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0. PREFACE

0.1. Introduction

The purpose of this document is to describe the differences between the 32-bit SPARC specific
ABI, as published by AT&T as System V Application Binary Interface, SPARCTM Processor
Supplement and the proposed 64-bit version of the SPARC-specific ABI.

0.2. Basic Assumptions

A number of basic assumptions are reflected in the proposals presented. It is assumed that
it is necessary to permit the simultaneous support of both V8 and V9 binaries but it is not
necessary to specifically require V8 compatibility. This means it should be possible for V9
systems to support both the V9 ABI and the V8 ABI or just the V9 ABI. Similarly, it assumes
that it should be possible to support binaries that use a combination of the V8 and V9 calling
conventions but the specifics need not be a part of the ABI. It also assumes that there is a
separate set of V9 libraries and that most networking software will continue to use 32-bit
protocols. Since it is likely that V9 hardware and V9 software generation tools will optimize
for 64-bits, the V9 ABI favors 64-bit data. Major emphasis has been placed on addressing
the V8 range limitations that remain in the V9 architecture (e.g. call and sethi instructions).

This document is based heavily on details in The SPARCTM Architecture Manual, Version 9
which is still being revised. This draft corresponds to Release 1.2 of that document.
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1. INTRODUCTION

1.1. SPARC Processor and the System V ABI

        [ This section is unchanged. ]

1.2. How to Use the SPARC ABI Supplement
[ Change all references of the title: ]

The SPARCTM Architecture Manual, Version 8

[ to: ]

The SPARCTM Architecture Manual, Version 9
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2. SOFTWARE INSTALLATION

2.1. Software Distribution Formats

        [ This section is unchanged. ]
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3. LOW-LEVEL SYSTEM INFORMATION

3.1. Machine Interface

3.1.1. Processor Architecture

The SPARCTM Architecture Manual, Version 9 defines the processor architecture. Programs
intended to execute directly on the processor use the instruction set, instruction encodings, and
instruction semantics of the architecture. Four points deserve explicit mention.

� A SPARC V9 ABI conforming program may not use the IMPDEP1 and IMPDEP2
instructions.

� A program may assume all other documented non-privileged instructions exist.

� A program may assume all other documented non-privileged instructions work.

� A program may assume that all documented unrestricted ASI’s work.

� A program may use only the non-privileged instructions defined by the
architecture, with the exception of IMPDEP1 and IMPDEP2.

In other words, from a program’s perspective, the execution environment provides a complete
and working implementation of the non-privileged part of the SPARC V9 architecture. Although
the IMPDEP1 and IMPDEP2 instructions are part of the V9 architecture, they may not be
used by V9 ABI conforming programs because their behavior is undefined.

This does not imply that the underlying implementation provides all instructions in hardware,
only that the instructions perform the specified operations and produce the specified results.
The ABI neither places performance constraints on systems nor specifies what instructions must
be implemented in hardware.

Some processors might support the SPARC V9 architecture as a subset, providing additional
instructions or capabilities. Programs that use those capabilities explicitly do not conform to
the SPARC V9 ABI. Executing those programs on machines without the additional capabilities
gives undefined behavior.

For performance reasons it is suggested that the FLUSH instruction not be used. The [TBD-
library] routine “flush_instr_mem” is the preferred way to flush instruction memory.

It is suggested that the instructions marked as “deprecated” in “The SPARC(TM) Architecture
Manual, Version 9” not be used. These instructions may exhibit poor performance in some
Version 9 implementations of the architecture and may not be available in future versions
of the architecture.

NOTE
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3.1.2. Data Representation

3.1.2.1. Fundamental Types

Figure 3-1 shows the correspondence between ANSI C’s scalar types and the processor’s.

A null pointer (for all types) has the value zero.

Double and quad-precision floating-point values occupy 1 and 2 extended words, respectively.
Their natural alignment is the same, meaning their addresses are multiples of 8 and 16. Compilers
should allocate independent data objects with the alignment shown in Figure 3-1; examples
include global arrays of double-precision variables, FORTRAN COMMON blocks, and
unconstrained stack objects. However, some language facilities (such as FORTRAN
EQUIVALENCE statements) may create objects with only word alignment. Consequently,
arbitrary double- and quad-precision addresses, such as pointers or reference parameters, might
or might not be properly aligned. The system shall efficiently implement all LDDF(A), STDF(A),
LDQF(A), and STQF(A) instructions with target addresses that are word aligned, even if they

Figure 3-1: Scaler Types

Type C sizeof Alignment
(bytes) SPARC

Integral

char
signed char 1 1 signed byte

unsigned char 1 1 unsigned byte
short

signed short 2 2 signed halfword

unsigned short 2 2 unsigned halfword
int

signed int
enum

4 4 signed word

unsigned int 4 4 unsigned word
long

signed long
long long

signed long long
8 8 signed extended-word

unsigned long
unsigned long long 8 8 unsigned extended-word

Pointer any-type *
any-type(*)() 8 8 unsigned extended-word

Floating
-point

float 4 4 single-precision

double 8 8
(see text) double-precision

long double 16 16
(see text) quad-precision
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are not aligned as shown in Figure 3-1. Therefore, compilers should emit LDDF(A), STDF(A),
LDQF(A), and STQF(A) instructions unless it is known at compile time that the target address
is not aligned as shown in Figure 3-1.

3.1.2.2. Aggregates and Unions

Aggregates (structures and arrays) and unions assume the alignment of their most strictly aligned
component. The size of any object, including aggregates and unions, always is a multiple of
the object’s alignment. An array uses the same alignment as its elements. Structure and union
objects can require padding to meet size and alignment constraints.

� An entire structure or union object is aligned on the same boundary as its most
strictly aligned member.

� Each member is assigned to the lowest available offset with the appropriate
alignment. This may require internal padding, depending on the previous member.

� A structure’s size is increased, if necessary, to make it a multiple of the alignment.
This may require tail padding, depending on the last member.

In the following examples, members’ byte offsets appear in the upper left corners.

0
c

Figure 3-2: Structure Smaller Than a Word

struct {
char c;

};

Byte aligned, sizeof is 1

Halfword aligned, sizeof is 4
0

c
1

d
2

s

Figure 3-3: No Padding

struct {
char c;
char d;
short s;

};
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3.1.2.3. Bit-Fields

C struct and union definitions may have bit-fields, defining integral objects with a specified
number of bits.

Figure 3-7: Bit-Field Ranges

Bit-filed Type Width w Range
signed char

char
unsigned char

1 to 8 2w-1 to 2w-1-1
0 to 2w-1

Halfword aligned, sizeof is 4
0

c
1
pad

2
s

Figure 3-4: Internal Padding

union {
char c;
short s;

};

Extended word aligned, sizeof is 24
0

c
1

pad
8

i
16

s
18

pad

Figure 3-5: Internal and Tail Padding

struct {
char c;
long i;
short s;

};

Extended word aligned, sizeof is 8
0

c
1

pad
0

s
2

pad
0

j

Figure 3-6: Union Allocation

union {
char c;
short s;
long j;

};
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“Plain” bit-fields always have non-negative values. Although they may have type char, short,
int, long, or enum (which can have negative values), these bit-fields are extracted into
an extended word with zero fill. Bit-fields obey the same size and alignment rules as other
structure and union members, with the following additions.

� Bit-fields are allocated from left to right (most to least significant).

� A bit-field must entirely reside in a storage unit appropriate for its declared type.
Thus a bit-field never crosses a unit boundary. Note: changing a bit-field may involve
a non-atomic read-modify-write operation effecting the entire containing storage unit.
Programs which thus might concurrently access the same storage unit must take
the appropriate precautions.

� Bit-fields may share a storage unit with other struct/union members, including
members that are not bit-fields. Of course, struct members occupy different parts
of the storage unit. (A normal member sharing a bit-fields storage unit is subject
to potential conflicting updates as described above).

� Unnamed bit-fields’ types do not affect the alignment of a structure or union,
although individual bit-fields’ member offsets obey the alignment constraints.

The following examples show struct and union members’ byte offsets in the upper left
corners; bit numbers appear in the lower corners.

signed short
short

unsigned short
1 to 16

2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1

signed int
int

unsigned int
enum

1 to 32
2w-1 to 2w-1-1

0 to 2w-1
0 to 2w-1
0 to 2w-1

signed long
long

unsigned long
1 to 64

2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1

Figure 3-7: Bit-Field Ranges

Bit-filed Type Width w Range

0 1 2 3 4 5 6 7
88 99 AA BB CC DD EE FF

63 55 47 39 31 23 15 7 0
0x8899AABBCCDDEEFF

Figure 3-8: Bit Numbering



3-6 SPARC V9 ABI SUPPLEMENT Delta Document 1.34x

LOW-LEVEL SYSTEM INFORMATION 8/22/96 SPARC International Confidential

Extended word aligned, sizeof is 8

Figure 3-9: Left to Right Allocation

struct {
long j:5;
long k:6;
long m:7;

};

0
j k m pad

63 58 52 45 0

Extended word aligned, sizeof is 8

Figure 3-10: Boundary Alignment

struct {
short s:9;
long j:9;
char c;
short t:9;
short u:9;
char d;

};

0 3 4 6
s j pad c t pad u pad

63 54 45 39 31 22 15 6 0
8 9

d pad
63 55 0

Halfword aligned, sizeof is 2

Figure 3-11: Storage Unit Sharing

struct {
char c;
short s:8;

};
0 1

c s
7 0
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As the examples show, long bit-fields (including signed and unsigned) pack more densely
than smaller base types. One can use char and short bit-fields to force particular alignments,
but long generally works better.

3.2. Function Calling Sequence

This section discusses the standard function calling sequence, including stack frame layout,
register usage, parameter passing, etc. The system libraries described in Chapter 6 require this
calling sequence.

Halfword aligned, sizeof is 2

Figure 3-12: union Allocation

union {
char c;
short s:8;

};

0 1
c pad

0
s pad

15 7 0

Extended word aligned, sizeof is 13

Figure 3-13: Unnamed Bit-fields

struct {
char c;
long :0;
char d;
short :9;
char e;
char :0;

};

0 1
c :0

63 55 0
8 9 12

d pad :9 pad e
63 55 47 38 31 24

C programs follow the conventions given here. For specific information on the implementation
of C, see “Coding Examples” in this chapter.

NOTE
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3.2.1. Registers and the Stack Frame

In SPARC V9 all floating-point registers and 8 integer registers are global to a running program,
as the save and restore instructions do not affect them. All remaining integer registers
are windowed: 24 are visible at any time, and sets of 24 overlap by 8 registers each. The
save and restore instructions manipulate the windows as part of the normal function
prologue and epilogue, making the caller’s 8 out registers coincide with the callee’s 8 in registers.
Each window set also has 8 unshared local registers. Generally, each new frame on the dynamic
call stack uses a new register window.
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Brief register descriptions appear in Figures 3-14 and 3-15; more complete information appears
late

Figure 3-14: A Functions Window Register

Type Name Usage

in

%17 %r31 return address - 8 †
%fp %i6 %r30 frame pointer †

%i5 %r29 incoming param †
%i4 %r28 incoming param †

%i3 %r27 incoming param, †
(outgoing return value)

%i2 %r26 incoming param, †
(outgoing return value)

%i1 %r25 incoming param, †
(outgoing return value)

%i0 %r24 incoming param, †
(outgoing return value)

local

%l7 %r23 local †
%l6 %r22 local †
%l5 %r21 local †
%l4 %r20 local †
%l3 %r19 local †
%l2 %r18 local †
%l1 %r17 local †
%l0 %r16 local †

%o7 %r15 address of call instruction, ‡
temporary value

%sp %o6 %r14 stack pointer †
%o5 %r13 outgoing param ‡
%o4 %r12 outgoing param ‡

%o3 %r11 outgoing param, ‡
(incoming return value)

%o2 %r10 outgoing param, ‡
(incoming return value)

%o1 %r9 outgoing param, ‡
(incoming return value)

%o0 %r8 outgoing param, ‡
(incoming return value)



3-10 SPARC V9 ABI SUPPLEMENT Delta Document 1.34x

LOW-LEVEL SYSTEM INFORMATION 8/22/96 SPARC International Confidential

DEADLOCK Due to disagreement between Hal and Sun, two versions of the following
material are included.
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Figure 3-15: A Function’s Global Registers (Sun Proposal)

TYpe Name Usage

global

%g7 %r7 global (reserved for system)
%g6 %r6 global (reserved for system)
%g5 %r5 global ‡
%g4 %r4 global ?
%g3 %r3 global ?
%g2 %r2 global ?
%g1 %r1 global ‡
%g0 %r0 0

floating-
point

%q60 %d60,d62 floating-point ‡
%q56 %d56,d58 floating-point ‡
%q52 %d52,d54 floating-point ‡
%q48 %d48,d50 floating-point ‡
%q44 %d44,d46 floating-point ‡
%q40 %d40,d42 floating-point ‡
%q36 %d36,d38 floating-point ‡
%q32 %d32,d34 floating-point ‡
%q28 %d28,d30 %f28-f31 parameter ‡
%q24 %d24,d26 %f24-f27 parameter ‡
%q20 %d20,d22 %f20-f23 parameter ‡
%q16 %d16,d18 %f16-f19 parameter ‡
%q12 %d12,d14 %f12-f15 parameter ‡
%q8 %d8,d10 %f8-f11 parameter ‡

%q4 %d4,d6 %f4-f7 parameter, ‡
(return value)

%q0 %d0,d2 %f0-f3 parameter, ‡
(return value)

special

%y Y register ‡
%ccr condition code register ‡
%asi (see below)
%fpsr (see below)
%fsr (see below)
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Figure 3-15: A Function’s Global Registers (Hal Proposal)

TYpe Name Usage

global

%g7 %r7 global (reserved for system)
%g6 %r6 global (reserved for system)
%g5 %r5 global ‡
%g4 %r4 global ?
%g3 %r3 global ?
%g2 %r2 global ?
%g1 %r1 global ‡
%g0 %r0 0

floating-
point

%q60 %d60,d62 floating-point ‡
%q56 %d56,d58 floating-point ‡
%q52 %d52,d54 floating-point ‡
%q48 %d48,d50 floating-point ‡
%q44 %d44,d46 floating-point †
%q40 %d40,d42 floating-point †
%q36 %d36,d38 floating-point †
%q32 %d32,d34 floating-point †
%q28 %d28,d30 %f28-f31 floating-point †
%q24 %d24,d26 %f24-f27 floating-point †
%q20 %d20,d22 %f20-f23 floating-point †
%q16 %d16,d18 %f16-f19 floating-point †
%q12 %d12,d14 %f12-f15 parameter ‡
%q8 %d8,d10 %f8-f11 parameter ‡

%q4 %d4,d6 %f4-f7 parameter, ‡
(return value)

%q0 %d0,d2 %f0-f3 parameter, ‡
(return value)

special

%y Y register ‡
%ccr condition code register ‡
%asi (see below)
%fpsr (see below)
%fsr (see below)
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In addition to a register window, each function has a frame on the run-time stack. This grows
downward from high addresses, moving in parallel with the current register window. Figure
3-16 shows the stack frame organization.

Registers marked † above are assumed to be preserved across a function call. Registers
marked ‡ above are assumed to be destroyed (volatile) across a function call.

NOTE
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BIAS = 2047

Figure 3-16: Standard Stack Frame

Base Offset Contents Frame

%fp+BIAS >+176

unspecified
. . .

variable size

High Address

Previous%fp+BIAS +176
(if present)

additional incoming argument slots
%fp+BIAS +126 6 extended word argument slots

%fp+BIAS 0
16 extended word save area

(see below)
%fp+BIAS

%sp+BIAS

-1

>+176

unspecified
. . .

variable size

Current

Low Address

%sp+BIAS +176
(if needed)

additional outgoing argument slots
%sp+BIAS +128 6 extended word argument slots

%sp+BIAS

+120 save area for %i7
+112 save area for %i6
+104 save area for %i5
+96 save area for %i4
+88 save area for %i3
+80 save area for %i2
+72 save area fir %i1
+64 save area for %i0
+56 save area for %l7
+48 save area for %l6
+40 save area for %l5
+32 save area for %l4
+24 save area for %l3
+16 save area for %l2
+8 save area for %l1

0 save area for %l0
%sp+BIAS
%sp

-1
0

volatile memory
(do not use)



SPARC International Confidential 8/22/96 LOW-LEVEL SYSTEM INFORMATION

Delta Document 1.34x SPARC V9 ABI SUPPLEMENT 3-15

Several key points about the stack frame deserve mention.

� Every stack frame must be 16-byte aligned.

� Every stack frame must have a 16-extended-word save area for the in and local
registers, in case of window overflow or underflow. This save area always must
exist at %sp plus a BIAS of 2047 (0x7ff).

� Arguments that do not fit in the argument registers are passed on the stack.

� Other areas depend on the compiler and the code being compiled. The standard
calling sequence does not restrict how a language system uses the “unspecified”
areas of the standard stack frame.

Across function boundaries, the standard function prologue shifts the register window, making
the calling function’s out registers the called function’s in registers. It also allocates stack space,
including the required areas of figure 3-16 and any private space it needs. The lowest 16
extended-words in the stack must—at all times—be reserved as the register save area. The
example below illustrates this and allocates 176 bytes for the stack frame.

For demonstration, assume a function named first calls second. The register windows for
the two functions appear below.

The stack pointer is offset from the stack frame by a BIAS of 2047 (ox7ff). This BIAS permits
stack frame references in the range of %fp+BIAS-6143 to %fp+BIAS+2047 and %sp+BIAS
to %sp+BIAS+2047 to be made with only immediate offset addressing. By making the BIAS
an odd number, the least significant bit of the stack pointer will be set and the register
overflow and underflow handlers can easily distinguish a 64-bit register window from a 32-

NOTE

second:
save %sp, -176, %sp

Figure 3-17: Function Prologue
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As explained later, the function epilogue executes a restore instruction to unwind the stack
and restore the register windows to their original condition.

Some registers have assigned roles (Sun Version).

%sp or %o6 The stack pointer plus the stack BIAS determines the limit of
the current stack frame, which is the address of the stack’s
bottommost, valid word. At all times the stack pointer plus
the stack BIAS must point to a 16-byte aligned, 16 extended
words window save area.

%fp or %i6 The frame pointer plus the stack BIAS is the address of the
previous stack frame, which coincides with the word imme-
diately above the current frame. Consequently, a function has
registers with which it can access both ends of its frame.
Incoming overflow arguments reside in the previous frame,
referenced as positive offsets from the frame pointer plus the
stack BIAS.

first()
{

. . .
second()
. . .

}

first

in

local

out

second

in

local

out

shared

global

floating-point

special

Figure 3-18: Register Windows

Strictly speaking a function does not need the save and restore instructions if it preserves
the registers as described below. Although some functions can be optimized to eliminate
the save and restore, the general case uses the standard prologue and epilogue.

NOTE

DEADLOCK Due to disagreement between Hal and Sun, two versions of the following
material are included.
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%i0 and %o0 Integral and pointer return values appear in %i0. A calling
function receives values in the coincident out register %o0.

%i0,%i1,%i2,%i3
(%o0,%o1,%o2,%o3)

The integral fields of structure and all of the fields of union
return values with a total size 32 bytes or less appear in regis-
ters %i0, %i1, %i2 and %i3. A calling function receives val-
ues in the coincident out registers

%i7 and %o7 The return address is the location to which a function should
return control. Because a calling function’s out registers coin-
cide with the called function’s in registers, the calling func-
tion puts a return address in its own %o7, while the called
function finds the address in %i7 (if it has established its own
stack frame).
Actually, the return address register holds the call instruc-
tion’s address, normally making the return address %i7+8 for
the called function. (every call instruction has a delay instruc-
tion.) Between function calls, %o7 serves as a scratch regis-
ter.

%f0,%f1,%f2,%f3
(%d0, %d2)
(%q0)

Floating-point return values appear in the floating-point reg-
isters. Single-precision values occupy %f0; double-precision
values occupy %d0; quad-precision values occupy %q0.
(Refer to the SPARCTM Architecture Manual, Version 9 for
details on the register numbering scheme). Otherwise, these
are scratch registers.

%f0 through %f7
(%d0 through %d6)
(%q0 and %q4)

Floating-point fields from structure return values with a total
size of 32 bytes or less appear in the floating-point registers.

%i0 through %i5 Incoming non-floating-point parameter slots use up to 6 cor-
responding in registers. Arguments beyond the sixth
extended-word appear on the stack.

%o0 through %o5 Outgoing non-floating-point parameters slots use up to 6 cor-
responding out registers. Arguments beyond the sixth
extended-word appear on the stack.

%f1, %f3 through
%f29, %f31
(%d0 through %d30)
(%q0 through %q28)

Floating-point arguments are passed in the floating-point
registers. Unpromoted single-precision arguments are passed
in the first 16 odd-numbered %f registers, Double-precision
arguments are passed in registers %d0 through %d30 Quad-
precision arguments are passed in registers %q0 through
%q28 These registers are assumed volatile across the call.

%l0 through %l7 Local registers have no specified role in the standard calling
sequence.
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Some registers have assigned roles (Hal Version).

%d32 through %d62
(%q32through %q60)

These floating-point registers have no specified role in the
standard calling sequence. They are assumed volatile across
function calls

%g0 Global register 0 has no specified role in the standard calling
sequence.

%g1, %g5 Global registers 1 and 5 have no specified role in the stan-
dard calling sequence. They are assumed volatile across
function calls (and between caller and callee).

%g2, %g3, %g4 Global registers 2, 3, and 4 are reserved for application soft-
ware. System software (including the libraries described in
Chapter 6) preserve the registers’ values for the application.
Their use is intended to be controlled by the compilation sys-
tem and must be consistent throughout the application.
<<This allocation is subject to change.>>

%g6 and %g7 Global registers 6 and 7 are reserved for system software.

%ccr, %y These special registers are volatile across function calls

%asi The address space identifier register by default holds the
value ASI_PRIMARY_NOFAULT. If modified, it must be
restored to the default value before calling another function
or returning.

%fsr The RD, TEM and NS fields are preserved across function
calls; the other fields are volatile. The AEXC bits may be set
by a callee, but may not be cleared.

%fprs The floating point registers state is intended for use by a
threads interface. An application that uses %fprs may not
work with a future threads interface. A threads interface may
publish its own rules for use of %fprs.

%sp or %o6 The stack pointer plus the stack BIAS determines the limit of
the current stack frame, which is the address of the stack’s
bottommost, valid word. At all times the stack pointer plus
the stack BIAS must point to a 16-byte aligned, 16 extended
words window save area.
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%fp or %i6 The frame pointer plus the stack BIAS is the address of the
previous stack frame, which coincides with the word imme-
diately above the current frame. Consequently, a function has
registers with which it can access both ends of its frame.
Incoming overflow arguments reside in the previous frame,
referenced as positive offsets from the frame pointer plus the
stack BIAS.

%i0 and %o0 Integral and pointer return values appear in %i0. A calling
function receives values in the coincident out register %o0.

%i0,%i1,%i2,%i3
(%o0,%o1,%o2,%o3)

The integral fields of structure and all of the fields of union
return values with a total size 32 bytes or less appear in regis-
ters %i0, %i1, %i2 and %i3. A calling function receives val-
ues in the coincident out registers

%i7 and %o7 The return address is the location to which a function should
return control. Because a calling function’s out registers coin-
cide with the called function’s in registers, the calling func-
tion puts a return address in its own %o7, while the called
function finds the address in %i7 (if it has established its own
stack frame).
Actually, the return address register holds the call instruc-
tion’s address, normally making the return address %i7+8 for
the called function. (every call instruction has a delay instruc-
tion.) Between function calls, %o7 serves as a scratch regis-
ter.

%f0,%f1,%f2,%f3
(%d0, %d2)
(%q0)

Floating-point return values appear in the floating-point reg-
isters. Single-precision values occupy %f0; double-precision
values occupy %d0; quad-precision values occupy %q0.
(Refer to the SPARCTM Architecture Manual, Version 9 for
details on the register numbering scheme). Otherwise, these
are scratch registers.

%f0 through %f7
(%d0 through %d6)
(%q0 and %q4)

Floating-point fields from structure return values with a total
size of 32 bytes or less appear in the floating-point registers.

%i0 through %i5 Incoming non-floating-point parameter slots use up to 6 cor-
responding in registers. Arguments beyond the sixth
extended-word appear on the stack.

%o0 through %o5 Outgoing non-floating-point parameters slots use up to 6 cor-
responding out registers. Arguments beyond the sixth
extended-word appear on the stack.
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%f1, %f3 through
%f13, %f15
(%d0 through %d14)
%q0 through %q12)

Floating-point arguments are passed in the floating-point
registers.Unpromoted single-precision arguments are passed
in the first 8 odd-numbered %f registers, Double-precision
arguments are passed in registers %d0 through %d14 Quad-
precision arguments are passed in registers %q0 through
%q12. These registers are assumed volatile across the call.

%l0 through %l7 Local registers have no specified role in the standard calling
sequence.

%f16 through %f31
%d16 through %d46
%g16 through %q44

These floating-point registers have no specified role in the
standard calling sequence. They are assumed non-volatile
across function calls

%d48 through %d62
(%q48through %q60)

These floating-point registers have no specified role in the
standard calling sequence. They are assumed volatile across
function calls

%g0 Global register 0 has no specified role in the standard calling
sequence.

%g1, %g5 Global registers 1 and 5 have no specified role in the stan-
dard calling sequence. They are assumed volatile across
function calls (and between caller and callee).

%g2, %g3, %g4 Global registers 2, 3, and 4 are reserved for application soft-
ware. System software (including the libraries described in
Chapter 6) preserve the registers’ values for the application.
Their use is intended to be controlled by the compilation sys-
tem and must be consistent throughout the application.
<<This allocation is subject to change.>>

%g6 and %g7 Global registers 6 and 7 are reserved for system software.

%ccr, %y These special registers are volatile across function calls

%asi The address space identifier register by default holds the
value ASI_PRIMARY_NOFAULT. If modified, it must be
restored to the default value before calling another function
or returning.

%fsr The RD, TEM and NS fields are preserved across function
calls; the other fields are volatile. The AEXC bits may be set
by a callee, but may not be cleared.

%fprs The floating point registers state is intended for use by a
threads interface. An application that uses %fprs may not
work with a future threads interface. A threads interface may
publish its own rules for use of %fprs.
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With some exceptions given below, all registers visible to both a calling and a called function
‘belong’ to the called function. In other words, a called function may use all visible registers
without saving their values before it changes them and without restoring their values before
it returns. Registers in this category include global registers 1 and 5, volatile floating-point
registers, out registers (for the calling function), in registers (for the called function), the Y
register, ... Correspondingly, if a calling function wants to preserve such a register value across
a function call, it must save the value and restore it explicitly. Local registers in each window
are private. A called function should not change its calling function’s local or in registers,
even though the registers may be visible temporarily. The exceptions are the stack pointer,
%sp, %asi, the non-volatile floating-point registers (if any), global registers 2 through 4(?),
6 and 7. A called function is obligated to preserve the stack pointer for its caller.

Signals can interrupt processes [see signal(BA_OS)]. Functions called during signal handling
have no unusual restrictions on their use of registers. Moreover, if a signal handling function
returns, the process resumes its original execution path with registers restored to their original
values. Thus programs and compilers may freely use all non-reserved registers, even global
and floating-point registers, without the danger of signal handlers changing their values. The
address space identifier register will be set to ASI_PRIMARY_NOFAULT on entry to the signal
handler.

3.2.2. Function Argument Passing

It is convenient to describe parameter linkage in terms of an array. Conceptually, parameters
are assigned into an array of extended words, left-to-right, with an occasional “hole” to satisfy
alignment restrictions. Typically, most parameter values will be “promoted” from their memory
locations into registers, and most calls are expected to execute this way with less overhead.

The following diagram shows the correspondence between parameter registers and the
“parameter array.” (Sun Version)

Memory Integral Float Float from structure Double Quad

%sp+BIAS+248 %f31 %f30 and %f31 %d30

%sp+BIAS+240 %f29 %f28 and %29 %d28 %q28

%sp+BIAS+232 %f27 %f26 and %f27 %d26

%sp+BIAS+224 %f25 %f24 and %f25 %d24 %q24

%sp+BIAS+216 %f23 %f22 and %f23 %d22

%sp+BIAS+208 %f21 %f20 and %f21 %d20 %q20

%sp+BIAS+200 %f19 %f18 and %f19 %d18

%sp+BIAS+192 %f17 %f16 and %f17 %d16 %q16

DEADLOCK Due to disagreement between Hal and Sun, two versions of the following
material are included.



3-22 SPARC V9 ABI SUPPLEMENT Delta Document 1.34x

LOW-LEVEL SYSTEM INFORMATION 8/22/96 SPARC International Confidential

The following diagram shows the correspondence between parameter registers and the
“parameter array.” (Hal Version)

An “integral type” is any eight-bit char, sixteen-bit short, thirty-two bit int, sixty-four bit long,
sixty-four bit long long, or a sixty-four bit pointer to any type.

A “floating type” is any thirty-two bit float, sixty-four bit double, or a one-hundred-twenty-
eight bit long double.

Structures and unions are categorized only by their size and alignment requirement; structures
up to sixteen bytes in size are passed more efficiently than structures larger than sixteen bytes.

To call a function with parameters, a calling function allocates a “parameter array” in its stack
frame (see Figure 3-16), sufficiently large to pass all parameters in memory. However, some
values are not stored in this array, but are passed only in registers; see below. In the description
below, %i and %o register names are used according to context. See the descriptions of the
SAVE and RESTORE instructions for the relationship between these.

%sp+BIAS+184 %f15 %f14 and %f15 %d14

%sp+BIAS+176 %f13 %f12 and %f13 %d12 %q12

%sp+BIAS+168 %o5 %f11 %f10 and %f11 %d10

%sp+BIAS+160 %o4 %f9 %f8 and %f9 %d8 %q8

%sp+BIAS+152 %o3 %f7 %f6 and %f7 %d6

%sp+BIAS+144 %o2 %f5 %4 and %f5 %d4 %q4

%sp+BIAS+136 %o1 %f3 %f2 and %f3 %d2

%sp+BIAS+128 %o0 %f1 %f0 and %f1 %d0 %q0

Memory Integral Float Float from structure Double Quad

%sp+BIAS+184 %f15 %f14 and %f15 %d14

%sp+BIAS+176 %f13 %f12 and %f13 %d12 %q12

%sp+BIAS+168 %o5 %f11 %f10 and %f11 %d10

%sp+BIAS+160 %o4 %f9 %f8 and %f9 %d8 %q8

%sp+BIAS+152 %o3 %f7 %f6 and %f7 %d6

%sp+BIAS+144 %o2 %f5 %4 and %f5 %d4 %q4

%sp+BIAS+136 %o1 %f3 %f2 and %f3 %d2

%sp+BIAS+128 %o0 %f1 %f0 and %f1 %d0 %q0
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Every register used to pass parameter values has a corresponding location, at a fixed offset,
in the parameter array.

3.2.2.1. Integral and pointer arguments

Int, short, char, long, and long long types will be assigned to one 64-bit word in the parameter
array. Types smaller than one 64-bit word, including char, short, and the thirty-two bit int,
will be widened to 64 bits according to their signedness.

Any integral or pointer parameters assigned to locations %sp+BIAS+128 through
%sp+BIAS+168 in the parameter array will be passed in registers %o0..%05.  The corresponding
locations in the parameter array will have undefined values. The corresponding %f/%d/%q
register(s) will also be undefined.

3.2.2.2. Floating arguments

Each single-precision parameter value will be assigned to one 64-bit word in the parameter
array, and right-justified within that word. Each double-precision parameter value will be
assigned to one 64-bit word in the parameter array. Each long-double-precision parameter value
will be assigned to two 64-bit words in the parameter array. Long doubles should be long-
double-aligned, and a “hole” may be introduced into the parameter array to force alignment.

When a callee prototype exists, and does not indicate variable arguments, floating-point values
assigned to locations %sp+BIAS+128 through %sp+BIAS+248 (%sp+BIAS+248 under the Hal
proposal) will be promoted into floating-point registers, as shown above.

When a callee prototype exists and a particular floating argument matches the “...” of a function
with variable arguments, floating values assigned to locations %sp+BIAS+128 through
%sp+BIAS+168 will be promoted to %i0..%i5

When no prototype exists for a callee:

Floating values assigned to locations %sp+BIAS+128 through %sp+BIAS+168 will be
passed simultaneously in %i0..%i5 and %d0..%d10 (or %q0..%q8).

Floating values assigned to locations %sp+BIAS+176 through %sp+BIAS+248
(%sp+BIAS+184 under the Hal proposal) will be passed simultaneously in memory and
in %d12..%d30 (%d12 and %d14 under the Hal proposal).

3.2.2.3. Structure and Union arguments

Structure or union types up to eight bytes in size are assigned to one parameter array word,
and align to eight-byte boundaries.

When using a 64-bit load, the address of any unpromoted integral parameter is the address
of the slot in the parameter array.

NOTE
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Structure or union types larger than eight bytes, and up to sixteen bytes in size are assigned
to two consecutive parameter array words, and align according to the alignment requirements
of the structure or at least to an eight-byte boundary.

Structure or union types are always left-justified, whether stored in registers or memory. The
individual fields of a structure (or containing storage unit in the case of bit fields) are subject
to promotion into registers based on their type using the same rules as apply to scalar values
(with the addition that a single-precision floating-point number assigned to the left half of an
argument slot will be promoted into the corresponding even-numbered register.). Any union
type being passed directly is subject to promotion into the appropriate integer register(s).

Note that a sixteen-byte structure with all integral fields assigned to locations %sp+BIAS+168
and %sp+BIAS+176 will be “split,” as the contents of location %sp+BIAS+168 will be promoted
to %o5. This is the only situation where a value will be split between registers and memory.

Structures larger than two words are copied by the caller and passed indirectly; the caller will
pass the address of a correctly aligned structure value. This sixty-four bit address will occupy
one word in the parameter array, and may be promoted to an %o register like any other pointer
value. The callee may modify the addressed structure.

The caller can omit the copy if such omission can not be detected. That requires (at least) that:

• the original aggregate is already properly aligned,

• the original aggregate is not aliased,

• the original aggregate is not used after the call, and

• no language-specific semantics require the copy.

3.2.2.4. Variable Argument Lists

A function that expects a variable argument list typically uses the stdarg.h mechanism to process
the list. That mechanism defines a va_list type that can be passed to another function. Due
to the use of the parameter array described above va_list is of type void *.

3.2.3. Function Result Passing

Functions declared to return the void type do not return a value. All other functions return
their values according to the following rules.

3.2.3.1. Integral and pointer return values

Integral and pointer return types are returned in integer register %o0. Functions returning integral
and pointer return values always return an extended-word, expanding signed and unsigned bytes,
halfwords, and words as needed.

3.2.3.2. Floating return values

A return value of floating-point type is passed in %f0, %d0, or %q0 respectively.
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3.2.3.3. Structure or Union return values

Structure and union return types up to thirty-two bytes in size are returned in registers. The
registers are assigned as if the value was being passed as the first argument to a function with
a known prototype.

For types with a larger size the caller allocates an area large enough to hold the return value,
and passes a pointer to that area as an implicit first argument (of type pointer-to-data) to the
callee. This implicit argument logically precedes the first actual argument, and is allocated
according to normal argument passing rules (i.e. into %o0). The callee may modify the
designated memory area at any time during its execution; the only requirement is that it hold
the return value upon return. If the callee is terminated through any means other than a normal
function return (e.g. through a call to the longjmp function), the contents of the memory area
are undefined.

Note that the caller may pass a pointer to a program variable as long as it ensures that the
above rules cannot cause violation of the program’s proper semantics.

Note also that the caller is required to provide the implicit argument and a properly sized
receiving area even if it does not wish to use the callee’s function result. In that case, the
caller may simply pass a pointer to a scratch area.

So that compilers are not forced to emit in-line code for structure copy, Section 6.2 defines
a set of routines optimized for this purpose. In the case of a routine which had kept its first
argument in %i0 and had built up the value to be returned in a local variable, a tail call to
the copy routine would take the form:

add %fp, BIAS-source_offset, %i1
call __align_cpy_n
restore %g0, size, %o2

3.2.4. Examples of Argument Passing

All the following examples assume the caller sees a prototype for the callee.

3.2.4.1. Integral and Pointer Arguments

As mentioned, a function receives its first 6 integral and pointer arguments through the in
registers, %i0 through %i5. Functions pass all integral arguments as extended-words, expanding
signed or unsigned bytes, halfwords and words as needed. If a function call has more than
6 integral and pointer arguments the others go on the stack
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3.2.4.2. Floating-Point Arguments

The first floating-point arguments are passed in floating-point registers.

Figure 3-19: Integral and Pointer Arguments

Argument call Caller Callee
1 g( char, %o0 %i0
2    char, %o1 %i1
3    short, %o2 %i2
4    int, %o3 %i3
5    char *, %o4 %i4
6    int, %o5 %i5
7    int, [%sp+BIAS+176] [%fp+BIAS+176]
8    void * ); [%sp+BIAS+184] %fp+BIAS+184]

Figure 3-20: Floating-Point Arguments (Sun Version)

Argument Call Caller Callee
1 h( float, %f1 %f1
2    float, %f3 %f3
3    double, %d4 %d4
4    float, %f7 %f7
5    double, %d8 %d8
6    float, %f11 %f11
7    float, %f13 %f13
8    long_double, %q16 %q16
9    double %d20 %d20
10    long double ); %q24 %q24

DEADLOCK Due to disagreement between Hal and Sun, two versions of the following
material are included.
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3.2.4.3. An Example of Mixed Arguments

Figure 3-20: Floating-Point Arguments (Hal Version)

Argument Call Caller Callee
1 h( float, %f1 %f1
2    float, %f3 %f3
3    double, %d4 %d4
4    float, %f7 %f7
5    double, %d8 %d8
6    float, %f11 %f11
7    float, %f13 %f13
8    long double, [%sp+BIAS+192] [%fp+BIAS+192]
9    double [%sp+BIAS+208] [%fp+BIAS+208]
10    long double ); [%sp+BIAS+224] [%fp+BIAS+224]

Figure 3-20.5: Mixed Arguments (Sun Version)

Argu-
ment Code Caller Callee

1 f( char, %o0 %i0
2    float %f3 %f3
3    short %o2 %i2
4    double %d6 %d6
5    int %o4 %i4
6    float, %f11 %f11
7    long, [%sp+BIAS+176] [%fp+BIAS+176]
8    long, [%sp+BIAS+184] [%fp+BIAS+200]
9    double ); %d16 %d16

DEADLOCK Due to disagreement between Hal and Sun, two versions of the following
material are included.
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3.2.5. Examples of Result Passing

3.2.5.1. Functions Returning Scalars or No Value

A function that returns an integral or pointer value places its result in %i0; the calling function
finds that value in %o0.

A floating-point return value appears in the floating-point registers for both the calling and
the called function. Single-precision uses %f0; double-precision uses %d0; quad-precision uses
%q0.

Functions that return no value (also called procedures or void functions) put no particular
value in any return register. Those registers may be used as scratch registers, however.

A call instruction writes its own address into out register %o7. As usual for a control transfer
instruction, the call instruction takes a delay instruction that is executed before the instruction
of the called function. Because every instruction is one word long, the return address is the
address of the call instruction plus 8. The value is %i7+8 for the called function and %o7+8
for the calling function. The following example returns the value contained in local register %l4.

Figure 3-20.5: Mixed Arguments (Hal Version)

Argu-
ment Code Caller Callee

1 f( char, %o0 %i0
2    float %f3 %f3
3    short %o2 %i2
4    double %d6 %d6
5    int %o4 %i4
6    float, %f11 %f11
7    long, [%sp+BIAS+176] [%fp+BIAS+176]
8    long [%sp+BIAS+184] [%fp+BIAS+184]
9    double ); [%sp+BIAS+192] [%fp+BIAS+192]

jmpl %i7 + 8, %g0
restore %l4,0,%o0

Figure 3-23: Function Epilogue
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If a function returns no value or if the return register already contains the desired value, the
next epilogue would suffice.

3.3. Operating System Interface

3.3.1. Virtual Address Space

Processes execute in a 64-bit virtual address space e; this is mapped as both the primary and
secondary address space. That is all forms of ASI_PRIMARY and ASI_SECONDARY refer
to the same address space. Memory management hardware translates virtual addresses to physical
addresses, hiding physical addressing and letting a process run anywhere in the system’s real
memory. Processes typically begin with three logical segments, commonly called text, data and
stack. As Chapter 5 describes, dynamic linking creates more segments during execution, and
a process can create additional segments for itself with system services.

3.3.1.1. Page Size

Memory is organized by pages, which are the system’s smallest units of memory allocation.
Page size can vary from one system to another, depending on the processor, memory management
unit and system configuration. Processes may call sysconf(BA_OS) to determine the system’s
current page size. The maximum page size for SPARC V9 is 1 MB.

3.3.1.2. Virtual Address Assignments

Conceptually, processes have the full 64-bit address space available. In practice, however, several
factors limit the size of a process.

� The system reserves a configuration-dependent amount of virtual space.

� A tunable configuration parameter limits process size.

� A process whose size exceeds the system’s available, combined physical memory
and secondary storage cannot run. Although some physical memory must be present
to run any process, the system can execute processes that are bigger than physical
memory, paging them to and from secondary storage. Nonetheless, both physical
memory and secondary storage are shared resources. System load, which can vary
from one process execution to the next, affects the available amounts.

jmpl %i7 + 8, %g0
restore %g0,0,%g0

Figure 3-24: Alternative Function Epilogue
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Loadable segments
Processes’ loadable segments may begin at 0. The exact addresses depend on
the executable file format [see Chapters 4 and 5].

Stack and dynamic segments
A process’s stack and dynamic segments reside below the reserved area.
Processes can control the amount of virtual memory allocated for stack space,
as described below.

Reserved A reserved area resides at the top of virtual memory.

As the figure shows, the system reserves the high end of virtual space with a process’s stack
and dynamic segments below that. Although the exact boundary between the reserved area
and a process depends on the system’s configuration, the reserved area shall not consume more
than 8 exabytes (EB) from the virtual address space. Thus the user virtual address range has
a minimum upper bound of 0x7fff ffff ffff ffff. Individual systems may reserve less space,
increasing processes’ virtual memory range. More information follows in the section “Managing
the Process Stack”.

0xffff ffff ffff ffff Reserved
. . .

End of memory

Stack and
dynamic segments

. . .

0
. . .

Loadable segments Beginning of memory

Figure 3-26: Virtual Address Configuration

Although application programs may begin at virtual address 0, they conventionally begin
at 0x100000 (1 MB), leaving the initial 1 MB with an invalid address mapping. Processes
that reference this invalid memory (for example by dereferencing a null pointer) generate
an access exception trap, as described in the “Trap Interface” section of this chapter. A
process may, however, establish a valid mapping for this area using the mmap(KE_OS)

NOTE

The effects of using load and store alternate instructions with address space identifiers other
than ASI_PRIMARY and ASI_PRIMARY_NOFAULT are undefined.

NOTE
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3.3.2. Trap Interface

3.3.2.1. Hardware Trap Types

The operating system defines the following correspondence between hardware traps and the
signals specified by signal(BA_OS).

The signal is sent only if no user trap handler is provided. See User Traps.

Two trap types, instruction_access_exception and data_access_exception, can generate two
signals. In both cases, the “normal” signal is SIGSEGV. Nonetheless, if the access also causes
some external memory error (such as parity error), the system generates SIGBUS.

Floating point instructions exist in the architecture, but they may be implemented either in
hardware or software. If the fp_disabled or fp_exception_other trap occurs because of an
unimplemented, valid instruction, the process receives no signal. Instead the system intercepts
the trap, emulates the instruction, and returns control to the process. A process receives SIGILL
for the fp_disabled trap only when the indicated floating-point instruction is illegal (invalid
encoding, etc.).

Trap Name

instruction_access_exception
instruction_access_MMU_miss
instruction_access_error
illegal_instruction
privileged_opcode
fp_disabled
fp_exception_ieee_754
fp_exception_other
tag_overflow
division_by_zero
data_access_exception
data_access_MMU_miss
data_access_error
data_access_protection
mem_address_not_aligned
privileged_action
async_data_error
trap_instruction

Signal

SIGSEGV,SIGBUS
SIGSEGV
SIGBUS
SIGILL
SIGILL
SIGILL
SIGFPE
SIGFPE
SIGEMT
SIGFPE
SIGSEGV,SIGBUS
SIGSEGV
SIGBUS
SIGSEGV
SIGBUS
SIGILL
SIGBUS
see next table

Figure 3-27: Hardware Traps and Signals
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3.3.2.2. Software Trap Types

The operating system defines the following correspondence between software traps and the
signals specified by signal(BA_OS).
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0 and 8 Trap types 0 and 8 were used in some pre-V9 SPARC systems to implement
operating system service routines. In V9 they are reserved.

1 A debugger can set a breakpoint by inserting a trap instruction whose type is 1.

Figure 3-28: Software Trap Types

Trap Number Signal Purpose
0 unspecified Reserved to OS vendor (old old syscall)
1 SIGTRAP Breakpoint
2 SIGFPE Division by zero
3 unspecified Reserved to OS vendor (old flush windows trap)
4 unspecified Reserved to OS vendor (old clean windows trap)
5 SIGILL Range checking
6 none Fix alignment
7 SIGFPE Integer overflow
8 unspecified Reserved to the OS vendor (old syscall)

9-15 unspecified Reserved to the OS vendor
16-31 SIGILL Reserved for user applications

32 unspecified Reserved (old get condition codes; still works)
33 unspecified Reserved (old set condition codes; still works)

34-47 unspecified Reserved to the OS vendor
48-63 unspecified Reserved to the OS vendor

64 SIGSYS SVID system calls
65 SIGSYS SPARC International-specific system calls
66 SIGSYS OS Vendor-specific system calls
67 SIGSYS HW OEM-specific system calls
68 SIGILL Return from deferred trap

69-79 unspecified Reserved to SPARC International
80-95 unspecified Reserved to SPARC International
96-111 unspecified Reserved to the OS vendor

112-255 unspecified Reserved to the OS vendor

The ABI does not define the implementation of individual system calls. Instead, programs
should use the system libraries that chapter 6 describes. Programs with embedded system
call trap instructions do not conform to the ABI.

NOTE
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2 A process can explicitly signal division by zero with this trap.

3 Trap type 3 was used in pre-V9 SPARC systems to ask the system to flush all
its register windows to the stack. In V9 the flushw instruction can be used instead.
The trap is reserved.

4 Trap type 4 was used in pre-V9 SPARC systems to cause the system to initialize
local and out registers in all subsequent new windows either to zeros or values
placed into them by the calling process. In V9 this behavior is required. The trap
is reserved.

5 A process can explicitly signal a range checking error with this trap.

6 Executing a type 6 trap makes the operating system “fix” subsequent unaligned
data references. Although the references still generate memory_address_not_aligned
traps, the operating system handles the trap, emulates the data references, and returns
control to the process without generating a signal. In this context a “data reference”
is a load or store operation. Implicit memory references, such as control transfers,
must always be aligned properly, and the stack must always be aligned as described
elsewhere.

This trap is provided to ease porting of existing code. Its use in new code is
deprecated. A user trap handler should be used instead. If a user trap handler for
UT_MEM_ADDRESS_NOT_ALIGNED is installed, it takes precedence.

7 A process can explicitly signal integer overflow with this trap. Either a positive
or a negative value can cause overflow.

9-15 The operating system reserves these traps for its own use. Programs that use them
do not conform to the ABI.

16-31 These traps are reserved for user applications and are subject to being handled by
user trap handlers (See section following section)

32 Trap type 32 was used in pre-V9 SPARC systems to copy the icc integer condition
codes from the PSR register to global register %g1. In V9 the CCR register is
not privileged and can be accessed directly. The trap is reserved.

33 Trap type 33 was used in pre-V9 SPARC systems to copy the rightmost four bits
from global register %g1 to the PSR icc integer condition codes. In V9 the CCR
register is not privileged and can be accessed directly. The trap is reserved.

34-63 The operating system reserves these traps for its own use. Programs that use them
do not conform to the ABI.

64 SVID operating system service routines are implemented using this trap type

65 SPARC International-specific operating system service routines are implemented
using this trap type.

66 OS Vendor-specific operating system service routines are implemented using this
trap type.

67 HW OEM-specific operating system service routines are implemented using this
trap type.

68 Trap 68 is used to return control to the system from a deferred user trap handler.
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69-95 Reserved for future allocation by SPARC International

96-127 The operating system reserves these trap types for its own use. Programs that use
them do not conform to the ABI.

3.3.3. User Traps

The operating system can redirect certain traps from non-privileged code back to user trap
handlers. The interface for this functionality is declared in the new include file <sys/utrap.h>.
and explained Figure 3-35+: Hardware Traps and User Traps. See Libraries/System Data
Interfaces/Data Definitions, figure 6-57+.

User trap types marked with † above are required and must be provided by all ABI-conforming
implementations. The other may not be present on every implementation; an attempt to install
a user trap handler for that condition will return EINVAL.

User trap types marked with * above are implemented as precise traps only.

Most user trap types are self-explanatory; a few require a few more words.

UT_ILLTRAP_INSTRUCTION
This trap is raised by user execution of the ILLTRAP instruction. It is always pre-
cise.

Figure 3-35+: Hardware Traps and User Traps

Trap Name User Trap
illegal_instruction UT_ILLTRAP_INSTRUCTION

UT_ILLEGAL_INSTRUCTION
†*

fp_disabled UT_FP_DISABLED †*
fp_exception_ieee_754 UT_FP_EXCEPTION_IEEE_754 †
fp_exception_other UT_FP_EXCEPTION_OTHER

tag_overflow UT_TAG_OVERFLOW †*
division_by_zero UT_DIVISION_BY_ZERO †
mem_address_not_aligned UT_MEM_ADDRESS_NOT_ALIGNED †
privileged_action UT_PRIVILEGED_ACTION †
privileged_opcode UT_PRIVILEGED_OPCODE

async_data_error UT_ASYNC_DATA_ERROR

trap_instruction UT_TRAP_INSTRUCTION_16 through
UT_TRAP_INSTRUCTION_31

†*
†*

instruction_access_exception
instruction_access_MMU_miss
instruction_access_error

UT_INSTRUCTION_EXCEPTION or
UT_INSTRUCTION_PROTECTION or
UT_INSTRUCTION_ERROR

data_access_exception
data_access_MMU_miss
data_access_error
data_access_protection

UT_DATA_EXCEPTION or
UT_DATA_PROTECTION or
UT_DATA_ERROR
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UT_ILLEGAL_INSTRUCTION
This trap will be raised by execution of otherwise undefined opcodes. It is imple-
mentation-dependent as to what opcodes raise this trap; the ABI only specifies the
interface. The trap may be precise or deferred.

UT_PRIVILEDGED_OPCODE
All the opcodes declared to be privileged in SPARC V9 will raise this trap. It is
implementation-dependent whether other opcodes will raise it as well; the ABI
only specifies the interface.

UT_DATA_EXCEPTION, UT_INSTRUCTION_EXCEPTION
No valid user mapping can be made to this address, for a data or instruction
access, respectively.

UT_DATA_PROTECTION, UT_INSTRUCTION_PROTECTION
A valid mapping exists, and user privilege to it exists, but the type of access (read,
write, or execute) is denied, for a data or instruction access, respectively.

UT_DATA_ERROR, UT_INSTRUCTION_ERROR
A valid mapping exists, and both user privilege and the type of access are
allowed, but an unrecoverable error occurred in attempting the access, for a data
or instruction access, respectively. %l1 will contain either BUS_ADDRERR or
BUS_OBJERR.

A functional interface is provided to establish the user trap handlers which is defined Section 6.2.

For all traps, the handler executes in a new window, where the in registers are the out registers
of the previous frame and have the value they contained at the time of the trap. Similarly
the global registers (including the special registers %ccr, %asi, and %y) and the floating-
point registers have their values at the time of the trap. If the handler needs scratch space,
it should decrement the stack pointer to obtain it. If the handler needs access to the previous
frame’s in registers or local registers, it should execute a FLUSHW instruction, and then access
them off of the frame pointer. If the handler calls an ABI-conforming function, it must set
the %asi register to ASI_PRIMARY_NOFAULT before the call.

3.3.3.1. Precise Traps

On entry to a precise user trap handler %l6 contains the %pc and %l7 contains the %npc
at the time of the trap. To return from a handler and reexecute the trapped instruction, the
handler would execute:

 jmpl %l6, %g0
 return %l7

To return from a handler and skip the trapped instruction, the handler would execute:

 jmpl %l7, %g0
 return %l7+4
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3.3.3.2. Deferred Traps

On entry to a deferred user trap handler %o0 contains the address of the instruction that caused
the trap and %o1 contains the actual instruction, if the information is available. Otherwise %o0
contains the value -1 and %o1 is undefined. For certain cases additional information may be
made available as indicated in the following table.

To return from a deferred trap, the trap handler issues:

ta 68 !ST_RETURN_FROM_DEFERRED_TRAP

The instruction that causes the trap will NOT be retried.

3.3.3.3. Dispatching Traps

The following pseudo-code explains how the operating system dispatches traps.

if (precise_trap) {
if (precise_handler) {

invoke(precise_handler);
/* not reached */

} else {
convert_to_signal(precise_trap);

}
} else if (deferred_trap) {

if (deferred_handler) {
invoke(deferred_handler);
/* not reached */

} else {
convert_to_signal(deferred_trap);

}
}

if (signal)

Instructions Additional Information

LD-type
LDSTUB

%o2 contains the effective address (rs1 + rs2 | simm13).

ST-type
CAS

SWAP

%o2 contains the effective address (rs1 + rs2 | simm13).
%o3 contains the data to be stored if available.

Integer
arithmetic

%o2 contains the rs1 value.
%o3 contains the rs2 | simm13 value.
%o4 contains the contents of %y register.

Floating-point
arithmetic

%o2 contains the address of rs1 value.
%o3 contains the address of rs2 value.

Control-transfer %o2 contains the target address (rs1 + rs2 | simm13).

Asynchronous
data errors

%o2 contains the address that caused the error.
%o3 contains the effective ASI, if a variable, else -1
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send(signal);

User trap handlers must preserve all registers except the locals (%l0-7) and outs (%o0-7),
i.e. %i0-7, %g1-7, %d0-62, %asi, %fsr, %fprs, %ccr, and %y, except to the extent that
modifying the registers is part of the desired functionality of the handler. For example, the
handler for UT_FP_DISABLED may load floating-point registers.

3.4. Process Initialization

All processes are initiated by the privileged operating system software with the following
characteristics:

� 1. Interrupts enabled

� 2. Non-privileged mode

� 3. Normal global registers

3.4.1. Special Registers

The architecture defines three non-privileged state registers and one privileged register to control
and monitor the processor. They are the condition code register (CCR), the floating-point registers
state (FPRS), the floating-point state register (FSR), and the processor state register (PSTATE).
The tables below give the initial state of these registers.

The architecture defines floating point instructions, and those instructions work whether the
processor has a hardware floating-point unit or not. (A system may provide hardware or software
floating point facilities.) In either case, however, the processor presents a working floating-
point implementation, including an FPRS and an FSR with the following initial values.

Field

xcc
icc

Value

unspecified
unspecified

Note

Extended integer condition codes unspecified
Integer condition codes unspecified

Figure 3-30: Condition Code Register (CCR) Fields
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Other non-privileged registers and their initial states are listed in the table below.

Field

FEF
DL
DU

Value

1
0
0

Note

Floating-point unit enabled
Lower half of floating point registers are not dirty
Upper half of floating-point registers are not dirty

Figure 3-30+: Floating-point Registers State (FPRS) Fields

Field

fcc3
fcc2
fcc1
RD
TEM
NS
ver
ftt
qne
fcc0
aexc
cexc

Value

unspecified
unspecified
unspecified

0
0
0

read only
unspecified

0
unspecified

0
0

Note

Floating-point condition codes unspecified
Floating-point condition codes unspecified
Floating-point condition codes unspecified
Round to nearest
Floating-point traps not enabled
Nonstandard mode off
Implementation version number
Floating-point trap type unspecified
Floating-point queue (if any) is empty
Floating-point condition codes unspecified
No accrued exceptions
No current exceptions

Figure 3-31: Floating-point State (FSR) Register Fields

Register

%asi
%tick
%pc
%y

Value

ASI_PRIMARY_NOFAULT
positive

--
unspecified

Note

Address space identifier default
Monotonically increasing
The current program counter
Y register unspecified

Figure 3-31+: Other Non-privileged Registers
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3.4.2. Process Stack and Registers

When a process receives control, its stack holds the arguments and environment from
exec(BA_OS).

Argument strings, environment strings, and the auxiliary information appear in no specific order
within the information block; the system makes no guarantees about their arrangement. The
system also may leave an unspecified amount of memory between the null auxiliary vector
entry and the beginning of the information block.

Unspecified

Information block, including
argument strings

environment strings
auxiliary information

. . .
(size varies)

Unspecified

Null auxiliary vector entry

Auxiliary vector
. . .

(2 extended-word entries)

0 extended-word

Environment pointers
. . .

(1 extended-word each)

0 extended-word

Argument pointers
. . .

(Argument count extended-words)

Argument count

Window save area
(16 extended-words)

High Addresses

Low Addresses

%sp+BIAS+128

%sp+BIAS+0

Figure 3-32: Initial Process Stack
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Except as shown below, global, floating point, and window registers have unspecified values
at process entry. Consequently, a program that requires registers to have specific values must
set them explicitly during process initialization. It should not rely on the system to set all
registers to zero.

%g1 A non-zero value gives a function pointer that the application should register with
atexit(BA_OS). If %g1 contains zero, no action is required.

%fp The system marks the deepest stack frame by setting the frame pointer to zero.
No other frame’s %fp has a zero value.

%sp Performing its usual job, the stack pointer plus the stack BIAS gives the address
of the bottom of the stack, which is guaranteed to be 16-byte aligned.

Every process has a stack, but the system defines no fixed stack address. Furthermore, a
program’s stack address can change from one system to another - even from one process
invocation to another. Thus the process initialization code must use the stack address in %sp.
Data in the stack segment at addresses below the stack pointer contain undefined values.

[ The information on auxiliary information is unchanged. ]

In the following example, the stack resides below 0x8000 0000 0000 0000, growing toward
lower addresses. The process receives three arguments.

� cp

� src

� dst

It also inherits two environment strings (this example is not intended to show a fully configured
execution environment).

� HOME=/home/dir

� PATH=/home/dir/bin:/usr/bin:

Its auxiliary vector holds one non-null entry, a file descriptor for the executable file.

� 13

The initialization sequence preserves the stack pointer’s extended-word alignment.
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0

0

13

2

0

0x7fff ffff ffff ffe2

0x7fff ffff ffff ffd3

0

0x7fff ffff ffff ffcf

0x7fff ffff ffff ffcb

0x7fff ffff ffff ffc8

3

reserved

Window save area
(16 extended-words)

0x7fff ffff ffff ffc0

0x7fff ffff ffff ffb0

0x7fff ffff ffff ffa0

0x7fff ffff ffff ff90

0x7fff ffff ffff ff80

0x7fff ffff ffff ff70

0x7fff ffff ffff ff68

0x7fff ffff ffff ff60

%sp+BIAS
0x7fff ffff ffff fee0

Auxiliary vector

Environment vector

Argument vector

Argument count

Low addresses

r / b i n : \0 pad

/ b i n : / u s

h o m e / d i r

r \0 P A T H = /

/ h o m e / d i

s t \0 H O M E =

c p \0 s r c \0 d

High addresses

0x7fff ffff ffff fff0

0x7fff ffff ffff ffe0

0x7fff ffff ffff ffd0

Figure 3-35: Example Process Stack
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3.5. Coding Examples

This section discusses example code sequences for fundamental operations such as calling
functions, accessing static objects, and transferring control from one part of a program to another.
Previous sections discuss how a program may use the machine or the operating system, and
they specify what a program may and may not assume about the execution environment. Unlike
previous material, the information here illustrates how operations may be done, not how they
must be done.

As before, examples use the ANSI C language. Other programming languages may use the
same conventions displayed below, but failure to do so does not prevent a program from
conforming to the ABI.

3.5.1.  Architectural Constraints

The SPARC V9 architecture has a number of constraints that make it desirable to use several
different code models for different purposes, in order to improve performance and reduce code
size. The relevant constraints are:

a) The call instruction has a 30 bit signed immediate value. The target address
of a call instruction may thus be at most 229 instructions (231 bytes) before
it or 229- 1 instructions (231- 4 bytes) after it.

b) Memory access instructions (e.g., ldx and stx) and arithmetic and logical
instructions (e.g., add and or) have a 13-bit signed immediate value.

c) The sethi instruction has a 22 bit unsigned immediate value that is placed
in register bits 31..10. The other register bits are cleared.

3.5.1.1.  Code Positionability

There are two code positionability models of interest:

absolute The virtual addresses of instructions and static data are known at
static link time. To execute properly, the program must be loaded
at a specific virtual address, making the program’s absolute addresses
correspond with the process’s virtual addresses.

position-independent (PIC) The virtual addresses of instructions and static data are not known
until dynamic link time. PIC uses PC-relative addresses, not absolute
addresses. Consequently, the code is not tied to a specific load
address, allowing it to execute properly at various positions in virtual
memory.

Typically, executables have absolute code and shared objects such as dynamically linked libraries
have PIC.

3.5.1.2.  Code Size

Because of constraint (a) and (c), there are two code size models of interest:
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medium The address range spanned by all instructions is less than 231 bytes (2 GB)
and the distance from any instructions to the location of the label
_GLOBAL_OFFSET_TABLE is less than 231 bytes (2 GB)

full The only limit on addresses ranges spanned is the available virtual address space.

One limiting case is a CALL instruction at the beginning of the code whose target address
is at the end of the procedure linkage table. A single CALL instruction can be used for all
subroutine calls within a medium code size program; more code is needed for full code size
programs.

The second limiting factor is the ability of a simple code sequence to materialize a pointer
to the Global Offset Table (applies to position independent code only).

3.5.1.3. Data Size

Because of constraints (b) and (c) there are two data size models of interest for absolute code:

compact The address range spanned by statically allocated data is less than 4 GB.

expansive The only limit on data span is the available virtual address space.

3.5.1.4. Location

Because of constraint (c), there are two location models of interest:

low The executable must be in the low 4 GB of the virtual address space.

anywhere The executable or shared object can be placed anywhere in the virtual address
space.

The low model applies only to absolute code. The low model generates the most efficient code
for accessing static objects: two instructions and one register always suffice.

3.5.1.5.  External Object References

A shared object that references an object external to itself must use indirect addressing. For
example, the libc function localtime() references the external variable daylight. At the time
the libc shared library is created, the address of daylight is not known, so references to it
from libc go through a global offset table. Each shared object has its own global offset table,
which is just a vector of addresses. Each object, e.g. daylight, is associated with an index
into the global offset table. At dynamic link time, the dynamic linker fills in daylight’s element
in the global offset table with the absolute address of daylight.

Whether or not a program has medium code size may depend on the relative ordering
of sections in the program. In particular it may be important to place the procedure linkage
table before the global offset table.

NOTE
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Because of the effects of constraints (b) and (c) on addressing elements in global offset tables,
there are three external object reference models. However, only the first two are of practical
interest.

small The executable or shared object references at most 1024 external objects.

large The executable or shared object references at most 229 external objects.

huge The size of the global offset table is limited only by the available virtual address
space.

The limiting factor is the 13-bit signed immediate in load instructions. Assuming the address
of the middle of the global offset table is already in some register, the small model can load
any element with one LDX instruction, whereas the large model requires three instructions.

3.5.1.6. Combinations of Practical Interest

The following combinations of models might be of practical use. All models use dynamic linking.

<< However, it is not clear that any combination of being located anywhere with no external
object reference model is sensible.>>

3.5.1.7.  Integer Constant Loading

There are a number of ways to load an integer constant, c, into a register. The examples in
the following table assume x is the ones complement of bits 31..10 of c (treated as a 64-
bit bit vector), y is the binary value 111 followed by the low-order 10 bits of c, %hh(c) is
bits 63..42 of c, %hm(c) is bits 41..32 of c, %lm(c) is bits 31..10 of c and %lo(c) is bits
9..0 of c. The table is not exhaustive.

Positionability Code Size Data Size Location External Object
Reference Model

absolute medium compact low none
absolute medium compact anywhere none
absolute medium expansive anywhere small
absolute medium expansive anywhere large
absolute full expansive anywhere large
absolute full compact anywhere none

PIC medium compact anywhere small
PIC medium compact anywhere large
PIC full expansive anywhere large
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3.5.1.8. Addressing Global Offset Tables

A subroutine in a shared object must obtain the address of the shared object’s global offset
table before the subroutine can access the table. Typically, this is done in a prologue. The
offset between the subroutine’s address and the middle of the global offset table must be known
when the shared object is created. The following code examples place the address of the middle
of the global offset table in %l7; other registers can also be used. offset is the offset in bytes
from the rd instruction to the middle of the global offset table. In the medium size case it
is assumed to be positive.

Figure x.x: Loading Integer Constants

Range Code
-212 .. 212- 1 or  %g0, c, %o0

0 .. 232- 1 sethi %hi(c), %o0
or %o0, %lo(c), %o0

-232 .. -1 sethi x, %o0
xor %o0, y, %o0

-263 .. 263- 1

sethi %hh(c), %o1
sethi %lm(c), %o0
or %o1, %hm(c), %o1
or %o0, %lo(c), %o0
sllx %o1, 32, %o1
or %o0, %o1, %o0

Since the general case costs 6 instructions and a scratch register, loading from a constant
table may be more efficient in some cases.

NOTE

Medium Size Code Full Size Code

rd %pc, %l7 rd %pc, %l7
sethi %hi(offset), %o0 sethi %hh(offset), %o1
or %o0, %lo(offset), %o0 sethi %lm(offset), %o0

or %o1, %hm(offset), %o1
or %o0, %lo(offset), %o0
sllx %o1, 32, %o1
or %o0, %o1, %o0

add %l7, %o0, %l7 add %l7, %o0, %l7
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3.5.1.9. Static Data References from Absolute Code

For compact sized data locatable anywhere, register %g4 could be allocated to an application
to contain the address of the start of the data segment. All data address constants are then
relative to the start of the data segment. %g4 (or any other preserved global register) can be
set up once in an executable’s startup code (see below).

The expansive/anywhere case is shown here only to demonstrate why it is not included in
the table of practical combinations.)

The following code could be used in the compact/anywhere startup code. data_start is the virtual
address of the start of the executable’s data segment. Because the code is absolute, data_start
is known at static link time

ANSI C
extern long s;
extern long d;
extern long
*p;

p = &d;

*p = s;

compact/low
.global s
.global d
.global p

sethi %hi(d),%o0
or %o0,%lo(d),%o0

sethi %hi(p),%o1

stx %o0,[%o1+%lo(p)]

sethi %hi(s),%o0

ldx [%o0+%lo(s)],%o0
sethi %hi(p),%o1

ldx [%o1+%lo(p)],%o1
stx %o0,[%o1]

compact/anywhere
.global s
.global d
.global p

sethi %hi(d),%o0
or %o0,%lo(d),%o0
add %o0,%g4,%o0

sethi %hi(p),%o1
or %o1,%lo(p),%o1

stx %o0,[%g4+%o1]

sethi %hi(s),%o0
or %o0,%lo(s),%o0

ldx [%g4+%o0],%o0
sethi %hi(p),%o1
or %o1,%lo(p),%o1

ldx [%g4+%o1],%o1
stx %o0,[%o1]

expansive/anywhere
.global s
.global d
.global p

sethi %hh(d),%o5
sethi %lm(d),%o0
or %o5,%hm(d),%o5
or %o0,%lo(d),%o0
sllx %o5,32,%o5
or %o0,%o5,%o0
sethi %hh(p),%o5
sethi %lm(p),%o1
or %o5,%hm(p),%o5
or %o1,%lo(p),%o1
sllx %o5,32,%o5
stx %o0,[%o1+%o5]

sethi %hh(s),%o5
sethi %lm(s),%o0
or %o5,%hm(s),%o5
or %o0,%lo(s),%o0
sllx %o5,32,%o5
ldx [%o0+%o5],%o0
sethi %hh(p),%o5
sethi %lm(p),%o1
or %o5,%hm(p),%o5
or %o1,%lo(p),%o1
sllx %o5,32,%o5
ldx [%o1+%o5],%o1
stx %o0,[%o1]

Figure x.x: Static Data References from Absolute Code
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3.5.1.10.  Static Data References from PIC

3.5.2. Function Calls

Direct function calls are those where the name of the called function is known at compile
time. The following code shows the cases of interest. The call instruction can be used in
all medium size executables and shared objects.

sethi %hh(data_start), %g1
sethi %lm(data_start), %g4
or %g1, %hm(data_start), %g1
or %g4, %lo(data_start), %g4
sllx %g1, 32, %g1
or %g4, %g1, %g4

Figure x.x: Startup Code for Medium/Anywhere Model

Large Model
.global s
.global d
.global p

sethi %hi(d),%o0
or %o0,%lo(d),%o0
ldx [%l7+%o0],%o0
sethi %hi(p),%o1
or %o1,%lo(p),%o1
ldx [%l7+%o1],%o1
stx %o0,[%o1]

sethi %hi(s),%o0
or %o0,%lo(s),%o0
ldx [%l7+%o0],%o0
ldx [%o0],%o0
sethi %hi(p),%o1
or %o1,%lo(p),%o1
ldx [%l7+%o1],%o1
ldx [%o1],%o1
stx %o0,[%o1]

Small Model
.global s
.global d
.global p

ldx [%l7+d],%o0

ldx [%l7+p],%o1
stx %o0,[%o1]

ldx [%l7+s],%o0
ldx [%o0],%o0

ldx [%l7+p],%o1
ldx [%o1],%o1
stx %o0,[%o1]

ANSI C
extern long s;
extern long d;
extern long *p;

p = &d;

*p = s;

Figure x.x: Static Data References from Position Independent Code
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For indirect function calls, the address of the function is in a pointer. Appropriate code is
used to load the value of the pointer into a register, just as with static data. A jmpl instruction
is then used.

3.5.3. Branching

Programs use branch instructions to control their execution flow. As defined by the architecture,
branch instructions hold a PC-relative value with up to a 2 MB range, allowing a branch to
locations up to 1 MB away in either direction.

C switch statements provide multiway selection. The best implementation of a switch statement
depends on the distribution of the case label values. When they are dense, as in the C example
below then the computed-jump approach shown may generate good code. The example uses
several simplifying conventions to hide irrelevant details:

• The selection expression resides in local register %l0.

• case label constants begin at zero.

• case labels and default use assembly names .Lcasei and .Ldef, respectively.

The following example is position-independent, and can also be used in absolute code.

ANSI C
extern void f();

f();

medium
.global f

call f
nop

absolute/full
.global f

sethi %hh(f),%g2
sethi %lm(f),%g1
or %g2,%hm(f),%g2
or %g1,%lo(f),%g1
sllx %g2,32,%g2
jmpl %g1+%g2,%o7
nop

PIC/full
.global f

sethi %hi(f),%g1
or %g1,%lo(f),%g1
ldx [%l7+%g1],%g1

jmpl %g1,%o7
nop

Figure x.x: Function Calls
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The number of instructions in the legs can be varied. If there is not enough space in a leg,
a branch to additional code can be used.

ANSI C

switch (j)
{
case 0:

...
case 2:

...
case 3:

...
default:

...
}

Assembly

subcc %l0, 4, %g0
movgu xcc, 1, %l0

1:
rd %pc, %l1
sllx %l0, 5, %l0
add %l0, (.Lcase0 - 1b), %l0
jmpl %l0 + %l1, %g0
nop

.Lcase0:
instruction 1
instruction 2
instruction 3
instruction 4
instruction 5
instruction 6
ba .Lcase0_continued
instruction 8

.Ldef:
instruction 1
instruction 2
instruction 3
instruction 4
instruction 5
instruction 6
ba .Lcase_end
instruction 8

.Lcase2:
 ...

.Lcase0_continued:
 ...

.Lcase_end:

Figure 3-46: Position-Independent switch Code
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3.5.4. C Stack Frame

The figure above shows the C stack frame organization. It conforms to the standard stack frame
with designated roles for unspecified areas in the standard frame. A C stack frame doesn’t
normally change size during execution. The exception is dynamically allocated stack memory,
discussed below. By convention, a function allocates automatic (local) variables in the top of
its frame and references them as negative offsets from %fp+BIAS. Its incoming overflow
arguments reside in the previous frame, referenced as positive offsets from %fp+BIAS.

3.5.5. Variable Argument List

Previous sections describe the rules for passing arguments. Unfortunately, some otherwise
portable C programs depend on the argument passing scheme, implicitly assuming that 1) all
arguments reside on the stack, and 2) arguments appear in increasing order on the stack. Programs
that make these assumptions never have been portable, but they have worked on many machines.
They do not work on SPARC because some of the arguments reside in integer and/or floating
point registers. Portable C programs should use the facilities defined in the header files <stdarg.h>
or <varargs.h> to deal with variable argument lists (on SPARC and other machines as well).

3.5.6. Allocating Stack Space Dynamically

To illustrate, assume a program wants to allocate 50 bytes; its current stack frame has 24 bytes
of compiled scratch space. The first step is rounding the 50 to 64, making it a multiple of
16. Figure 3-49 shows how the stack changes.

Figure 3-47: C Stack Frame

Base Offset Contents Address
%fp+BIAS -1

-8y

y extended words local space:
automatic variables

. . .
other addressable objects

High addresses

%sp+BIAS

%sp+BIAS

+176 +8x-1

+176

x extended-words compiler scratch
temporaries,

register save area,
and extra outgoing argument slots

%sp+BIAS +128 required outgoing argument slots

%sp+BIAS 0 16 extended word window save area Low addresses
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New space starts at %sp+BIAS+200 As described, every dynamic allocation in this function
will return a new area starting at %sp+BIAS+200, leaving previous stack objects untouched
(other functions would have different stack addresses). Consequently, the compiler should
compute the absolute address for each area, avoiding relative references. Otherwise future
allocations in the same frame would destroy the stack’s integrity.

Intermediate

automatic
. . .

variables

scratch space
+

outgoing args

+++++++++
new space
64 bytes

+++++++++

save area
16

extended
words

Original

automatic
. . .

variables

scratch space
+

outgoing args

save area
16

extended
words

undefined

Final

automatic
. . .

variables

+++++++++
new space
64 bytes

+++++++++

scratch space
+

outgoing args

save area
16

extended
words

%fp+BIAS-1

%sp+BIAS+200

%sp+BIAS+128

%sp+BIAS+0

%fp+BIAS-1

%sp+BIAS+200

%sp+BIAS+128

%sp+BIAS+0

Figure 3-49: Dynamic Stack Allocation
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4. OBJECT FILES

4.1. ELF Header

For file identification in e_ident, SPARC requires the following values.

Processor identification resides in the ELF header’s e_machine member and must have the
value 43, defined as the name EM_SPARCV9.

The ELF headers e_flags member holds bit flags associated with the file. SPARCV9 defines
the following flags.

.All unspecified bits are reserved and should be set to zero. The compilation system sets the
EF_SPARCV9_MM field to the value required for the correct execution of the object. Typically,
the programmer specifies what value to use for compiling a given source unit. TSO is the
most restrictive memory model, followed by PSO, followed by RMO, in that order.

Position

e_ident[EI_CLASS]

e_ident[EI_DATA]

iFigure 4-1: SPARC V9 Identification, e_ident

Value

ELFCLASS64

ELFDATA2MSB

Figure 4-2: SPARCV9 flags, e_flags

Name Value Meaning

EF_SPARCV9_MM
EF_SPARCV9_TSO
EF_SPARCV9_PSO
EF_SPARCV9_RMO
EF_SPARC_SUN_US1
EF_SPARC_HAL_R1

0x3
0x0
0x1
0x2
0x000200
0x000400

Mask for Memory Model
Total Store Ordering
Partial Store Ordering
Relaxed Memory Ordering
Sun UltraSPARC1 extensions
HAL R1 extensions
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It is recommended that the default compilation model should be RMO to realize the performance
advantages of this memory model. A binder that statically links input objects into a single
output object will set EF_SPARCV9_MM to the most restrictive model specified by any of
the input objects.

At execution time, the dynamic linker will inform the operating system of the most restrictive
model required by any of the objects that are part of the execution environment. The operating
system will use this information to provide the memory order semantics of that model to the
application, if available, or a more restrictive one.

The memory model flag expresses a requirement that the program has on the memory model
semantics of the execution environment, but does *not* constrain the implementation in how
it provides that model. For example, on a uniprocessor, the implementation can usually ignore
the memory model flags, and set the processor into RMO mode because the program can only
observe TSO memory ordering semantics.

4.2. Sections

4.2.1. Special Section Indices

Two additional section index values are defined.

• SHN_BEFORE ((0xff00) is used in conjunction with the SHF_ORDERED flag (see
below).

• SHN_AFTER (0xff01) is used in conjunction with the SHF_ORDERED flag (see below).

4.2.2. Special Section Flags

Two new section flags are defined.

• The SHF_EXCLUDE flag specifies that the link editor is to exclude this section from
executable and shared objects that it builds when those objects are not to be further
relocated. SHF_EXCLUDE has the value 0x80000000.

• The SHF_ORDERED flag specifies that the sh_link and sh_info fields of the section
header are to be interpreted specially (see below). SHF_ORDERED has the value
0x40000000.

For sections with the SHF_ORDERED flag set, a non-zero value of the sh_link field of
the section header indicates that the data in this section should be combined into the section
pointed at when the output file is constructed by the link editor (a section is allowed to
point to itself). In the absence of alternate ordering information (see below), sections from
a single object file collected into one section in the output shall be contiguous and have
the same relative ordering as they did in the input file and the contributions from each input
file shall appear in command-line order.

The SHF_ORDERED flag when applied to a set of sections all of whose sh_link fields point
to the same section (within one object file) or to sections having the same name (across
object files) specifies that the link editor is to sort the sections when it combines them (see
above) based on the relative ordering in the output file of the sections pointed at by the
sh_info field of each section in the set.  In each original object file input to the link editor,
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the relative ordering shall be correct so that the link editor is not required to do any special
processing unless it explicitly re-orders the sections which are the targets of the sh_info
fields.

When used in conjunction with the SHF_ORDERED flag sh_info values of SHN_BEFORE
and SHN_AFTER imply that those sections are to proceed or follow, respectively, all other
sections in the set being ordered. File/command-line order is preserved when multiple sections
in an ordered set have on of these sh_info values.

4.2.3. Special Sections

<no change>

4.3. Relocation

The r_info field is composed of two 32-bit parts, the symbol table index and the relocation
type. The relocation type on SPARC V9 systems is further decomposed into an 8-bit type
identifier and a 24-bit type dependent data field. For the existing ELF-32 relocation types, that
data field is zero. New relocation types, however, may make use of these bits.

#define ELF64_R_TYPE_DATA(info) (((Elf64_Xword)(info) << 32) >> 40)
#define ELF64_R_TYPE_ID(info) (((Elf64_Xword)(info) << 56) >> 56)
#define ELF64_R_TYPE_INFO(data, type) (((Elf64_Xword)(data) << 8)

+ (Elf64_Xword)(type))

Figure 4-3: Relocation Macros
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4.3.1. Relocation Types

An overview of the instruction and data formats from The SPARCTM Architecture Manual,
Version 9 makes relocation easier to understand. Relocation entries describe how to alter the
following instruction and data fields (bit numbers appear in the lower box corners).

19 031
disp19

15 0

7 0

Figure 4-3: Relocatable F ields

31 0
word32

byte8

half16

29 031
disp30

21 031
imm22

13 031
disp14

12 031
simm13

10 031
simm11

d2
19

21 031
disp22

9 031
simm10

21

6 031
imm7

63 0
xword64

5 031
imm6

4 031
imm5
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Calculations below assume the actions are transforming a relocatable file into either an executable
or a shared object file. Conceptually, the link editor merges one or more relocatable files to
form the output. It first decides how to combine and relocate the input files, then updates the
symbol values, and finally performs the relocation. Relocations applied to executable or shared
object files are similar and accomplish the same result. Descriptions below use the following
notation.

A This means the addend used to compute the value of the relocatable field.

B This means the base address at which a shared object has been loaded into memory
during execution. Generally a shared object file is built with a 0 base virtual address,
but the execution address will be different. See “Program Header” in the System
V ABI for more information about base addresses.

G This means the offset into the global offset table at which the address of the
relocation entry’s symbol will reside during execution. See “Coding Examples” in
Chapter 3 and “Global Offset Table” in Chapter 5 for more information.

L This means the place (section offset or address) of the procedure linkage table entry
for a symbol. A procedure linkage table entry redirects a function call to the proper
destination. The link editor builds the initial procedure linkage table, and the dynamic
linker modifies the entries during execution. See “Procedure Linkage Table” in
Chapter 5 for more information.

O This means the secondary addend used to compute the value of the relocation field.
The secondary addend is extracted from the r_info field in the relocation entry
by applying the ELF64_R_TYPE_DATA macro.

P This means the place (section offset or address) of the storage unit being relocated
(computed using r_offset).

S This means the value of the symbol whose index resides in the relocation entry.

Relocation entries apply to bytes (byte8), halfwords (half16), extended-words, (xword64), or
words (the others). In any case, the r_offset value designates the offset or virtual address
of the first byte of the affected storage unit. The relocation type specifies which bits to change
and how to calculate their values. SPARC V9 uses only Elf64_Rela relocation entries with
explicit addends. Thus the r_addend member serves as the relocation addend.

Field names in the following tables tell whether the relocation type checks for “overflow”.
A calculated relocation value may be larger than the intended field, and a relocation type
may verify (V) the value fits or truncate (T) the result. As an example, V-imm22 means
the computed value may not have significant, non-zero bits outside the imm22 field.

NOTE
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Some relocation type have semantics beyond simple calculation.

R_SPARC_GOT10 This relocation type resembles R_SPARC_LO10, except it refers
to the address of the symbols global offset table entry and
additionally instructs the link editor to build a global offset table.

R_SPARC_GOT13 This relocation type resembles R_SPARC_13, except it refers to
the address of the symbols global offset table entry and additionally
instructs the link editor to build a global offset table.

R_SPARC_GOT22 This relocation type resembles R_SPARC_22, except it refers to
the address of the symbols global offset table entry and additionally
instructs the link editor to build a global offset table.

R_SPARC_WPLT30 This relocation type resembles R_SPARC_WDISP30, except it
refers to the address of the symbol’s procedure linkage table entry
and additionally instructs the link editor to build a procedure linkage
table.

Figure 4-4: Relocation Types

Name Value Field Calculation
R_SPARC_NONE 0 none none
R_SPARC_8 1 V-byte8 S + A
R_SPARC_16 2 V-half16 S + A
R_SPARC_32 3 V-word32 S + A
R_SPARC_DISP8 4 V-byte8 S + A - P
R_SPARC_DISP16 5 V-half16 S + A - P
R_SPARC_DISP32 6 V-word32 S + A - P
R_SPARC_WDISP30 7 V-disp30 (S + A - P) >> 2
R_SPARC_WDISP22 8 V-disp22 (S + A - P) >> 2
R_SPARC_HI22 9 V-imm22 (S + A) >> 10
R_SPARC_22 10 V-imm22 S + A
R_SPARC_13 11 V-simm13 S + A
R_SPARC_LO10 12 T-simm13 (S + A) & 0x3ff
R_SPARC_GOT10 13 T-simm13 G & 0x3ff
R_SPARC_GOT13 14 V-simm13 G
R_SPARC_GOT22 15 T-imm22 G >> 10
R_SPARC_PC10 16 T-simm13 (S + A - P) & 0x3ff
R_SPARC_PC22 17 V-imm22 (S + A - P) >> 10
R_SPARC_WPLT30 18 V-disp30 (L + A - P) >> 2
R_SPARC_COPY 19 none none
R_SPARC_GLOB_DAT 20 V-xword64 S + A
R_SPARC_JMP_SLOT 21 none see below
R_SPARC_RELATIVE 22 V-xword64 B+ A
R_SPARC_UA32 23 V-word32 S + A
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R_SPARC_COPY The link editor creates this relocation type for dynamic linking. Its
offset member refers to a location in a writable segment. The symbol
table index specifies a symbol that should exist both in the current
object file and in a shared object. During execution, the dynamic
linker copies data associated with the shared object’s symbol to the
location specified by the object.

R_SPARC_GLOB_DAT This relocation type resembles R_SPARC_64, except it is used to
set a global offset table entry to the address of the specified symbol.
The special relocation type allows one to determine the
correspondence between symbols and global offset table entries.

R_SPARC_JMP_SLOT The link editor creates this relocation type for dynamic linking. Its
offset member gives a location of a procedure linkage table entry.
The dynamic linker modifies the procedure linkage table entry to
transfer control to the designated symbol’s address [See “Procedure
Linkage Table” in chapter 5].

R_SPARC_RELATIVE The link editor creates this relocation type for dynamic linking. Its
offset member gives a location within a shared object that contains
a value representing a relative address. The dynamic linker computes
the corresponding virtual address by adding the virtual address at
which the shared object was loaded to the relative address.
Relocation entries for this type must specify 0 for the symbol table
index.

R_SPARC_UA32 This relocation type resembles R_SPARC_32, except it refers to
an unaligned word. That is the “word” to be relocated must be
treated as four separate bytes with arbitrary alignment, not as a word
aligned according to the architecture requirements.
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R_SPARC_OLO10 This relocation type resembles R_SPARC_LO10, except an extra
offset is added to make full use of the 13-bit signed immediate field.

R_SPARC_HH22 This relocation type is used by the assembler when it sees an
instruction of the form “imm22-instruction ... %hh(absolute) ...”.

R_SPARC_HM10 This relocation type is generated by the assembler when it sees an
instruction of the form “simm13-instruction ... %hm(absolute) ...”.

R_SPARC_LM22 This relocation type is used by the assembler when it sees an
instruction of the form “imm22-instruction ... %lm(absolute) ...”.
This resembles R_SPARC_HI22, except it truncates rather than
validates.

R_SPARC_PC_HH22 This relocation type is used by the assembler when it sees an
instruction of the form “imm22-instruction ... %hh(pc-relative) ...”.

Figure 4-4+: More Relocation Types

Name Value Field Calculation
R_SPARC_PLT32 24 V-word32 L + A
R_SPARC_HIPLT22 25 T-imm22 (L + A) >> 10
R_SPARC_LOPLT10 26 T-simm13 (L + A) & 0x3ff
R_SPARC_PCPLT32 27 V-word32 L + A - P
R_SPARC_PCPLT22 28 V-disp22 (L + A - P) >> 10
R_SPARC_PCPLT10 29 V-simm12 (L + A - P) & 0x3ff
R_SPARC_10 30 V-simm10 S + A
R_SPARC_11 31 V-simm11 S + A
R_SPARC_64 32 V-xword64 S + A
R_SPARC_OLO10 33 V-simm13 ((S + A) & 0x3ff) + O
R_SPARC_HH22 34 V-imm22 (S + A) >> 42
R_SPARC_HM10 35 T-simm13 ((S + A) >> 32) & 0x3ff
R_SPARC_LM22 36 T-imm22 (S + A) >> 10
R_SPARC_PC_HH22 37 V-imm22 (S + A - P) >> 42
R_SPARC_PC_HM10 38 T-simm13 ((S + A - P) >> 32) & 0x3ff
R_SPARC_PC_LM22 39 T-imm22 (S + A - P) >> 10
R_SPARC_WDISP16 40 V-d2/disp14 (S + A - P) >> 2
R_SPARC_WDISP19 41 V-disp19 (S + A - P) >> 2
R_SPARC_GLOB_JMP 42 V-xword64 S + A
R_SPARC_7 43 V-imm7 (S + A) & 0x7f
R_SPARC_5 44 V-imm5 (S + A) & 0x1f
R_SPARC_6 45 V-im m6 (S + A) & 0x3f
R_SPARC_DISP64 46 V-xword64 S + A - P
R_SPARC_PLT64 47 V-xword64 L + A
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R_SPARC_PC_HM10 This relocation type is generated by the assembler when it sees an
instruction of the form “simm13-instruction ... %hm(pc-relative) ...”.

R_SPARC_PC_LM22 This relocation type is used by the assembler when it sees an
instruction of the form “imm22-instruction ... %lm(pc-relative) ...”.
This resembles R_SPARC_PC22, except it truncates rather than
validates.

R_SPARC_GLOB_JMP This relocation type resembles R_SPARC_GLOB_DAT, except that
it is guaranteed to be associated with a procedure call and therefore
the dynamic linker may evaluate the relocation lazily.

R_SPARC_LO7 This relocation type is used by the assembler for 7 bit software
trap numbers.
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5. PROGRAM LOADING AND DYNAMIC LINKING

5.1. Program Loading

As the system creates or augments a process image, it logically copies a file’s segment to
a virtual memory segment. When—and if—the system physically reads the file depends on
the program’s execution behavior, system load, etc. A process does not require a physical page
unless it references the logical page during execution, and processes typically leave many pages
unreferenced. Therefore delaying physical reads frequently obviates them, improving system
performance. To obtain this efficiency in practice, executable and shared object files must have
segment images whose file offsets and virtual addresses are congruent, modulo the page size.

Virtual addresses and file offsets for SPARC segments are congruent modulo 1 M (0x100000)
or larger powers of 2. Because 1 MB is the maximum page size, the files will be suitable
for paging regardless of physical page size.

File

ELF header

Program header table

Other information

Text segment
. . .

0x2bd00 bytes

Data segment
. . .

0x4e00 bytes

Other information
. . .

File Offset

0

0x200

0x2bf00

0x30d00

Virtual Address

0x100200

0x12beff

0x22bf00

0x230cff

Figure 5-1: Executable File
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5.2. Dynamic Linking

        [ This section is unchanged. ]

5.2.1. Dynamic Section

        [ This section is unchanged. ]

0x300000

0x301d24

Uninitialized data

. . .

0x1d24 bytes

Page padding
0x2dc zero bytes

Data

0x22b000

0x22bf00

0x230d00

Text padding
0xf00 bytes

Data segment

. . .

0x4e00 bytes

Page padding
0x200 zero bytes

Data

Virtual Address

0x100000

0x100200

012bf00

Contents

Header padding
0x200 bytes

Text segment

. . .

0x2bd00 bytes

Data padding
0x100 bytes

Segment

Text

Figure 5-3: Process Image Segments
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5.2.2. Global Offset Table

        [ The first part of this section is unchanged. ]

A global offset table’s format and interpretation are processor-specific. For SPARC, the symbol
_GLOBAL_OFFSET_TABLE_ may be used to access the table.

The symbol _GLOBAL_OFFSET_TABLE_ may reside in the middle of the .got section,
allowing both negative and non-negative “subscripts” into the array of addresses.

5.2.3. Function Addresses

        [ This section is unchanged. ]

5.2.4. Procedure Linkage Table

Much as the global offset table redirects position-independent address calculations to absolute
locations, the procedure linkage table redirects position-independent function calls to absolute
locations. The link editor cannot resolve execution transfers (such as function calls) from one
executable or shared object to another. Consequently, the link editor arranges to have the program
transfer control to entries in the procedure linkage table. On SPARC, procedure linkage tables
reside in private data. The dynamic linker determines the destinations’ absolute addresses and
modifies the procedure linkage table’s memory image accordingly. The dynamic linker thus
can redirect the entries without compromising the position-independence and sharability of the
program’s text. Executable files and shared object files have separate procedure linkage tables.

The first four procedure linkage table entries are reserved. (the original contents of these entries
are unspecified, despite the example below.) Each of the first 32,768 entries in the table occupies
8 instructions (32 bytes) and must be aligned on a 32-byte boundary (the table as a whole
must be aligned on a 256-byte boundary). In the unlikely event that more than 32,764 entries
are needed, the remaining entries consist of 6 instructions (24 bytes) and 1 pointer (8 bytes).
The instructions are collected together in blocks of 160 entries followed by 160 pointers. (The
last group of entries and pointers may contain less than 160 items. No padding is required.)

Figure 5-5: Global Offset Table

extern Elf64_ADDR _GLOBAL_OFFSET_TABLE_[];

The numbers 32,768 and 160 are based on the limits of branch and load displacements
respectively with the second rounded down to make the divisions between code and data
fall on 256-byte boundaries so as to improve cache performance.

NOTE
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Figure 5-6.1 below shows three of the initial 32,768 entries together with possible resolved
forms that might apply if the target address was with +/- 2 Gb of the entry, within the lower
4 Gb of the address space, or anywhere respectively. The ABI specifies the code sequence
in the file. However, the only requirement placed on the resolved form is that the first instruction
have no effect on the execution of the subsequent instructions of the entry.

Figure 5-6.1 Procedure Linkage Table - Example Early Entries
File Memory Segment

.PLT101: .PLT101
sethi (. - .PLT0), %g1 nop
ba,a %xcc,.PLT1 mov %o7, %g1
nop call name101
nop mov %g1, %07
nop nop
nop nop
nop nop
nop nop

.PLT102: .PLT102:
sethi (. - .PLT0), %g1 nop
ba,a %xcc,.PLT1 sethi %hi(name102), %g1
nop jmpl %g1+%lo(name102), %g0
nop nop
nop nop
nop nop
nop nop
nop nop

.PLT103: .PLT103:
sethi (. - .PLT0), %g1 nop
ba,a %xcc,.PLT1 sethi %hh(name103), %g1
nop sethi %lm(name103), %g5
nop or %hm(name103), %g1
nop sllx %g1, 32, %g1
nop or %g1, %g5, %g5
nop jmpl %g5+%lo(name103),%g
nop nop
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Figure 5-6.2 below shows 2 of the later entries. In this case, both the file and resolved forms
(which differ only in the value of the pointer) are defined by the ABI.

Figure 5-6.3 below shows an example (not required by the ABI) of the layout of the reserved
entries at the beginning of the table.

Figure 5-6.2 Procedure Linkage Table - Example Later Entries
File Memory Segment

.PLT32768: .PLT32768:
mov %o7, %g5 <unchanged>
call . + 8 <unchanged>
nop <unchanged>
ldx [%o7+.PLTP32768-(.PLT32768+4)], %g1 <unchanged>
jmpl %o7+%g1, %g1 <unchanged>
mov %g5, %o7 <unchanged>

............... ...............

.PLT32927: .PLT32927:
mov %o7, %g5 <unchanged>
call . + 8 <unchanged>
nop <unchanged>
ldx [%o7+.PLTP32927-(.PLT32927+4)], %g1 <unchanged>
jmpl %o7+%g1, %g1 <unchanged>
mov %g5, %o7 <unchanged>

.PLTP32768: .PLTP32768:
.xword .PLT0-(.PLT32768+4) .xword name32768-(.PLT32768+4)

............... ...............

.PLTP32927: .PLTP32927:
.xword .PLT0-(.PLT32927+4) .xword name32927-(.PLT32927+4)

Figure 5-6.3 Procedure Linkage Table - Reserved Entries
File Memory Segment

.PLT0: .PLT0:
illtrap 0 save %sp, -176, %sp
illtrap 0 sethi %hh(dynamic_linker_0), %l0
illtrap 0 sethi %lm(dynamic_linker_0), %l1
illtrap 0 or %hm(dynamic_linker_0), %l0
illtrap 0 sllx %l0, 32, %l0
illtrap 0 or %l0, %l1, %l0
illtrap 0 jmpl %l0+%lo(dynamic_linker_0),%o1
illtrap 0 mov %g1, %o0

.PLT1 .PLT1:
illtrap 0 save %sp, -176, %sp
illtrap 0 sethi %hh(dynamic_linker_1), %l0
illtrap 0 sethi %lm(dynamic_linker_1), %l1
illtrap 0 or %hm(dynamic_linker_1), %l0
illtrap 0 sllx %l0, 32, %l0
illtrap 0 or %l0, %l1, %l0
illtrap 0 jmpl %l0+%lo(dynamic_linker_1),%o1
illtrap 0 mov %g1, %o0

.PLT2 .PLT2:
illtrap 0 .xword identification

........ ..............
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In this example the two entry points to the dynamic linker receive arguments as if they were
normal C procedures. There are two entry points because the Procedure Linkage Table may
contain two different kinds of unresolved entries.

The unresolved form of any of the first 32,768 entries must branch to .PLT1 and thus is in
this example resolved by

dynamic_linker_1(long x, long y)

which computes the table index as:

n = x >> 15;

The unresolved form of any later entries must jump to .PLT0 and thus in this example is resolved
by:

dynamic_linker_1(long x, long y

which computes the table index as

i = x - y - 1048596;
n = 32768 + (i/5120)*160 + (i%5120)/24;

As mentioned before, a relocation table entry is associated with the procedure linkage table.
The DT_JMP_REL entry in the _DYNAMIC array gives the location of the first relocation entry.
The relocation table’s entries parallel the procedure linkage table in a one-to-one correspondence.
That is, relocation table entry 0 applies to procedure linkage table entry 0, and so on.

For slots 4 through 32,767, the relocation type will be R_SPARC_JMP_SLOT, the relocation
offset will specify the address of the first byte of the associated table entry, the addend field
will be zero, and the symbol table index will reference the appropriate symbol.

For slots 32,768 and beyond, the relocation type will be R_SPARC_JMP_SLOT, the relocation
offset will specify the address of the first byte of the associated pointer, the addend field will
contain the (unrelocated) value -(.pltN+4), and the symbol table index will reference the
appropriate symbol.

Following the steps below, the dynamic linker and the program “cooperate” to resolve symbolic
references through the global offset table and the procedure linkage table. Again, the steps
described below are for explanation only. The precise execution-time behavior of the dynamic
linker is not specified.

The pointer value generated by a R_SPARC_JMP_SLOT relocation with a non-zero addend
is given by the formula S + A - B

NOTE
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1. When first creating the memory image of the program, the dynamic linker changes
the initial procedure linkage table entries, making them transfer control to one of the
dynamic linker’s own routines as described above. It also stores an extended word of
identification information in the third entry. When it receives control, it can examine
this extended word to determine what object called it.

2. All other procedure linkage table entries initially transfer to the first or second entry.
Those entries establish a stack frame and call the dynamic linker.

3. Using the identification value, the dynamic linker finds its data structures associated with
the object in question, including the relocation table.

4. The dynamic linker computes the index of the relocation entry for the table slot.

5. Knowing this, the dynamic linker finds the symbols “real” value, unwinds the stack,
modifies the procedure linkage table entry, and transfers control to the desired
destination.

Whenever the dynamic linker is modifying the instructions of a procedure table entry it must
do so “carefully”.

� To make the code re-entrant, the procedure linkage table’s instructions must be
changed in a particular sequence. That is, if the dynamic linker is “resolving” a
function’s procedure linkage table entry and a signal arrives, the signal handling
code must be able to call the original function with predictable (and correct) results.

� The dynamic linker may change up to eight words to convert an entry. Since it
can update only a single word atomically with regard to instruction execution, then
re-entrancy must be achieved by first overwriting the nop instructions with their
replacement instructions and then patching the ba,a (and the sethi if using a
64-bit store). If a re-entrant function call occurs just prior to the last patch, the
dynamic linker gains control a second time. Although both invocations of the
dynamic linker modify the same procedure linkage table entry, their changes do
not interfere with each other.

� If the initial sethi instruction is changed, it can only be replaced by a nop.

Changing the pointer as done for the second form of entry is done using a single atomic 64-
bit store.

The LD_BIND_NOW environment variable can change dynamic linking behavior. If its value
is non-null, the dynamic linker evaluates all global offset table and procedure linkage table
entries before transferring control to the program. That is, the dynamic linker processes relocation
entries of type R_SPARC_JMP_SLOT and R_SPARC_GLOB_JMP during process initialization.
Otherwise, the dynamic linker has the option of evaluating these entries lazily, delaying symbol
resolution and relocation until the first execution of the related function.
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Lazy binding generally improves overall application performance, because unused
symbols do not incur the dynamic linking overhead. Nevertheless, two situations
make lazy binding undesirable for some applications. First, the initial reference
to a shared object function takes longer than subsequent calls, because the
dynamic linker intercepts the call to resolve the symbol. Some applications cannot
tolerate this unpredictability. Second, if an error occurs and the dynamic linker
cannot resolve the symbol, the dynamic linker will terminate the program. Under
lazy binding, this might occur at arbitrary times. Once again, some applications
cannot tolerate this unpredictability. By turning off lazy binding, the dynamic linker
forces the failure to occur during process initialization, before the application
receives control.

NOTE
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6. LIBRARIES

6.1. Shared Library Names

As chapter 5 in the GENERIC ABI describes, executable and shared object files contain the
names of the required shared libraries.

6.2. System Library

In addition to all those functions from the base document whose names start with “_”, the
following functions are in libsys.

Figure 6-1: libsys Support Routines

__align_cpy_1 __align_cpy_2 __align_cpy_4
__align_cpy_8 __align_cpy_16 __sparc_utrap_install

void *__align_cpy_1(void *s1,const void *s2,size_t n)

This function copies n bytes from memory area s2 to s1. It returns s1. If t the memory
areas are partially overlapped, the result of calling this function is undefined

void *__align_cpy_2(void *s1,const void *s2,size_t n)

This function copies n bytes from memory area s2 to s1. It returns s1. If the lower-order
bit of any of s1, s2, or n is non-zero or the memory areas are partially overlapped, the
result of calling this function is undefined

void *__align_cpy_4(void *s1,const void *s2,size_t n)

This function copies n bytes from memory area s2 to s1. It returns s1. If the lower-order
two bits of any of s1, s2, or n are non-zero or the memory areas are partially overlapped,
the result of calling this function is undefined

void *__align_cpy_1(void *s1,const void *s2,size_t n)

This function copies n bytes from memory area s2 to s1. It returns s1. If the lower-order
three bits of any of s1, s2, or n are non-zero or the memory areas are partially overlapped,
the result of calling this function is undefined

void *__align_cpy_1(void *s1,const void *s2,size_t n)

Figure 6-0: Shared Library Names

Library Reference Name
libc
libnsl
libsys
libX

/usr/lib/sparcV9/libc..so.1
/usr/lib/sparcV9/libnsl.so.1
/usr/lib/sparcV9/ld.so.1
/usr/lib/sparcV9/libX.so.1
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This function copies n bytes from memory area s2 to s1. It returns s1. If the lower-order
four bits of any of s1, s2, or n are non-zero or the memory areas are partially overlapped,
the result of calling this function is undefined

int __sparc_utrap_install(utrap_entry_t type,
utrap_handler_t new_precise,
utrap_handler_t new_deferred,
utrap_handler_t *old_precise,
utrap_handler_t *old_deferred);

This function establishes new values for the user trap handlers for the specified trap type.
and returns the existing trap handler values,in a single atomic operation. A new handler
address of NULL means no user handler of that type will be installed. A new handler
address of UTH_NOCHANGE means that the user handler for that type should not be
changed. An old handler pointer of NULL means that the user is not interested in the
old handler address.

6.3. System Data Interfaces

<< This section is subject to extensive change. >>

6.3.1. Vendor Extensions

An ABI-conforming system vendor may add additional symbolic constants (represented in this
chapter as ANSI C #define macros) to facilitate the use of vendor-specific services. The ABI
does not define these symbolic constants or their values, and programs using them are not
ABI-conforming. Nonetheless, the ABI defines an extension mechanism, providing a way to
avoid conflict among the services from multiple vendors. This extension mechanism is as
follows:

� Non-negative symbolic constant values are reserved to SPARC International.

� Negative symbolic constant values are reserved to vendors. Bits 30 through 15 of
each symbolic constant value must contain the binary representation of the vendor’s
Vendor Identification Number obtained from SPARC International.

It is expected that vendors will use this extension mechanism to add, for example, new vendor-
specific _SC_symbolic constants to <unistd.h>.
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6.3.2. Data Definitions

#define ENAMETOOLONG 78
#define EOVERFLOW 79
#define ENOTUNIQ 80
#define EBADFD 81
#define EREMCHG 82
#define ENOSYS 89
#define ELOOP 90
#define ERESTART 91
#define ESTRPIPE 92
#define ENOTEMPTY 93
#define EUSERS 94
#define ESTALE 151

extern int errno;

Figure 6-6: <errno.h> (continued)

typedef union _h_val {
unsigned long i[sizeof(double)/sizeof(unsigned long)];
double d;

} _h_val

external const _h_val __huge_val;
#define HUGE_VAL __huge_val.d;

Figure 6-16: <math.h>
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struct nd_addrlist {
int  n_cnt;
struct netbuf *n_addrs;

};

struct nd_hostservlist {
int h_cnt;
struct nd_hostserv *h_hostservs;

};

struct nd_hostserv {
char *h_host;
char *h_serv;

};

#define ND_BADARG -2
#define ND_NOMEM -1
#define ND_OK 0
#define ND_NOHOST 1
#define ND_NOSERV 2
#define ND_NOSYM 3
#define ND_OPEN 4
#define ND_ACCESS 5
#define ND_UKNWN 6
#define ND_NOCTRL 7
#define ND_FAILCTRL 8
#define ND_SYSTEM 9
#define ND_HOSTSERV 0
#define ND_HOSTSERVLIST 1
#define ND_ADDR 2
#define ND_ADDRLIST 3

#define HOST_SELF ”\\1”
#define HOST_ANY ”\\2”
#define HOST_BROADCAST ”\\3”

#define ND_SET_BROADCAST 1
#define ND_SET_RESERVEDPORT 2
#define ND_CHECK_RESERVEDPORT 3
#define ND_MERGEADDR 4

Figure 6-21: <netdir.h>
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#define CANBSIZ 256
#define HZ 100

#define NGROUPS_UMIN 0

#define MAXPATHLEN 1024
#define MAXSYMLINKS 20
#define MAXNAMELEN 256

#define NADDR 13

#define PIPE_MAX 5120

#define NBBY 8
#define NBPSCTR 512

Figure 6-23: <sys/param.h>

Figure 6-28: <rpc.h> (continued)

[ change the union des_block on page 6-32 to the following: ]

union des_block {
unsigned long key
char c[8];

};

[ change the typedef XDR on page 6-39 to the following: ]

typedef struct {
enum xdr_op x_op;
struct xdr_ops {

int (*x_getlong)();
int (*x_putlong)();
int (*x_getint32)();
int (*x_putint32)();
int (*x_getbytes)();
int (*x_putbytes)();
unsigned int (*x_getpostn)();
int (*x_setpostn)();
long *(*x_inline)();
void (*x_destroy)();

} *x_ops;
char *x_public;
char *x_private;
char *x_base
int x_handy;

} XDR;
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#define SIGHUP 1
[ Add other defines from original ABI later. ]

#define SS_DISABLE 0x00000002

struct sigaltstack {
char *ss_sp;
int ss_size;
int ss_flags;

};

typedef struct sigaltstack stack_t;
typedef struct { unsigned long sigbits[16 / sizeof(long)] } sigset_t;
struct sigaction {

int sa_flags;
void (*sa_handler)();
sigset_t sa_mask;
int sa_resv[2];

};

#define SA_ONSTACK 0x00000001
[ Add other defines from original ABI later. ]

Figure 6-33: <signal.h>

#define ILL_ILLOPC 1
#define ILL_ILLOPN 2
#define ILL_ILLADR 3
#define ILL_ILLTRP 4
#define ILL_PRVOPC 5
#define ILL_PRVREG 6
#define ILL_COPROC 7
#define ILL_BADSTK 8
#define ILL_PRVACT 9
#define FPE_INTDIV 1
#define FPE_INTOVF 2
#define FPE_FLTDIV 3
#define FPE_FLTOVF 4
#define FPE_FLTUND 5
#define FPE_FLTRES 6
#define FPE_FLTINV 7
#define FPE_FLTSUB 8
#define SEGV_MAPERR 1
#define SEGV_ACCERR 2
#define SEGV_BADASI 3

Figure 6-34: <sys/siginfo.h>
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Figure 6-35: <sys/stat.h>

#define _ST_FSTYPSZ 16

struct stat {
dev_t st_dev;
long st_pad1[3];
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
long st_pad2[2];
off_t st_size;
long st_pad3;
timestruc_t st_atim;
timestruc_t st_mtim;
timestruc_t st_ctim;
long st_blksize;
long st_blocks;
char st_fstype[_ST_FSTYPSZ];
long st_pad4[8];

};

#define st_atime st_atim.tv_sec
#define st_mtime st_mtim.tv_sec
#define st_ctime st_ctim.tv_sec

#define NULL 0
typedef int ptrdiff_t;
typedef unsigned int size_t;
typedef __int32 wchar_t;

Figure 6-37: <stddef.h>
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[ This figure represents work in progress and is highly likely to change. ]

[ This new include file will be explained in the delta document for the SVID. ]

typedef unsigned int size_t;
typedef long fpos_t;

#define _NFILE 64
#define NULL 0
#define BUFSIZ 1024
#define _IOFBF 0000
#define _IOLBF 0100
#define _IONBF 0004
#define _IOEOF 0020
#define _IOERR 0040
#define EOF (-1)
#define FOPEN_MAX _NFILE
#define FILENAME_MAX 1024

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

#define clearerr(p) ((void)((p)->_flag &= ~(_IOERR | _IOEOF)))

#define feof(p) ((p)->_flag & _IOEOF)
#define ferror(p) ((p)->_flag & _IOERR)
#define fileno(p) (p)->_file
#define L_ctermid 9
#define L_cuserid 9
#define P_tmpdir ”/var/tmp/”
#define L_tmpnam 25

typedef struct {
int _cnt;
unsigned char *_ptr;
unsigned char *_base;
unsigned char _flag;
unsigned char _file;

} FILE;

extern FILE __iob[_NFILE];

Figure 6-38: <stdio.h>

#define CLOCK_REALTIME 1

struct timespec {
time_t tv_sec;
long tv_nsec;

};

Figure 6-42+: <timers.h>
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#include <sparc.h>

typedef int greg_t;

typedef unsigned __int32 instruction_t;

typedef struct {
unsigned r_ccr;
instruction_t *r_pc;
instruction_t *r_npc;
greg_t r_y;
greg_t r_g1;
greg_t r_g2;
greg_t r_g3;
greg_t r_g4;
greg_t r_g5;
greg_t r_g6;
greg_t r_g7;
greg_t r_o0;
greg_t r_o1;
greg_t r_o2;
greg_t r_o3;
greg_t r_o4;
greg_t r_o5;
greg_t r_o6;
greg_t r_o7;
unsigned r_fprs;
unsigned r_asi;
greg_t r_pad1[2];
greg_t r_pad2[2];

} gregset_t;

struct fpu {
union {

unsigned fpu_regs[32];
double fpu_dregs[32];
long double fpu_qregs[16];

} fpu_fr;
unsigned fpu_fsr;
int fpu_pad1[3];
int fpu_pad2[2];

};

typedef struct fpu fpregset_t;

typedef struct {
gregset_t gregs;
gwindows_t *gwins;
fpregset_t fpregs;

} mcontext_t;

Figure 6-54: <ucontext.h>
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typedef struct ucontext {
unsigned long uc_flags;
struct ucontext *uc_link;
sigset_t uc_sigmask;
stack_t uc_stack;
mcontext_t uc_mcontext;
long uc_pad1[2];

} ucontext_t;

#define UC_SIGMASK 0x01
#define UC_STACK 0x02

#define SPARC_MAXREGWINDOW 31

typedef struct {
int wbcnt;
int *spbuf[SPARC_MAXREGWINDOWS];
win_save_t wbuf[SPARC_MAXREGWINDOW];

} gwindows_t;

Figure 6-54: <ucontext.h> (continued)
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[ The new defines will be explained in the delta document for the SVID. ]

#define _POSIX_VERSION *
#define _XOPEN_VERSION *

/* starred values vary and should be retrieved using sysconf() or pathconf() */

#define _SC_ARG_MAX 1
#define _SC_CHILD_MAX 2
#define _SC_CLK_TCK 3
#define _SC_NGROUPS_MAX 4
#define _SC_OPEN_MAX 5
#define _SC_JOB_CONTROL 6
#define _SC_SAVED_IDS 7
#define _SC_VERSION 8
#define _SC_PASS_MAX 9
#define _SC_LOGNAME_MAX 10
#define _SC_PAGESIZE 11
#define _SC_XOPEN_VERSION 12
#define _SC_CPU_CLK_FRQ 14
#define _SC_CPU_CLK_LOB 15
#define _SC_CPU_CLK_HIB 16

#define _PC_LINK_MAX 1
#define _PC_MAX_CANON 2
#define _PC_MAX_INPUT 3
#define _PC_NAME_MAX 4
#define _PC_PATH_MAX 5
#define _PC_PIPE_BUF 6
#define _PC_NO_TRUNC 7
#define _PC_VDISABLE 8
#define _PC_CHOWN_RESTRICTED 9
#define _PC_MAX_FILE_SIZE 10

#define STDIN_FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2

Figure 6-57: <unistd.h> (continued)
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#define UT_INSTRUCTION_EXCEPTION 1
#define UT_INSTRUCTION_ERROR 2
#define UT_INSTRUCTION_PROTECTION 3
#define UT_ILLTRAP_INSTRUCTION 4
#define UT_ILLEGAL_INSTRUCTION 5
#define UT_PRIVILEGED_OPCODE 6
#define UT_FP_DISABLED 7
#define UT_FP_EXCEPTION_IEEE_754 8
#define UT_FP_EXCEPTION_OTHER 9
#define UT_TAG_OVERFLOW 10
#define UT_DIVISION_BY_ZERO 11
#define UT_DATA_EXCEPTION 12
#define UT_DATA_ERROR 13
#define UT_DATA_PROTECTION 14
#define UT_MEM_ADDRESS_NOT_ALIGNED 15
#define UT_PRIVILEGED_ACTION 16
#define UT_ASYNC_DATA_ERROR 17
#define UT_TRAP_INSTRUCTION_16 18
#define UT_TRAP_INSTRUCTION_17 19
#define UT_TRAP_INSTRUCTION_18 20
#define UT_TRAP_INSTRUCTION_19 21
#define UT_TRAP_INSTRUCTION_20 22
#define UT_TRAP_INSTRUCTION_21 23
#define UT_TRAP_INSTRUCTION_22 24
#define UT_TRAP_INSTRUCTION_23 25
#define UT_TRAP_INSTRUCTION_24 26
#define UT_TRAP_INSTRUCTION_25 27
#define UT_TRAP_INSTRUCTION_26 28
#define UT_TRAP_INSTRUCTION_27 29
#define UT_TRAP_INSTRUCTION_28 30
#define UT_TRAP_INSTRUCTION_29 31
#define UT_TRAP_INSTRUCTION_30 32
#define UT_TRAP_INSTRUCTION_31 33

#define UTH_NOCHANGE (-1)

typedef int utrap_entry_t;
typedef void *utrap_handler_t;

Figure 6-57+: <sys/utrap.h>
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Appendix A. Minor Corrections to Original ABI Supplement

A.1. Introduction
[ On page 1-2 in the last paragraph the text: ]

. . . specification. All components of the ABI an of this supplement . . .

[ should read: ]

. . . specification. All components of the ABI and of this supplement . . .
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