modified portions of the last page of an object which are beyond its end.
References to whole pages following the end of an object will result in the delivery of a SIGBUS
signal. SIGBUS signals may also be delivered on various file system conditions, including quota
exceeded errors.
If the process calls mlockall with the MCL_FUTURE flag, the pages mapped by all future calls to
mmap64 will be locked in memory. In this case, if not enough memory could be locked, mmap64
fails and sets errno to EAGAIN.

RETURN VALUES
On success, mmap64 returns the address at which the mapping was placed (pa). On failure it
returns MAP_FAILED and sets errno to indicate an error.

Large Files Interfaces__

15-30 SPARC Compliance Defintion 2.4 Interface Semantics 1998

ERRORS
The mmap64 function will fail if:
EACCES fildes is not open for read, regardless of the protection specified, or fildes is

not open for write and PROT_WRITE was specified for a MAP_SHARED
type mapping.

EAGAIN The mapping could not be locked in memory. There was insufficient room
to reserve swap space for the mapping. The file to be mapped is already
locked using advisory or mandatory record locking. See fcntl.

EBADF fildes is not open.
EINVAL The arguments addr (if MAP_FIXED was specified) or off are not multiples

of the page size as returned by sysconf.
The field in flags is invalid (neither MAP_PRIVATE or MAP_SHARED).
The argument len has a value less than or equal to 0.

EMFILE The number of mapped regions would exceed an implementation-
dependent limit (per process or per system).

ENODEV fildes refers to an object for which mmap64 is meaningless, such as a
terminal.

ENOMEM MAP_FIXED was specified and the range [addr, addr + len) exceeds that
allowed for the address space of a process. MAP_FIXED was “not”
specified and there is insufficient room in the address space to effect the
mapping.
The composite size of len plus the lengths of all previous mmappings
exceeds RLIMIT_VMEM (see getrlimit64).

ENXIO The range [off, off + len) is illegal for mmapping to this device.
EOVERFLOW The file is a regular file and the value of off plus len exceeds the offset

maximum establish in the open file description associated with fildes.

SEE ALSO
close, exec, fcntl, fork, getrlimit64, mprotect, munmap, shmat, lockf64, mlockall, msync, plock, sysconf

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-31

open64 (libc, libthread)

NAME
open64 – open a large file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open64(const char *path, int oflag, /*mode_t mode*/ ...);

DESCRIPTION
The open64 function establishes the connection between a file and a file descriptor. It creates an
open file description that refers to a file and a file descriptor that refers to that open file description.
The file descriptor is used by other I/O functions to refer to that file. The path argument points to a
pathname naming the file.
The open64 function will return a file descriptor for the named file that is the lowest file descriptor
not currently open for that process. The open file description is new, and therefore the file
descriptor does not share it with any other process in the system. The FD_CLOEXEC file descriptor
flag associated with the new file descriptor will be cleared.
The file offset used to mark the current position within the file is set to the beginning of the file.
The file status flags and file access modes of the open file description will be set according to the
value of oflag.
Values for oflag are constructed by a bitwise-inclusive-OR of flags from the following list, defined
in <fcntl.h>. Applications must specify exactly one of the first three values (file access modes) below
in the value of oflag:
O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing. The result is undefined if this flag is applied
to a FIFO.

Any combination of the following may be used:
O_APPEND If set, the file offset will be set to the end of the file prior to each write.
O_CREAT If the file exists, this flag has no effect except as noted under O_EXCL

below. Otherwise, the file is created with the user ID of the file set to the
effective user ID of the process. The group ID of the file is set to the
effective group IDs of the process, or if the S_ISGID bit is set in the
directory in which the file is being created, the file’s group ID is set to the
group ID of its parent directory. If the group ID of the new file does not
match the effective group ID or one of the supplementary groups IDs, the
S_ISGID’s bit is cleared. The access permission bits (see <sys/stat.h>) of
the file mode are set to the value of mode, modified as follows (see
creat64()): a bitwise-AND is performed on the file-mode bits and the
corresponding bits in the complement of the process’ file mode creation
mask. Thus, all bits in the file mode whose corresponding bit in the file

Large Files Interfaces__

15-32 SPARC Compliance Defintion 2.4 Interface Semantics 1998

mode creation mask is set are cleared. The save text image after execution
bit of the mode is cleared (see chmod).

O_SYNC Write I/O operations on the file descriptor complete as defined by
synchronized I/O file integrity completion (see fcntl definition of
O_SYNC.) When bits other than the file permission bits are set, the effect
is unspecified. The mode argument does not affect whether the file is open
for reading, writing or for both.

O_DSYNC Write I/O operations on the file descriptor complete as defined by
synchronized I/O data integrity completion.

O_EXCL If O_CREAT and O_EXCL are set, open64 will fail if the file exists. The
check for the existence of the file and the creation of the file if it does not
exist will be atomic with respect to other processes executing open64
naming the same filename in the same directory with O_EXCL and
O_CREAT set. If O_CREAT is not set, the effect is undefined.

O_LARGEFILE If set, the offset maximum in the open file description will be the largest
value that can be represented correctly in an object of type off64_t.

O_NOCTTY If set and path identifies a terminal device, open64 will not cause the
terminal device to become the controlling terminal for the process.

O_NONBLOCK or O_NDELAY These flags may affect subsequent reads and writes (see
read and write). If both O_NDELAY and O_NONBLOCK
are set, O_NONBLOCK will take precedence.

When opening a FIFO with O_RDONLY or O_WRONLY set:

 If O_NONBLOCK or O_NDELAY is set:
An open64 for reading only will return without delay. An open64 for writing only will
return an error if no process currently has the file open for reading.

If O_NONBLOCK and O_NDELAY are clear:
An open64 for reading only will block until a process opens the file for writing. An
open64 for writing only will block until a process opens the file for reading.

When opening a block special or character special file that supports non-blocking opens:

If O_NONBLOCK or O_NDELAY is set:
The open64 function will return without blocking for the device to be ready or
available. Subsequent behavior of the device is device-specific.

If O_NONBLOCK and O_NDELAY are clear:
The open64 function will block until the device is ready or available before returning.

Otherwise, the behavior of O_NONBLOCK and O_NDELAY is unspecified.

O_RSYNC Read I/O operations on the file descriptor complete at the same level of
integrity as specified by the O_DSYNC and O_SYNC flags. If both
O_DSYNC and O_RSYNC are set in oflag, all I/O operations on the file
descriptor complete as defined by synchronized I/O data integrity
completion. If both O_SYNC and O_RSYNC are set in oflag, all I/O
operations on the file descriptor complete as defined by synchronized I/O

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-33

file integrity completion.
O_SYNC If O_SYNC is set on a regular file, writes to that file will cause the process

to block until the data is delivered to the underlying hardware.
O_TRUNC If the file exists and is a regular file, and the file is successfully opened

O_RDWR or O_WRONLY, its length is truncated to 0 and the mode and
owner are unchanged. It will have no effect on FIFO special files or
terminal device files. Its effect on other file types is implementation-
dependent. The result of using O_TRUNC with O_RDONLY is
undefined.

If O_CREAT is set and the file did not previously exist, upon successful completion, open64 will
mark for update the st_atime, st_ctime, and st_mtime fields of the file and
the st_ctime and st_mtime fields of the parent directory.

If O_TRUNC is set and the file did previously exist, upon successful completion, open64 will mark
for update the st_ctime and st_mtime fields of the file.

If path refers to a STREAMS file, oflag may be constructed from O_NONBLOCK or O_NODELAY
OR-ed with either O_RDONLY, O_WRONLY, or O_RDWR. Other flag
values are not applicable to STREAMS devices and have no effect on them.
The values O_NONBLOCK and O_NODELAY affect the operation of
STREAMS drivers and certain functions (see read, getmsg, putmsg, and
write) applied to file descriptors associated with STREAMS files. For
STREAMS drivers, the implementation of O_NONBLOCK and
O_NODELAY is device-specific.

When open64 is invoked to open a named stream, and the connld module has been pushed on the
pipe, open64() blocks until the server process has issued an I_RECVFD
ioctl (see streamio) to receive the file descriptor.

If path names the master side of a pseudo-terminal device, then it is unspecified whether open64
locks the slave side so that it cannot be opened. Portable applications must
call unlockpt before opening the slave side.

If path is a symbolic link and O_CREAT and O_EXCL are set, the link is not followed.
Certain flag values can be set following open64 as described in fcntl.
The largest value that can be represented correctly in an object of type off64_t will be established as

the offset maximum in the open file description.
RETURN VALUES

Upon successful completion, the function will open the file and return a non-negative integer
representing the lowest numbered unused file descriptor. Otherwise, –1 is returned and errno is set
to indicate the error. No files will be created or modified if the function returns –1.

ERRORS
The open64 function will fail if:
EACCES Search permission is denied on a component of the path prefix, or the file

exists and the permissions specified by oflag are denied, or the file does not
exist and write permission is denied for the parent directory of the file to
be created, or O_TRUNC is specified and write permission is denied.

EDQUOT The file does not exist, O_CREAT is specified, and either the directory
where the new file entry is being placed cannot be extended because the
user’s quota of disk blocks on that file system has been exhausted, or the
user’s quota of inodes on the file system where the file is being created has

Large Files Interfaces__

15-34 SPARC Compliance Defintion 2.4 Interface Semantics 1998

been exhausted.
EEXIST O_CREAT and O_EXCL are set, and the named file exists.
EINTR A signal was caught during open64.
EFAULT path points to an illegal address.
EIO The path argument names a STREAMS file and a hang-up or error occurred

during the open64.
EISDIR The named file is a directory and oflag includes O_WRONLY or

O_RDWR.
ELOOP Too many symbolic links were encountered in resolving path.
EMFILE OPEN_MAX file descriptors are currently open in the calling process.
EMULTIHOP Components of path require hopping to multiple remote machines and the

file system does not allow it.
ENAMETOOLONG The length of the path argument exceeds PATH_MAX or a pathname

component is longer than NAME_MAX.
ENFILE The maximum allowable number of files is currently open in the system.
ENOENT O_CREAT is not set and the named file does not exist; or O_CREAT is set

and either the path prefix does not exist or the path argument points to an
empty string.

ENOLINK path points to a remote machine, and the link to that machine is no longer
active.

ENOSR The path argument names a STREAMS-based file and the system is unable
to allocate a STREAM.

ENOSPC The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and O_CREAT is specified.

ENOTDIR A component of the path prefix is not a directory.
ENXIO O_NONBLOCK is set, the named file is a FIFO, O_WRONLY is set and no

process has the file open for reading.
ENXIO The named file is a character special or block special file, and the device

associated with this special file does not exist.
EOPNOTSUPP An attempt was made to open a path that corresponds to a AF_UNIX

socket.
EOVERFLOW The named file is a regular file and either O_LARGEFILE is not set and the

size of the file cannot be represented correctly in an object of type off64_t
or O_LARGEFILE is set and the size of the file cannot be represented
correctly in an object of type off64_t.

EROFS The named file resides on a read-only file system and either O_WRONLY,
O_RDWR, O_CREAT (if file does not exist), or O_TRUNC is set in the
oflag argument.

The open64 function may fail if:
EAGAIN The path argument names the slave side of a pseudo-terminal device that

is locked.
EINVAL The value of the oflag argument is not valid.
ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result

whose length exceeds PATH_MAX.

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-35

ENOMEM The path argument names a STREAMS file and the system is unable to
allocate resources.

ETXTBSY The file is a pure procedure (shared text) file that is being executed and
oflag is O_WRONLY or O_RDWR.

SEE ALSO
chmod, close, creat64, dup, exec, fcntl, getmsg, getrlimit64, lseek64, putmsg, read, umask, write,
unlockpt, fcntl, stat64, connld, streamio

Large Files Interfaces__

15-36 SPARC Compliance Defintion 2.4 Interface Semantics 1998

pread64 (libc)

NAME
pread64 – read from file in large file environment

SYNOPSIS
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
size_t pread64 (int fildes, void *buf, size_t nbyte, off64_t offset);

DESCRIPTION
pread64 performs the same action as read, except that it reads from a given position in the file
without changing the file pointer. The first three arguments to pread64 are the same as read with
the addition of a fourth argument offset for the desired position inside the file. An attempt to
perform a pread64 on a file that is incapable of seeking results in an error.

RETURN VALUES

On success a non-negative integer is returned indicating the number of bytes actually read.
Otherwise, a -1 is returned and errno is set to indicate the error.

ERRORS
The pread64 functions will fail if:

EAGAIN Mandatory file/record locking was set, O_NDELAY or O_NONBLOCK was set, and
there was a blocking record lock.

EAGAIN Total amount of system memory available when reading using raw I/O is temporarily
insufficient.

EAGAIN No data is waiting to be read on a file associated with a tty device and O_NONBLOCK
was set.

EAGAIN No message is waiting to be read on a stream and O_NDELAY or O_NONBLOCK was
set.

EBADF fildes is not a valid file descriptor open for reading.

EBADMSG Message waiting to be read on a stream is not a data message.

EDEADLK The read was going to go to sleep and cause a deadlock to occur.

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-37

EFAULT buf points to an illegal address.

EINTR A signal was caught during the read operation and no data was transferred.

EINVAL Attempted to read from a stream linked to a multiplexor.

EIO: A physical I/O error has occurred, or the process is in a background process group and is
attempting to read from its controlling terminal, and either the process is ignoring or
blocking the SIGTTIN signal or the process group of the process is orphaned.

EISDIR fildes refers to a directory on a file system type that does not support read operations on
directories.

ENOLCK The system record lock table was full, so the read or readv could not go to sleep until the
blocking record lock was removed.

ENOLINK fildes is on a remote machine and the link to that machine is no longer active.

ENXIO The device associated with fildes is a block special or character special file and the value
of the file pointer is out of range.

In addition, pread64 fails and the file pointer remains unchanged if the following is true:

ESPIPE fildes is associated with a pipe or FIFO.

SEE ALSO
chmod, creat64, dup, fcntl, getmsg, ioctl, lseek64, open64, pipe, streamio, termio

Large Files Interfaces__

15-38 SPARC Compliance Defintion 2.4 Interface Semantics 1998

pwrite64 (libc)

NAME
pwrite64 – write on a file in large file environment

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
size_t pwrite64 (int fildes, const void *buf, size_t nbyte, off64_t offset);

DESCRIPTION
pwrite64 performs the same action as write except that it writes into a given position without
changing the file pointer. The first three arguments to pwrite64 are the same as write with the
addition of a fourth argument offset for the desired position inside the file.

RETURN VALUES
On success, pwrite64 returns the number of bytes actually written. Otherwise, it returns -1 and sets errno to
indicate the error.

ERRORS
The pwrite64 function fails and the file pointer remains unchanged if one or more of the following are true:

EAGAIN Mandatory file/record locking is set, O_NDELAY or O_NONBLOCK is set, and there is
a blocking record lock; Total amount of system memory available when reading using raw
I/O is temporarily insufficient;
An attempt is made to write to a STREAM that can not accept data with the O_NDELAY or
O_NONBLOCK flag set;
If a write to a pipe or FIFO of {PIPE_BUF} bytes or less is requested and less than nbytes
of free space is available.

EBADF fildes is not a valid file descriptor open for writing.

EDEADLK The write was going to go to sleep and cause a deadlock situation to occur.

EDQUOT The user’s quota of disk blocks on the file system containing the file has been exhausted.

EFAULT buf points to an illegal address.

EFBIG An attempt is made to write a file that exceeds the process’ file size limit or the maximum
file size (see getrlimit64 and ulimit).

EFBIG An attempt is made to write a file that exceeds the process's file size limit or the maximum
file size (see getrlimit64 and ulimit).

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-39

EINTR A signal was caught during the write operation and no data was transferred.

EINVAL An attempt is made to write to a stream linked below a multiplexor.

EIO The process is in the background and is attempting to write to its controlling terminal whose
“TOSTOP” flag is set, or the process is neither ignoring nor blocking “SIGTTOU” signals
and the process group of the process is orphaned.

ENOLCK Enforced record locking was enabled and {LOCK_MAX} regions are already locked in the
system

The system record lock table was full and the write could not go to sleep until the blocking
record lock was removed.

ENOLINK fildes is on a remote machine and the link to that machine is no longer active.

ENOSPC During a write to an ordinary file, there is no free space left on the device.

ENOSR An attempt is made to write to a STREAMS with insufficient STREAMS memory resources
available in the system.

ENXIO A hang-up occurred on the stream being written to.

EPIPE and SIGPIPE An attempt is made to write to a pipe that is not open for reading by any process
(or to a file descriptor created by socket, using type SOCK_STREAM that is no
longer connected to a peer endpoint). Note: an attempted write of this kind also
causes you to receive a SIGPIPE signal from the kernel. If you've not made a
special provision to catch or ignore this signal, then your process dies.

EPIPE An attempt is made to write to a FIFO that is not open for reading by any process. An
attempt is made to write to a pipe that has only one end open.

ERANGE An attempt is made to write to a stream with nbyte outside specified minimum and
maximum write range, and the minimum value is nonzero.

In addition, pwrite64 fails and the file pointer remains unchanged if the following is true:

ESPIPE fildes is associated with a pipe or FIFO.

SEE ALSO
chmod, creat64, dup, fcntl, getrlimit64, ioctl, lseek64, open64, pipe, ulimit, socket, streamio

Large Files Interfaces__

15-40 SPARC Compliance Defintion 2.4 Interface Semantics 1998

readdir64 (libc), readdir64_r (libc)

NAME
readdir64, readdir64_r – read a directory entry in large file environment

SYNOPSIS
#include <dirent.h>
struct direct64 *readdir64 (DIR *dirp);
struct dirent64 *readdir64_r (DIR *dirp, struct dirent64 *entry);

DESCRIPTION
The readdir64 function returns a pointer to a structure representing the directory entry at the
current position in the directory stream to which dirp refers, and positions the directory stream at
the next entry, except on read-only file systems. It returns a “NULL” pointer upon reaching the end
of the directory stream, or upon detecting an invalid location in the directory.

The readdir64 function shall not return directory entries containing empty names. It is unspecified
whether entries are returned for dot “.” or dot-dot “..”. The pointer returned by readdir64 points to
data that may be overwritten by another call to readdir64 on the same directory stream.

This data shall not be overwritten by another call to readdir64 on a different directory stream. The
readdir64 function may buffer several directory entries per actual read operation. The readdir64
function marks for update the st_atime field of the directory each time the directory is actually
read.

readdir64_r has the equivalent functionality as readdir64 except that a buffer result must be
supplied by the caller to store the result. The size should be sizeof(struct dirent64) + {NAME_MAX}
(that is, pathconf(_PC_NAME_MAX)) + 1. _PC_NAME_MAX is defined in <unistd.h>.

The POSIX readdir64_r function initializes the structure referenced by entry and stores a pointer to
this structure in result.

RETURN VALUES
readdir64, and readdir64_r return NULL on failure and set errno to indicate the error. The POSIX
readdir64_r returns zero if successful, or an error number to indicate failure.

ERRORS
The readdir64 function will fail if one or more of the following are true:
EAGAIN Mandatory file/record locking was set, O_NDELAY or O_NONBLOCK

was set, and there was a blocking record lock.
EAGAIN Total amount of system memory available when reading using raw I/O is

temporarily insufficient.

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-41

EAGAIN No data is waiting to be read on a file associated with a tty device and
O_NONBLOCK was set.

EAGAIN No message is waiting to be read on a stream and O_NDELAY or
O_NONBLOCK was set.

EBADF The file descriptor determined by the DIR stream is no longer valid. This
results if the DIR stream has been closed.

EBADMSG Message waiting to be read on a stream is not a data message.

EDEADLK The read was going to go to sleep and cause a deadlock to occur.
EFAULT buf points to an illegal address.
EINTR A signal was caught during the read or readv function.
EINVAL Attempted to read from a stream linked to a multiplexor.

EIO A physical I/O error has occurred, or the process is in a background
process group and is attempting to read from its controlling terminal, and
either the process is ignoring or blocking the SIGTTIN signal or the
process group of the process is orphaned.

ENOENT The current file pointer for the directory is not located at a valid entry.
ENOLCK The system record lock table was full, so the read or readv could not go to

sleep until the blocking record lock was removed.
ENOLINK fildes is on a remote machine and the link to that machine is no longer

active.
ENXIO The device associated with fildes is a block special or character special file

and the value of the file pointer is out of range.
SEE ALSO

getdents64

NOTES
readdir64 is unsafe in multithread applications. readdir64_r is safe, and should be used instead.

Large Files Interfaces__

15-42 SPARC Compliance Defintion 2.4 Interface Semantics 1998

tmpfile64 (libc)

NAME
tmpfile64 - create a temporary file in large file environment

SYNOPSIS
#include <stdio.h>
FILE *tmpfile64(void);

DESCRIPTION
tmpfile64() creates a temporary file using a name generated by the tmpnam routine and returns a
corresponding FILE pointer. If the file cannot be opened, a NULL pointer is returned. The file is
automatically deleted when the process using it terminates or when the file is closed. The file is
opened for update (“w+”).

SEE ALSO
creat64, open64, unlink, fopen64, mktemp, perror, stdio, tmpnam

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-43

scandir64 (libucb), alphasort64 (libucb)

NAME
scandir64, alphasort64 - scan a directory in large file environment, alphabetically sort on BSD
platform

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>
int scandir64(char *dirname, struct direct64 *(*namelist[]), int (*select)(.), (*dcomp));
int alphasort64(struct direct64 **d1, struct direct64 **d2);

DESCRIPTION
scandir64 reads the directory dirname and builds an array of pointers to directory entries using
malloc. The second parameter is a pointer to an array of structure pointers. The third parameter is
a pointer to a routine which is called with a pointer to a directory entry and should return a non
zero value if the directory entry should be included in the array. If this pointer is NULL, then all the
directory entries will be included. The last argument is a pointer to a routine which is passed to
qsort, which sorts the completed array. If this pointer is NULL, the array is not sorted.

alphasort64 is a routine that sorts the array alphabetically.

scandir64 returns the number of entries in the array and a pointer to the array through the
parameter namelist.

RETURN VALUES
Returns -1 if the directory cannot be opened for reading or if malloc cannot allocate enough
memory to hold all the data structures.

SEE ALSO
getdents64, readdir64(BSD), malloc, qsort

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of
these interfaces with any of the system libraries or in multi-thread applications is unsupported.

Large Files Interfaces__

15-44 SPARC Compliance Defintion 2.4 Interface Semantics 1998

readdir64 (libucb)

NAME
readdir64 - read a directory entry in large file environment on BSD platform

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>
struct direct64 *readdir64(DIR *dirp);

DESCRIPTION
readdir64 returns a pointer to a structure representing the directory entry at the current position in
the directory stream to which dirp refers, and positions the directory stream at the next entry, except
on read-only filesystems. It returns a NULL pointer upon reaching the end of the directory stream,
or upon detecting an invalid location in the directory. readdir64 shall not return directory entries
containing empty names. It is unspecified whether entries are returned for dot or dot-dot. The
pointer returned by readdir64 points to data that may be overwritten by another call to readdir64
on the same directory stream. This data shall not be overwritten by another call to readdir64 on a
different directory stream. readdir64 may buffer several directory entries per actual read operation.
readdir64 marks for update the st_atime field of the directory each time the directory is actually
read.

RETURN VALUES
readdir64 returns NULL on failure and sets errno to indicate the error.

ERRORS
readdir64 will fail if one or more of the following are true:
EAGAIN Mandatory file/record locking was set, O_NDELAY or O_NONBLOCK was set,

and there was a blocking record lock.
EAGAIN Total amount of system memory available when reading using raw I/O is

temporarily insufficient.
EAGAIN No data is waiting to be read on a file associated with a tty device and

O_NONBLOCK was set.
EAGAIN No message is waiting to be read on a stream and O_NDELAY or O_NONBLOCK

was set.
EBADF The file descriptor determined by the DIR stream is no longer valid. This results if

the DIR stream has been closed.
EBADMSG Message waiting to be read on a stream is not a data message.
EDEADLK The read was going to go to sleep and cause a deadlock to occur.
EFAULT buf points to an illegal address.
EINTR A signal was caught during the read or readv function.
EINVAL Attempted to read from a stream linked to a multiplexor.

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-45

EIO A physical I/O error has occurred, or the process is in a background process group
and is attempting to read from its controlling terminal, and either the process is
ignoring or blocking the SIGTTIN signal or the process group of the process is
orphaned.

ENOENT The current file pointer for the directory is not located at a valid entry.
ENOLCK The system record lock table was full, so the read or readv could not go to sleep

until the blocking record lock was removed.
ENOLINK fildes is on a remote machine and the link to that machine is no longer active.
ENXIO The device associated with fildes is a block special or character special file and the

value of the file pointer is out of range.

SEE ALSO
getdents64, scandir64

NOTES
Use of these interfaces should be restricted to only applications written on BSD platforms. Use of
these interfaces with any of the system libraries or in multi-thread applications is unsupported.

Large Files Interfaces__

15-46 SPARC Compliance Defintion 2.4 Interface Semantics 1998

mkstemp64(libc)

NAME
mkstemp64 - make a unique file name in large file environment.

SYNOPSIS
int mkstemp64(char *template);

DESCRIPTION
mkstemp64 creates a unique file name, typically in a temporary filesystem, by replacing template
with a unique file name, and returns a file descriptor for the template file open for reading and
writing. The string in template should contain a file name with six trailing XXXXs; mkstemp64
replaces the XXXXs with a letter and the current process ID. The letter will be chosen so that the
resulting name does not duplicate an existing file. mkstemp64 avoids the race between testing
whether the file exists and opening it for use.

RETURN VALUES
mkstemp64 returns -1 if no suitable file could be created.

SEE ALSO
getpid, open64, mktemp, tmpfile64, tmpnam

NOTES
It is possible to run out of letters.

mkstemp64 actually changes the template string which you pass; this means that you cannot use
the same template string more than once - you need a fresh template for every unique file you want
to open.

When mkstemp64 is creating a new unique filename it checks for the prior existence of a file with
that name. This means that if you are creating more than one unique filename, it is bad practice to
use the same root template for multiple invocations of mkstemp64.

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-47

aio_cancel64 (libposix4)

NAME
aio_cancel64 - cancel asynchronous I/O request

SYNOPSIS
#include <aio.h>
int aio_cancel64(int fildes, struct aiocb64 *aiocbp);

DESCRIPTION
The aio_cancel64 function attempts to cancel either one or all outstanding asynchronous I/O
requests pending on the file descriptor specified by fildes.
If aiocbp is NULL, then all such outstanding cancelable requests are canceled; otherwise, the
individual request referenced by aiocbp references will be canceled.
Normal completion notification occurs even for asynchronous I/O operations that are successfully
canceled. If there are requests which cannot be canceled, then the normal asynchronous completion
process takes place for those requests, and their associated aiocb64 structures are not modified.
struct aiocb64 {

int aio_fildes; /* file descriptor */
volatile void *aio_buf; /* buffer location */
size_t aio_nbytes; /* length of transfer */
off64_t aio_offset; /* file offset */
int aio_reqprio; /* request priority offset */
struct sigevent aio_sigevent; /* signal number and offset */
int aio_lio_opcode; /* listio operation */

};
struct sigevent {

int sigev_notify; /* notification mode */
int sigev_signo; /* signal number */
union sigval sigev_value; /* signal value */

};
union sigval {

int sival_int; /* integer value */
void *sival_ptr; /* pointer value */

};

RETURN VALUES

If the requested operation(s) were canceled, aio_cancel64 returns AIO_CANCELED. But if at least
one of the requested operation(s) cannot be canceled because it is in progress, then

Large Files Interfaces__

15-48 SPARC Compliance Defintion 2.4 Interface Semantics 1998

AIO_NOTCANCELED is returned, and the application may determine the state of affairs for these
operation(s) by using aio_error64(). If all of the operation(s) had already completed,
AIO_ALLDONE is returned. Otherwise, aio_cancel64() returns -1, and sets errno to indicate the
error condition.

ERRORS
EBADF fildes is not a valid file descriptor.
ENOSYS The aio_cancel64() function is not supported.

SEE ALSO
aio_read64(), aio_return64()

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-49

aio_fsync64 (libposix4)

NAME
aio_fsync64 - asynchronous file synchronization

SYNOPSIS
#include <aio.h>
int aio_fsync64(int op, aiocb64 *aiocbp);

DESCRIPTION
The aio_fsync64() function queues an asynchronous fsync (libc) or fdatasync (libposix4) request
for all the currently queued I/O operations on the file referenced by aiocbp-> aio_fildes, and returns
control immediately. This request is serviced concurrently with other activity of the process.
If op is O_DSYNC, all I/O operations are completed by a call to fdatasync (synchronized I/O data
integrity completion).
If op is O_SYNC, all I/O operations are completed by a call to fsync (synchronized I/O file
integrity completion). (see fcntl definitions of O_DSYNC and O_SYNC.)
When the request is queued, the error status for the operation is EINPROGRESS. When all data
has been successfully transferred, the error status is reset to reflect the success or failure of the
operation.
aio_return64() and aio_error64() may be used with this aiocbp value to monitor both the return and
the error status of the asynchronous operation while it is proceeding.
aiocbp-> aio_sigevent defines the signal to be generated upon I/O completion.
If aiocbp-> aio_sigevent.sigev_signo is nonzero, then a signal will be generated when all I/O
operations have achieved synchronized I/O completion.
struct aiocb64 {

int aio_fildes; /* file descriptor */
volatile void *aio_buf; /* buffer location */
size_t aio_nbytes; /* length of transfer */
off64_t aio_offset; /* file offset */
int aio_reqprio; /* request priority offset */
struct sigevent aio_sigevent; /* signal number and offset */
int aio_lio_opcode; /* listio operation */

};
struct sigevent {

int sigev_notify; /* notification mode */
int sigev_signo; /* signal number */
union sigval sigev_value; /* signal value */

};
union sigval {

Large Files Interfaces__

15-50 SPARC Compliance Defintion 2.4 Interface Semantics 1998

int sival_int; /* integer value */
void *sival_ptr; /* pointer value */

};

RETURN VALUES
If the I/O operation is successfully queued, aio_fsync64() returns 0. Otherwise, it returns -1, and
sets errno to indicate the error condition.

ERRORS
The aio_fsync64() function will fail if:

EAGAIN The requested asynchronous operation was not queued due to temporary resource
limitations.

EBADF aiocbp-> aio_fildes is not a valid file descriptor open for writing.
EINVAL Synchronized I/O is not supported for this file.

A value of op other than O_DSYNC or O_SYNC was specified.

ENOSYS aio_fsync64() is not supported by this implementation.

SEE ALSO

fcntl, open64, read, write, aio_error64, aio_return64, fdatasync, fsync, fcntl

NOTES

If aio_fsync64() fails, outstanding I/O operations are not guaranteed to have been completed.

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-51

aio_read64 (libposix4), aio_write64 (libposix4)

NAME
aio_read64, aio_write64 - asynchronous read and write operations

SYNOPSIS
#include <aio.h>
int aio_read64 (struct aiocb64 *aiocbp);
int aio_write64 (struct aiocb64 *aiocbp);
struct aiocb64 {

int aio_fildes; /* file descriptor */
volatile void *aio_buf; /* buffer location */
size_t aio_nbytes; /* length of transfer */
off64_t aio_offset; /* file offset */
int aio_reqprio; /* request priority offset */
struct sigevent aio_sigevent; /* signal number and offset */
int aio_lio_opcode; /* listio operation */

};
struct sigevent {

int sigev_notify; /* notification mode */
int sigev_signo; /* signal number */
union sigval sigev_value; /* signal value */

};
union sigval {

int sival_int; /* integer value */
void *sival_ptr; /* pointer value */

};

DESCRIPTION
aio_read64() is asynchronous read and aio_write64() is asynchronous write operations. The
aio_read64() function queues an asynchronous read request and returns control immediately.
Rather than blocking until completion, the read operation continues concurrently with other
activity of the process.
Upon enqueuing the request, the calling process reads “aiocbp->nbytes” from the file referred to by
“aiocbp->fildes” into the buffer pointed to by “aiocbp->aio_buf”. “aiocbp->offset” marks the absolute
position from the beginning of the file (in bytes) at which the read begins.
The aio_write64() function queues an asynchronous write request, and returns control
immediately. Rather than blocking until completion, the write operation continues concurrently
with other activity of the process.
Upon enqueuing the request, the calling process writes “aiocbp->nbytes” from the buffer pointed to

Large Files Interfaces__

15-52 SPARC Compliance Defintion 2.4 Interface Semantics 1998

by “aiocbp->aio_buf” into the file referred to by “aiocbp->fildes”. If O_APPEND is set for “aiocbp-
>fildes”, aio_write64() operations append to the file in the same order as the calls were made. If
O_APPEND is not set for the file descriptor, then the write operation will occur at the absolute
position from the beginning of the file plus “aiocbp->offset” (in bytes). These asynchronous
operations are submitted at a priority equal to the calling process’ scheduling priority minus
“aiocbp->aio_reqprio”. For regular files, no data transfer will occur past the offset maximum
established in the open file description associated with “aiocbp->fildes”. aiocb-> aio_sigevent defines
both the signal to be generated and how the calling process will be notified upon I/O completion.
If aio_sigevent.sigev_notify is SIGEV_NONE, then no signal will be posted upon I/O completion,
but the error status and the return status for the operation will be set appropriately. If
aio_sigevent.sigev_notify is SIGEV_SIGNAL, then the signal specified in aio_sigevent.sigev_signo will
be sent to the process. If the SA_SIGINFO flag is set for that signal number, then the signal will be
queued to the process and the value specified in aio_sigevent.sigev_value will be the si_value
component of the generated signal (see siginfo).

RETURN VALUES
If the I/O operation is successfully queued, aio_read64() and aio_write64() return 0; otherwise,
they return -1, and set errno to indicate the error condition.aiocbp may be used as an argument to
aio_error64() and aio_return64() in order to determine the error status and the return status of the
asynchronous operation while it is proceeding.

ERRORS
The aio_read64() and aio_write64() function will fail if:
EAGAIN The requested asynchronous I/O operation was not queued due to system

resource limitations.
ENOSYS The aio_read64() or aio_write64() functions are not supported.
EBADF If the calling function is aio_read64(), and “aiocbp->fildes” is not a valid file

descriptor open for reading. If the calling function is aio_write64(), and “aiocbp-
>fildes” is not a valid file descriptor open for writing.

EINVAL The file offset value implied by “aiocbp->aio_offset” would be invalid, “aiocbp-
>aio_reqprio” is not a valid value, or “aiocbp->aio_nbytes” is an invalid value.

ECANCELED The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel64() request.

EINVAL The file offset value implied by “aiocbp->aio_offset” would be invalid.
The following are additional conditions which may be detected synchronously or asynchronously:
aio_read64()
EFBIG The file is a regular file, aiocbp->aio_nbytes is greater than 0 and the starting offset

in aiocbp->aio_offset is at or beyond the offset maximum in the open file description
associated with aiocbp->fildes.

SEE ALSO
close, exec, exit, fork, lseek, read, write, aio_cancel64, aio_return64, lio_listio64, siginfo

NOTES
For portability, the application should set aiocb-> aio_reqprio to 0.

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-53

aio_return64 (libposix4), aio_error64(libposix4)

NAME
aio_return64, aio_error64 - retrieve return or error status of asynchronous I/O operation

SYNOPSIS
#include <aio.h>
ssize_t aio_return64 (struct aiocb64 *aiocbp);
int aio_error64 (const struct aiocb64 *aiocbp);

struct aiocb64 {
int aio_fildes; /* file descriptor */
volatile void *aio_buf; /* buffer location */
size_t aio_nbytes; /* length of transfer */
off64_t aio_offset; /* file offset */
int aio_reqprio; /* request priority offset */
struct sigevent aio_sigevent; /* signal number and offset */
int aio_lio_opcode; /* listio operation */

};
struct sigevent {

int sigev_notify; /* notification mode */
int sigev_signo; /* signal number */
union sigval sigev_value; /* signal value */

};
union sigval {

int sival_int; /* integer value */
void *sival_ptr; /* pointer value */

};

DESCRIPTION
The aio_return64() function returns the return status of the asynchronous I/O request associated
with the aiocb64 structure pointed to by aiocbp.
aio_error64() returns the error status of the asynchronous I/O request associated with the aiocb64
structure pointed to by aiocbp.
The aio_return64() function should be called only once to retrieve the valid return status of a given
asynchronous operation, after aio_error64() has returned a value other than EINPROGRESS.

RETURN VALUES
If the asynchronous I/O operation has completed successfully, aio_return64() returns the return
status, as described for read, write, and fsync.
If the asynchronous I/O operation has completed successfully, aio_error64() returns 0. If the
operation has not yet completed, then EINPROGRESS is returned. If the asynchronous I/O
operation has completed unsuccessfully, then the error status, as described for read, write, and
fsync is returned.

Large Files Interfaces__

15-54 SPARC Compliance Defintion 2.4 Interface Semantics 1998

If unsuccessful, aio_return64() or aio_error64() return -1, and set errno to indicate the error
condition.

ERRORS
The aio_retur64()n and aio_error64() functions will fail if:
EINVAL aiocbp does not reference an asynchronous operation which has completed or

failed.
ENOSYS The aio_return64() or aio_error64() function is not supported.

SEE ALSO
close, exec, exit, fork, lseek, read, write, aio_cancel64, aio_fsync64, aio_read64, fsync, lio_listio64

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-55

aio_suspend64 (libposix4)

NAME
aio_suspend64 - wait for asynchronous I/O request

SYNOPSIS
#include <aio.h>
int aio_suspend64 (const struct aiocb64 *const list, int nent, const struct timespec *timeout);

DESCRIPTION
aio_suspend64() wait for asynchronous I/O request. The aio_suspend64() function suspends the
caller until at least one of the asynchronous I/O operations referenced by list has completed, until
a signal interrupts the function, or, if timeout is not NULL, until the time interval specified by
timeout has passed. If any of the aiocb64 structures in the list corresponds to a completed
asynchronous I/O operation (that is, the error status for the operation is not equal to
EINPROGRESS), at the time of the call, the function returns without suspending the caller.
If the time interval indicated in the timespec structure pointed to by timeout passes before any of
the I/O operations referenced by list are completed, then aio_suspend64() returns with an error.
The list argument is an array of pointers to asynchronous I/O control blocks. The nent argument
indicates the number of elements in this array. Each aiocb64 structure pointed to must have been
used in initiating an asynchronous I/O request via aio_read64(), aio_write64(), aio_fsync64(), or
lio_listio64(). This array may contain null pointers which will be ignored.
struct aiocb64 {

 int aio_fildes; /* file descriptor */
volatile void *aio_buf; /* buffer location */
size_t aio_nbytes; /* length of transfer */
off64_t aio_offset; /* file offset */
int aio_reqprio; /* request priority offset */
struct sigevent aio_sigevent; /* signal number and offset */
int aio_lio_opcode; /* listio operation */

};
struct sigevent {

int sigev_notify; /* notification mode */
int sigev_signo; /* signal number */
union sigval sigev_value; /* signal value */

};
union sigval {

int sival_int; /* integer value */
void *sival_ptr; /* pointer value */

};
struct timespec {

Large Files Interfaces__

15-56 SPARC Compliance Defintion 2.4 Interface Semantics 1998

time_t tv_sec; /* seconds */
long tv_nsec; /* and nanoseconds */

};
RETURN VALUES

If aio_suspend64() returns after one or more asynchronous I/O operations have completed, it
returns 0. Otherwise, it returns -1, and sets errno to indicate the error condition.
The application may determine which asynchronous I/O had completed with both the associated
error and return status of aio_return64(), and aio_error64().

ERRORS
The aio_suspend64() function will fail if:
EAGAIN No asynchronous I/O indicated in the list referenced by list completed in the time

interval indicated by timeout.
EINTR A signal interrupted the aio_suspend64() function. Note that, each asynchronous

I/O operation may possibly provoke a signal when it completes, this error return
may be caused by the completion of one (or more) of the very I/O operations being
awaited.

ENOSYS The aio_suspend64() function is not supported.

SEE ALSO
aio_fsync64, aio_read64, aio_return64, aio_write64, lio_listio64

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-57

lio_listio64 (libposix4)

NAME
lio_listio64 - list directed I/O

SYNOPSIS
#include <aio.h>
int lio_listio64 (int mode, struct aiocb64 *const list, int nent, struct sigevent *sig);
struct aiocb64 {

int aio_fildes; /* file descriptor */
volatile void *aio_buf; /* buffer location */
size_t aio_nbytes; /* length of transfer */
off64_t aio_offset; /* file offset */
int aio_reqprio; /* request priority offset */
struct sigevent aio_sigevent; /* signal number and offset */
int aio_lio_opcode; /* listio operation */

};
struct sigevent {

int sigev_notify; /* notification mode */
int sigev_signo; /* signal number */
union sigval sigev_value; /* signal value */

};
union sigval {

int sival_int; /* integer value */
void *sival_ptr; /* pointer value */

};
 DESCRIPTION

The lio_listio64() function allows the calling process, LWP, or thread, to initiate a list of I/O
requests within a single function call.
If mode is set to LIO_WAIT, lio_listio64() behaves synchronously, waiting until all I/O is
completed, and the sig argument is ignored. If mode is set to LIO_NOWAIT, lio_listio64() behaves
asynchronously; returning immediately, and signal delivery will occur, according to the sig
argument, when all the I/O operations from this function complete. If sig is NULL, or the
sigev_signo member of the sigevent structure referenced by sig is zero, then no signal delivery will
occur. Otherwise, the signal number indicated by sigev_signo will be delivered when all the requests
in list have completed.
list is an array of pointers to aiocb64 structures. This array consists of nent elements. The array may
contain null pointers, which will be ignored.
The aio_lio_opcode field of each aiocb64 structure in list specifies the operation to be performed (see
/usr/include/aio.h).
LIO_READ requests aio_read64().

Large Files Interfaces__

15-58 SPARC Compliance Defintion 2.4 Interface Semantics 1998

LIO_WRITE requests aio_write64().
LIO_NOP causes the list entry to be ignored. nent specifies the length of the array

(number of members of the list).
LIO_WAIT When mode has the value LIO_WAIT, a pointer to a signal control

structure, sig, is used to define both the signal to be generated and how the
calling process will be notified upon I/O completion.

If sig-> sigev_notify is SIGEV_NONE, then no signal will be posted upon I/O completion, but the
error status and the return status for the operation will be set appropriately.
If sig-> sigev_notify is SIGEV_SIGNAL, then the signal specified in sig-> sigev_signo will be sent to
the process.
If the SA_SIGINFO flag is set for that signal number, then the signal will be queued to the process
and the value specified in sig-> sigev_value will be the si_value component of the generated signal
(see siginfo).
For regular files, no data transfer will occur past the offset maximum established in the open file
description associated with aiocbp-> aio_fildes.
The behavior of this function is altered according to the definitions of synchronized I/O data
integrity completion and synchronized I/O file integrity completion if synchronized I/O is enabled
on the file associated with aio_fildes. (see fcntl definitions of O_DSYNC and O_SYNC.)

RETURN VALUES
If the mode argument has the value LIO_NOWAIT, and the I/O operations are successfully
queued, lio_listio64() returns 0; otherwise, it returns -1, and sets errno to indicate the error
condition.
If the mode argument has the value LIO_WAIT, and when all the indicated I/O has completed
successfully, lio_listio64() returns 0; otherwise, it returns -1, and sets errno to indicate the error
condition.
In either case, the return value only indicates the success or failure of the lio_listio64() call itself,
not the status of the individual I/O requests. In some cases, one or more of the I/O requests
contained in the list may fail. Failure of an individual request does not prevent completion of any
other individual request. To determine the outcome of each I/O request, the application must
examine the error status associated with each aiocb64 control block. Each error status so returned is
identical to that returned as a result of an aio_read64() or aio_write64() function.

ERRORS
The lio_listio64() function will fail if:
EAGAIN The resources necessary to queue all the I/O requests were not

available.The error status for each request is recorded in the aio_error64()
member of the corresponding aiocb64 structure, and can be retrieved using
aio_error64() nent entries exceed the system-wide limit, AIO_MAX.

EINVAL The mode argument is an improper value. The value of nent is greater than
AIO_LISTIO_MAX.

EINTR A signal was delivered while waiting for all I/O requests to complete
during an LIO_WAIT operation. However, the outstanding I/O requests
are not canceled. Use aio_fsync64() to determine if any request was
initiated; aio_return64() to determine if any request has completed; or

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-59

aio_error64() to determine if any request was canceled.
EIO One or more of the individual I/O operations failed. Using aio_error64()

with each aiocb64 structure will determine the individual request(s) that
failed.

ENOSYS lio_listio64() is not supported by this implementation. If either
lio_listio64() succeeds in queuing all of its requests, or errno is set to
EAGAIN, EINTR, or EIO, then some of the I/O specified from the list
may have been initiated. In this event, each aiocb64 structure contains
errors specific to the read or write function being performed:

EAGAIN The requested I/O operation was not queued due to resource limitations.
ECANCELED The requested I/O was canceled before the I/O completed due to an

explicit aio_cancel64() request.
EINPROGRESS The requested I/O is in progress.

The following are additional error codes which may be set for each aiocb64 control block:

EFBIG The aiocbp-> aio_lio_opcode is LIO_WRITE, the file is a regular file, aiocbp-
> aio_nbytes is greater than 0, and the aiocbp-> aio_offset is greater than or
equal to the offset maximum in the open file description associated with
aiocbp-> aio_fildes.

SEE ALSO
close, exec, fork, lseek, read, write, aio_cancel64, aio_fsync64, aio_read64, aio_return64, fcntl,
siginfo

Large Files Interfaces__

15-60 SPARC Compliance Defintion 2.4 Interface Semantics 1998

aioread64 (libaio), aiorwrite64 (libaio)

NAME
aioread64, aiowrite64 - asynchronous I/O operations in large file environment

SYNOPSIS
#include <sys/types.h>
#include <sys/asynch.h>
 int aioread64(int fildes, char *bufp, int bufs,off64_t offset, int whence,

aio_result_t *resultp);
int aiowrite64(int fildes, const char *bufp, int bufs, off64_t offset, int whence,

aio_result_t *resultp);

DESCRIPTION
aioread64 initiates one asynchronous read and returns control to the calling program. The read
continues concurrently with other activity of the process. An attempt is made to read bufs bytes of
data from the object referenced by the descriptor fildes into the buffer pointed to by bufp.

aiowrite64 initiates one asynchronous write and returns control to the calling program. The write
continues concurrently with other activity of the process. An attempt is made to write bufs bytes of
data from the buffer pointed to by bufp to the object referenced by the descriptor fildes.

On objects capable of seeking, the I/O operation starts at the position specified by whence and
offset. These parameters have the same meaning as the corresponding parameters to the llseek
function. On objects not capable of seeking the I/O operation always start from the current position
and the parameters whence and offset are ignored. The seek pointer for objects capable of seeking
is not updated by aioread64 or aiowrite64. Sequential asynchronous operations on these devices
must be managed by the application using the whence and offset parameters.

The result of the asynchronous operation is stored in the structure pointed to by resultp:
int aio_return; /* return value of read or write */
int aio_errno; /* value of errno for read or write */

Upon completion of the operation both aio_return and aio_errno are set to reflect the result of the
operation. AIO_INPROGRESS is not a value used by the system so the client may detect a change
in state by initializing aio_return to this value.

The application supplied buffer bufp should not be referenced by the application until after the
operation has completed. While the operation is in progress, this buffer is in use by the operating
system.

Notification of the completion of an asynchronous I/O operation may be obtained synchronously
through the aiowait function, or asynchronously by installing a signal handler for the SIGIO

___ Large Files Interfaces

1998 SPARC Compliance Definition 2.4 Interface Semantics 15-61

signal. Asynchronous notification is accomplished by sending the process a SIGIO signal. If a
signal handler is not installed for the SIGIO signal, asynchronous notification is disabled. The
delivery of this instance of the SIGIO signal is reliable in that a signal delivered while the handler
is executing is not lost. If the client ensures that aiowait returns nothing (using a polling timeout)
before returning from the signal handler, no asynchronous I/O notifications are lost. The aiowait
function is the only way to dequeue an asynchronous notification. Note: SIGIO may have several
meanings simultaneously: for example, that a descriptor generated SIGIO and an asynchronous
operation completed. Further, issuing an asynchronous request successfully guarantees that space
exists to queue the completion notification.

close, exit and execve (see exec) will block until all pending asynchronous I/O operations can be
canceled by the system.

It is an error to use the same result buffer in more than one outstanding request. These structures
may only be reused after the system has completed the operation.

RETURN VALUES
aioread64 and aiowrite64 return:
0 on success.
-1 on failure and set errno to indicate the error.

ERRORS
EAGAIN The number of asynchronous requests that the system can handle at any one time

has been exceeded
EBADF fildes is not a valid file descriptor open for reading.
EFAULT At least one of bufp points to an address outside the address space of the

requesting process. See NOTES below.
EINVAL The parameter resultp is currently being used by an outstanding asynchronous

request.
EINVAL offset is not a valid offset for this file system type.
ENOMEM Memory resources are unavailable to initiate request.

SEE ALSO
close, exec, exit, llseek, lseek, open64, read, write, aiocancel, aiowait, sigvec

NOTES
Passing an illegal address to bufp will result in setting errno to EFAULT only if it is detected by the
application process.

Large Files Interfaces__

15-62 SPARC Compliance Defintion 2.4 Interface Semantics 1998

SPARC COMPLIANCE DEFINITION 2.4 IS

Execution Environment

___ Execution Environment

1998 SPARC Compliance Definition 2.4 Interface Semantics 16-1

/dev/zero

NAME
/dev/zero

SYNOPSIS
/dev/zero

DESCRIPTION

The device /dev/zero is defined to be a special file which is a source of zeroed, unnamed memory.
Reads from this device always return a buffer full of zeroes. The file is infinite in length. Writes to
this file are always successful, but the data written is ignored. Mapping a zero special file creates a
zero-initialized, unnamed memory object of a length equal to the length of the mapping rounded
up to the nearest page size as returned by sysconf. Multiple processes can share such a zero special
file object provided a common ancestor mapped the object MAP_SHARED

Execution Environment __

16-2 SPARC Compliance Defintion 2.4 Interface Semantics 1998

SPARC COMPLIANCE DEFINITION 2.4 IS

INDEX

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-1

Symbols
 9-18, 9-21, 13-8
() 3-25, 3-38
, 3-71
, scanf 14-1
../mylibs/mylib.so 4-8
/dev 3-121
/dev/udp 9-23
/dev/zero 16-1
/etc/ethers 11-29
/etc/group 3-46
/etc/hosts 9-6
/etc/hosts.equiv 11-31, 11-32
/etc/inittab 3-34
/etc/mnttab 3-44, 3-45
/etc/netconfig 9-19, 11-28
/etc/networks 11-23
/etc/nsswitch.conf 3-30, 9-17, 9-18, 11-22, 11-23, 11-24, 11-

25, 11-26, 11-28, 11-29
/etc/passwd 3-30, 3-46
/etc/protocols 11-25
/etc/rpc 9-18
/etc/saf/_sysconfig 9-15
/etc/saf/pmtag/_config 9-15
/etc/saf/pmtag/svctag 9-15
/etc/services 11-28
/etc/shadow 3-30
/etc/utmpx 3-35
/etc/uucp/Devices 9-14
/etc/uucp/Systems 9-14
/etc/vfstab 3-48
/usr/bin/sh -c 9-16
/usr/home/me/mylibs 4-8
/usr/home/me/mylibs/mylib.so 4-8
/usr/home/me/workdir 4-8
/usr/include/aio.h 10-13, 15-57
/usr/include/fcntl.h 10-39
/usr/include/netdb.h 11-6
/usr/lib/iconv/*.so 3-50
/usr/lib/libnisdb.so 8-2
/var/adm/utmp 3-36, 3-81
/var/adm/utmpx 3-35
/var/adm/wtmpx 3-35
/var/spool/uucp/LCK..tty-device 9-14
___errno 3-7
__align_cpy_ 3P-1
__align_cpy_1 3P-1
__align_cpy_16 3P-1
__align_cpy_2 3P-1
__align_cpy_3 3P-1
__align_cpy_4 3P-1
__align_cpy_8 3P-1
__div64 3-88
__dtol 3-89
__dtoll 3-89, 3-91
__dtoul 3P-3, 3P-5
__dtoull 3-90
__ftoll 3-91
__ftoul 3P-3, 3P-5, 3P-6

__ftoull 3-92, 3-100
__mul64 3-93, 3-96
__rem64 3-94, 3-97
__udiv64 3-95
__umul64 3-96
__urem64 3-97
_cleanup 3-1
_end 4-2
_eucw1 14-6
_eucw2 14-6
_eucw3 14-6
_exit 3-84
_exit() 3-108
_HUGE_VAL 14-22
_longjmp 13-2
_lwp_create() 3-12, 3-15
_multibyte 14-6
_PC_NAME_MAX 15-40
_pcw 14-6
_POSIX_C_SOURCE 10-43
_POSIX_NO_TRUNC 3-119, 10-20, 10-34, 10-37, 10-39, 10-

40, 15-4
_POSIX_PATH_MAX 3-114
_POSIX_PER_PROCESS_TIMER_SOURCE 10-43
_Q_lltoq 3-98
_Q_qtoll 3-99
_Q_qtoull 3-100
_Q_ulltoq 3-101
_Qp_add 3P-3
_Qp_cmp 3P-3
_Qp_cmpe 3P-3
_Qp_div 3P-3
_Qp_dtoq 3P-3
_Qp_feq 3P-3
_Qp_fge 3P-3
_Qp_fgt 3P-3
_Qp_fle 3P-4
_Qp_flt 3P-3, 3P-4
_Qp_fne 3P-3, 3P-4
_Qp_itoq 3P-3, 3P-4
_Qp_mul 3P-3, 3P-4
_Qp_neg 3P-3, 3P-4
_Qp_qtod 3P-3, 3P-4
_Qp_qtoi 3P-4
_Qp_qtos 3P-3, 3P-4
_Qp_qtoui 3P-3, 3P-4, 3P-5
_Qp_qtoux 3P-3, 3P-4, 3P-5
_Qp_qtox 3P-3, 3P-5
_Qp_sqr 3P-3
_Qp_sqrt 3P-5
_Qp_stoq 3P-3, 3P-5
_Qp_sub 3P-3, 3P-5
_Qp_uitoq 3P-3, 3P-5
_Qp_uxtoq 3P-3, 3P-5
_Qp_xtoq 3P-3, 3P-5
_REENTRANT 3-31, 3-78, 9-10, 11-23, 11-25, 11-28
_SC_PAGE_SIZE 13-33
_SC_PAGESIZE 3-56, 13-33
_scrw1 14-6

Index __

Index-2 SPARC Compliance Definition 2.4 Interface Semantics 1998

_scrw2 14-6
_scrw3 14-6
_setjmp 13-2
~/.rhosts 11-32
Numerics
0 (ip) 11-8
1 (icmp) 11-8
128.net.host 9-1, 11-11
17 (udp) 11-8
4.2 BSD 13-11, 13-16
6 (tcp) 11-8
A
a 2-4
A_FREEZE 3-82
A_PROB 9-14
A_REBOOT 3-82
A_REMOUNT 3-82
A_SHUTDOWN 3-82
abort 13-12, 13-15, 14-4, 14-5
abs 3-90, 3-92
abstime 12-2
accept 3-74, 3-75, 11-1
AD_BOOT 3-82
AD_CHECK 3-82
AD_COMPRESS 3-82
AD_FORCE 3-82
AD_HALT 3-82
AD_IBOOT 3-82
AD_POWEROFF 3-82
addr 3-55, 3-122, 9-3, 9-4, 9-6, 13-6, 13-17, 15-28, 15-29, 15-

30
addr+len-1 3-122
addr->sin_port 9-5
address family 11-3
addrs 9-21
addseverity 3-2
adjtime 3-33, 13-5
AF_INET 11-6, 11-15, 11-23
AF_UNIX 11-37, 15-34
aio 10-14
aio.h 10-1, 10-3, 10-5, 10-7, 10-9, 10-12, 15-1, 15-47, 15-49,

15-51, 15-53, 15-55, 15-57
AIO_ALLDONE 10-1, 15-48
aio_buf 10-1, 10-3, 10-5, 15-47, 15-49, 15-51, 15-53, 15-55,

15-57
aio_cancel 10-1, 10-4, 10-8, 10-14, 15-1
aio_cancel64 15-1, 15-47, 15-48, 15-52, 15-54, 15-59
AIO_CANCELED 10-1, 15-47
aio_errno 15-60
aio_error 10-1, 10-3, 10-4, 10-5, 10-6, 10-7, 10-9, 10-14, 15-1
aio_error64 15-1, 15-48, 15-49, 15-50, 15-52, 15-53, 15-54,

15-56, 15-58, 15-59
aio_fildes 10-1, 10-3, 10-5, 10-13, 15-47, 15-49, 15-50, 15-51,

15-53, 15-55, 15-57, 15-58, 15-59
aio_fsync 10-4, 10-5, 10-6, 10-9, 10-11, 10-14, 15-1
aio_fsync64 15-1, 15-49, 15-50, 15-54, 15-55, 15-56, 15-58,

15-59
AIO_INPROGRESS 2-2, 15-60

aio_lio_opcode 10-1, 10-3, 10-5, 15-47, 15-49, 15-51, 15-53,
15-55, 15-57, 15-59

AIO_LISTIO_MAX 10-14, 15-58
AIO_MAX 10-14, 15-58
aio_nbytes 10-1, 10-3, 10-5, 15-47, 15-49, 15-51, 15-52, 15-53,

15-55, 15-57
AIO_NOTCANCELED 10-1, 15-47
aio_offset 10-1, 10-3, 10-5, 15-47, 15-49, 15-51, 15-52, 15-53,

15-55, 15-57, 15-59
aio_read 10-2, 10-4, 10-7, 10-8, 10-9, 10-13, 10-14, 15-1
aio_read64 15-1, 15-48, 15-51, 15-52, 15-54, 15-55, 15-56, 15-

57, 15-58, 15-59
aio_reqprio 10-1, 10-3, 10-5, 15-47, 15-49, 15-51, 15-52, 15-

53, 15-55, 15-57
aio_result_t 2-1, 2-2, 2-4, 15-60
aio_retur64 15-54
aio_return 10-2, 10-3, 10-4, 10-5, 10-6, 10-7, 10-8, 10-9, 10-

14, 15-1, 15-60
aio_return64 15-1, 15-48, 15-49, 15-50, 15-52, 15-53, 15-54,

15-56, 15-58, 15-59
aio_sigevent 10-1, 10-3, 10-5, 15-47, 15-49, 15-51, 15-52, 15-

53, 15-55, 15-57
aio_suspend 10-9, 15-1
aio_suspend64 15-1, 15-55, 15-56
aio_write 10-7, 10-8, 10-9, 10-13, 15-1
aio_write64 15-1, 15-51, 15-52, 15-55, 15-56, 15-58
aiocancel 2-1, 15-61
aiocancel() 2-1
aiocb 10-1, 10-3, 10-5, 10-7, 10-9, 10-12, 15-1, 15-52
aiocb64 15-1, 15-47, 15-49, 15-51, 15-53, 15-55, 15-57, 15-59
aiocbp 10-1, 10-5, 15-47, 15-49, 15-50, 15-51, 15-52, 15-53,

15-54, 15-58, 15-59
aioread 2-2, 15-2
aioread() 2-2, 2-3
aioread64 15-2, 15-60, 15-61
aiorwrite64 15-60
aiowait 2-4, 15-60, 15-61
aiowait() 2-4
aiowrite 2-2, 15-2
aiowrite() 2-3
aiowrite64 15-2, 15-60, 15-61
alarm 3-75, 9-14, 13-18, 13-48, 13-49, 15-24, 15-25
alarm(BA_OS) 3-108
alignment 3-56
alloca 3-56
alloca() 3-56, 3-57
alloca.h 3-56
alphasort 13-3, 15-2
alphasort64 15-2, 15-43
ANSI C 9-31, 9-32
ANSI/IEEE Std 754-1985 7-7
ar 5-13
ar() 3-22
ar_date 5-13
ar_gid 5-13
ar_mode 5-13
ar_name 5-13
ar_rawnam 5-13
ar_rawname 5-13

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-3

ar_size 5-13
ar_uid 5-13
arg 3-10
argsp 9-35
arpa/inet.h 9-1, 11-11
as_hash 5-14
as_name 5-14
as_off 5-14
ascftime 3-16
ascftime() 3-16, 3-18
ASCII 3-5, 3-27, 3-66, 11-29
asctime 3-7, 3-33
asctime_r 3-7, 3-8
asize 13-45
assign 9-15
Asynchronous 2-2
asynchronous 2-1, 2-3, 11-21
asynchronous errors 11-18
asynchronous I/O 2-2, 2-4
ASYNC-SAFE 10-35
at() 3-20
atof() 3-26
atomically 11-15
atomicity 15-27
attr 9-13
attributes 3-81, 9-18
attributes() 3-18, 3-24, 3-57
attrs 8-2, 8-4
AUTH 9-2, 9-11
auth_destroy 9-11
AUTH_SYS 9-4
authdes_create 9-2, 9-4
authdes_getucred 9-4
authdes_seccreate 9-4
authsys_create_default 9-4
authunix_create 9-2, 9-4
authunix_create_default 9-2, 9-4
authunix_parms 9-3
B
BA_ENV 12-18
BA_LIB 3-4
BA_OS 2-2, 3-5, 3-116, 3-117, 11-1, 11-4, 11-13, 11-14, 11-

15, 11-20, 11-21, 12-13, 12-21, 12-24
BAD_SYS 9-14
base 15-17, 15-18
batching 9-10
baud 9-13
bcmp 13-28
bcopy 13-28
bind 11-3, 11-18, 11-36
bind(3N) 11-1
bindtextdomain 6-1, 6-2, 6-3
blkcnt64_t 15-9
BN 3-25
bool 8-2
bool_t 9-3, 9-24, 9-30, 9-33
boot 13-27
BOOT_TIME 3-35

brk 13-33, 15-20, 15-21, 15-22
brk() 3-57
BSD 13-3, 13-7, 13-8, 13-9, 13-10, 13-11, 13-12, 13-13, 13-15,

13-17, 13-18, 13-22, 13-25, 15-43, 15-45
bsdmalloc() 3-57
bstring 13-40
buf 15-9, 15-11, 15-13, 15-19, 15-36, 15-37, 15-41
bufp 15-60
BUFSIZ 13-45
byteorder 11-30
bytes 11-7
BZ 3-25
bzero 13-28
C
C 1-1
C language 9-1, 11-11
c_uaddr 9-23
cache_size 9-26, 9-27
caddr_t 3-54, 3-58, 3-122, 9-26, 9-33, 9-35, 11-13, 13-6
CALL 9-13
calling thread 3-7
calloc 3-56
calloc() 3-56, 3-57
callrpc 9-2, 9-4, 9-6
callrpc()

 9-4
cat() 3-22, 3-54, 3-55
category 6-1
cd 3-49, 3-50, 3-51, 9-16
ceil 7-5
CFTIME 3-16
cftime 3-16
cftime() 3-16, 3-18
char_to_decimal 3-25
child process 12-3
chmod 3-71, 15-3, 15-4, 15-10, 15-11, 15-13, 15-16, 15-23, 15-

25, 15-32, 15-35, 15-37, 15-39
chmod() 3-42, 3-61, 3-64, 3-68
chown 15-10, 15-11, 15-13
ckey 9-4
Class A network 9-1, 11-11
Class B network 9-1, 11-11
CLGET_FD 9-10
CLGET_RETRY_TIMEOUT 9-10
CLGET_SVC_ADDR 9-10
CLGET_TIMEOUT 9-10
CLGET_VERS 9-10
CLGET_XID 9-10
CLIENT 9-9, 9-10
CLK_TCK 13-22
clnt 9-9
clnt_broadcast 9-2, 9-4

 9-4
clnt_call 9-5, 9-6, 9-10, 9-11
clnt_control 9-9, 9-10, 9-11, 9-12
clnt_create 9-5, 9-9, 9-10, 9-11, 9-12
clnt_create_timed 9-9, 9-11
clnt_create_vers 9-9, 9-11

Index __

Index-4 SPARC Compliance Definition 2.4 Interface Semantics 1998

clnt_create_vers_timed 9-9, 9-11
clnt_destroy 9-9, 9-10, 9-11
clnt_dg_create 9-5, 9-9, 9-11
clnt_pcreateerror 9-5, 9-9, 9-11, 9-12
clnt_perrno 9-4
clnt_raw_create 9-5, 9-9, 9-11, 9-12
clnt_spcreateerror 9-9, 9-12
clnt_stat 9-2, 9-3
clnt_stat rpc_broadcast_exp 9-35
clnt_tli_create 9-5, 9-9, 9-12
clnt_tp_create 9-9, 9-12
clnt_tp_create_timed 9-9, 9-10, 9-12
clnt_vc_create 9-9, 9-12
clntraw_create 9-2, 9-7
clnttcp_create 9-2, 9-3
clntudp_bufcreate 9-2, 9-5
clntudp_create 9-2, 9-3, 9-5
clock_getres 10-10
clock_gettime 10-10
clock_id 10-10
CLOCK_REALTIME 10-10, 10-24
clock_settime 10-10, 10-43, 10-46
clockid_t 10-10, 10-43
close 10-4, 10-14, 10-39, 10-40, 11-35, 11-36, 13-30, 15-4, 15-

6, 15-25, 15-30, 15-35, 15-52, 15-54, 15-59, 15-61
close(2) 11-4, 11-18
close(BA_OS) 2-2
closelog 3-19
closelog() 3-20
CLSET_FD_CLOSE 9-10, 9-11
CLSET_FD_NCLOSE 9-10
CLSET_RETRY_TIMEOUT 9-10
CLSET_TIMEOUT 9-10
CLSET_VERS 9-10
CLSET_XID 9-10
codeset 3-49
codesets 3-49
COFF 5-21
cond_broadcast 12-1, 12-2
cond_broadcast() 12-2
cond_destroy 12-1
cond_destroy() 12-1
cond_init 12-1, 12-2
cond_init() 12-1
cond_signal 12-1
cond_signal() 12-2
cond_t 12-1
cond_timedwait 12-1, 12-2
cond_timedwait() 12-2
cond_wait 12-1, 12-2
cond_wait(12-2
cond_wait() 12-2
condition variables 12-1
conf() 3-20, 3-29, 3-30, 3-31
config 9-21
connect 11-4
connect(3N) 11-13, 11-20
connected 11-13
connected peer 11-7

connections 11-12
connld 15-33, 15-35
const 15-8
const char 3-114
const int 9-35
const sigset_t 12-21
const struct timeval 2-4
const time_t 3-7
const u_long 9-35
const xdrproc_t 9-35
const_long 9-9
context switching 3-116
controlling terminal 3-106
copysign 7-1
cp() 3-22, 3-54, 3-55
creat 3-71
creat() 3-64
creat64 15-1, 15-3, 15-4, 15-6, 15-9, 15-10, 15-11, 15-12, 15-

13, 15-25, 15-27, 15-31, 15-35, 15-37, 15-39, 15-42
cred_flavor 9-25
crontab() 3-20
crypt 3-3
cstime 3-107
ctermid_r 3-7
ctime 10-10, 13-5, 13-29
ctime() 3-18
ctime_r 3-7, 3-8
ctype() 3-26
ctype.h 3-25
cutime, 3-107
D
d.d.d.d 9-1
d_align 5-17, 5-29
d_buf 5-5, 5-16, 5-17, 5-18, 5-29
D_HUNG 9-14
d_ino 15-19
d_off 5-17, 5-29, 15-19
D_REENTRANT 9-10
d_size 5-5, 5-16, 5-17, 5-18, 5-29
d_type 5-5, 5-16, 5-17, 5-29
d_version 5-5, 5-16, 5-17, 5-29
DARPA 11-33
data 5-16
datagram 11-18
datagrams 11-18
date 13-29
date() 3-16, 3-18
datum 3-21
db_add_entry 8-2, 8-4
DB_BADOBJECT 8-3, 8-5
DB_BADQUERY 8-3, 8-4, 8-5
DB_BADTABLE 8-3, 8-5
db_checkpoint 8-2, 8-4
db_create_table 8-2, 8-4
db_destroy_table 8-2, 8-4
db_first_entry 8-2, 8-3, 8-4
db_free_result 8-1, 8-2, 8-4
db_initialize 8-2, 8-3

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-5

DB_INTERNAL_ERROR 8-3, 8-5
db_list_entries 8-2, 8-4
DB_MEMORY_LIMIT 8-3, 8-5
db_next_desc 8-2, 8-3, 8-4
db_next_entry 8-2, 8-3, 8-4
DB_NOTFOUND 8-3, 8-5
DB_NOTUNIQUE 8-3, 8-4, 8-5
db_remove_entry 8-2, 8-4
db_reset_next_entry 8-2, 8-3, 8-4
db_result 8-1, 8-2, 8-3, 8-4
db_standby 8-2, 8-4
db_status 8-1, 8-2, 8-3
DB_STORAGE_LIMIT 8-3, 8-5
DB_SUCCESS 8-3, 8-5
db_table_exists 8-1, 8-2, 8-4
db_unload_table 8-1, 8-2, 8-4
DBM 3-21, 3-22
dbm 3-22
dbm() 3-21, 3-22
dbm_clearerr 3-21
dbm_clearerr() 3-22
dbm_close 3-21
dbm_close() 3-21
dbm_delete 3-21
dbm_delete() 3-22
dbm_error 3-21
dbm_error() 3-22
dbm_fetch 3-21
dbm_fetch() 3-21, 3-22
dbm_firstkey 3-21, 3-22
dbm_firstkey() 3-22
DBM_INSERT 3-21, 3-22
dbm_nextkey 3-21
dbm_nextkey() 3-22
dbm_open 3-21
dbm_open() 3-21, 3-22
DBM_REPLACE 3-21, 3-22
dbm_store 3-21
dbm_store() 3-21, 3-22
dcgettext 6-1, 6-2, 6-3
dcomp 13-3
DdQq 3-26
DEAD_PROCESS 3-35
debugging 11-18
decimal_mode 3-24
decimal_record 3-23, 3-25
decimal_string_form 3-25
DECIMAL_STRING_LENGTH 3-23, 3-24
decimal_to_double 3-23
decimal_to_double() 3-23
decimal_to_extended 3-23
decimal_to_floating 3-23
decimal_to_floating() 3-23
decimal_to_quadruple 3-23
decimal_to_single 3-23
decpt 3-27
decryption 3-3
DELAYTIMER_MAX 10-46
DEPPRECATED 3-117

DEPRECATED 3-117
depth 15-17, 15-18
DES 9-4
des_block 9-2
destructor 12-16
dev 3-121
dev/zero 3-117
dev_len 9-13
dev_t 15-9
device 9-13
Devices 9-13
dgettext 6-1, 6-2, 6-3
diagnostic 4-6
dial 9-13
dial.h 9-13, 9-14
dictionary_pathname 8-2
DIR 3-114, 15-41, 15-44
direct 13-3, 15-2, 15-40
direct64 15-2, 15-43, 15-44
directories

read directory entries and put in a file system independent
format 15-19

dirent 3-43, 15-19
dirent() 3-43
dirent.h 3-114, 15-1
dirent64 15-1, 15-2, 15-19, 15-40
dirname 6-1, 6-2, 15-43
dirp 15-40, 15-44
dispadmin 3-11, 3-15
dispatch 9-3, 9-8
Dl_info 4-2, 4-3
dl_info 4-2
dladdr 4-2
dlclose 4-2, 4-3, 4-4, 4-5, 4-8
dlerror 4-2, 4-4, 4-6
dlfcn.h 4-2, 4-4, 4-6, 4-7, 4-10
dli_fbase 4-2
dli_fname 4-2
dli_saddr 4-2, 4-3
dli_sname 4-2, 4-3
dlopen 4-2, 4-4, 4-5, 4-7, 4-8, 4-9, 4-10
dlopen(3X) 4-10
dlsym 4-2, 4-8, 4-10
DNS 11-24
doconfig 9-15, 9-16
domainname 6-1, 6-2
double 3-27, 3-59, 3-89, 3-90, 7-1, 7-2, 7-4
double_to_decimal 3-24
double_to_decimal() 3-24
drand48 13-9, 13-42
dsrc 3-38
dsrc1 3-38
dsrc2 3-38
dst 5-5
dstflag 13-29
DT_FINI 4-4
DT_INIT 4-8
DT_NEEDED 4-1, 4-7
dup 3-71, 10-39, 15-4, 15-6, 15-9, 15-12, 15-13, 15-35, 15-37,

Index __

Index-6 SPARC Compliance Definition 2.4 Interface Semantics 1998

15-39
dup() 3-64
DV_NT_A 9-14
DV_NT_E 9-14
DV_NT_K 9-14
dynamic linker 4-9
E
e_ehsize 5-2
e_entry 5-2, 5-28
e_exit 3-35
e_flags 5-2, 5-28
e_ident 5-2, 5-5, 5-19, 5-28, 5-29
e_machine 5-2, 5-28
e_phentsize 5-2
e_phnum 5-2, 5-3
e_phoff 5-2, 5-28
e_shentsize 5-2
e_shnum 5-2, 5-22
e_shoff 5-2, 5-28
e_shstmdx 5-28
e_shstrndx 5-2
e_termination 3-35
e_type 5-2, 5-28
e_version 5-2, 5-28, 5-29
E2BIG 3-49, 3-50
EACCES 2-1, 3-41, 3-72, 10-33, 10-37, 10-39, 10-40, 11-21,

13-35, 15-10, 15-13, 15-15, 15-17, 15-18, 15-24, 15-
30, 15-33

EACCESS 10-19, 10-23, 15-3
eachresult 9-4, 9-35
EADDRINUSE 11-3, 11-4
EADDRNOTAVAIL 11-3, 11-4
EAFNOSUPPORT 11-4, 11-37
EAGAIN 2-3, 3-14, 3-42, 3-57, 3-61, 3-63, 3-68, 3-69, 3-70, 3-

84, 3-107, 10-6, 10-7, 10-9, 10-14, 10-19, 10-22, 10-
36, 10-41, 10-42, 10-43, 11-32, 12-12, 12-14, 12-16,
13-7, 14-1, 15-3, 15-16, 15-24, 15-29, 15-30, 15-34,
15-36, 15-38, 15-40, 15-41, 15-44, 15-50, 15-52, 15-
56, 15-58, 15-59, 15-61

EAGAINO_NONBLOCK 10-21
EALREADY 11-4
EBADF 2-3, 3-42, 3-43, 3-50, 3-51, 3-63, 3-70, 3-75, 3-86, 10-

1, 10-6, 10-8, 10-11, 10-15, 10-16, 10-17, 10-21, 10-
22, 11-1, 11-3, 11-4, 11-7, 11-10, 11-12, 11-14, 11-
15, 11-18, 11-19, 11-36, 14-1, 15-11, 15-13, 15-14,
15-16, 15-19, 15-24, 15-26, 15-30, 15-36, 15-38, 15-
41, 15-44, 15-48, 15-50, 15-52, 15-61

EBADMSG 3-63, 15-36, 15-41, 15-44
EBUSY 3-60, 3-83, 10-17, 10-30, 12-5, 12-7, 12-9
EBUSYMS_INVALIDATE 13-7
ECANCELE 15-52
ECANCELED 10-8, 10-14, 15-59
echar 3-25, 3-26
ECHILD 13-25
ecode 5-5
ECOMM 15-24
ECONNREFUSED 11-4, 11-12
econvert 3-27, 13-21

econvert() 3-24, 3-27, 3-28
ecvt 3-27
ecvt() 3-28
EDEADLK 3-63, 3-70, 10-36, 12-17, 15-24, 15-36, 15-38, 15-

41, 15-44
EDOM 7-4
EDQUOT 3-70, 15-4, 15-33, 15-38
EEXIST 3-119, 10-39, 15-34
EEXISTO_CREAT 10-19, 10-34
EFAULT 3-15, 3-41, 3-43, 3-58, 3-63, 3-64, 3-65, 3-66, 3-70,

3-80, 3-116, 3-119, 12-24, 13-13, 13-17, 13-25, 13-
32, 13-37, 15-4, 15-10, 15-11, 15-13, 15-15, 15-19,
15-22, 15-34, 15-37, 15-38, 15-41, 15-44, 15-61

EFBIG 3-41, 3-42, 3-70, 3-71, 10-8, 10-14, 15-20, 15-38, 15-
52, 15-59

efield 3-25, 3-26
EI_CLASS 5-19
EI_DATA 5-5, 5-19, 5-29
EI_MAG0 5-19
EI_MAG1 5-19
EI_MAG2 5-19
EI_MAG3 5-19
EI_NIDENT 5-2, 5-19
EI_VERSION 5-19
EILSEQ 3-50, 14-1, 14-4
EINPROGRESS 10-3, 10-5, 10-9, 10-14, 11-4, 15-49, 15-53,

15-55, 15-59
EINTR 2-4, 3-68, 3-71, 3-75, 3-108, 9-14, 10-9, 10-14, 10-19,

10-21, 10-22, 10-24, 10-34, 10-36, 10-39, 10-42, 11-
4, 11-14, 11-15, 12-2, 12-9, 13-10, 13-11, 13-16, 13-
25, 14-1, 15-4, 15-10, 15-11, 15-13, 15-15, 15-16,
15-24, 15-34, 15-37, 15-39, 15-41, 15-44, 15-56, 15-
58, 15-59

EINTRA 3-41, 3-63, 15-13
EINVAL 2-1, 2-3, 2-4, 3-2, 3-13, 3-15, 3-32, 3-41, 3-42, 3-43,

3-50, 3-52, 3-55, 3-58, 3-60, 3-63, 3-64, 3-65, 3-66,
3-71, 3-72, 3-75, 3-76, 3-80, 3-119, 10-4, 10-6, 10-8,
10-10, 10-11, 10-14, 10-19, 10-24, 10-25, 10-26, 10-
27, 10-29, 10-30, 10-31, 10-32, 10-34, 10-35, 10-36,
10-39, 10-41, 10-42, 10-43, 10-44, 10-46, 11-3, 11-
5, 11-15, 12-2, 12-5, 12-7, 12-9, 12-12, 12-14, 12-15,
12-16, 12-18, 12-21, 12-24, 13-1, 13-5, 13-7, 13-11,
13-12, 13-17, 13-25, 13-35, 13-37, 13-43, 13-46, 13-
47, 13-49, 14-18, 14-22, 14-24, 14-25, 15-15, 15-16,
15-19, 15-22, 15-24, 15-25, 15-26, 15-30, 15-34, 15-
37, 15-39, 15-41, 15-44, 15-50, 15-52, 15-54, 15-58,
15-61

EIO 3-41, 3-43, 3-55, 3-63, 3-71, 3-72, 3-86, 10-14, 13-7, 14-
1, 14-3, 15-13, 15-15, 15-16, 15-19, 15-34, 15-37,
15-39, 15-41, 15-45, 15-59

EISCONN 11-5
EISDIR 3-41, 3-63, 3-119, 15-4, 15-15, 15-34, 15-37
EIVAL 3-2
elem 3-53
ELF 5-2, 5-3, 5-4, 5-5, 5-7, 5-8, 5-9, 5-10, 5-11, 5-12, 5-14, 5-

19, 5-20, 5-21, 5-22, 5-23, 5-27, 5-30
Elf 5-2, 5-3, 5-7, 5-9, 5-12, 5-13, 5-15, 5-19, 5-21, 5-22, 5-26,

5-27
elf 5-12, 5-13, 5-16, 5-21, 5-22, 5-23, 5-24, 5-25, 5-26

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-7

Elf_Arhdr 5-13
Elf_Arsym 5-14
elf_begin 5-7, 5-8, 5-9, 5-21, 5-23, 5-27
ELF_C_CLR 5-12
ELF_C_FDDONE 5-8
ELF_C_FDREAD 5-8
ELF_C_NULL 5-7, 5-23, 5-27
ELF_C_RDWR 5-7, 5-27
ELF_C_READ 5-7, 5-23
ELF_C_SET 5-12
ELF_C_WRITE 5-7, 5-27
Elf_Cmd 5-7, 5-8, 5-12, 5-23, 5-27
elf_cntl 5-8
Elf_Dat 5-16
Elf_Data 5-5, 5-12, 5-16
elf_end 5-7, 5-9
elf_errmsg 5-10
elf_errno 5-10
ELF_F_DIRTY 5-2, 5-3, 5-12, 5-16, 5-22, 5-27
ELF_F_LAYOUT 5-12, 5-28, 5-29
elf_fill 5-11, 5-17
elf_flag 5-27
elf_flagdata 5-12
elf_flagehdr 5-12
elf_flagelf 5-12
elf_flagphdr 5-12
elf_flagscn 5-12
elf_flagshdr 5-12
elf_getarhdr 5-13
elf_getarsym 5-13, 5-14, 5-24
elf_getbase 5-15
elf_getdata 5-5, 5-8, 5-11, 5-16, 5-17, 5-18, 5-27
elf_getehdr 5-2, 5-7, 5-21
elf_getident 5-2, 5-19, 5-21
elf_getscn 5-22
elf_getshdr 5-17, 5-22
elf_hash 5-14, 5-20
ELF_K_AR 5-21
ELF_K_ELF 5-21
ELF_K_NONE 5-21
Elf_Kind 5-21
elf_kind 5-7, 5-21
elf_ndxscn 5-22
elf_newdata 5-16, 5-18
elf_newehdr 5-2
elf_newscn 5-22
elf_next 5-7, 5-23
elf_nextscn 5-22
elf_rand 5-7, 5-14, 5-23, 5-24
elf_rawdata 5-16, 5-18, 5-25
elf_rawfile 5-25
Elf_Scn 5-4, 5-12, 5-16, 5-22
elf_strptr 5-26
ELF_T_ADDR 5-1, 5-5
ELF_T_BYTE 5-1, 5-5, 5-6, 5-16, 5-18
ELF_T_DYN 5-5
ELF_T_EHDR 5-5
ELF_T_HALF 5-1, 5-5
ELF_T_OFF 5-1, 5-6

ELF_T_PHDR 5-6
ELF_T_REL 5-6, 5-18
ELF_T_RELA 5-6, 5-18
ELF_T_SHDR 5-6
ELF_T_SWORD 5-1, 5-6
ELF_T_SYM 5-6, 5-18
ELF_T_WORD 5-1, 5-6
Elf_Type 5-1, 5-16
Elf_type 5-18
elf_update 5-9, 5-12, 5-27, 5-29
elf_version 5-7, 5-30
elf_xlate 5-17
Elf32_Add r 5-2
Elf32_Addr 5-1, 5-3, 5-4, 5-5
Elf32_Dyn 5-5, 5-18
Elf32_Ehdr 5-2, 5-5
elf32_fsize 5-1
ELF32_FSZ 5-1
ELF32_FSZ_HALF 5-1
ELF32_FSZ_OFF 5-1
ELF32_FSZ_SWORD 5-1
ELF32_FSZ_WORD 5-1
elf32_getehdr 5-2
elf32_getphdr 5-3
elf32_getshdr 5-4
Elf32_Half 5-1, 5-2, 5-5
elf32_newehdr 5-2, 5-3
elf32_newphdr 5-3
Elf32_Off 5-1, 5-2, 5-3, 5-4, 5-6
Elf32_Phdr 5-3, 5-6
Elf32_Rel 5-6, 5-18
Elf32_Rela 5-6, 5-18
Elf32_Shdr 5-4, 5-6
elf32_size 5-1
Elf32_Sword 5-1, 5-6
Elf32_Sym 5-6, 5-18
Elf32_Wor d 5-4
ELF32_Word 5-1
Elf32_Word 5-2, 5-3, 5-4, 5-6, 5-18
elf32_xlateto 5-5
elf32_xlatetof 5-5
elf32_xlatetom 5-5
ELFCLASS32 5-19
ELFCLASSNONE 5-19
ELFDATA2LSB 5-19
ELFDATA2MSB 5-19
ELFDATANONE 5-19, 5-29
ELFMAG0 5-19
ELFMAG1 5-19
ELFMAG2 5-19
ELFMAG3 5-19
ELOOP 3-41, 3-72, 3-119, 15-4, 15-10, 15-13, 15-15, 15-34
elsize 3-56
EMFILE 3-41, 3-52, 10-20, 10-34, 10-39, 11-21, 11-37, 15-4,

15-15, 15-30, 15-34
EMSGSIZE 10-21, 10-22, 11-15
EMULTIHOP 3-42, 15-4, 15-10, 15-13, 15-15, 15-34
ENAMETOOLONG 3-42, 3-72, 3-119, 10-20, 10-23, 10-34,

10-37, 10-39, 10-40, 15-4, 15-13, 15-15, 15-34

Index __

Index-8 SPARC Compliance Definition 2.4 Interface Semantics 1998

ENAMETOOLONGT 15-10
encrypt 3-3
Encryption 3-3
endnetconfig 9-19, 9-20
endnetent 11-22, 11-23
endprotoent 11-24, 11-25
endrpcent 9-17
endservent 11-26
endspent 3-29
endspent() 3-29
endutxent 3-34
endutxent() 3-35
ENETUNREACH 11-5
ENFILE 3-42, 3-52, 10-20, 10-34, 10-39, 15-4, 15-15, 15-34
ENODEV 11-1, 15-30
ENOENT 3-42, 3-43, 3-72, 3-119, 10-23, 10-37, 10-39, 10-40,

15-4, 15-11, 15-13, 15-16, 15-19, 15-34, 15-41, 15-
45

ENOENTO_CREAT 10-20, 10-34
ENOLCK 3-63, 3-71, 15-24, 15-37, 15-39, 15-41, 15-45
ENOLINK 3-42, 3-43, 3-64, 3-71, 15-4, 15-11, 15-13, 15-16,

15-19, 15-34, 15-37, 15-39, 15-41, 15-45
ENOMEM 2-3, 3-15, 3-52, 3-55, 3-57, 3-58, 3-72, 3-83, 3-84,

3-108, 3-116, 3-119, 11-1, 11-7, 11-10, 11-14, 11-16,
11-18, 11-19, 11-21, 11-36, 11-37, 12-12, 12-16, 13-
7, 14-1, 14-4, 15-20, 15-21, 15-30, 15-35, 15-61

ENOPROTOOPT 11-18, 11-36
ENOSPC 3-71, 3-83, 10-20, 10-32, 10-34, 10-39, 14-3, 15-4,

15-34, 15-39
ENOSR 3-71, 11-1, 11-3, 11-5, 11-7, 11-10, 11-14, 11-16, 11-

18, 11-19, 11-21, 11-36, 11-37, 15-34, 15-39
ENOSYS 3-3, 3-119, 10-1, 10-4, 10-6, 10-8, 10-9, 10-10, 10-

11, 10-14, 10-15, 10-16, 10-17, 10-20, 10-21, 10-22,
10-23, 10-24, 10-25, 10-26, 10-27, 10-28, 10-29, 10-
30, 10-31, 10-32, 10-34, 10-35, 10-36, 10-37, 10-39,
10-40, 10-41, 10-42, 10-43, 10-44, 10-46, 14-18, 14-
25, 15-48, 15-50, 15-52, 15-54, 15-56, 15-59

ENOTCONN 11-7, 11-19
ENOTDIR 3-43, 3-120, 15-4, 15-11, 15-13, 15-16, 15-19, 15-

34
ENOTDIRA 3-42, 3-72
ENOTSOCK 11-2, 11-3, 11-7, 11-10, 11-12, 11-14, 11-16, 11-

18, 11-19, 11-36
ENOTSUP 3-60, 3-83
entry 8-2, 15-40
entry_obj 8-2, 8-3
enum 9-24
enumeration 3-112
environ 9-19
environ() 3-18
ENXIO 3-64, 3-71, 3-83, 14-1, 15-30, 15-34, 15-37, 15-39, 15-

41, 15-45
ENXIOA 14-4
EOF 3-44, 3-45, 3-85, 11-24, 13-4, 13-21, 14-9, 15-7, 15-15
EOPNOSUPPORT 11-37
EOPNOTSUPP 11-2, 11-12, 15-25, 15-34
EOVERFLOW 3-32, 3-43, 3-64, 3-120, 10-14, 14-1, 14-2, 15-

11, 15-13, 15-14, 15-19, 15-24, 15-26, 15-30, 15-34
EPERM 3-11, 3-14, 3-32, 3-60, 3-65, 3-76, 3-83, 3-120, 10-10,

10-26, 10-27, 10-32, 10-41, 13-1, 13-5, 13-7, 13-27,
13-32, 13-35, 13-43, 13-46, 13-47, 15-22

EPIPE 3-71, 15-39
EPROTO 11-2
EPROTONOSUPPORT 11-21, 11-37
ERANGE 3-8, 3-13, 3-15, 3-30, 3-59, 3-69, 3-71, 3-103, 3-105,

3-109, 3-111, 3-113, 3-114, 3-121, 7-4, 9-18, 11-23,
11-25, 11-28, 14-22, 14-24, 15-39

EROFS 3-42, 3-120, 15-4, 15-16, 15-34
errno 3-76, 11-3, 15-3, 15-6, 15-13, 15-14, 15-18, 15-19, 15-

20, 15-21, 15-22, 15-24, 15-26, 15-29
errno.h 3-7
errnum 9-29
error 9-29
errorfds 3-74
ESPIPE 3-64, 3-71, 15-14, 15-26, 15-37, 15-39
ESRCH 3-11, 3-65, 10-25, 10-26, 10-27, 10-41, 12-10, 12-15,

12-17, 12-18, 13-35, 13-43
ESRCHN 3-15
ESTALE 3-55
etc/hosts.equiv 11-31
ether_addr 11-29
ether_aton 11-29
ether_hostton 11-29
ether_line 11-29
ether_ntoa 11-29
ether_ntohost 11-29
ether_ntohost (11-29
ethers 11-29
ETIME 12-2
ETIMEDOUT 11-20
ETXTBSY 15-35
EUC 14-2, 14-6, 14-9, 14-13, 14-20
euc.h 14-6
euclen 14-6
eucwidth_t 14-6
EV_CURRENT 5-19, 5-30
EV_NONE 5-29, 5-30
evp 10-43
EWOULDBLOCK 11-2, 11-13, 11-14, 11-16
exec 3-76, 3-84, 10-4, 10-8, 10-14, 10-18, 10-20, 10-26, 10-27,

10-34, 10-37, 10-39, 10-43, 13-1, 13-12, 13-17, 15-
22, 15-30, 15-35, 15-52, 15-54, 15-59, 15-61

exec() 3-15
exec(BA_OS) 2-2, 3-106, 3-108
execve 3-84, 13-16, 13-46, 13-47, 15-61
execve() 2-2
exit 3-84, 10-4, 10-8, 10-14, 10-18, 10-20, 10-34, 10-37, 12-13,

13-23, 13-25, 13-26, 14-4, 14-5, 15-52, 15-54, 15-61
exit(BA_OS) 2-2, 3-106, 3-108, 3-116
exit(BA_OS). 3-108
exit_status 3-34
exp 7-2
expm1 7-2
extended_to_decimal 3-24
F
f_basetype 15-12
f_bavail 15-12

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-9

f_bfree 15-12
f_blocks 15-12
f_bsize 15-12
f_favail 15-12
f_ffree 15-12
f_files 15-12
f_filler 15-12
f_flag 15-12
f_frsize 15-12
f_fsid 15-12
f_fstr 15-12
F_LOCK 15-23, 15-24
f_namemax 15-12
F_TEST 15-23, 15-24
F_TLOCK 15-23, 15-24
F_ULOCK 15-23, 15-24
faddq 3P-3
FALSE 8-4
fattach 15-11
FCHR_MAX 15-21
fclose 13-4, 13-45, 14-4, 14-5, 15-6
fcmpeq 3P-3, 3P-4
fcmpq 3P-3, 3P-4
fcn 3-82
fcntl 3-75, 10-5, 10-6, 10-11, 10-13, 10-14, 10-39, 13-12, 13-

15, 13-17, 15-3, 15-4, 15-9, 15-12, 15-13, 15-16, 15-
23, 15-24, 15-25, 15-30, 15-33, 15-35, 15-37, 15-39,
15-49, 15-50, 15-58, 15-59

fcntl() 3-42, 3-64
fcntl(2) 11-13, 11-15
fcntl(BA_OS) 3-107, 3-108
fcntl.h 10-38, 15-1, 15-3, 15-31
fconvert 3-27
fconvert() 3-24, 3-27, 3-28
fcvt 3-27
fcvt() 3-28
fd 3-75
FD_CLOEXEC 15-31
FD_CLR 3-74, 3-75
FD_ISSET 3-74, 3-75
FD_SET 3-74, 3-75
fd_set 3-74, 9-26
FD_SETSIZE 3-75
FD_ZERO 3-74, 3-75
fdatasync 10-5, 10-6, 10-11, 15-49, 15-50
fdivq 3P-3
fdp 9-5
fdset 3-75
fdtoi 3P-5
fdtoq 3P-3
FdTOx 3-89, 3-90
feof 14-1
ferror 14-1, 14-2, 14-4, 14-9
fflush 13-45, 14-4, 14-5, 15-5
fflush(BA_OS) 3-1
fflush(NULL) 3-1
ffs 3-37
ffs() 3-37
fgetc 14-1

fgetgrent 3-102
fgetgrent_r 3-102, 3-103
fgetpos 15-2
fgetpos64 15-2, 15-4, 15-8
fgetpwent 3-104
fgetpwent_r 3-104, 3-105
fgets 14-1
fgetspent 3-29
fgetspent() 3-29, 3-30
fgetspent_r 3-29
fgetspent_r() 3-29, 3-30
fgetwc 14-1
fgetws 14-1, 14-2
FIFO 3-61, 3-64, 3-69, 3-70, 3-71, 14-3, 15-14, 15-26, 15-31,

15-32, 15-33, 15-34, 15-37, 15-38, 15-39
FIFOs 3-74
fildes 3-64, 9-12, 9-21, 10-1, 15-9, 15-11, 15-12, 15-13, 15-15,

15-16, 15-19, 15-23, 15-25, 15-26, 15-28, 15-30, 15-
36, 15-37, 15-38, 15-39, 15-41, 15-47, 15-51, 15-52,
15-60

FILE 3-7, 3-29, 3-44, 3-47, 3-102, 3-104, 13-4, 13-45, 14-1,
14-2, 14-3, 14-5, 14-12, 15-2, 15-5, 15-7, 15-8, 15-
14, 15-42

file descriptor 11-14
file pointer, read/write

move 15-26
file status

get 15-9
file system

get information 15-12
file tree

recursively descend 15-17
file.dir 3-21
file.pag 3-21
file_name 3-72
file_to_decimal 3-25
file_to_decimal() 3-26
filename 15-5
files

allows sections of file to be locked 15-23
move read/write file pointer 15-26
set a file to a specified length 15-15

finite 3-38
finite() 3-38
flags 15-17, 15-28, 15-30
float 3-59, 3-91, 3-92
floating_form 3-24
floating_to_decimal 3-24
floating_to_decimal() 3-24
floatingpoint.h 3-23, 3-24, 3-27
flockfile 3-7, 3-8
floor 7-5
fmtmsg 3-2
fmulq 3P-4
fn 15-17, 15-18
fopen 13-4, 13-45, 14-1, 14-4, 14-5, 14-9, 15-2
fopen() 3-44
fopen64 15-2, 15-5, 15-6, 15-7, 15-14, 15-25, 15-42
fork 3-84, 3-106, 10-4, 10-8, 10-14, 10-43, 12-2, 12-3, 13-12,

Index __

Index-10 SPARC Compliance Definition 2.4 Interface Semantics 1998

13-16, 13-17, 13-35, 15-22, 15-29, 15-30, 15-52, 15-
54, 15-59

fork() 3-12, 3-13, 3-15, 3-107, 3-108, 12-1, 12-3
fork1 12-3
fork1() 3-108, 12-3
format 13-19
Fortran 3-25
fortran_conventions 3-25, 3-26
fortran_converstion 3-25
FP 3P-3
fp 3-44
fp_except 3-39
fp_exception_field_type 3-23, 3-24
fp_inexact 3-23, 3-24
FP_NDENORM 3-38
FP_NINF 3-38
FP_NNORM 3-38
fp_normal 3-23
FP_NZERO 3-38
fp_overflow 3-24
FP_PDENORM 3-38
FP_PINF 3-38
FP_PNORM 3-38
FP_PZERO 3-38
FP_QNAN 3-38
FP_RM 3-39
FP_RN 3-39
fp_rnd 3-39
FP_RP 3-39
FP_RZ 3-39
fp_signaling 3-26
FP_SNAN 3-38
fp_subnormal 3-23
FP_X_DZ 3-39
FP_X_IMP 3-39
FP_X_INV 3-39
FP_X_OFL 3-39
FP_X_UFL 3-39
fpclass 3-24, 3-38
fpclass_t 3-38
fpgetmask 3-39
fpgetmask() 3-39
fpgetround 3-39
fpgetround() 3-38, 3-39
fpgetsticky 3-39
fpgetsticky() 3-40
fpos_t 15-2
fpos64_t 15-2, 15-8
fprint 13-21
fprintf 13-19, 13-21
fpsetmask 3-39
fpsetmask() 3-39, 3-40
fpsetround 3-39
fpsetround() 3-39
fpsetsticky 3-39
fpsetsticky() 3-40
FPU 3-66
FPUs 3-66
fputwc 14-3, 14-5

fputws 14-5
fqtod 3P-4
fqtoi 3P-4
fqtos 3P-4
FqTOx 3-99, 3-100
fqtox 3P-5
fractional 3-92
fread 13-45, 14-1, 14-2, 14-9, 15-25
free 3-56, 9-22
free() 3-56, 3-57
freenetconfigent 9-19
freopen 13-4, 13-45, 15-2
freopen64 15-2, 15-5, 15-6
frexp() 3-59
fromcode 3-52
fs_index 3-80
fsblkcnt64_t 15-12
fscanf 14-1
fscanf() 3-23
fseek 13-4, 14-12, 15-5, 15-6
fseeko 15-2
fseeko64 15-2, 15-7, 15-14
fsetpos 14-12, 15-2
fsetpos64 15-2, 15-5, 15-8
fsfilcnt64_t 15-12
fsname 3-80
fsqrtq 3P-5
FSR 3P-6
fsrc 3-38
fstat 15-2, 15-9
fstat64 15-2, 15-9, 15-11
fstatvfs 15-2, 15-12
fstatvfs64 15-2, 15-12, 15-13
fstoi 3P-6
fstoq 3P-5
FsTOx 3-91, 3-92
FSTYPSZ 3-80
fsubq 3P-5
fsync 10-3, 10-4, 10-5, 10-6, 10-11, 15-49, 15-50, 15-53, 15-54
ftell 15-14
ftello 15-2, 15-14, 15-15
ftello64 15-2, 15-14
ftime 13-29
ftpd 3-19, 3-20
ftruncate 3-41, 15-2, 15-15
ftruncate() 3-41, 3-42
ftruncate64 15-2, 15-15, 15-16
ftw 15-1, 15-17, 15-18
ftw.h 15-1, 15-17
FTW_CHDIR 15-17, 15-18
FTW_D 15-17, 15-18
FTW_DEPTH 15-17
FTW_DNR 15-17, 15-18
FTW_DP 15-18
FTW_F 15-17, 15-18
FTW_MOUNT 15-17
FTW_NS 15-17, 15-18
FTW_PHYS 15-17
FTW_SL 15-18

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-11

FTW_SLN 15-18
ftw64 15-1, 15-17, 15-18
full-duplex 11-19
func_to_decimal 3-25
func_to_decimal() 3-26
function 13-6
funlockfile 3-7, 3-8
fwrite 15-25
FxTOq 3-98, 3-101
G
gconvert 3-27
gconvert() 3-24, 3-27, 3-28
gcvt 3-27
gcvt() 3-28
get_myaddress 9-2, 9-3, 9-6
getc 3-8, 13-45, 14-1
getc_unclocked 3-7
getc_unlocked 3-8
getchar 14-1
getchar_unclocked 3-7
getchar_unlocked 3-8
getcontext 3-116
getcontext(BA_OS) 3-116
getcwd 3-73, 13-39
getdents 3-43, 13-3, 15-2, 15-19
getdents() 3-43
getdents64 15-2, 15-19, 15-41, 15-43, 15-45
getdtablesize 13-30, 15-22
GETFSIND 3-80
GETFSTYP 3-80
getgid 13-46
getgrent 3-109
getgrent_r 3-109, 3-121
getgrgid_r 3-8, 3-114
getgrnam_r 3-114
getgwent() 3-46
gethostbyaddr 11-6, 11-31
gethostbyname 11-6, 11-30, 11-31, 11-32, 11-33
gethostent 11-30
gethostid 13-31, 13-32
gethostname 9-22, 9-23, 13-32
getitimer 13-12, 13-16, 13-17, 13-18
getitimer(RT_OS) 3-107, 3-108
getlogin 3-111
getlogin() 3-30
getlogin_r 3-111
getmntany 3-44
getmntany() 3-44
getmntent 3-44
getmntent() 3-44
getmsg 15-33, 15-35, 15-37
getmsg() 3-62, 3-64
getnetbyaddr 11-22, 11-23
getnetbyaddr_r 11-22, 11-23
getnetbyname 11-22, 11-23
getnetbyname_r 11-22, 11-23
getnetconfig 9-19, 9-20, 9-22, 9-23
getnetconfigent 9-19, 9-20

getnetent 11-22, 11-23
getnetent_r 11-22, 11-23
getnetpath 9-19, 9-20, 9-23
GETNFSTYP 3-80
getopt 3-4
getpagesize 13-7, 13-33, 13-37
getpeername 11-7
getpid 15-46
getpriority 13-34, 13-35
getprontoent 11-25
getprotent 11-24
getprotent_r 11-24
getprotobyaddr 11-25
getprotobyname 11-8, 11-24, 11-25, 11-34, 11-36
getprotobyname(3N) 11-17
getprotobyname_r 11-24, 11-25
getprotobynumber 11-8, 11-24, 11-25
getprotobynumber_r 11-24, 11-25
getprotoent 11-8, 11-24, 11-25
getprotoent_r 11-24, 11-25
getpw 3-46
getpw() 3-46
getpwent() 3-46
getpwent_r 3-112, 3-113
getpwent_r() 3-112
getpwnam() 3-30, 3-46
getpwnam_r 3-111, 3-114
getpwuid_r 3-111, 3-114
getrlimit 3-71, 13-12, 13-15, 13-16, 13-30, 13-33, 15-2, 15-20,

15-30, 15-35, 15-38
getrlimit() 3-57, 3-68
getrlimit(BA_OS) 3-106, 3-108
getrlimit64 15-2, 15-4, 15-20, 15-21, 15-22, 15-38, 15-39
getrpcbyname 9-17, 9-18
getrpcbyname_r 9-17, 9-18
getrpcbynumber 9-17, 9-18
getrpcbynumber_r 9-17, 9-18
getrpcent 9-17, 9-18
getrpcent_r 9-17, 9-18
getrpcport 9-2, 9-3, 9-6
getrpcyname_r 9-18
getrusage 13-22, 13-36, 13-37
gets 14-1
getservbyname 11-9, 11-26, 11-27, 11-28, 11-30, 11-33
getservbyname_r 11-26, 11-27, 11-28
getservbyport 11-9, 11-26, 11-27, 11-28
getservbyport_r 11-26, 11-27, 11-28
getservent 11-26, 11-27, 11-28, 11-30
getservent_r 11-26, 11-27, 11-28
getsockname 11-10
getsockopt 11-17, 11-18, 11-34, 11-36
getsockopt(3N) 11-21
getspent 3-29
getspent() 3-29, 3-30, 3-31
getspent_r 3-29, 3-30
getspent_r() 3-29, 3-30, 3-31
getspnam 3-29
getspnam() 3-29, 3-30
getspnam_r 3-29

Index __

Index-12 SPARC Compliance Definition 2.4 Interface Semantics 1998

getspnam_r() 3-30
gettext 3-79, 6-1, 6-2, 6-3, 9-29
gettext() 3-67
gettimeofday 3-32, 13-5, 13-29
getuid 13-47
getutent 3-81
getutent() 3-35, 3-36
getutmp 3-34
getutmp() 3-35
getutmpx 3-34
getutmpx() 3-36
getutx() 3-35
getutxent 3-34
getutxent() 3-34, 3-35, 3-36
getutxid 3-34
getutxid() 3-34, 3-35, 3-36
getutxline 3-34
getutxline() 3-34, 3-35, 3-36
getvfsany 3-47
getvfsany() 3-47
getvfsent 3-47
getvfsent() 3-47
getvfsfile 3-47
getvfsfile() 3-47
getvfsspec 3-47
getvfsspec() 3-47
getwc 14-2
getwd 13-39
getwidth 14-6
getwidth.h 14-6
getws 14-2, 14-9
GID 13-46
gid_t 3-76, 3-102, 3-104, 3-109, 3-112, 13-46, 15-9
global errno 11-3
gmtime 3-8
gmtime_r 3-7, 3-8
grep 13-44
grp.h 3-102, 3-109, 3-114
H
h_addr_list 11-6
h_addrtype 11-6
h_aliases 11-6
h_cnt 9-22
h_host 9-21
h_hostservs 9-22
h_length 11-6
h_name 11-6
h_serv 9-21
halt 13-27
handlep 9-19
handler 13-17
hardware-specific serial number 3-5
hasmntopt 3-44
hasmntopt() 3-44
host 9-3, 9-9
host entry 11-6
HOST_ANY 9-22
HOST_ANYRepresents 9-22

HOST_BROADCAST 9-22
HOST_NOT_FOUND 11-6
HOST_SELF 9-6, 9-22
HOST_SELF_CONNECT 9-22
host2netname 9-4
hostaddress 11-6
hostent 11-6
hostid 13-31
hostname 3-5, 11-6
hosts 11-6
hostserv 9-22
hostservs 9-22
howto 13-27
htonl 11-30
htons 9-6, 11-28, 11-30
HUGE_VAL 7-2, 7-4, 7-6
hyperbolic 7-2
I
I/O operation 2-2
I_GRDOPT 3-62
I_RECVFD 15-33
I_SETSIG 13-17
I_SRDOPT 3-62
I_SWROPT 3-69
ICMP 11-35
icmp 11-8
iconv 3-49
iconv() 3-49, 3-50, 3-51, 3-52
iconv.h 3-49, 3-51, 3-52
iconv_close 3-51
iconv_close() 3-50, 3-51, 3-52
iconv_open 3-50, 3-52
iconv_open() 3-49, 3-51, 3-52
iconv_t 3-51, 3-52
ID 3-65, 9-4, 12-12, 12-17, 12-20
id 3-9, 3-65
id_t 3-9, 3-10, 13-34
ident 3-19
idtype 3-9, 3-10, 3-11, 3-65
idtype_t 3-9, 3-65
IEEE 3-23, 3-24, 3-28, 3-39, 13-21
IEEE Std 1003.1-1988 13-26
IEEE754 7-5
ieeefp.h 3-38, 3-39
ILL_BD 9-14
ilogb 7-2, 7-3
in.rexecd 11-32, 11-33
in.rshd 11-31, 11-32
in_addr 9-1, 11-11
inbuf 3-49
inbytesleft 3-49
index 13-40
inet 11-23
inet_addr 9-1
inet_lnaof 11-11
inet_makeaddr 11-11
inet_netof 9-1
inet_network 11-11

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-13

inet_ntoa 9-1
inetd 9-24, 9-25
INF 3-25
inf 3-25
inf_form 3-25
INFINITY 3-25
infinity_form 3-25
info 9-9
infop 3-66
init 3-10, 3-15, 3-86
INIT_PROCESS 3-35
initstate 13-41, 13-42
inittime 9-35
ino64_t 15-9, 15-19
inodes 15-4
inproc 9-3, 9-26
insque 3-53
insque() 3-53
int__sparc_utrap_install 3P-2
INT_MAX 7-3
int_sparc_utrap_install 3P-2
interface64 10-2, 10-4, 10-6
Internet address 9-1, 11-11
INTERNET ADDRESSES 9-1, 11-11
Intro 11-23
intro 9-18, 11-23, 11-25, 11-28, 13-17
Intro() 3-64
intro() 3-30, 3-31, 3-64, 3-69
INTRPT 9-14
invalid_form 3-26
ioctl 3-71, 3-84, 11-36, 13-17, 15-33, 15-37, 15-39
ioctl() 3-62, 3-64, 3-69
ioctl(2) 11-21
ioctls 3-85
iop 13-4
iov 3-62, 3-70
iov_base 3-63, 3-70
iov_len 3-63, 3-64, 3-70, 3-71
IOV_MAX 3-62, 3-64, 3-70, 3-71
iov0 3-62
iov1 3-62
iovcnt 3-62, 3-70
iovec 3-61, 3-63, 3-68, 3-70
IP 9-6
IPPROTO_TCP 9-6, 9-8
IPPROTO_UDP 9-6, 9-8
iptr 3-59
isenglish 14-7, 14-8
isideogram 14-7, 14-8
isnan 3-38, 7-5
isnan() 3-38, 3-40, 3-59
isnand 3-38
isnand() 3-38
isnanf 3-38
isnanf() 3-38
isnumber 14-7, 14-8
isphonogram 14-7, 14-8
isspace 3-25
isspecial 14-7, 14-8

iswalnum 14-7
iswalpha 14-7, 14-10, 14-11, 14-24
iswascii 14-7, 14-8
iswcntrl 14-7, 14-8
iswdigit 14-7
iswgraph 14-7, 14-8
iswlower 14-7
iswprint 14-7, 14-8
iswpunct 14-7, 14-8
iswspace 14-7, 14-21, 14-22, 14-23, 14-24
iswupper 14-7
iswxdigit 14-7
it_interval 3-107
it_value 3-107
ITIMER_REAL 3-107
itimerspec 10-45
J
jmp_buf 13-2
K
K fild 15-11
KE_OS 12-4, 12-6, 12-8
kernel 3-83
keyp 12-16
keyserv 9-4, 9-8
kill 10-41, 13-10, 13-12, 13-17, 13-43
killpg 13-43
L
l_linger 11-17, 11-34
l_onoff 11-17, 11-34
L_PROB 9-14
LC_COLLATE 6-2, 6-3, 14-18, 14-25
LC_CTYPE 6-2, 6-3, 14-7, 14-10, 14-11
LC_MESSAGES 3-67, 3-79, 6-1, 6-2, 6-3
LC_MONETARY 6-2, 6-3
LC_NUMERIC 6-2, 6-3, 14-21
LC_TIME 3-16, 3-18, 6-2, 6-3
LC_XXX 6-2, 6-3
LCK 9-14
ld 4-2
LD_BIND_NOW 4-7
LD_LIBRARY_PATH 4-8
ldexp() 3-59
len 3-55, 15-29, 15-30
level 15-17
libaio 15-60
libc 15-3, 15-7, 15-8, 15-9, 15-12, 15-14, 15-15, 15-17, 15-19,

15-20, 15-23, 15-26, 15-28, 15-31, 15-36, 15-38, 15-
40, 15-42, 15-46, 15-49

libelf.h 5-1, 5-2, 5-3, 5-4, 5-7, 5-8, 5-9, 5-10, 5-11, 5-12, 5-13,
5-14, 5-15, 5-16, 5-19, 5-20, 5-21, 5-22, 5-24, 5-25,
5-26, 5-27, 5-30

libintl.h 6-1
libposix4 15-47, 15-49, 15-51, 15-53, 15-55, 15-57
librpcsoc 9-3
libthread 12-22, 15-3, 15-31
libucb 15-43, 15-44
limits.h 3-13, 3-111, 3-121, 13-1, 13-22, 13-30
line 9-13

Index __

Index-14 SPARC Compliance Definition 2.4 Interface Semantics 1998

line->ut_line 3-35
linger 11-34
link 15-10, 15-11, 15-13
lintl 3-67, 3-79
lio_listio 10-4, 10-8, 10-9, 10-12, 10-13, 10-14, 15-1
lio_listio64 15-1, 15-52, 15-54, 15-55, 15-56, 15-57, 15-58, 15-

59
LIO_NOP 10-13, 15-58
LIO_NOWAIT 10-12, 10-13, 15-57, 15-58
LIO_READ 10-13, 10-14, 15-57
LIO_WAIT 10-12, 10-13, 10-14, 15-57, 15-58
LIO_WRITE 10-13, 10-14, 15-58, 15-59
listen 3-74, 3-75, 11-12
listen(3N 11-1
llseek 15-60, 15-61
loatingpoint.h 3-25
locale.h 6-1
localeconv 14-22
localeconv() 3-26
localedef 14-8
localtime 3-8
localtime_r 3-7, 3-8
LOCK_MAX 3-71, 15-39
lockd 13-16
lockf 15-2, 15-23, 15-24, 15-30
lockf64 15-2, 15-23, 15-24
locks 12-4
log 7-3, 7-4
LOG_ALERT 3-19
LOG_AUTH 3-20
LOG_CONS 3-20
LOG_CRIT 3-19
LOG_CRON 3-20
LOG_DAEMON 3-19
LOG_DEBUG 3-19
LOG_EMERG 3-19
LOG_ERR 3-19
LOG_INFO 3-19
LOG_KERN 3-19
LOG_LOCAL0 3-20
LOG_LPR 3-20
LOG_MAIL 3-19
LOG_MASK 3-20
LOG_NDELAY 3-20
LOG_NEWS 3-20
LOG_NOTICE 3-19
LOG_NOWAIT 3-20
LOG_ODELAY 3-20
LOG_PID 3-20
LOG_UPT 3-20
LOG_USER 3-19, 3-20
LOG_UUCP 3-20
LOG_WARNING 3-19
log1p 7-2, 7-4
logb 7-3, 7-7
logger() 3-20
login 3-105, 3-113
login() 3-20
LOGIN_PROCESS 3-35

LOGNAME_MAX 3-111
long 3-5
long double 3-98, 3-99, 3-100, 3-101
long long 3-88, 3-89, 3-90, 3-91, 3-92, 3-93, 3-96, 3-97, 3-98,

3-99, 3-101
LONG_MAX 3-13, 14-24
LONG_MIN 14-24
longjmp 13-2, 13-18, 15-18
longlong_t 9-30
lpc 3-20
lpr 3-20
lseek 3-71, 5-7, 10-4, 10-8, 10-14, 15-2, 15-26, 15-52, 15-54,

15-59, 15-61
lseek() 3-62, 3-64
lseek(BA_OS) 2-2
lseek64 15-2, 15-14, 15-26, 15-27, 15-35, 15-37, 15-39
lseeko64 15-4
lstat 15-2, 15-9
lstat6 15-10
lstat64 15-2, 15-9, 15-10
LWP 3-9, 3-10, 3-11, 3-12, 3-13, 3-14, 3-15, 3-65, 10-12, 10-

33, 10-36, 10-43, 10-44, 10-45, 10-46, 12-11, 15-57
LWPs 3-9, 3-10, 3-13, 3-15, 3-60, 3-65, 10-30, 10-31, 10-35
M
m_uaddr 9-23
MADV_DONTNEED 3-54, 3-55
MADV_NORMAL 3-54
MADV_RANDOM 3-54
MADV_SEQUENTIAL 3-54
MADV_WILLNEED 3-54
madvise 3-54
madvise() 3-54, 3-55
main 12-13
main thread 3-7
makecontext 3-116
malloc 3-56, 3-78, 3-117, 9-31, 9-32, 9-33, 9-34, 13-3, 13-4,

13-33, 13-40, 13-45, 14-13, 14-17, 15-18, 15-21, 15-
22, 15-43

malloc() 3-52, 3-56, 3-57
MAP_FAILED 15-29
MAP_FIXED 15-29, 15-30
MAP_NORESERVE 15-29
MAP_PRIVATE 15-28, 15-29, 15-30
MAP_SHARED 15-28, 15-29, 15-30, 16-1
mapmalloc() 3-57
maskpri 3-20
math.h 3-38, 3-59, 7-1, 7-2, 7-3, 7-4, 7-5, 7-6, 7-7
matherr 7-4, 7-7
MAXHOSTNAMELEN 13-32
MC_LOCK 13-6, 13-7
MC_LOCKAS 13-6, 13-7
MC_SYNC 13-6
MC_UNLOCK 13-6, 13-7
MC_UNLOCKAS 13-6, 13-7
MCL_CURRENT 13-6
MCL_FUTURE 13-6, 15-29
mctl 13-6, 13-7
mdep 3-82

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-15

megahertz 3-66
memalign 3-56
memalign() 3-56, 3-57
memcntl 13-7
memcntl(RT_OS) 3-107, 3-108
Memory 2-3
memory 11-21, 13-28
memory allocation 3-117
memory mappings 3-106
memory pages

map 15-28
memory segments 3-106
millitm 13-29
mincore 3-58
mincore() 3-58
mknod 15-10, 15-11, 15-13
mkstemp 15-2
mkstemp64 15-2, 15-46
mktemp 15-42, 15-46
mktime() 3-18
mlock 10-40, 13-6, 13-7
mlock() 3-58
mlockall 13-6, 13-7, 15-29, 15-30
mmap 3-117, 10-39, 10-40, 13-7, 13-33, 15-2, 15-21, 15-28
mmap() 3-55, 3-58
mmap(KE_OS 12-1
mmap(KE_OS) 3-106, 3-108, 12-4, 12-6, 12-8
mmap64 15-2, 15-24, 15-25, 15-28, 15-29, 15-30
mmapping 15-30
mmappings 15-30
mnt 3-44
mnt_fstype 3-44
MNT_LINE_MAX 3-44
mnt_mntopts 3-44
mnt_mountp 3-44
mnt_special 3-44
mnt_time 3-44
MNT_TOOFEW 3-45
MNT_TOOLONG 3-44
MNT_TOOMANY 3-45
mnttab 3-44
mnttab() 3-44, 3-45
mode 13-4
mode_t 3-21, 10-38, 15-3, 15-9
modem 9-13
modf 3-59
modf() 3-59
modff 3-59
modff() 3-59
more 15-23
mp 3-44
mpref 3-44
mprotect 13-33, 15-30
mq_attr 10-16, 10-18, 10-21, 10-22
mq_close 10-15, 10-17, 10-18, 10-20, 10-23
mq_curmsgs 10-16, 10-22
mq_flags 10-16, 10-21
mq_getattr 10-16
mq_maxmsg 10-16, 10-21, 10-22

mq_msgsize 10-16, 10-22
mq_notify 10-15, 10-17
mq_open 10-15, 10-16, 10-17, 10-18, 10-19, 10-20, 10-21, 10-

22, 10-23
MQ_OPEN_MAX 10-20
MQ_PRIO_MAX 10-22
mq_receive 10-16, 10-17, 10-18, 10-19, 10-20, 10-21, 10-22
mq_send 10-16, 10-17, 10-18, 10-19, 10-20, 10-21, 10-22
mq_setattr 10-16, 10-20, 10-21, 10-22
mq_unlink 10-15, 10-20, 10-23
mqd_t 10-15, 10-16, 10-18, 10-21, 10-22
mqdes 10-16, 10-17, 10-21, 10-22
mqstat 10-16
mqueue.h 10-15, 10-16, 10-17, 10-18, 10-21, 10-22, 10-23
MS_ASYNC 13-6
MS_INVALIDATE 13-6
MS_SYNC 13-6
MSG_DONTROUTE 11-15
msg_iov 11-13
msg_len 10-21, 10-22
msg_name 11-13
MSG_OOB 11-13, 11-15, 11-18, 11-35
MSG_PEEK 11-13
msg_prio 10-21, 10-22
msg_ptr 10-21
msgfmt 6-3
msghdr 11-13
msgid 6-2
msync 13-6, 13-7, 13-33, 15-30
MT 9-26, 9-27
Multiple processes 16-1
multiple protocol levels 11-17
multiple threads 12-5
multi-threaded 3-108
multithreaded applications 3-109, 3-112
multi-threaded process 3-108
multithreading 3-7, 3-114
munlock 13-6
munmap 13-33, 15-28, 15-30
mutex 12-1, 12-4, 12-5
mutex_destroy 12-4
mutex_init 12-4
mutex_lock 12-4, 12-5
mutex_t 12-1, 12-4
mutex_trylock 12-4, 12-5
mutex_unlock 12-4, 12-5
Mutexes 12-4
mutexes 12-5
Mutual exclusion 12-4
mylib.so 4-8
N
n_addrs 9-21
n_addrtype 11-23
n_aliases 11-23
n_cnt 9-21
n_name 11-23
n_net 11-23
name space 11-3

Index __

Index-16 SPARC Compliance Definition 2.4 Interface Semantics 1998

NAME_MAX 3-42, 3-72, 3-119, 10-20, 10-23, 10-34, 10-37,
10-39, 10-40, 15-4, 15-12, 15-13, 15-15, 15-34, 15-
40

namelen 11-7
nametoaddr 11-28
NAN 3-25
NaN 3-24, 3-28, 3-38, 3-59, 7-1, 7-2, 7-3, 7-4, 7-5, 7-6, 7-7
nan_form 3-25
nanosleep 10-24
NaNs 3-28, 3-38
nanstring_form 3-25
nbyte 3-43, 3-61, 3-69, 3-71, 15-19
nbytes 3-70, 15-51
nc_perror 9-19, 9-20
nc_sperror 9-19, 9-20
ND_ADDR 9-22
ND_ADDRLIST 9-22
nd_addrlist 9-21, 9-22
ND_CHECK_RESERVEDPORT 9-22
ND_CHECK_RESERVEDPORTUsed 9-23
ND_HOSTSERV 9-22
nd_hostserv 9-21, 9-22
ND_HOSTSERVLIST 9-22
nd_hostservlist 9-21, 9-22
ND_MERGEADDR 9-22
ND_MERGEADDRUsed 9-23
nd_mergearg 9-23
ND_SET_BROADCAST 9-22
ND_SET_BROADCASTSets 9-23
ND_SET_RESERVEDPORT 9-22, 9-23
ndbm.h 3-21
ndigit 3-27
nelem 3-56, 3-57
nent 10-9, 15-58
net/if.h 11-29
netaddr 9-21
netbuf 9-9, 9-10, 9-21, 9-22, 9-26
netbufs 9-22
netconf 9-12, 9-24
netconfig 9-9, 9-19, 9-20, 9-21, 9-23, 9-24, 11-1, 11-28
netconfig() 3-22
netconfig(4) 11-1
netconfig.h 9-19
netconfigp 9-19
netdb.h 11-6, 11-8, 11-9, 11-22, 11-23, 11-24, 11-25, 11-26
netdir 9-6, 9-21, 11-28
netdir.h 9-21
netdir_free 9-21, 9-22
netdir_getbyaddr 9-21, 9-22, 11-28
netdir_getbyname 9-6, 9-21, 11-28
netdir_mergeaddr 9-21
netdir_options 9-21, 9-22, 9-23
netdir_perror 9-21, 9-23
netdir_sperror 9-21, 9-23
netent 11-22, 11-23
netid 9-19
netinet/if_ether.h 11-29
netinet/in.h 9-1, 11-11, 11-29, 11-30
NETPATH 9-10, 9-19, 9-20

network is not reachable 11-5
networks 11-23
new_deferred 3P-2
new_level 12-14
new_precise 3P-2
new_thread 12-11
NEW_TIME 3-35
NEWLINE 3-19, 9-19, 13-8, 13-44, 13-45, 14-5, 14-9
next_handle 8-2, 8-4
nextinfo 8-3
nfds 3-74, 3-75
NFS 3-55
nftw 15-1, 15-17, 15-18
nftw64 15-1, 15-17, 15-18
nice 13-1, 13-35
nice() 3-15
nice(KE_OS) 3-106, 3-108
NIS 3-31, 3-46, 8-1, 8-2, 8-3, 8-4, 11-24, 11-25
nis_attr 8-2, 8-3, 8-4
nis_tables 8-3
nispasswd() 3-30
nlink_t 15-9
NLSPATH 6-1
nmax 3-25
NO_ADDRESS 11-6
NO_ANS 9-14
NO_BD_A 9-14
NO_BD_K 9-14
NO_DATA 11-6
NO_Ldv 9-14
NO_RECOVERY 11-6
NOASSIGN 9-15
non- daemon threads 12-11
non-blocking 11-1, 11-2, 11-4, 11-16
non-blocking I/O 11-21
non-NULL 12-16
non-zero 3-4, 12-9
nonzero 3-26
normative references 1-1
NORUN 9-15
notification 10-17
NP 3-31
NSIG 13-8
nsigned long long 3-95
nss 13-13
nsswitch 11-25, 11-28
nsswitch.con 11-26
nsswitch.conf 9-17, 9-18, 11-22, 11-23, 11-24, 11-25, 11-28,

11-29
nstring 3-25
ntohl 11-30
ntohs 11-30
NUL 3-113
NULL 2-4, 3-7, 3-8, 3-25, 3-66, 3-105, 3-112, 3-114, 4-6, 4-8,

4-10, 11-8, 11-13, 12-12, 12-16, 12-17, 12-21, 13-3,
13-15, 15-40

NULL, 11-9, 12-17
numattrs 8-2
nvec 13-14, 13-15

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-17

NZERO 13-1
O
O 15-31, 15-33
o ERANG 3-113
O_APPEND 3-68, 10-7, 15-31, 15-52
O_CREAT 10-19, 10-20, 10-23, 10-29, 10-33, 10-34, 10-38,

10-39, 15-3, 15-31, 15-32, 15-33, 15-34
O_DSYNC 10-5, 10-6, 10-11, 10-13, 15-32, 15-49, 15-50, 15-

58
O_EXCL 10-19, 10-33, 10-34, 10-38, 10-39, 15-32, 15-33, 15-

34
O_LARGEFILE 15-32, 15-34
O_NDELAY 3-61, 3-63, 3-68, 3-69, 3-70, 15-32, 15-36, 15-38,

15-40, 15-41, 15-44
O_NOCTTY 15-32
O_NODELAY 15-33
O_NONBLOCK 3-61, 3-63, 3-68, 3-69, 3-70, 10-16, 10-19,

10-21, 10-22, 14-1, 14-3, 15-32, 15-33, 15-34, 15-36,
15-38, 15-40, 15-41, 15-44

O_RDONLY 10-18, 10-19, 10-38, 15-31, 15-32, 15-33
O_RDWR 10-19, 10-33, 10-38, 10-39, 15-23, 15-31, 15-33,

15-34, 15-35
O_RSYNC 15-32
O_SYNC 3-68, 10-5, 10-6, 10-13, 15-32, 15-33, 15-49, 15-50,

15-58
O_TRUNC 10-39, 15-3, 15-33, 15-34
O_WRONLY 10-18, 10-19, 15-3, 15-23, 15-31, 15-32, 15-33,

15-34, 15-35
obind 3-65
objects_len 8-3
objects_val 8-3
OEXCL 10-38
off 3-61, 15-28, 15-30
off_t 2-2, 3-41, 3-61, 3-63, 3-68, 3-118, 5-17, 15-2
off32_t 5-15, 5-27
off64_t 15-2, 15-7, 15-9, 15-14, 15-15, 15-19, 15-20, 15-23,

15-24, 15-26, 15-28, 15-32, 15-34, 15-36, 15-38, 15-
47, 15-49, 15-51, 15-53, 15-55, 15-57, 15-60

offset 5-15, 5-26, 15-7, 15-26, 15-36, 15-38, 15-51, 15-52, 15-
60

oflag 10-33, 15-31, 15-32, 15-33, 15-34, 15-35
old_deferred 3P-2
old_precise 3P-2
OLD_TIME 3-35
oll 14-24
omqstat 10-16
op 10-5, 15-49
opcode 3-80
opcodes 3-80
open 3-71, 9-14, 10-6, 10-11, 13-4, 13-30, 15-1, 15-31
open a file 15-31
open() 3-21, 3-22, 3-42, 3-64
OPEN_MAX 3-52, 10-20, 10-34, 10-39, 13-30, 15-21, 15-34
open64 15-1, 15-3, 15-4, 15-6, 15-9, 15-12, 15-13, 15-16, 15-

22, 15-25, 15-27, 15-31, 15-32, 15-33, 15-34, 15-37,
15-39, 15-42, 15-46, 15-50, 15-61

opendir() 3-43
openlog 3-19, 3-20

openlog() 3-20
opt 3-44
options 13-23
oset 12-21
oss 13-13
oucp 3-116
outbuf 3-49
outbytesleft 3-49
outproc 9-3
ovec 13-14
OVERFLOW 10-8
P
p_aliases 11-8, 11-25
p_align 5-3
P_ALL 3-9
P_CID 3-9
p_filesz 5-3
p_flags 5-3
P_GID 3-9
P_LWPID 3-9, 3-11, 3-65
p_memsz 5-3
P_MYID 3-9, 3-65
p_name 11-8, 11-25
P_OFFLINE 3-60, 3-66
p_offset 5-3
P_ONLINE 3-60, 3-66
p_online 3-60
p_online() 3-65, 3-66
p_paddr 5-3
P_PGID 3-9
P_PID 3-9, 3-65
P_POWEROFF 3-60, 3-66
P_PPID 3-9
p_proto 11-8, 11-25
P_SID 3-9
P_STATUS 3-60
p_type 5-3
P_UID 3-9
p_vaddr 5-3
pa 15-28, 15-29
pagesize 13-33
param 10-26
passwd() 3-30, 3-46
password 3-112
password database 3-112
path 15-4, 15-9, 15-10, 15-11, 15-12, 15-13, 15-17, 15-31, 15-

33, 15-35
PATH_MAX 3-42, 3-72, 3-119, 10-20, 10-34, 10-37, 10-39,

10-40, 13-39, 15-4, 15-10, 15-13, 15-15, 15-34
path_name 13-39
pathconf 15-40
PBIND_NONE 3-65
PBIND_QUERY 3-65
PC_ADMIN 3-11
pc_cid 3-10, 3-11, 3-14
pc_clinfo 3-10, 3-11, 3-14
PC_CLINFOSZ 3-10
pc_clname 3-10, 3-11

Index __

Index-18 SPARC Compliance Definition 2.4 Interface Semantics 1998

pc_clnameis 3-10
PC_CLNMSZ 3-10
PC_CLNULL 3-10, 3-11
pc_clparms 3-10, 3-11, 3-14
PC_CLPARMSZ 3-10
PC_GETCID 3-9, 3-10, 3-12, 3-13, 3-14
PC_GETCLINFO 3-10, 3-11, 3-12, 3-13, 3-14
PC_GETPARMS 3-10, 3-11, 3-12, 3-13, 3-14
PC_SETPARMS 3-10, 3-11, 3-12, 3-14
pcinfo_t 3-10, 3-11
pcontext 3-116
pcparms_t 3-11
pechar 3-25, 3-26
peer 11-7
perror 9-29, 13-8, 15-42
perror() 3-67
pf 3-26
PF_INET 11-20
pfdp 9-26, 9-27
pfmt.h 3-4
pform 3-25, 3-26
pge 3-26
pget 3-25, 3-26
pget() 3-26
pgrp 13-43
pi_clock 3-66
PI_FPUTYPE 3-66
pi_fputypes 3-66
pi_processor_type 3-66
pi_state 3-66
PI_TYPELEN 3-66
PID 3-65
pid 10-25, 10-26
pid_t 3-84, 3-106, 3-107, 10-41, 12-3, 13-43
pinfo 3-67
pipe 3-71, 11-37, 15-6, 15-9, 15-10, 15-11, 15-12, 15-13, 15-

37, 15-39
pipe() 3-64
PIPE_BUF 3-69, 3-70, 15-38
plock 15-30
plock(KE_OS) 3-107, 3-108
pmadm 9-15, 9-16
pmap_getmaps 9-2, 9-3, 9-6
pmap_getport 9-2, 9-3, 9-6
pmap_rmtcall 9-2, 9-3, 9-6
pmap_set 9-2, 9-3, 9-6
pmap_unset 9-2, 9-3
pmaplist 9-3
PMAPPORT 9-6
pnread 3-25, 3-26
pointer_to_args 9-22, 9-23
poll 3-75, 9-27, 9-28, 11-15, 13-49
poll(2) 11-1
poll(3C) 11-4
pollretval 9-26, 9-27
pop 9-15
popen 15-7
PORTMAP 9-3
portmap 9-8

portp 9-3, 9-6
pos 15-8
POSIX 3-8, 10-35, 12-24, 14-21, 14-24, 15-40
POSIX 1003.1c 3-108, 3-111, 3-115, 3-121, 12-24
POSIX.4 10-31, 10-32, 10-33, 10-35, 10-36
POSIX.4a 11-25
POSIX.4a Draft #6 3-78
POSIX.4a Draft 6 11-25
POSIX_PATH_MAX 3-121
pread 3-61, 15-2, 15-36
pread() 3-63, 3-64
pread64 15-2, 15-27, 15-36, 15-37
pred 3-53
pri 3-20, 12-15
printf 13-19, 13-21, 13-45, 14-9, 14-19, 14-20
printf() 3-19, 3-20, 3-24
PRIO_PGRP 13-34
PRIO_PROCESS 13-34
PRIO_USER 13-34
priocntl 3-9, 3-10, 13-1
priocntl() 3-10, 3-11, 3-12, 3-13, 3-14, 3-15
priocntl(RT_OS) 3-106, 3-108
priocntlset() 3-15
priority 12-15
proc 9-30
Procedure Call domain name 3-6
process 12-3
process group ID 3-106
process ID 12-3
processes

read directory entries and put in a file system independent
format 15-19

read from file 15-36
processor_bind 3-65
processor_bind() 3-60
processor_info 3-66
processor_info() 3-60
processor_info_t 3-66
processorid 3-65, 3-66
processorid_t 3-60, 3-65, 3-66
procname 9-3
procnum 9-3, 9-35
procset 3-11
prognum 9-3, 9-8, 9-9, 9-24, 9-35
PROM 13-31
PROT_EXEC 15-28
PROT_NONE 15-28
PROT_READ 15-28
PROT_WRITE 15-28, 15-30
protocol 9-3, 11-2
protocol name 11-9
protocols 11-24, 11-25
protoent 11-8, 11-24
ps 3-23
pset_bind() 3-65
pset_create() 3-60
psiginfo 3-67
psiginfo() 3-67
psignal 3-67, 3-79, 13-8

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-19

psignal() 3-67
psradm 3-60, 3-65, 3-66
psrinfo 3-60, 3-65, 3-66
ptr 3-56, 3-57, 5-19, 5-25
ptrace 13-12, 13-17, 13-23, 13-25
ptrace(KE_OS) 3-108
punget 3-25, 3-26
punget() 3-26
push 9-15
putc 13-21, 13-45
putc_unlocked 3-7, 3-8
putchar_unlocked 3-7, 3-8
putmntent 3-44
putmntent() 3-44, 3-45
putmsg 15-33, 15-35
puts 13-45
pututxline 3-34
pututxline() 3-35, 3-36
putwc 14-9
putws 14-2, 14-9
pwd.h 3-104, 3-114
pwrite 3-68, 3-70, 3-71, 15-2, 15-38
pwrite() 3-70
pwrite64 15-2, 15-27, 15-38, 15-39
Q
q_back 3-53
q_data 3-53
q_forw 3-53
qeconvert 3-27
qeconvert() 3-28
qelem 3-53
qfconvert 3-27
qfconvert() 3-28
qgconvert 3-27
qgconvert() 3-28
Qp_add 3P-3
Qp_cmp 3P-3
qsort 13-3, 15-43
quad precision 3-98
quad precision value 3-101
quadruple 3-23, 3-24
quadruple_to_decimal 3-24
R
r_aliases 9-18
r_name 9-18
r_number 9-18
rand 3-8, 13-9, 13-41, 13-42
rand_r 3-7, 3-8, 3-114
random 13-9, 13-41, 13-42
RB_ASKNAME 13-27
RB_AUTOBOOT 13-27
RB_HALT 13-27
rcmd 11-31
RE_AUTOBOOT 13-27
re_comp 13-44
re_comp.h 13-44
re_exec 13-44
read 3-61, 3-75, 9-14, 10-3, 10-4, 10-6, 10-8, 10-11, 10-14, 11-

35, 11-37, 13-12, 13-16, 13-17, 13-37, 13-38, 14-12,
15-4, 15-10, 15-11, 15-13, 15-25, 15-27, 15-32, 15-
33, 15-35, 15-36, 15-44, 15-45, 15-50, 15-52, 15-53,
15-54, 15-59, 15-60, 15-61

read a directory entry 15-40
read from file 15-36

pread 15-36
readv 15-36

read() 2-2, 3-61, 3-62, 3-63, 3-64, 3-68
read(2) 11-14, 11-20
read(BA_OS) 2-2
read/write file pointer

move 15-26
read64 15-37, 15-41
readdir 3-114, 13-3, 15-1, 15-2, 15-40
readdir_r 3-114, 15-1
readdir64 15-1, 15-2, 15-40, 15-41, 15-43, 15-44
readdir64_r 15-1, 15-40, 15-41
readers/writer 12-6
readers/writer lock 12-6
readfs 3-74
Read-Only Memory 3-5
readv 3-61, 15-36, 15-37, 15-41, 15-44, 15-45
readv() 3-62, 3-63, 3-64
realloc 3-56
realloc() 3-56, 3-57
realpath 3-72, 3-73
reboot 13-27
recv 11-13, 11-35
recv(3N) 11-15, 11-20
recvfrom 11-13
recvmsg 11-13
recvsz 9-3, 9-12
reentrant 3-7, 3-114
ref 5-7
regcmp 13-44
regcomp 13-44
regexec 13-44
regexp 13-44
regexpr 13-44
register 13-4
registerrpc 9-2, 9-3
registerrrpc 9-8
reldir 3-72
remque 3-53
remque() 3-53
req 9-10
resolved_name 3-72
resource 15-20
resultp 2-1, 2-3, 15-60
resultproc_t 9-2, 9-35
return a file offset in a stream

ftell 15-14
ftello 15-14

rewind 13-4, 14-12, 15-5
rexec 11-32, 11-33
rexecd 11-33
rgid 13-46
rindex 13-40

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-20

rint 7-5
rlim_cur 15-20, 15-22
RLIM_INFINITY 15-20, 15-21
rlim_max 15-20, 15-22
RLIM_SAVED_CUR 15-21
RLIM_SAVED_MAX 15-21
rlim_t 15-20, 15-21
rlim64_t 15-20
rlimit 15-2, 15-20
RLIMIT_AS 15-21
RLIMIT_CORE 15-20
RLIMIT_CPU 15-20
RLIMIT_DATA 15-20
RLIMIT_FSIZE 15-20, 15-21
RLIMIT_NOFILE 13-30, 15-20, 15-21
RLIMIT_STACK 15-21
RLIMIT_VMEM 15-21, 15-30
rlimit64 15-2, 15-20
rlogin 11-32
RM 3P-6
rmtp 10-24
routine 11-33
RPC 9-3, 9-4, 9-5, 9-6, 9-7, 9-8, 9-10, 9-11, 9-12, 9-17, 9-18,

9-24, 9-25, 9-26, 9-27, 9-28, 9-30, 9-32, 9-33, 9-34
rpc 9-8, 9-12, 9-18, 9-24, 9-25, 9-28, 9-31, 9-32, 9-33, 9-34
rpc/rpc.h 9-2, 9-3, 9-9, 9-24, 9-26, 9-35
rpc/rpcent.h 9-17
rpc/xdr.h 9-30, 9-33
RPC_ANYFD 9-12
RPC_ANYSOCK 9-3, 9-5, 9-7, 9-8
rpc_broadcast 9-4, 9-35
rpc_broadcast_exp 9-35
rpc_call 9-4
rpc_clnt_auth 9-4, 9-8, 9-11, 9-12
rpc_clnt_calls 9-4, 9-5, 9-6, 9-8, 9-11, 9-12
rpc_clnt_create 9-5, 9-8, 9-9
rpc_control 9-27, 9-28
rpc_createerr 9-6, 9-9, 9-10, 9-12
rpc_msg 9-25
rpc_reg 9-8, 9-24
rpc_soc 9-2
rpc_svc_calls 9-7, 9-8, 9-25, 9-26
rpc_svc_create 9-7, 9-8, 9-12, 9-25, 9-27, 9-28
rpc_svc_err 9-8, 9-25, 9-28
rpc_svc_reg 9-7, 9-8, 9-24, 9-28
RPC_TIMEDOUT 9-10
RPC_UNKNOWNADDR 9-12
RPC_UNKNOWNPROTO 9-12
rpc_xdr 9-8
rpcb_getaddr 9-6
rpcb_getmaps 9-6
rpcb_rmtcall 9-6
rpcb_set 9-6
rpcb_unset 9-6
rpcbind 9-6, 9-8, 9-12, 9-24, 9-25
rpcent 9-17, 9-18
rpcgen 9-28
rpcinfo 9-8, 9-18
rpcsvc/nis.h 8-1, 8-2, 8-3

rpcsvc/nis_db.h 8-1, 8-2
rqst 9-25
rqtp 10-24
rresvport 11-31, 11-32
rsh 11-32
rt_dptbl() 3-13, 3-15
rt_maxpri 3-12
RT_NOCHANGE 3-13
rt_pri 3-12
RT_TQDEF 3-13
RT_TQINF 3-13
rt_tqnsecs 3-12, 3-13
rt_tqsecs 3-12, 3-13
RTLD_LAZY 4-7, 4-8
RTLD_NOW 4-7
ru_idrss 13-36, 13-37
ru_inblock 13-36, 13-37
ru_majflt 13-36, 13-37
ru_maxrss 13-36, 13-37
ru_minflt 13-36, 13-37
ru_msgrcv 13-36, 13-37
ru_msgsnd 13-36, 13-37
ru_nivcsw 13-36, 13-37
ru_nsignals 13-36, 13-37
ru_nswap 13-36, 13-37
ru_nvcsw 13-36, 13-37
ru_oublock 13-36, 13-37
ru_stime 13-36
ru_utime 13-24, 13-36
run 9-15
RUN_LVL 3-35
runwait 9-15
rusage 13-23, 13-36
RUSAGE_CHILDREN 13-36
RUSAGE_SELF 13-36
ruserok 11-31
rw_rdlock 12-6
rw_tryrdlock 12-6, 12-7
rw_trywrlock 12-6, 12-7
rw_unlock 12-6, 12-7
rw_wrlock 12-6, 12-7
rwlock_destroy 12-6
rwlock_init 12-6
rwlock_t 12-6
rwlp 12-7
S
s_aliases 11-9, 11-27
S_IFLNK 15-10
S_ISGID 3-41, 3-69, 15-3, 15-31
S_ISUID 3-41, 3-69
s_name 11-9, 11-27
s_port 11-9, 11-27
s_proto 11-9, 11-27
s_uaddr 9-23
SA_NOCLDWAIT 13-36
SA_RESTART 3-75
SA_SIGINFO 10-7, 10-13, 10-17, 10-41, 10-43, 15-52, 15-58
sac.h 9-15

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-21

sacadm 9-15, 9-16
SB 9-4
sbrk 3-117, 15-21
sbrk(0) 3-117
SC_ADD 3-118, 3-119, 3-120
SC_GETNSWP 3-118, 3-119
SC_LIST 3-118, 3-119
SC_REMOVE 3-118, 3-119, 3-120
scalb 7-7
scalbn 7-6
scandir 13-3, 15-2
scandir64 15-2, 15-43, 15-45
scanf 13-21, 14-1, 14-2, 14-19, 14-20, 14-22, 14-24
scanf() 3-23, 3-26
SCD 4-1
SCD 2.3 1-1
SCD2.3 3-108
SCD-conforming 4-4
sched.h 10-25, 10-26, 10-27, 10-28
SCHED_FIFO 10-25, 10-26, 10-27, 10-35
sched_get_priority_max 10-25
sched_get_priority_min 10-25
sched_getparam 10-26
sched_getscheduler 10-27
SCHED_OTHER 10-25, 10-27
sched_param 10-26, 10-27
sched_priority 10-26
SCHED_RR 10-25, 10-26, 10-27, 10-35
sched_rr_get_interval 10-25, 10-27
sched_setparam 10-25, 10-26
sched_setscheduler 10-25, 10-26, 10-27, 10-35
sched_yield 10-28
scheduler class 3-106
scn 5-4, 5-16, 5-22
search.h 3-53
seconds 13-18
seconvert 3-27
seconvert() 3-28
secure_rpc 9-4, 9-8
seed 13-41
SEEK_CUR 15-7, 15-26
SEEK_END 15-7, 15-26
SEEK_SET 15-7, 15-26
select 3-74, 3-75, 9-7, 9-25, 9-27, 9-28, 13-30, 13-49, 15-43
sem 10-35
sem_close 10-29, 10-33, 10-34, 10-37
sem_destroy 10-30, 10-32
sem_getvalue 10-31
sem_init 10-29, 10-30, 10-32
SEM_NSEMS_MAX 10-32, 10-34
sem_open 10-15, 10-29, 10-30, 10-33, 10-34, 10-37
sem_post 10-31, 10-32, 10-33, 10-34, 10-35, 10-36
sem_t 10-29, 10-30, 10-31, 10-32, 10-33, 10-35, 10-36
sem_trywait 10-32, 10-33, 10-35, 10-36
sem_unlink 10-29, 10-33, 10-34, 10-37, 10-38
SEM_VALUE_MAX 10-32, 10-33, 10-34
sem_wait 10-31, 10-32, 10-33, 10-34, 10-35, 10-36
sema_destroy 12-8
sema_init 12-8

sema_post 12-8
sema_t 12-8
sema_trywait 12-8, 12-9
sema_wait 12-8, 12-9
semadj 3-107
semaphore 10-35, 12-8
semaphore.h 10-29, 10-30, 10-31, 10-32, 10-33, 10-35, 10-36,

10-37
semop(KE_OS) 3-107, 3-108
send 11-15, 11-35, 11-36
send(3N) 11-20
sendmsg 11-15, 11-35
sendnow 9-33
sendsz 9-3, 9-9, 9-12
sendto 11-15, 11-35
sendtol 11-15
servent 11-9, 11-26, 11-27
services 11-28
set 3-75
setbuf 13-45, 14-4, 14-12, 15-6
setbuffer 13-45
setcontext 3-116
setegid 3-76
seteuid 3-76
setGID 13-46
setgid 3-76
set-group-ID mode bit 3-106
sethostname 13-32
setitimer 3-75, 13-16, 13-48, 13-49
setjmp 13-2, 13-12, 13-17
setkey 3-3
setlabel 3-4
setlabel() 3-4
setlinebuf 13-45
setlocale 3-78, 3-79, 6-1, 6-2, 6-3, 9-29, 14-1, 14-6, 14-8, 14-

10, 14-11, 14-18, 14-22, 14-25
setlocale() 3-18, 3-26, 3-67
setlogmask 3-19
setlogmask() 3-20
setnetconfig 9-19, 9-20
setnetent 11-22, 11-23
setpgrp 13-43
setpriority 13-34, 13-35
setprotoent 11-24, 11-25
setregid 13-46, 13-47
setreuid 13-46, 13-47
setrlimit 13-30, 15-2, 15-20
setrlimit64 15-2, 15-20, 15-21, 15-22
setrpcent 9-17, 9-18
setservent 11-26, 11-27
setsockopt 11-17, 11-21, 11-34
setspent 3-29
setspent() 3-29, 3-30
setstate 13-41, 13-42
settimeofday 3-32, 3-33, 13-5
setuid 3-76, 13-46, 13-47
setuid() 3-35
set-user-ID mode bit 3-106
setutxent 3-34

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-22

setutxent() 3-35
setvbuf 13-45
sfconvert 3-27
sfconvert() 3-28
sgconvert 3-27
sgconvert() 3-28
sh 9-16
sh_addr 5-4, 5-28
sh_addralign 5-4, 5-28, 5-29
sh_entsize 5-4, 5-28, 5-29
sh_flags 5-4, 5-28
sh_info 5-4, 5-28
sh_link 5-4, 5-28
sh_name 5-4
sh_offset 5-4, 5-28
sh_size 5-4, 5-28
sh_type 5-4, 5-28
shadow() 3-29, 3-30
shadow.h 3-30
shared object 4-4, 4-7, 4-10
SHARING 3-10
shm_nattach 3-107
shm_open 10-38, 10-39, 10-40
shm_unlink 10-39, 10-40
shmat 15-30
shmop(KE_OS) 3-106, 3-108
SHN_UNDEF 5-22
short timezone 13-29
SHT_DYNAMIC 5-18
SHT_DYNSYM 5-18
SHT_HASH 5-18
SHT_NOBITS 5-17, 5-18
SHT_NOTE 5-18
SHT_Null 5-18
SHT_PROGBITS 5-18
SHT_REL 5-18
SHT_RELA 5-18
SHT_STRTAB 5-18, 5-26
SHT_SYMTAB 5-18
shutdown 11-19
SI_ARCHITECTURE 3-5
si_code 10-42
SI_HOSTNAME 3-5
SI_HW_PROVIDER 3-5
SI_HW_SERIAL 3-5
SI_MACHINE 3-5
SI_NOINFO 10-42
SI_RELEASE 3-5
SI_SRPC_DOMAIN 3-6
SI_SYSNAME 3-5
si_value 10-17, 15-52, 15-58
SI_VERSION 3-5
sig 3-67, 3-79, 7-7, 12-18, 13-12, 13-14, 13-43, 15-57, 15-58
SIG_BLOCK 12-21
SIG_DFL 3-106, 13-12, 13-14, 13-16, 15-21
SIG_HOLD 3-106
SIG_IGN 3-106, 13-12, 13-16, 13-36
SIG_NOADDR 13-16
SIG_SETMASK 12-21

SIG_UNBLOCK 12-21
SIGABRT 13-15
sigaction 12-21, 12-24, 13-10, 13-12, 13-43, 13-49
sigaction() 3-67
sigaction(BA_OS) 3-116
SIGALRM 10-43, 10-45, 13-15, 13-18, 13-48
sigaltstack 13-13, 15-21, 15-22
sigblock 13-10, 13-11, 13-12, 13-14, 13-17
SIGBUS 13-15, 15-28, 15-29
SIGCHLD 3-20, 13-15, 13-36
SIGCONT 13-10, 13-15, 13-17, 13-43
sigcontext 13-17
SIGEMT 13-15
SIGEV_NONE 10-7, 10-13, 10-17, 10-43, 15-52, 15-58
sigev_notify 10-1, 10-3, 10-5, 10-17, 15-47, 15-49, 15-51, 15-

52, 15-53, 15-55, 15-57, 15-58
SIGEV_SIGNAL 10-7, 10-13, 10-17, 10-43, 15-52, 15-58
sigev_signo 10-1, 10-3, 10-5, 10-12, 10-17, 15-47, 15-49, 15-

51, 15-52, 15-53, 15-55, 15-57, 15-58
sigev_value 10-1, 10-3, 10-5, 15-47, 15-49, 15-51, 15-52, 15-

53, 15-55, 15-57, 15-58
sigevent 10-1, 10-3, 10-5, 10-12, 10-17, 10-43, 15-47, 15-49,

15-51, 15-53, 15-55, 15-57
SIGFPE 13-15
sighold 13-48
SIGHUP 3-86, 13-15
SIGILL 13-15, 13-16
siginfo 3-67, 10-7, 10-8, 10-13, 10-14, 10-17, 10-41, 10-42, 15-

52, 15-58, 15-59
siginfo() 3-67
siginfo.h 3-67
siginfo_t 3-67, 10-42
SIGINT 13-15
siginterrupt 13-11, 13-25
SIGIO 2-1, 2-2, 2-4, 13-15, 13-17, 15-60, 15-61
SIGKILL 13-10, 13-12, 13-15, 13-17
siglongjmp 13-18
SIGLOST 13-16
sigmask 13-10
signal 10-41, 10-42, 10-43, 11-21, 12-2, 13-2, 13-8, 13-10, 13-

11, 13-12, 13-13, 13-17, 13-25, 13-43, 13-48, 15-22
signal mask 12-21, 12-24
signal() 3-67
signal(BA_ENV) 12-18
signal(BA_OS) 3-108
signal.h 10-41, 10-42, 10-43, 12-18, 12-21, 12-24, 13-8, 13-10,

13-12, 13-13, 13-14, 13-15, 13-17, 13-43
significand 7-7
signo 10-41, 12-24
signum 13-10
sigpause 13-10
SIGPIPE 3-71, 11-18, 11-21, 11-35, 13-15, 14-3, 15-39
SIGPOLL 11-21, 13-17
sigprocmask 13-49
sigprocmask(BA_OS) 3-116
SIGPROF 13-16
SIGPWR 13-16
sigqueue 10-41, 10-42
SIGQUEUE_MAX 10-41

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-23

SIGQUIT 13-15
SIGSEGV 12-12, 13-15, 15-21
sigset_t 10-42, 12-21, 12-24
sigsetmask 13-10, 13-14
sigstack 13-12, 13-13, 13-15
SIGSTOP 13-10, 13-12, 13-15, 13-17, 13-24
SIGSYS 13-15
SIGTERM 13-15
sigtimedwait 10-42
SIGTRAP 13-15, 13-16
SIGTSTP 13-15, 13-24
SIGTTIN 3-63, 3-85, 13-15, 13-24, 14-1, 15-37, 15-41, 15-45
SIGTTOU 3-71, 3-85, 13-15, 13-24, 14-3, 15-39
SIGURG 11-21, 13-15
SIGUSR1 13-16
SIGUSR2 13-16
sigval 10-1, 10-3, 10-5, 10-12, 10-41, 15-47, 15-49, 15-51, 15-

53, 15-55, 15-57
sigvec 13-2, 13-10, 13-11, 13-12, 13-13, 13-14, 13-15, 13-16,

13-17, 13-23, 13-25, 15-61
SIGVTALRM 13-16
sigwait 12-24
sigwaitinfo 10-41, 10-42
SIGWAITING 12-21
SIGWINCH 13-16
SIGXCPU 13-15, 15-20
SIGXFSZ 3-41, 13-16, 15-20
single 3-27
single precision 3-92
single_to_decimal 3-24
sival_int 10-41, 15-47, 15-50, 15-51, 15-53, 15-55, 15-57
sival_ptr 10-1, 10-3, 10-5, 10-41, 15-47, 15-50, 15-51, 15-53,

15-55, 15-57
size 3-56, 15-23
size_t 3-16, 3-43, 3-49, 3-54, 3-56, 3-58, 3-61, 3-68, 3-111, 3-

122, 3P-1, 5-1, 5-3, 5-14, 5-16, 5-17, 5-19, 5-22, 5-
24, 5-25, 5-26, 10-21, 10-22, 12-11, 13-41, 13-45,
14-14, 14-15, 14-25, 15-20, 15-28, 15-36, 15-38, 15-
47, 15-49, 15-51, 15-53, 15-55, 15-57

sizeof 15-40
sleep 10-24, 13-18, 13-48, 13-49
SO_BROADCAST 11-17, 11-18, 11-35
SO_BRODCAST 11-35
SO_DEBUG 11-17, 11-18, 11-35
SO_DGRAM_ERRIND 11-35
SO_DONTROUTE 11-15, 11-17, 11-18, 11-35
SO_ERROR 11-18, 11-35, 11-36
SO_KEEPALIVE 11-17, 11-18, 11-35
SO_LINGER 11-17, 11-18, 11-34, 11-35
SO_OOBINLINE 11-17, 11-18, 11-35
SO_RCVBUF 11-18, 11-35
SO_REUSEADDR 11-17, 11-18, 11-35
SO_SNDBUF 11-18, 11-35
SO_TYPE 11-18, 11-35, 11-36
SOCK_DGRAM 11-4, 11-20, 11-21
SOCK_SEQPACKET 11-12, 11-20, 11-21
SOCK_STREAM 3-71, 11-1, 11-2, 11-4, 11-12, 11-15, 11-18,

11-20, 11-21, 11-31, 11-33, 11-36, 15-39
sockaddr 9-2, 11-1, 11-4, 11-7, 11-10, 11-13, 11-15

sockaddr_in 9-2, 9-3, 9-4
socket 3-71, 11-1, 11-4, 11-7, 11-10, 11-12, 11-13, 11-15, 11-

18, 11-19, 11-20, 11-21, 11-33, 11-36, 15-39
socket level 11-21
socket(3N) 11-1, 11-3, 11-4, 11-13, 11-15
socketpair 11-37
sockets 11-17, 11-18
SOL_SOCKET 11-17, 11-34
sp_expire 3-30
sp_flag 3-30
sp_inact 3-30
sp_lstchg 3-30
sp_max 3-30
sp_min 3-30
sp_namp 3-30
sp_pwdp 3-30
sp_warn 3-30
SPARC 3-88, 3-89, 3-90, 3-91, 3-92, 3-95, 3-96, 3-98, 3-100,

3-122, 4-1
speed 9-13
sprintf 3-27, 13-19, 13-21, 14-19
sprintf() 3-24, 3-28
spwd 3-29, 3-30
sr_length 3-118, 3-119
sr_name 3-118, 3-119
sr_start 3-118, 3-119
srand 13-9, 13-41
srandom 13-41, 13-42
src 5-5
ss_onstack 13-13
ss_sp 13-13
sscanf 14-20
sscanf() 3-23
SSIZE_MAX 3-61, 3-68, 3-70
ssize_t 3-61, 3-68, 10-3, 10-21, 15-2, 15-53
SSM 8-2
st_atime 3-62, 3-63, 15-9, 15-10, 15-33, 15-40, 15-44
st_blksize 15-9, 15-10
st_blocks 15-9, 15-10
st_ctime 3-41, 3-69, 14-3, 14-5, 15-9, 15-10, 15-33
st_dev 15-9, 15-10
st_fstype 15-9, 15-10
st_gid 15-9, 15-10
ST_INDEL 3-118
st_ino 15-9, 15-10
st_mode 15-9, 15-10
st_mtime 3-41, 3-69, 14-3, 14-5, 15-9, 15-10, 15-33
st_nlink 15-9, 15-10
ST_NOSUID 15-12
ST_NOTRUNC 15-12
st_pad1 15-9
st_pad2 15-9
st_pad4 15-9
st_rdev 15-9, 15-10
ST_RDONLY 15-12
st_size 15-9, 15-10
st_uid 15-9, 15-10
stack_base 12-11
stack_size 12-11, 12-12

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-24

standards() 3-16
start_routine 12-11
stat 15-1, 15-2, 15-9, 15-17, 15-18, 15-35
stat64 15-1, 15-2, 15-4, 15-9, 15-10, 15-17, 15-18
state 13-41
status 13-23
statusp 13-23
statvfs 15-2, 15-12
statvfs64 15-2, 15-12, 15-13
stderr 13-4
stdin 13-4
stdio 14-8, 15-6, 15-25, 15-42
stdio.h 3-7, 3-25, 3-44, 3-47, 13-4, 13-19, 13-45, 14-1, 14-2,

14-3, 14-5, 14-9, 14-12, 14-19, 14-20, 15-2, 15-5, 15-
7, 15-8, 15-14, 15-42

stdlib.h 3-7, 3-46, 3-56, 3-72, 3-81, 3-111, 3-121, 13-41, 15-2
stdout 13-4, 13-19
ste_path 3-119
stime 3-107
str2sig 3-79
strcasecmp 3-77, 3-78
strcat 3-77, 3-78
strchr 3-77, 3-78
strcmp 3-77, 3-78
strcpy 3-77, 3-78
strcspn 3-77, 3-78
strdup 3-77, 3-78
STREAM 3-62, 3-69, 3-70, 3-71, 3-75, 15-34
stream 3-8, 15-7, 15-8, 15-14
streamio 3-64, 3-69, 3-71, 15-33, 15-35, 15-37, 15-39
STREAMS 3-62, 3-69, 3-71, 3-74, 9-15, 11-1, 11-2, 11-3, 11-

4, 11-5, 11-7, 11-10, 11-14, 11-16, 11-18, 11-19, 11-
21, 11-36, 11-37, 13-17, 15-33, 15-34, 15-35, 15-39

strerror 9-29
strftime 3-16
strftime() 3-16, 3-18
string 3-77, 3-78, 13-28, 13-40, 13-44, 14-13, 14-17
string.h 3-7, 3-77, 3-79
string_to_decimal 3-25
string_to_decimal() 3-26
strings.h 3-37, 3-77, 13-28, 13-40
strlen 3-23, 3-77, 3-78
strncasecmp 3-77, 3-78
strncat 3-77, 3-78
strncmp 3-77, 3-78
strncpy 3-77, 3-78
strpbrk 3-77, 3-78
strptime() 3-18
strrchr 3-77, 3-78
strsignal 3-79
strspn 3-77, 3-78
strstr 3-77, 3-78
strtod() 3-23, 3-26
strtok 3-77, 3-78
strtok_r 3-7, 3-8, 3-77, 3-78
struct dirent 3-114
struct group 3-102, 3-109, 3-114
struct hostent 11-6
struct in_addr 9-1, 11-6, 11-11

struct iovec 11-13
struct msghdr 11-13, 11-15
struct passwd 3-104, 3-112, 3-113, 3-114
struct protoent 11-8
struct servent 11-9
struct sockaddr 11-1, 11-3, 11-7, 11-10, 11-13, 11-15
struct tm 3-7
struct_type 9-21, 9-22
strxfrm 3-78
su 3-20
sv_flags 13-14, 13-15
sv_handler 13-15
SV_INTERRUPT 13-14, 13-16, 13-25, 13-26
sv_mask 13-14, 13-15
SV_ONSTACK 13-14, 13-15
SV_RESETHAND 13-14, 13-16
svc_auth_reg 9-24, 9-25
svc_create 9-7, 9-8
svc_dg_create 9-8
svc_dg_enablecache 9-26, 9-27
svc_done 9-26, 9-27
svc_exit 9-26, 9-27
svc_fds 9-2, 9-3, 9-7
svc_fdset 9-7, 9-25, 9-26, 9-27
svc_freeargs 9-26, 9-27
svc_getargs 9-26, 9-27
svc_getcaller 9-2, 9-3, 9-7
svc_getreq 9-2, 9-3, 9-7
svc_getreq_common 9-26, 9-27
svc_getreq_poll 9-26, 9-27, 9-28
svc_getreqset 9-7, 9-26, 9-27, 9-28
svc_getrpccaller 9-7, 9-26, 9-28
svc_pollset 9-26
svc_raw_create 9-7, 9-12
svc_reg 9-24
svc_register 9-2, 9-3, 9-6, 9-8
svc_req 9-8
svc_run 9-7, 9-8, 9-25, 9-26, 9-27, 9-28
svc_sendreply 9-26, 9-28
svc_tli_create 9-7, 9-8
svc_unreg 9-8, 9-24
svc_unregister 9-2, 9-3, 9-8
svc_vc_create 9-7
svcaddr 9-11
svcfd_create 9-2, 9-3, 9-7
svcraw_create 9-2, 9-3, 9-5, 9-7
svctcp_create 9-2, 9-3, 9-7
svcudp_bufcreate 9-2, 9-3, 9-7
svcudp_create 9-2, 9-3, 9-8
SVCXPRT 9-3, 9-8, 9-24, 9-26
SVID89 13-26
swapcontext 3-116
swapctl 3-118, 3-119, 3-120
swapent 3-118
swt_ent 3-118
swt_n 3-118
sync_instruction_memory 3-122
synch.h 12-1, 12-4, 12-6, 12-8
synchronize threads 12-1

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-25

synchronous 2-4
sys/async.h 15-2
sys/asynch.h 2-1, 2-2, 2-4, 15-60
sys/dir.h 13-3, 15-2, 15-40, 15-43, 15-44
sys/dirent.h 3-43, 15-2, 15-19
sys/fsid.h 3-80
sys/fstyp.h 3-80
sys/mman.h 3-54, 10-38, 13-6, 15-2, 15-28
sys/mnttab.h 3-44
sys/param.h 13-22
sys/priocntl.h 3-9, 3-10
sys/processor.h 3-60, 3-65, 3-66
sys/procset.h 3-65
sys/reboot.h 13-27
sys/resource.h 13-23, 13-34, 13-36, 15-2, 15-20
sys/rtpriocntl.h 3-9, 3-10, 3-11, 3-12, 3-13
sys/socket.h 9-1, 11-1, 11-3, 11-4, 11-6, 11-11, 11-13, 11-15,

11-17, 11-20, 11-21, 11-22, 11-29, 11-34, 11-37
sys/sockets.h 11-10, 11-12
sys/stat.h 3-118, 15-2, 15-3, 15-9, 15-31
sys/statvfs.h 15-2, 15-12
sys/swap.h 3-118
sys/systeminfo.h 3-5
sys/time.h 2-4, 3-32, 3-74, 13-5, 13-23
sys/timeb.h 13-29
sys/times.h 13-22
sys/tspriocntl.h 3-9, 3-10, 3-11, 3-14
sys/types.h 3-9, 3-54, 3-58, 3-60, 3-65, 3-66, 3-75, 3-76, 3-106,

9-1, 11-1, 11-3, 11-4, 11-6, 11-10, 11-11, 11-12, 11-
13, 11-15, 11-17, 11-20, 11-29, 11-30, 11-34, 11-37,
12-3, 13-3, 13-6, 13-22, 15-3, 15-9, 15-12, 15-26, 15-
31, 15-36, 15-38, 15-43, 15-44, 15-60

sys/uadmin.h 3-82
sys/uio.h 3-61, 3-68, 11-13, 15-36
sys/vfstab.h 3-47
sys/wait.h 13-23, 13-24
SYS_ 6-2
sys_siglist 13-8
sysconf 3-56, 3-73, 10-20, 10-22, 10-34, 10-39, 13-33, 15-22,

15-29, 15-30
sysconf() 3-55, 3-58, 3-60, 3-65, 3-66
sysfs 3-80
sysinfo 3-5, 13-31, 13-32
syslog 3-19, 3-20, 3-87
syslog() 3-19, 3-20
syslog.h 3-19, 3-20, 3-87
syslogd 3-19, 3-20
system calls 3-108
system information 3-5
system resources

control maximum system resource consumption 15-20
system(BA_OS) 3-108
T
t_errno 9-29
t_error 9-29
t_getstate 9-29
t_open 9-23
t_sec 3-75

t_strerror 9-29
T_UNINIT 9-29
t_usec 3-75
table_name 8-1, 8-2
table_obj 8-2
taddr2uaddr 9-21, 9-22, 9-23
tar() 3-22
target_thread 12-10, 12-15, 12-18
TCP 9-5, 9-7, 9-23, 11-17, 11-34
tcp 11-8, 11-9
TCP protocol 11-17
TCP/IP 9-5, 9-7
telno 9-13
template 15-46
termio 3-64, 9-13, 9-14, 13-12, 13-16, 15-37
termio.h 9-13, 9-14
textdomain 6-1, 6-2, 6-3
TEXTDOMAINMAX 6-3
thatofisnand() 3-38
The netdir_sperror 9-23
THR_BOUND 12-11
thr_continue 12-10, 12-11
thr_create 3-107, 3-108, 12-11, 12-12, 12-13, 12-14, 12-17, 12-

24
thr_create) 12-14
THR_DAEMON 12-11
THR_DETACHED 12-11
thr_exit 12-11, 12-12, 12-13
thr_getconcurrency 12-14
thr_getprio 12-15
thr_getspecific 12-16
thr_join 12-11, 12-12, 12-13, 12-17
thr_keycreate 12-13, 12-16
thr_kill 12-18
thr_kill() 12-18
thr_main 12-22
thr_min_stack 12-11, 12-12, 12-19
THR_NEW_LWP 12-11, 12-14
thr_self 12-20
thr_self() 12-20
thr_setconcurrency 12-11, 12-14
thr_setprio 12-15
thr_setspecific 12-16
thr_sigsetmask 12-21
thr_suspend 12-10
THR_SUSPENDED 12-11
thr_yield 12-23
thread 12-11, 12-13, 12-14, 12-17, 12-18, 12-19, 12-20, 12-21,

12-22, 12-24
thread.h 12-2, 12-5, 12-7, 12-9, 12-10, 12-11, 12-13, 12-14, 12-

15, 12-16, 12-17, 12-18, 12-19, 12-20, 12-21, 12-22,
12-23

thread_key_t 12-16
thread_t 12-10, 12-11, 12-15, 12-17, 12-18, 12-20
thread’s ID 12-13
threads 12-2, 12-8, 12-14, 12-15
thread-specific 12-16
TIME 3-10
time 10-10, 10-42, 10-43, 13-22, 13-29, 15-11, 15-13

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-26

time.h 3-7, 3-16, 10-10, 10-24, 10-43, 10-44, 10-45
time_t 3-7, 10-9, 10-10, 10-24, 10-25, 10-42, 10-45, 13-22, 13-

29, 15-9
timeb 13-29
timeout 9-35, 15-55
TIMER_ABSTIME 10-45
timer_create 10-43, 10-44, 10-45, 10-46
timer_delete 10-43, 10-44, 10-46
timer_getoverrun 10-45, 10-46
timer_gettime 10-10, 10-45, 10-46
timer_overrun 10-46
TIMER_RELTIME 10-45
timer_settime 10-43, 10-45, 10-46
timer_t 10-44, 10-45
times 13-22, 13-37
times(BA_OS) 3-107, 3-108
timespec 10-9, 10-10, 10-24, 10-25, 10-42, 10-45, 15-55
timestamp 3-19
timestruc_t 12-1
timeva 2-4
timeval 3-32, 3-34, 3-74, 9-2, 9-3, 9-9, 9-10, 13-5, 13-36
TIMEZONE 3-33, 13-5
Timezone 13-5
timezone 13-5, 13-29
TIMEZONE() 3-18
tiuser.h 9-29
TLD_LAZY 4-10
TLI 9-3, 9-22, 9-29
TLI COMPATIBILITY 9-29
tmpfile 15-2
tmpfile64 15-2, 15-42, 15-46
tmpnam 15-42, 15-46
tms 3-107
tms_cstime 13-22
tms_cutime 13-22
tms_stime 13-22
tms_utime 3-107, 13-22
tmsp 13-22
tocode 3-52
tolen 11-15
toppri 3-20
TOSTOP 3-71, 14-3, 15-39
towlower 14-10, 14-11
towupper 14-10, 14-11
tp 3-32
tq_nsecs 3-13
trailing 3-27
truncate 3-41, 15-2, 15-15
truncate() 3-41, 3-42
truncate64 15-2, 15-15
TRY_AGAIN 11-6
ts_maxupri 3-14
TS_NOCHANGE 3-14
ts_upri 3-13, 3-14
ts_uprilim 3-14
tty 3-63, 15-44
ttyname 3-81, 3-121
ttyname() 3-121
ttyname_r 3-121, 3-122

ttyslot 3-81
ttyslot() 3-36
tuple 9-22
tv_nsec 10-9, 10-10, 10-24, 15-56
tv_sec 2-4, 3-32, 10-9, 10-10, 10-24, 13-5, 15-56
tv_usec 2-4, 3-32, 3-33, 13-5
type 3P-2, 12-2, 15-5
TZ 3-32, 13-5
tzp 13-5
tzset() 3-18
U
u_int 8-3, 9-3, 9-9, 9-33
u_long 9-2, 9-3, 9-9, 9-10, 9-24, 9-35, 11-30, 15-12
u_longlong_t 9-30
u_short 9-3, 11-30
uaddr2taddr 9-21, 9-22, 9-23
uadmin 3-82, 3-83, 13-27
ualarm 3-75, 13-48, 13-49
ucontext.h 3-116
ucontext_t 3-116
ucp 3-116
UDP 9-5, 9-7, 9-8
udp 11-8, 11-9
UDP/IP 9-5, 9-7, 9-8
UH_NOCHANGE 3P-2
UID 3-46
UID_MAX 13-46, 13-47
uid_t 3-46, 3-76, 3-104, 3-112, 3-114, 15-9
ulimit 3-71, 9-16, 14-4, 15-22, 15-38, 15-39
ulimit() 3-68
ulong 3-12
umask 9-16, 10-20, 10-33, 10-34, 10-39, 13-17, 15-3, 15-4, 15-

35
umask(BA_OS) 3-106, 3-108
uname 3-5, 13-32
unblock 12-21
undefined 3P-1
undial 9-13
unget 3-26
ungetc 14-1
ungetc() 3-26
ungetwc 14-1, 14-12
unistd.h 3-41, 3-61, 3-68, 3-76, 3-84, 3-85, 3-106, 3-117, 10-

11, 12-3, 13-1, 13-30, 13-31, 13-33, 13-39, 13-46,
13-47, 13-48, 13-49, 15-2, 15-15, 15-23, 15-26, 15-
36, 15-38

UNIX 3-5, 3-22, 15-1, 15-5
Unix 14-6, 14-13
UNIX_SV 3-5
unlink 15-10, 15-11, 15-13, 15-42
unlockpt 15-33, 15-35
unnamed socket 11-3
unordered 3-38
unordered() 3-38
unsigne 3-101
Unsigned 64 bit 3-96
unsigned int 3-7
unsigned long 9-1

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-27

unsigned long long 3-90, 3-92, 3-96, 3-97, 3-100, 3-101
updwtmp 3-34
updwtmp() 3-36
updwtmpx 3-34
updwtmpx() 3-36
useconds 13-49
useconds_t 13-48, 13-49
USENET 3-20
USER_PROCESS 3-35
user2netname 9-4
usleep 13-18, 13-48, 13-49
ustat 15-10
USYNC_PROCESS 12-1, 12-4, 12-6, 12-8
USYNC_THREAD 12-1, 12-4, 12-6, 12-8
ut_exit 3-34
ut_host 3-34
ut_id 3-34, 3-35
ut_line 3-34, 3-35
ut_name 3-35
ut_pid 3-34
ut_session 3-34
ut_syslen 3-34
ut_tv 3-34
ut_type 3-34, 3-35
ut_user 3-34
utime 15-10, 15-11, 15-13
utmp 3-34
utmp() 3-36
utmpx 3-34, 3-35
utmpx() 3-36
utmpx.h 3-34
utmpxname 3-34
utmpxname() 3-35
utrap_entry_t 3P-2
utrap_handler_t 3P-2
UUCP 3-20
uucp 9-14
UX 9-4
V
va_dcl 13-19
va_list 3-87, 13-19
valloc 3-56
valloc() 3-56, 3-57
varargs 3-87, 13-21
varargs.h 3-87
ver 5-30
vers_high 9-11
vers_low 9-11
vers_outp 9-11
versnum 9-3, 9-5, 9-8, 9-24, 9-35
vfork 3-84, 3-85, 13-12, 13-16, 13-17
vfprintf 13-19, 13-21
vfs_automnt 3-47
vfs_fsckdev 3-47
vfs_fsckpass 3-47
vfs_fstype 3-47
VFS_LINE_MAX 3-47
vfs_mntopts 3-47

vfs_mountp 3-47
vfs_special 3-47
VFS_TOOFEW 3-47
VFS_TOOLONG 3-47
VFS_TOOMANY 3-47
vfstab 3-47
vfstab() 3-47, 3-48
vhangup 3-86
volatile 15-47, 15-51, 15-53
vprintf 13-19, 13-21
vsprintf 13-19, 13-21
vsyslog 3-87
W
w_coredump 13-26
w_retcode 13-26
w_status 13-23
w_stopsig 13-26
w_stopval 13-26
w_termsig 13-26
wait 3-84, 13-12, 13-16, 13-17, 13-22, 13-23, 13-24, 13-25, 13-

26, 13-37
wait(BA_OS) 3-108
wait_for 12-17
wait3 13-23, 13-24, 13-25, 13-26
wait4 13-23, 13-24, 13-25, 13-26
waitpid 13-23, 13-24, 13-25
waittime 9-35
watchmalloc() 3-57
watof 14-21
watoi 14-23, 14-24
watol 14-23, 14-24
watoll 14-23
wchar.h 14-1, 14-3, 14-5, 14-7, 14-10, 14-11, 14-12, 14-14, 14-

18, 14-21, 14-23, 14-25
wchar_t 14-2, 14-5, 14-9, 14-10, 14-11, 14-13, 14-14, 14-15,

14-16, 14-18, 14-19, 14-20, 14-21, 14-23, 14-24, 14-
25

wconv 14-8
wcscat 14-14, 14-15
wcschr 14-14, 14-16
wcscmp 14-14, 14-15, 14-18, 14-25
wcscoll 14-18, 14-25
wcscpy 14-14, 14-15
wcscspn 14-14, 14-15, 14-17
wcslen 14-14, 14-16
wcsncat 14-14, 14-15
wcsncmp 14-14, 14-15
wcsncpy 14-14, 14-16
wcspbrk 14-14, 14-16
wcsrchr 14-14, 14-16
wcsrchr, 14-14
wcsspn 14-14, 14-16, 14-17
wcstod 14-21, 14-22, 14-24
wcstok 14-14, 14-15, 14-17
wcstol 14-22, 14-23, 14-24
wcstring 14-13, 14-14
wcswcs 14-14, 14-16
wcswidth 14-17

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-28

wcsxfrm 14-18, 14-25
wcwidth 14-17
WEOF 14-1, 14-3, 14-7, 14-10, 14-11, 14-12
whence 15-7, 15-26, 15-60
who 13-36
widec.h 14-9, 14-13, 14-19, 14-20, 14-23
WIFEXITED 13-23, 13-25
WIFSIGNALED 13-23, 13-25
WIFSTOPPED 13-23, 13-25
windex 14-14, 14-16
wint_t 14-1, 14-3, 14-7, 14-10, 14-11, 14-12, 14-14
WNOHANG 13-24, 13-25
wrindex 14-14, 14-16
write 3-68, 3-70, 3-71, 3-75, 9-14, 10-3, 10-4, 10-6, 10-8, 10-

11, 10-14, 11-37, 13-12, 13-16, 13-17, 13-37, 13-38,
15-4, 15-6, 15-10, 15-11, 15-13, 15-25, 15-27, 15-32,
15-33, 15-35, 15-38, 15-52, 15-53, 15-54, 15-59, 15-
60, 15-61

write on a file
pwrite 15-38
write 15-38
writev 15-38

write() 2-2, 3-68, 3-69, 3-70
write(2) 11-20
write(BA_OS) 2-2
writefs 3-74
writev 3-68, 3-70, 3-71, 15-38
writev() 3-69, 3-70
ws 14-5
wscasecmp 14-13
wscat 14-14, 14-15
wschr 14-14, 14-16
wscmp 14-14, 14-15, 14-25
wscmp, 14-14
wscol 14-13
wscol() 14-13
wscoll 14-18, 14-25
wscpy 14-14, 14-15
wscspn 14-14, 14-15, 14-17
wsdup 14-13
wslen 14-14, 14-16
wsncasecmp 14-13
wsncat 14-14, 14-15
wsncmp 14-14, 14-15
wsncpy 14-14, 14-16
wspbrk 14-14, 14-16
wsprintf 14-19, 14-20
wsrchr 14-14, 14-16
wsscanf 14-19, 14-20
wsspn 14-14, 14-16, 14-17
wstod 14-21, 14-22
wstok 14-14, 14-15, 14-17
wstol 14-23, 14-24
WSTOPPED 13-26
wsxfrm 14-25
wtmpx 3-36
WUNTRACED 13-24

X
X/Open 13-44
xargs 9-35
XDR 9-3, 9-24, 9-27, 9-28, 9-30, 9-31, 9-33, 9-34
xdr_admin 9-32, 9-33
xdr_authsys_parms 9-8
xdr_authunix_parms 9-2, 9-3, 9-8
xdr_bool 9-30, 9-31
xdr_bytes 9-31
xdr_bytesrec 9-33
xdr_char 9-30, 9-31
xdr_complex 9-31, 9-32, 9-34
xdr_control 9-33
xdr_create 9-30, 9-32, 9-34
xdr_double 9-30, 9-31
xdr_enum 9-30, 9-31
xdr_float 9-30, 9-31
xdr_free 9-30, 9-31
XDR_GET_BYTES_AVAIL 9-33
xdr_getpos 9-33, 9-34
xdr_hyper 9-30, 9-31
xdr_inline 9-33
xdr_int 9-30, 9-31
xdr_long 9-30
xdr_longlong_t 9-30, 9-31
xdr_opaque 9-31
xdr_quadruple 9-30, 9-31
xdr_setpos 9-33, 9-34
xdr_short 9-30, 9-31
xdr_simple 9-30, 9-34
xdr_sizeof 9-33, 9-34
xdr_string 9-31
xdr_u_char 9-30, 9-31
xdr_u_hyper 9-30, 9-31, 9-32
xdr_u_int 9-30, 9-31
xdr_u_long 9-30, 9-31
xdr_u_longlong_t 9-30, 9-32
xdr_u_short 9-30, 9-32
xdr_void 9-30, 9-32
xdrproc_t 9-2, 9-3, 9-24, 9-26, 9-30, 9-33, 9-35
xdrproct_t 9-3
xdrrec_create 9-34
xdrrec_endofrecord 9-33, 9-34
xdrrec_eof 9-33, 9-34
xdrrec_readbytes 9-33, 9-34
xdrrec_skiprecord 9-33, 9-34
xdrs 9-3, 9-30, 9-33
xget(void) 3-26
xgettext 6-3
XID 9-10
xp_port 9-7
XPG3 13-26
XPG4 7-4
XPG4v2 13-44
xprt 9-3, 9-7, 9-8, 9-25, 9-27, 9-28
xprt_register 9-24, 9-27, 9-28
xprt_register()

 9-25
xprt_unregister 9-24, 9-25

___ Index

1998 SPARC Compliance Definition 2.4 Interface Semantics Index-29

xresults 9-35
XTI 9-29
xti.h 9-29
xunget 3-26
Y
y 7-1
yppasswd() 3-30
Z
zattr_ndx 8-3
zattr_val 8-3
zattr_val_len 8-3
zattr_val_val 8-3

Index __

Index-30 SPARC Compliance Definition 2.4 Interface Semantics 1998

