
August 1, 1994

SPARC International Confidential

SYSTEM V

APPLICATION BINARY INTERFACE

Generic 64-Bit Extensions

Delta Document 1.33

DRAFT

My Spec Title August 1, 1994

HaL Computer Systems, Inc. Confidential Page 1

Revision History

Rev Date Author Description

August 1, 1994

Page i SYSTEM V ABIDelta Document 1.30

-0 10/01/91 HaL ABI Working Group First Draft

-0.0 10/15/91 HaL ABI Working Group Added Preface

-1.00 01/02/92 SI ABI Working Group First Review

-1.10 02/02/92 SI ABI Working Group Merged 32 and 64-bit ELF/Minor Editing Changes

-1.20 03/07/92 SI ABI Working Group Updated Chapter 6.

1.30 N/A Dock Williams, Sun N/A

1.31 1994-07-13 Howard Gayle, HaL Changed section 5.4.4 (Shared Object Dependencies) to search

for shared objects in a subdirectory whose name is derived from

the machine name.

1.32 1994-07-15 Howard Gayle, HaL Rewrote section 5.4.4 (Shared Object Dependencies) to add

rationale and provide three different options.

1.33 1994-08-01 Howard Gayle, HaL Put section 5.4.4 in brackets and added a paragraph asking the

ABICC for guidance.

My Spec Title August 1, 1994

HaL Computer Systems, Inc. Confidential Page 2

Revision History

Rev Date Author Description

August 1, 1994

Page i SYSTEM V ABIDelta Document 1.30

SPARC International Confidential7/13/94PREFACE

Delta Document 1.30 SYSTEM V ABI0-1

0. PREFACE

0.1. Introduction

The purpose of this document is to describe the differences between the 32-bit generic ABI,
as published by AT&T as System V Application Binary Interface, and the proposed 64-bit version
of the generic ABI.

0.2. Basic Assumptions

A number of basic assumptions are reflected in the proposals presented. It is assumed that
it is important to permit the simultaneous support of both 32 and 64-bit binaries but it is not
necessary to specifically require 32-bit compatibility. This means it should be possible for 64-
bit systems to support both the 64-bit ABI and the 32-bit ABI or just the 64-bit ABI. It is
also assumed that most networking software will continue to use 32-bit protocols.

1-1 SYSTEM V ABI Delta Document 1.30

INTRODUCTION 7/13/94 SPARC International Confidential

1. INTRODUCTION

1.1. System V Application Binary Interface

 [The names of documents in this section may have to change.]

1.2. Foundations and Structure of the ABI

 [The names of documents in this section may have to change.]

1.3. How to Use the System V ABI

 [The names of documents in this section may have to change.]

1.4. Definitions of Terms

 [This section is unchanged.]

SPARC International Confidential7/13/94SOFTWARE INSTALLATION

Delta Document 1.30 SYSTEM V ABI2-1

2. SOFTWARE INSTALLATION

2.1. Software Installation and Packaging

 [We may need to add a new 64-bit tape archive definition.]

2.2. File Formats

 [This section is unchanged.]

2.3. File Tree for Add-on Software

 [This section is unchanged.]

2.4. Commands that Install, Remove and Access Packages

 [This section is unchanged.]

3-1 SYSTEM V ABI Delta Document 1.30

LOW_LEVEL SYSTEM INFORMATION 7/13/94 SPARC International Confidential

3. LOW_LEVEL SYSTEM INFORMATION

3.1. Introduction

 [This section is unchanged.]

3.2. Character Representations
[The following paragraph should be removed from this section.]

� Multibyte character encodings with values above 127 should contain only bytes
with values outside the range of 0 to 127. That is, a character set that uses more
than one byte per character should not “embed” a byte resembling a 7-bit ASCII
character within a multi byte, non-ASCII character.

3.3. Machine Interface (Processor-Specific)

 [This section is unchanged.]

3.4. Function Calling Sequence (Processor-Specific)

 [This section is unchanged.]

3.5. Operating System Interface (Processor-Specific)

 [This section is unchanged.]

3.6. Coding Examples (Processor-Specific)

 [This section is unchanged.]

SPARC International Confidential7/13/94OBJECT FILES

Delta Document 1.30 SYSTEM V ABI4-1

4. OBJECT FILES

4.1. Introduction

4.1.1. File Format

 [This section is unchanged.]

4.1.2. Data Representation

As described here, the object file format supports various processors with 8-bit bytes and 32
or 64-bit architectures. Nevertheless, it is intended to be extensible to larger (or smaller)
architectures. Object files therefore represent some control data with a machine-independent
format, making it possible to identify object files and interpret their contents in a common
way. Remaining data in an object file uses the encoding of the target processor, regardless
of the machine on which the file was created.

All data structures that the object file format defines follow the “natural” size and alignment
guidelines for the relevant class. If necessary, data structures contain explicit padding to ensure
8-byte alignment for 8-byte objects, to force structure sizes to a multiple of 8, etc. Data also
have suitable alignment from the beginning of the file. Thus, for example, a structure containing
an Elf64_Addr member will be aligned on a 8-byte boundary within the file.

For portability reasons, ELF uses no bit-fields.

Name

Elf32_Addr
Elf32_Half
Elf32_Off
Elf32_Sword
Elf32_Word
unsigned char

Size

4
2
4
4
4
1

Alignment

4
2
4
4
4
1

Purpose

Unsigned program address
Unsigned medium integer
Unsigned file offset
Signed large integer
Unsigned large integer
Unsigned small integer

Figure 4-2: 32-Bit Data Types

Name

Elf64_Addr
Elf64_Half
Elf64_Off
Elf64_Sword
Elf64_Sxword
Elf64_Word
Elf64_Xword

Size

8
2
8
4
8
4
8

Alignment

8
2
8
4
8
4
8

Purpose

Unsigned program address
Unsigned small integer
Unsigned file offset
Signed medium integer
Signed large integer
Unsigned medium integer
Unsigned large integer

Figure 4-2+: 64-Bit Data Types

4-2 SYSTEM V ABI Delta Document 1.30

OBJECT FILES 7/13/94 SPARC International Confidential

4.2. ELF Headers

Some object file control structures can grow, because the ELF header contains their actual sizes.
If the object file format changes, a program may encounter control structures that are larger
or smaller than expected. Programs might therefore ignore “extra” information. The treatment
of “missing” information depends on context and will be specified when and if extensions are
defined.

typedef struct {
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

} Elf32_Ehdr;

Figure 4-3: 32-bit ELF Header (ELFCLASS32)

typedef struct {
unsigned char e_ident[EI_NIDENT];
Elf64_Half e_type;
Elf64_Half e_machine;
Elf64_Word e_version;
Elf64_Addr e_entry;
Elf64_Off e_phoff;
Elf64_Off e_shoff;
Elf64_Word e_flags;
Elf64_Half e_ehsize;
Elf64_Half e_phentsize;
Elf64_Half e_phnum;
Elf64_Half e_shentsize;
Elf64_Half e_shnum;
Elf64_Half e_shstrndx;

} Elf64_Ehdr;

Figure 4-3+: 64-bit ELF Header (ELFCLASS64)

SPARC International Confidential7/13/94OBJECT FILES

Delta Document 1.30 SYSTEM V ABI4-3

4.2.1. ELF Identification

As mentioned above, ELF provides an object file framework to support multiple processors,
multiple data encodings, and multiple classes of machines. To support this object file family,
the initial bytes of the file specify how to interpret the file, independent of the processor on
which the inquiry is made and independent of the file’s remaining contents.

The initial bytes of an ELF header (and an object file) correspond to the e_ident member.

These indexes access bytes that hold the following values.

EI_MAG0 to EI_MAG3
A files first 4 bytes hold a “magic number”, identifying the file as an ELF
object file.

EI_CLASS The next byte, e_ident[EI_CLASS], identifies the file’s class, or capacity.

The file format is designed to be portable among machines of various sizes,
without imposing the sizes of the largest machine on the smallest. Class
ELFCLASS32 supports machines with files and address spaces up to 4
gigabytes. Class ELFCLASS64 supports machines with files and virtual address
spaces up to 16 exabytes.

Name

EI_MAG0
EI_MAG1
EI_MAG2
EI_MAG3
EI_CLASS
EI_DATA
EI_VERSION
EI_PAD
EI_NIDENT

Value

0
1
2
3
4
5
6
7
16

Purpose

File identification
File identification
File identification
File identification
File class
Data encoding
File version
Start of padding bytes
Size of e_ident[]

Figure 4-4: e_ident[] Identification Indexes

ELFMAG0
ELFMAG1
ELFMAG2
ELFMAG3

0x7f
’E’
’L’
’F’

e_ident[EI_MAG0]
e_ident[EI_MAG1]
e_ident[EI_MAG2]
e_ident[EI_MAG3]

Name Value Position

ELFCLASSNONE
ELFCLASS32
ELFCLASS64

0
1
2

Invalid Class
32-bit objects
64-bit objects

Name Value Meaning

4-4 SYSTEM V ABI Delta Document 1.30

OBJECT FILES 7/13/94 SPARC International Confidential

Other classes will be defined as necessary, with different basic types and sizes
for object file data.

EI_DATA Byte e_ident[EI_DATA] specifies the data encoding of the processor-
specific data in the object file. The following encodings are currently defined.

More information on these encodings appears below. Other values are reserved
and will be assigned to new encodings as necessary.

EI_VERSION Byte e_ident[EI_VERSION] specifies the ELF header version number.
Currently this value must be EV_CURRENT, as explained for e_version.

EI_PAD This value marks the beginning of the unused bytes in e_ident. These bytes
are reserved and set to zero; programs that read object files should ignore them.
The value EI_PAD will change in the future if currently unused bytes are given
meanings.

A file’s data encoding specifies how to interpret the basic objects in a file. As described above,
class ELF files use objects that occupy 1, 2, 4 and 8 bytes. Under defined encodings, objects
are represented as shown below. Byte numbers appear in the upper left corners.

Encoded ELFDATA2LSB specifies 2’s complement values, with least significant byte occupying
the lowest address.

ELFDATANONE
ELFDATA2LSB
ELFDATA2MSB

0
1
2

Invalid data encoding
See below
See below

Name Value Meaning

0
880x88

Figure 4-5: Data Encoding ELFDATA2LSB

0 1
99 88

0 1 2 3
BB AA 99 88

0 1 2 3 4 5 6 7
FF EE DD CC BB AA 99 88

0x8899

0x8899AABB

0x8899AABBCCDDEEFF

SPARC International Confidential7/13/94OBJECT FILES

Delta Document 1.30 SYSTEM V ABI4-5

Encoding ELFDATA2MSB specifies 2’s complement values with the most significant byte
occupying the lowest address.

4.2.2. Machine Information (Processor-Specific)

 [This section is unchanged.]

4.3. Sections
[Change first sentence to appear as follows:]

An object file’s section header table lets one locate all the file’s sections. The section header
table is an array of Elf32_Shdr or Elf64_Shdr structures as described below. A section
header table index is a subscript into this array. The ELF header’s e_shoff member gives
the byte offset from the beginning of the file to the section header table; e_shnum tells how
many entries the section header table contains; e_shentsize gives the size in bytes of each
entry.

0
880x88

Figure 4-6: Data Encoding ELFDATA2MSB

0 1
88 99

0 1 2 3
88 99 AA BB

0 1 2 3 4 5 6 7
88 99 AA BB CC DD EE FF

0x8899

0x8899AABB

0x8899AABBCCDDEEFF

4-6 SYSTEM V ABI Delta Document 1.30

OBJECT FILES 7/13/94 SPARC International Confidential

typedef struct {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;

} Elf32_Shdr;

Figure 4-8: Section Header (ELFCLASS32)

typedef struct {
Elf64_Word sh_name;
Elf64_Word sh_type;
Elf64_Xword sh_flags;
Elf64_Addr sh_addr;
Elf64_Off sh_offset;
Elf64_Xword sh_size;
Elf64_Word sh_link;
Elf64_Word sh_info;
Elf64_Xword sh_addralign;
Elf64_Xword sh_entsize;

} Elf64_Shdr;

Figure 4-8+: Section Header (ELFCLASS64)

SPARC International Confidential7/13/94OBJECT FILES

Delta Document 1.30 SYSTEM V ABI4-7

4.4. Symbol table

.

4.4.1. Relocation Entries

Relocation is the process of connecting symbolic references with symbolic definitions. For
example, when a program calls a function, the associated call instruction must transfer control
to the proper destination address at execution. In other words, relocatable files must have
information that describes how to modify their section contents, thus allowing executable and
shared object files to hold the right information for a process’s program image. Relocation
entries are these data.

Figure 4-15: Symbol Table Entry (ELFCLASS32)

typedef struct {
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;

} Elf32_Sym;

Figure 4-15+: Symbol Table Entry (ELFCLASS64)

typedef struct {
Elf64_Word st_name;
unsigned char st_info;
unsigned char st_other;
Elf64_Half st_shndx;
Elf64_Addr st_value;
Elf64_Xword st_size;

} Elf64_Sym;

4-8 SYSTEM V ABI Delta Document 1.30

OBJECT FILES 7/13/94 SPARC International Confidential

r_offset This member gives the location at which to apply the relocation action. For
a relocatable file, the value is the byte offset from the beginning of the section
to the storage unit affected by the relocation. For an executable file or a shared
object, the value is the virtual address of the storage unit affected by the
relocation.

r_info This member gives both the symbol table index with respect to which the
relocation must be made, and the type of relocation to apply. For example,
a call instruction’s relocation entry would hold the symbol table index of the
function being called. If the index is STN_UNDEF, the undefined symbol index,
the relocation uses 0 as the “symbol value”. Relocation types are processor-
specific; descriptions of their behavior appear in the processor supplement. When
the text in the processor supplement refers to a relocation entry’s relocation
type it means the result of applying ELF32_R_TYPE or ELF64_R_TYPE to

typedef struct {
Elf32_Addr r_offset;
Elf32_Word r_info;

} Elf32_Rel;

typedef struct {
Elf32_Addr r_offset;
Elf32_Word r_info;
Elf32_Sword r_addend;

} Elf32_Rela;

Figure 4-19: Relocation Entries (ELFCLASS32)

typedef struct {
Elf64_Addr r_offset;
Elf64_Xword r_info;

} Elf64_Rel;

typedef struct {
Elf64_Addr r_offset;
Elf64_Xword r_info;
Elf64_Sxword r_addend;

} Elf64_Rela;

Figure 4-19+: Relocation Entries (ELFCLASS64)

SPARC International Confidential7/13/94OBJECT FILES

Delta Document 1.30 SYSTEM V ABI4-9

the entry’s r_info member. When the text refers to a relocation entry’s symbol
table index it means the result of applying ELF32_R_SYM or ELF64_R_SYM
to the entry’s r_info member.

r_addend This member specifies a constant addend used to compute the value to be stored
into the relocatable field.

As shown above, only ELF32_Rela and ELF64_Rela entries contain an explicit addend.
Entries of type Elf32_Rel and Elf64_Rel store an implicit addend in the location to be
modified. Depending on the processor architecture, one form or the other might be necessary
or more convenient. Consequently, an implementation for a particular machine may use one
form exclusively or either form depending on context.

A relocation section references two other sections: a symbol table and a section to modify.
The section header’s sh_info and sh_link members, described in “Sections” above, specify
these relationships. Relocation entries for different object files have slightly different
interpretations of the r_offset member.

� In relocatable files, r_offset holds a section offset. That is, the relocation section
itself describes how to modify another section in the file; relocation offsets designate
a storage unit within the second section.

� In executable and shared object files, r_offset holds a virtual address. To make
these files’ relocation entries more useful for the dynamic linker, the section offset
(file interpretation) gives way to a virtual address (memory interpretation).

Although the interpretation of r_offset changes for different object files to allow efficient
access by the relevant programs, the relocation types’ meanings stay the same.

4.4.2. Relocation Types (Processor-Specific)

 [This section is unchanged.]

#define ELF32_R_SYM(info) ((info)>>8)
#define ELF32_R_TYPE(info) ((unsigned char)(info))
#define ELF32_R_INFO(sym, type) (((sym)<<8)

+ (unsigned char)(type))

#define ELF64_R_SYM(info) ((info)>>32)
#define ELF64_R_TYPE(info) ((Elf64_Word)(info))
#define ELF64_R_INFO(sym, type) (((Elf64_Xword)(sym)<<32)

+ (Elf64_Xword)(type))

5-1 SYSTEM V ABI Delta Document 1.30

PROGRAM LOADING AND DYNAMIC LINKING 8/1/94 SPARC International Confidential

5. PROGRAM LOADING AND DYNAMIC LINKING

5.1. Introduction

 [This section is unchanged.]

5.2. Program Header

5.2.1. Base Address

 [This section is unchanged.]

5.2.2. Segment Permissions

 [This section is unchanged.]

Figure 5-1: Program Header (ELFCLASS32)

typedef struct {
Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

} Elf32_Phdr;

Figure 5-1+: Program Header (ELFCLASS64)

typedef struct {
Elf64_Word p_type;
Elf64_Word p_flags;
Elf64_Off p_offset;
Elf64_Addr p_vaddr;
Elf64_Addr p_paddr;
Elf64_Xword p_filesz;
Elf64_Xword p_memsz;
Elf64_Xword p_align;

} Elf64_Phdr;

SPARC International Confidential8/1/94PROGRAM LOADING AND DYNAMIC LINKING

Delta Document 1.30 SYSTEM V ABI5-2

5.2.3. Segment Contents

 [This section is unchanged.]

5.2.4. Note Section

 [This section is unchanged.]

5.3. Program Loading (Processor-Specific)

 [This section is unchanged.]

5.4. Dynamic Linking

 [This section is unchanged.]

5.4.1. Program Interpreter

 [This section is unchanged.]

5.4.2. Dynamic Linker

 [This section is unchanged.]

5.4.3. Dynamic Section

typedef struct {
Elf32_Sword d_tag;
union {

Elf32_Word d_val;
Elf32_Addr d_ptr;

} d_un;
} Elf32_Dyn;

extern Elf32_Dyn _DYNAMIC[];

Figure 5-9: Dynamic Structure (ELFCLASS32)

5-3 SYSTEM V ABI Delta Document 1.30

PROGRAM LOADING AND DYNAMIC LINKING 8/1/94 SPARC International Confidential

5.4.4. Shared Object Dependencies

[For commercial reasons, it will sometimes be desirable for one vendor-supplied system to
support two or more ABI interfaces. For example, all vendors of SPARC V9 systems plan for
those systems to support both the SPARC V8 ABI interface and the SPARC V9 ABI interface.
The generic ABI should be written so that multiple interfaces are clearly permitted.

One issue that arises when supporting multiple interfaces is the need for a different set of
shared objects for each interface. In principle, shared object version numbers might be used
to distinguish the different interfaces, but in practice this is clumsy and difficult to coordinate.
The SPARC International V9 SPARC Compliance Definition (SCD) Special Interest Group (SIG)
proposes to use a different subdirectory of each shared object directory for each interface
supported. The subdirectory sparc32 is to be used for SPARC V8; sparc64 is for SPARC V9.
(For backward compatibility, sparc32 can be a symbolic link to the current directory.)

There are several possible ways the generic ABI could be written so as to clarify that the
use of multiple subdirectories is permitted:

1. Make the exact shared object search algorithm processor-specific, as long as the search
order is as specified in “Shared Object Dependencies.”

2. Specify that an optional prefix is prepended to the shared object name, but only if the
shared object name contains no slashes. The prefix to use is processor-specific.

3. As in (2), but specify an algorithm for computing the prefix. For example, the following
algorithm might be used: If the shared object name has no slashes, a machine name
string is created by taking the symbolic constant for the value in the e_machine field
of the ELF header, dropping the EM_ prefix, and translating all upper-case letters to
lower case. For example, the symbolic constant EM_SPARC64 produces the machine
name string sparc64. The machine name string, a slash, and the shared object name
are concatenated. The resulting string is used to search the three facilities specified
above. For example, if e_machine is EM_SPARC32 and the shared object is lib1,
then the search is for sparc32/lib1.

typedef struct {
Elf64_Xword d_tag;
union {

Elf64_Xword d_val;
Elf64_Addr d_ptr;

} d_un;
} Elf64_Dyn;

extern Elf64_Dyn _DYNAMIC[];

Figure 5-9+: Dynamic Structure (ELFCLASS64)

SPARC International Confidential8/1/94PROGRAM LOADING AND DYNAMIC LINKING

Delta Document 1.30 SYSTEM V ABI5-4

While we do not have exact language to suggest as yet, we seek guidance from the ABICC
as to which of the above three approaches is preferable, so that we can then draft and come
back with specific language.]

5.4.5. Global Offset Table (Processor-Specific)

 [This section is unchanged.]

5.4.6. Procedure Linkage Table (Processor-Specific)

 [This section is unchanged.]

5.4.7. Hash Table

 [This section is unchanged.]

5.4.8. Initialization and Termination Functions

 [This section is unchanged.]

SPARC International Confidential7/13/94LIBRARIES

Delta Document 1.30 SYSTEM V ABI6-1

6. LIBRARIES

6.1. Introduction
[Change Figure 6-1 to appear as follows:]

6.2. System Library

6.2.1. Global Data Symbols
wchar_t _numeric[2];

This array holds local-specific information, as established by setlocale (BA_OS).
Specifically, _numeric[0] holds the decimal-point character, and _numeric[1]
holds the character used to separate groups of digits to the left of the decimal-
point character in formatted non-monetary quantities. See localeconv (BA_LIB)
for more information.

6.2.2. Vendor Extensions

Symbols with the prefix _$vendor.company provide operating system entries for the vendor
named company. The system library does not have unadorned alternatives for these names.
As an example, the “XYZ Computer Company” might use the prefix _$vendor.xyz.

6.3. C Library

 [This section is unchanged.]

6.4. Network Services Library
[Add the following functions1 to the libnsl library:]

xdr_hyper
xdr_u hyper
xdr_u_int (errata)
xdr_int32
xdr_u_int32
xdr_long_double

1. New functions will be explained in the delta document for the SVID.

Library Reference Name

libc
libnsl
libsys
libX

SEE
PROCESSOR
SPECIFIC
MANUAL

Figure 6-1: Shared Library Names

6-2 SYSTEM V ABI Delta Document 1.30

LIBRARIES 7/13/94 SPARC International Confidential

6.5. X Window System Library

 [This section is unchanged.]

6.6. System Data Interfaces

 [This section is unchanged.]

SPARC International Confidential7/13/94FORMATS AND PROTOCOLS

Delta Document 1.30 SYSTEM V ABI7-1

7. FORMATS AND PROTOCOLS

7.1. Introduction

 [This section is unchanged.]

7.2. Archive File
[This section is unchanged.]

7.3. Other Archive Formats

 [We may need to add a 64-bit tape archive format.]

7.4. Terminfo Data Base

 [This section is unchanged.]

7.5. Formats and Protocols for Networking

7.5.1. XDR: External Data Representations

 [The following text should follow the “Double-precision Floating-point” section.]

Quad-precision Floating-point

XDR defines the encoding for the quad-precision floating-point data type “long double” (128
bits or 16 bytes). The encoding used is a logical extension to the IEEE standard for single
and double precision encoding. XDR encodes the following three fields, which describe the
quad-precision floating-point number:

S: The sign of the number. Values 0 and 1 represent positive and negative, respectively.
One bit.

E: The exponent of the number, base 2. 15 bits are devoted to this field. The exponent
is biased by 16383.

F: The fractional part of the number’s mantissa, base 2. 112 bits are devoted to this field.

Therefore, the floating-point number is described by:

(-1)**S * 2**(E-Bias) * 1.F

It is declared as follows:

7-2 SYSTEM V ABI Delta Document 1.30

FORMATS AND PROTOCOLS 7/13/94 SPARC International Confidential

Quad-Precision Floating-point

The most and least significant bits of a quad-precision floating-point number are 0 and 127.
The beginning bit (and the most significant bit) offsets of S, E, and F are 0, 1, and 16,
respectively. Note that these numbers refer to the mathematical positions of the bits, and NOT
to their actual physical locations (which vary from medium to medium).

Even though quad-precision floating-point is not yet a part of the IEEE standard, the IEEE
754 specifications should be consulted concerning the encoding for signed zero, signed infinity
(overflow), and denormalized numbers (underflow). According to IEEE specifications, the “NaN”
(not a number) is system dependent.

7.5.2. RPC: Remote Procedure Call

 [This section is unchanged.]

byte 0
.

.
byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8 byte 15

S E F

1 15 112 bits

128 bits

SPARC International Confidential7/13/94SYSTEM COMMANDS

Delta Document 1.30 SYSTEM V ABI8-1

8. SYSTEM COMMANDS

8.1. Commands for Application Programs

 [May need to add a new tape archive command for 64-bits.]

9-1 SYSTEM V ABI Delta Document 1.30

EXECUTION ENVIRONMENT 7/13/94 SPARC International Confidential

9. EXECUTION ENVIRONMENT

9.1. Application Environment

 [This section is unchanged.]

9.2. File System Structure and Contents

 [This section is unchanged.]

SPARC International Confidential7/13/94WINDOWING AND TERMINAL INTERFACES

Delta Document 1.30 SYSTEM V ABI10-1

10. WINDOWING AND TERMINAL INTERFACES

10.1. The System V Window System

 [This section is unchanged.]

10.2. System V Window System Components

 [This section is unchanged.]

A-1 SYSTEM V ABI Delta Document 1.30

Minor Corrections to Original ABI Supplement 7/13/94 SPARC International Confidential

Appendix A. Minor Corrections to Original ABI Supplement

A.1. Formats and Protocols/Terminfo Data Base
[On pages 7-7 and 7-8, the text:]

. . . terminal capabilities are stored here in the order in which that are listed under the . . .

[should read:]

. . . terminal capabilities are stored here in the order in which they are listed under the . . .

A.2. System Commands/Commands for Application Programs
[On page 8-1 at the bottom of the page, the text:]

. . . UNIX system shell (shBU_CMD).

[should read:]

. . . UNIX system shell sh(BU_CMD).

